WorldWideScience

Sample records for flowing vertically upward

  1. An investigation of flow characteristics and critical heat flux in vertical upward round tube

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Prediction of critical heat flux (CHF) in annular flow is important for the safety of once- through steam generator and the reactor core under accident conditions. The dryout in annular flow occurs at the point where the film is depleted due to entrainment, deposition, and evaporation. The film thickness, film mass flow rate along axial distribution, and CHF are calculated in vertical upward round tube on the basis of a separated flow model of annular flow. The theoretical CHF values are higher than those derived from experimental data, with error being within 30%.

  2. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-02-15

    In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s < < 30 m/s and 0.2 m/s < < 3.5 m/s where and are, respectively, superficial gas and liquid velocities. The local flow regime has been classified into four categories: bubbly, cap-slug, churn-turbulent and annular flows. In order to study the radial and axial development of flow regime the measurements have been performed at five radial locations. The three axial positions correspond to z/D{sub H} = 52, 149 and 230, where z represents the axial position. The flow regime indicator has been chosen as some statistical parameters of local bubble chord length distributions and self-organized neural networks have been used as mapping system. This information has been also used to compare the results given by the existing flow regime transition models. The local flow regime is characterized basically by the void fraction and bubble chord length. The radial development of flow regime shows partial and complete local flow regime combinations. The radial development is controlled by axial location and superficial liquid velocity. The radial flow regime transition is always initiated in the center of the flow channel and it is propagated towards the channel boundaries. The axial development of flow regime is observed in all the flow maps and it is governed by superficial liquid velocity and radial location. The prediction results of the models are compared for each flow regime transition.

  3. Study on the heat transfer of cross flow in vertical upward tubes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2~3 times that ofoil when they have the same superficial velocity.

  4. Droplet entrainment correlation in vertical upward co-current annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Mori, Michitsugu [Tokyo Electric Power Co., Inc., R and D Center, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)], E-mail: michitsugu.mori@tepco.co.jp

    2008-06-15

    Upward annular two-phase flow in a vertical tube is characterized by the presence of liquid film on the tube wall and entrained droplet laden gas phase flowing through the tube core. Entrainment fraction in annular flow is defined as a fraction of the total liquid flow flowing in the form of droplets through the central gas core. Its prediction is important for the estimation of pressure drop and dryout in annular flow. In the following study, measurements of entrainment fraction have been obtained in vertical upward co-current air-water annular flow covering wide ranges of pressure and flow conditions. Comparison of the experimental data with the existing entrainment fraction prediction correlations revealed their inadequacies in simulating the trends observed under high flow and high pressure conditions. Furthermore, several correlations available in the literature are implicit and require iterative calculations. Analysis of the experimental data showed that the non-dimensional numbers, Weber number (We = {rho}{sub g}{sup 2}D/{sigma}({delta}{rho}/{rho}{sub g}){sup 1/4}) and liquid phase Reynolds number (Re{sub f} = {rho}{sub f}D/{mu}{sub f}), successfully collapse the data. In view of this, simple, explicit correlation was developed based on these non-dimensional numbers for the prediction of entrainment fraction. The new correlation successfully predicted the trends under the high flow and high pressure conditions observed in the current experimental data and the data available in open literature. However, in order to use the proposed correlation it is necessary to predict the maximum possible entrainment fraction (or limiting entrainment fraction). In the current analysis, an experimental data based correlation was used for this purpose. However, a better model or correlation is necessary for the maximum possible entrainment fraction. A theoretical discussion on the mechanism and modeling of the maximum possible entrainment fraction

  5. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  6. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  7. Numerical analysis of thermal-hydraulic behavior of supercritical water in vertical upward/downward flow channels

    Institute of Scientific and Technical Information of China (English)

    GU Hanyang; YU Yiqi; CHENG Xu; LIU Xiaojing

    2008-01-01

    Investigations on the thermal-hydraulic behavior in the SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding of the heat transfer behavior of supercritical fluids. In this paper, the numerical analysis is carried out to study the thermal-hydraulic behaviour in vertical sub-channels cooled by supercritical water. Remarkable differences in characteristics of secondary flow are found, especially in square lattice, between the upward flow and downward flow. The turbulence mixing across sub-channel gap for downward flow is much stronger than that for upward flow in wide lattice when the bulk temperature is lower than pseudo-critical point temperature. For downward flow, heat transfer deterioration phenomenon is suppressed with respect to the case of upward flow at the same conditions.

  8. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.

    2008-01-01

    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  9. Study of two-phase flow regime identification in horizontal tube bundles under vertical upward cross-flow condition using wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Xinghua HUANG; Li WANG; Feng JIA

    2008-01-01

    A wavelet-transform based approach for flow regime identification in horizontal tube bundles under vertical upward cross-flow condition was presented. Tests on two-phase flow pattern of R 134a were conducted under low mass velocity and flow boiling conditions over Time series of differential pressure fluctuations were mea-sured and analyzed with discrete wavelet transform. Different time-scale characteristics in bubbly flow, churn flow and annular flow were analyzed. The wavelet energy distributions over scales were found to be appropriate for flow regime identification. Based on the wavelet energy distribution over characteristic scales, a criterion of flow regime identification was proposed. The comparison with experiment results show that it is feasible to use the dis-crete wavelet transform as the tool of flow regime iden-tification in horizontal tube bundles under vertical upward cross-flow condition.

  10. Testing for Nonlinearity in Dynamic Characteristics of Vertical Upward Oil-Gas-Water Three-phase Bubble and Slug Flows

    Institute of Scientific and Technical Information of China (English)

    朱雷; 金宁德; 高忠科; 杜萌; 王振亚

    2012-01-01

    Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.

  11. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    Science.gov (United States)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  12. Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward

    Science.gov (United States)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-12-01

    Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.

  13. An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周芳德; 胡明胜

    2001-01-01

    In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.

  14. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    Science.gov (United States)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2017-07-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  15. A study on the characteristics of evaporation heat transfer of carbon dioxide flowing upward in a vertical smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jin; Cho, Jin Min; Kim, Min Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2007-07-01

    Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical tube have been investigated by experiment. Before the test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. A smooth tube with outer diameter of 5 mm and length of 1.44 m was selected as a test tube. The test was conducted at mass fluxes of 212 to 530 kg/m{sup 2}s, saturation temperature of -5 to 20 .deg. C, and heat fluxes of 20 to 45 kW/m{sup 2}. As the vapor quality and mass fluxes increase, the heat transfer coefficients of carbon dioxide are decreased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase.

  16. Characteristics of drift-flux models for the 3' diameter vertical-upward air-water flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V. T.; Euh, D. J.; Song, C. H. [KAERI, Daejeon (Korea, Republic of)

    2009-07-01

    One of the more complex aspects of two-phase flow calculations is the determination of the void fraction. An accurate estimation of this parameter is important for understanding and predicting the behavior of systems during a wide variety of transient conditions. The drift-flux models are based on correlations to compute the void fraction distribution and slip in a two-phase flow needed to obtain the relative velocity between the phases. Thus, the accuracy of the correlation has a decisive role in determining the correct transport of the two-phases in the system. In this paper, the assessment of 7 correlations based on the Zuber-Findlay model has been done by using the experimental data which were performed on the 3' diameter vertical-upward air-water test facility in KAERI. The void fraction was measured by using the impedance void meter which has a good dynamic resolution to get the values directly without any further data treatment. A total of 28 flow conditions have been performed at 2 bar and 3 bar inlet pressure conditions with temperature of 30 .deg. C, superficial liquid and gas velocity range of 0.5-2.8 m/s and 0.044-1.025 m/s. Some physical phenomena relevant to inlet flow condition and pressure effect were investigated. The results of assessment show a good predictive capability of Bestion model, which is currently used in the system code CATHARE.

  17. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  18. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  19. Void fraction and flow regime in adiabatic upward two-phase flow in large diameter vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P.; Sawant, P.; Paranjape, S.; Ozar, B.; Hibiki, T. [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, M., E-mail: ishii@purdue.ed [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2009-12-15

    In pipes with very large diameters, slug bubbles cannot exist. For this reason, the characteristics of two-phase flow in large pipes are much different than those in small pipes. Knowledge of these characteristics is essential for the prediction of the flow in new nuclear reactor designs which include a large chimney to promote natural circulation. Two of the key parameters in the prediction of the flow are the void fraction and flow regime. Void fraction measurements were made in a vertical tube with diameter of 0.15 m and length of 4.4 m. Superficial gas and liquid velocities ranged from 0.1 to 5.1 m/s and from 0.01 to 2.0 m/s, respectively. The measured void fractions ranged from 0.02 to 0.83. Electrical impedance void meters at four axial locations were used to measure the void fraction. This data was verified through comparison with previous data sets and models. The temporal variation in the void fraction signal was used to characterize the flow regime through use of the Cumulative Probability Density Function (CPDF). The CPDF of the signal was used with a Kohonen Self-Organized Map (SOM) to classify the flow regimes at each measurement port. The three flow regimes used were termed bubbly, cap-bubbly, and churn flow. The resulting flow regime maps matched well with the maps developed previously through other methods. Further, the flow regime maps matched well with the criteria which were proposed based on criteria.

  20. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)], E-mail: morisho@ynu.ac.jp; Tominaga, Akira [Ube National College of Technology, Ube 755-8555 (Japan)], E-mail: tominaga@ube-k.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)], E-mail: fukanot@cc.kurume-it.ac.jp

    2007-12-15

    If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t{sub Fm} is approximately the same before and behind the spacer.

  1. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  2. Void fraction development in gas-liquid flow after a U-bend in a vertically upwards serpentine-configuration large-diameter pipe

    Science.gov (United States)

    Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi

    2017-08-01

    We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.

  3. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    Science.gov (United States)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  4. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    Directory of Open Access Journals (Sweden)

    Hernández L.

    2013-04-01

    Full Text Available Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  5. Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod%垂直上升管内有水平柱体时气液两相局部流型转变的研究

    Institute of Scientific and Technical Information of China (English)

    胡志华; 杨燕华; 刘磊; 周芳德

    2006-01-01

    The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are analyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.

  6. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. [Kyushu Univ., Fukuoka (Japan)

    2003-07-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow with-in an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow.

  7. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. E-mail: fukanot@mech.kyushu-u.ac.jp

    2003-10-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves.

  8. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp

    2006-05-15

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.

  9. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  10. Turbulence Modification Structures in an Upward Bubbly Pipe Flow

    Science.gov (United States)

    Tanaka, Tomohiko; Hishida, Koichi; Eaton, John

    2002-11-01

    The objective of this study is to investigate the mechanism of modification of turbulence in gas-liquid bubbly flow. We especially focused on the effect of void fraction and bubble diameter, which are important factors in turbulence modification. Fluid velocity was measured by applying PIV with fluorescent tracer particles, and bubble shapes and positions were obtained by the shadow-image technique. The experiment consisted of a fully developed vertical upward pipe flow with void fraction 0.5diameter is 2R=44mm and the Re=9700. In order to compare the effect of the bubble diameter at fixed void fraction, nearly 60ppm of 3-Pentanol (C5H11OH) surfactant was added as the surfactant. Bubbles accelerated the mean streamwise velocity near the wall. Thus the mean streamwise velocity profile was flatted. Moreover, the streamwise fluctuation velocity was suppressed at the middle pipe region. It is suggested that the highly concentrated bubbles in the vicinity of the wall disturb the transport of turbulence energy produced by the wall shear layer toward the middle of pipe. Thus the fluctuation velocity is remarkably reduced at the wide region of the pipe center. Moreover, in the middle of pipe, the turbulence structure is governed by the presence of bubbles.

  11. Experimental study of flow inversion in MTR upward flow research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hadi, Ead A. [Benha Univ., Cairo (Egypt). Shobra Faculty of Engineering; Khedr, Ahmed; Talha, Kamal Eldin Aly; Abdel-Latif, Salwa Helmy

    2014-06-15

    The core cooling of upward flow MTR pool type Research Reactor (RR) at the later stage of pump coast down is experimentally handled to clarify the effect of some operating parameters on RR core cooling. Therefore, a test rig is designed and built to simulate the core cooling loop at this stage. The core is simulated as two vertical channels, electrically heated, and extended between upper and lower plenums. Two elevated tanks filled with water are connected to the two plenums. The first one constitutes a left branch, connected to the lower plenum, and is electrically heated to simulate the core return pipe. The second one constitutes the right branch, connected to the upper plenum, and is cooled by refrigerant circuit to simulate the reactor pool. Channel coolant and wall temperatures at different power and branch temperatures are measured, registered and analyzed. The results show that at this stage of core cooling two cooling loops are established; an internal circulation loop between the channels dominated by the difference in channel's power and an external circulation loop between the branches dominated by the temperature difference between branches. Also, there is a double inversion in core flow, upward-downward-upward flow. This double inversion increases largely the channel's wall temperature. Complementary safety analysis to evaluate this phenomenon must be performed. (orig.)

  12. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  13. Upward swimming of a sperm cell in shear flow

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  14. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  15. Flow film boiling heat transfer for subcooled liquids flowing upward perpendicular to single horizontal cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.S. [Kobe Univ. of Mercantile Marine, Dept. of Nuclear Engineering (Japan); Shiotsu, M. [Kyoto Univ., Dept. of Energy Sci. and Tech. (Japan); Sakurai, A. [Kyoto Univ. (Japan)

    2001-07-01

    The knowledge of flow film boiling heat transfer on a horizontal cylinder in various liquids flowing upward perpendicular to the cylinder is important as the database for the safety evaluation of the accidents such as rapid power burst and pressure reduction in the nuclear power plants. Flow film boiling heat transfer from single horizontal cylinders in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured under wide experimental conditions. The flow velocities ranged from 0 to 1 m/s, the system pressures ranged from 100 to 500 kPa, and the surface superheats were raised up to 800 K for water and 400 K for Freon-113, respectively. Platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The test heater was heated by direct electric current. The experimental data of film boiling heat transfer coefficients show that they increase with the increase of flow velocity, liquid subcooling, system pressure and with the decrease of cylinder diameter. Based on the experimental data, a correlation for subcooled flow film boiling heat transfer including the effects of liquid subcooling and radiation was presented, which can describe the experimental data obtained within 20% for the flow velocities below 0.7 m/s, and within -30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi's data were in the range from about -20% to +15%, the data of Motte and Bromley were about 30%,and the data of Sankaran and Witte were within +20 % of the curves given by the corresponding predicted values. (authors)

  16. Coupling Onset of Cyclone Upward and Rotation Flows in a Little Bottle

    CERN Document Server

    Kawata, Shigeo

    2012-01-01

    A coupling onset of the cyclone upward and rotation flows is experimentally demonstrated in a little bottle. The rotating flow provides a pressure increase in the outer part of the rotating flow by its centrifugal force. When a gradient of the fluid rotation appears along the rotation axis, the higher-pressure area is localized and pushes the fluid in a low pressure. Then the fluid staying in the central area of the rotation is pushed up along the rotation axis, and the upward wind is enhanced. In this coupling mechanism the rotation gradient is the key; the coupling of the rotation and the upward fluid flow is essentially important for a cyclone buildup, and is well explained experimentally and theoretically.

  17. CFD Study of Deteriorated Turbulent Heat Transfer in Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa University of Science and Technology and Research, Abu Dhabi (United Arab Emirates)

    2014-10-15

    DTHT regime can be induced by two effects: buoyancy and acceleration. Apart from these two deteriorating effects, another unique behavior of fluid in the DTHT regime is that the convective heat transfer rate will continue to deteriorate until it reaches certain point. The downstream of this point, is known as the recovery region, where the convective heat transfer rate returns back to the high values by recovering turbulence. We called this phenomena as re-turbulization.. The map of the DTHT regime can be seen from fig. 2, where the x-axis is the buoyancy parameter and y-axis is the acceleration parameter which is the agreed governing non-dimensional numbers among the researchers to illustrate the phenomena. The Buoyancy parameter is defind in Eq. (1) and the acceleration parameter is defined in Eq. (2), respectively. The threshold value for both effects to move from the forced turbulent heat transfer to the DTHT regime are found to be Bo* ≥ 2x10{sup -6}and Kv ≥ 2.5x10{sup -6} in the previous works. Bo{sup *}=Gr{sub q}/Re{sup 3}'.{sup 425} Pr{sup 0}'.{sup 8} (1). K{sub v}=4q{sup +}/Re (2). Many experiments and simulation have been done to investigate this phenomenon and the boundary of the regime. However, very limited number of experiment was conducted in the regime where buoyancy effect and acceleration effect are in the same order of magnitude and high enough to cause DTHT (mixed DTHT). Some important experimental researches that have been done in the gas DTHT regime is Lee et al. who investigated the heat transfer of gas flow in the range of buoyancy parameter from 3x10{sup -9} to 10{sup -5} and acceleration parameter span from 6x10{sup -8} to 5x10{sup -6} and presented the behavior of Nusselt number ratio from the experiment as fig. 3 and fig. 4. This paper will discuss a Computational Fluid Dynamics analysis on DTHT by assuming hypothetical boundary conditions especially on the mixed DTHT regime. It has been found that a gas cooled fast reactor

  18. Liquid entrainment at an upward oriented vertical branch line from a horizontal pipe

    Science.gov (United States)

    Welter, Kent Byron

    Under simulated accident conditions, tees in the primary coolant loop of a Pressurized Water Reactor (PWR) can deviate from their original design purpose and become separators that effectively remove core heat sink capacity. This method of primary coolant removal is a phenomenological subset of phase separation known as liquid entrainment, whereby liquid is forced from its original path by the inertia of the gas. A comprehensive literature review revealed common deficiencies in previous studies. The Westinghouse AP600 advanced reactor design was chosen to assess the validity of entrainment models. Following a systematic scaling analysis of the prototypic design a model separate effects test was proposed and constructed at Oregon State University. Just under 100 tests were run to fill the deficiencies found in the literature review. New data from the Air-water Test Loop for Advanced Thermal-hydraulic Studies (ATLATS) could not be predicted by published correlations. A new theoretical model for predicting liquid entrainment onset and steady state entrainment was developed. Comparison with all available data shows a marked improvement for predicting the mass flow rate out the vertical branch.

  19. INFLUENCE OF SURFACTANT ON TWO-PHASE FLOW REGIME AND PRESSURE DROP IN UPWARD INCLINED PIPES

    Institute of Scientific and Technical Information of China (English)

    XIA Guo-dong; CHAI Lei

    2012-01-01

    The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0°,2.5° and 5° pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10°pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of USG =10m/s-28m/s and USL =0.07 m/s-0.2 m/s.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.

  20. Effects of radiation losses on very lean methane/air flames propagating upward in a vertical tube

    OpenAIRE

    Higuera Antón, Fco. Jose; Muntean, Victor

    2014-01-01

    The stationary upward propagation of a very lean methane/air flame in a long vertical tube open at the bottom and closed at the top is simulated numerically using a single overall chemical reaction to model combustion and assuming an optically thin gas and a transparent or non-reflecting tube wall to approximately account for radiation losses from CO2CO2 and H2OH2O. Buoyancy plays a dominant role in the propagation of these flames and causes a large region of low velocity of the burnt gas rel...

  1. Experimental study of heat transfer of ultra-supercritical pressure water in vertical upward internally ribbed tube

    Institute of Scientific and Technical Information of China (English)

    Wang Weishu; Chen Tingkuan; Luo Yushan; Gu Hongfang; Yin Fei

    2007-01-01

    Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4-head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied.The experiments were performed at P=25~34MPa,G=450~1800kg/(m2·s)and q=200~600kW/m2. The results show that the pressure has only a moderate effect on the heat transfer of ultra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.

  2. Specifics of boiling and condensation in upward flow in minichannel systems

    Science.gov (United States)

    Kuznetsov, V. V.; Safonov, S. A.; Shamirzaev, A. S.

    2015-12-01

    The results of experimental and numerical studies focused on determining the mechanism of heat transfer during boiling and condensation in a single-row system of minichannels in upward flow conditions at a mass flux of 30 and 50 kg/(m2 s) are presented. Refrigerant R21, which models cryogenic liquids at low temperatures, was used as the working liquid. The determining influence of self-organization of the flow under the influence of capillary forces on the processes of heat transfer during a phase transition in the system of minichannels at low mass and heat fluxes was revealed.

  3. Effect of Upward Internal Flow on Dynamics of Riser Model Subject to Shear Current

    Institute of Scientific and Technical Information of China (English)

    CHEN Zheng-shou; KIM Wu-joan; XIONG Cong-bo

    2012-01-01

    Numerical study about vortex-induced vibration (VIV) related to a flexible riser model in consideration of internal flow progressing inside has been performed.The main objective of this work is to investigate the coupled fluid-structure interaction (FSI) taking place between tensioned riser model,external shear current and upward-progressing internal flow (from ocean bottom to surface).A CAE technology behind the current research which combines structural softwàre with the CFD technology has been proposed.According to the result from dynamic analysis,it has been found that the existence of upward-progressing internal flow does play an important role in determining the vibration mode (/dominant frequency),vibration intensity and the magnitude of instantaneous vibration amplitude,when the velocity ratio of internal flow against external current is relatively high.As a rule,the larger the velocity of internal flow is,the more it contributes to the dynamic vibration response of the flexible riser model.In addition,multi-modal vibration phenomenon has been widely observed,for asymmetric curvature along the riser span emerges in the case of external shear current being imposed.

  4. Influence of surfactant conditions on the structure of an upward bubbly channel flow

    Science.gov (United States)

    Ogasawara, Toshiyuki

    2005-11-01

    We investigated an upward bubbly channel flow and the effects of surfactant on its flow structure experimentally. 3-Pentanol and Triton X-100 are used as surfactants. By the addition of small amount of surfactant, bubble coalescences are prevented and mono-dispersed 1mm spherical bubbles are obtained. Under all of our experimental conditions, the added surfactants do not influence the single-phase turbulence. On the other hand, small amount of surfactant drastically changes the whole flow structure of bubbly flow. On the low concentration of 3-Pentanol (21-63ppm), bubbles strongly migrate towards the wall and these highly accumulated bubbles on the wall form crescent-like shaped horizontal bubble clusters of 10-40mm length. However, in 3-Pentanol solution of higher concentration (˜168ppm) or in the 2ppm Triton X-100 solution, the tendency of the lateral migration of bubbles is weaken and the bubbles are distributed uniformly in the channel. In the surfactant solution, the slip velocity on the bubble surface retards and the bubble rising velocity decreases (Marangoni effect). The change of boundary condition on the bubble surface affects not only drag force but shear-induced lift force. It is indicated that this change of shear-induced lift force greatly relates to the lateral migration of bubbles and the disaggregation of the bubble clusters. We also measured the turbulent properties using LDV and discuss the flow structure.

  5. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  6. Experimental investigations on turbulent mixing of hot upward flow and cold downward flow inside a chimney model of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Samiran, E-mail: samiran_sengupta@yahoo.co.in [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghosh, Aniruddha [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, C. [Research Reactor Maintenance Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vijayan, P.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sharma, R.C. [Reactor Group, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-02-15

    Highlights: • Simulated mixing of hot upward and cold downward flows in a chimney of a reactor. • Experiments in chimney model (2:9 scale) at Reynolds number (Re)—1.5 to 4.5 × 10{sup 5}. • Hot upward flow comes out of the chimney when bypass flow ratio (R) is zero. • Increase in ratio (R) reduces jet height, vortex spread height and temperature front height. • Effects of Re, chimney height and temperature differential are not significant. - Abstract: Experiments were conducted to study the turbulent mixing of hot upward flow and cold downward flow inside a scaled down model of chimney structure of a pool type nuclear research reactor. Open pool type nuclear reactors often use this type of chimney structures to prevent mixing of radioactive core outlet water directly into the reactor pool so that radiation field at the reactor pool top can be kept to a lower limit. The chimney structure is designed to facilitate guiding of the radioactive water towards the two outlet nozzles of the chimney and simultaneously allows drawing water from the reactor pool through the chimney top opening. The present work aims at studying flow mixing behaviour of hot and cold water inside a 2/9th scaled down model of the chimney structure experimentally. The ratio between the cold downward flow and the hot upward flow is varied between 0 and 0.15 to predict the extent of suppression of the hot upward flow within the chimney region for various bypass flow ratios. The Reynolds number of the hot upward flow considered in the experiment is about 1.5 × 10{sup 5} which corresponds to a flow rate of about 500 l min{sup −1}. The upward jet height and the temperature distribution were predicted from the experiment. It was observed that increase in bypass flow ratio reduces the upward jet height of hot water. Experiments were also carried out by increasing the flow rate to 1000 and 1500 l min{sup −1} corresponding to Reynolds numbers of 3 × 10{sup 5} and 4.5 × 10{sup 5

  7. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    Science.gov (United States)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  8. Droplet sizes, dynamics and deposition in vertical annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  9. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    Science.gov (United States)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  10. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    KRISHNA PADA BAURI; ARINDAM SARKAR

    2016-09-01

    The safety of the foundations of submerged hydraulic structures due to excessive local scour is threatened by the erosive action of the waves and currents passing around these structures. Fish and aquatic habitat is seriously affected due to the modification of the flow field caused by these submerged structures. Hence, the problems of flow characteristics and erosion around submerged structures were investigated by various researchers. A comprehensive discussion of the investigations on flow characteristics and local scour due to steady currents and waves around vertical submerged structures are presented, which comprises scour process, dimensional analysis, parameters influencing scour, temporal evolution of scour, flow field, flow visualization techniques, variation of bed shear stress, scour depth determination formulas and scour countermeasures.Although past investigations establish the effect of various parameters on scour around vertical submerged structures for live and clear water condition, yet further studies are required to analyze the scour around group of submerged structures for various bed sediments, understand the flow physics around the group and upscale the model results for the prototype.

  11. Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, the Netherlands

    NARCIS (Netherlands)

    Louw, de P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; Zee, van der S.E.A.T.M.

    2010-01-01

    As upward seepage of saline groundwater from the upper aquifer is leading to surface water salinization of deep polders in the Netherlands, we monitored the processes involved in the Noordplas Polder, a typical deep polder. Our results show three types of seepage: (1) diffuse seepage through the Hol

  12. Energy and mass balances in multiple-effect upward solar distillers with air flow through the last-effect unit

    Energy Technology Data Exchange (ETDEWEB)

    Homing Yeh; Chiidong Ho [Tamkang Univ. Tamsui, Dept. of Chemical Engineering, Taipei Hsien (Taiwan)

    2000-04-01

    Considerable improvement in productivity may be obtained if water vapor in the last-effect unit is carried away directly by flowing air. The theory of a closed-type upward multiple-effect solar distiller has been modified to that of an open-type device, and the energy and mass balances have been derived. The production rate of distilled water for each effect under various climate, design, and operational conditions may be predicted by simultaneously solving the appropriate equations. (Author)

  13. Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow

    Institute of Scientific and Technical Information of China (English)

    刘磊; StuartL.Scott

    2001-01-01

    Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.

  14. Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and non Newtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.

  15. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M.; Moyer, R. A. [University of California-San Diego, La Jolla, California 92093 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Eidietis, N. W.; Parks, P. B. [General Atomics, San Diego, California 92186 (United States); Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-15

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  16. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    Science.gov (United States)

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, D.

    2015-10-01

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  17. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  18. Thermal and hydrodynamic characteristics of forced and mixed convection flow through vertical rectangular channels

    Directory of Open Access Journals (Sweden)

    Hanafi Abdalla S.

    2008-01-01

    Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is

  19. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  20. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  1. Film boiling heat transfer from a wire to upward flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shiotsu, M.; Shirai, Y.; Horie, Y.; Shigeta, H.; Higa, D.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Nonaka, S.; Naruo, Y.; Inatani, Y.

    2015-11-01

    Film boiling heat transfer coefficients in liquid hydrogen were measured for the heater surface superheats to 300 K under pressures from 0.4 to 1.1 MPa, liquid subcoolings to 11 K and flow velocities to 8 m/s. Two test wires were both 1.2 mm in diameter, 120 mm and 200 mm in lengths and were made of PtCo alloy. The test wires were located on the center of 8 mm and 5 mm diameter conduits of FRP (Fiber Reinforced Plastics). Furthermore film boiling heat transfer coefficients in liquid nitrogen were measured only for the 200 mm long wire. The film boiling heat transfer coefficients are higher for higher pressure, higher subcooling, and higher flow velocity. The experimental data were compared with a conventional equation for forced flow film boiling in a wide channel. The data for the 8 mm diameter conduit were about 1.7 times and those for the 5 mm conduit were about 1.9 times higher than the predicted values by the equation. A new equation was presented modifying the conventional equation based on the liquid hydrogen and liquid nitrogen data. The experimental data were expressed well by the equation.

  2. An experimental study on the characteristics of evaporation heat transfer of carbon dioxide flowing upward in an inclined smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jin; Cho, Jin Min; Lee, Jae Seung; Kim, Min Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2008-07-01

    The ozone layer depletion and global warming has driven us to develop new alternative refrigerants. As the carbon dioxide is believed as a good alternative, evaporation heat transfer characteristics of carbon dioxide flowing upward in an inclined smooth tube(45? have been investigated by experiment. A pre-heater is installed to adjust the inlet quality of the refrigerant to get a desired value before the test section. An inclined smooth tube(45? with outer diameter of 5 mm and length of 1.44 m was selected as a test tube. The test was conducted at mass fluxes of 318 to 530 kg/m{sup 2}s, saturation temperatures of -5 to 20 .deg. C, and heat fluxes of 15 to 45 kW/m{sup 2}. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are slightly decreased, and the heat transfer coefficients increase with the heat fluxes and saturation temperatures elevated.

  3. Vertical fluxes of sediment in oscillatory sheet flow

    NARCIS (Netherlands)

    Nielsen, Peter; van der Wal, K.U.; Gillan, Luke

    2002-01-01

    Time series of vertical sediment fluxes are derived from concentration time series in sheet flow under waves. While the concentrations C(z,t) vary very little with time for |z|<10d50, the measured vertical sediment fluxes Qzs(z,t) vary strongly with time in this vertical band and their time variatio

  4. Vertical dispersion in vegetated shear flows

    Science.gov (United States)

    Rubol, Simonetta; Battiato, Ilenia; de Barros, Felipe P. J.

    2016-10-01

    Canopy layers control momentum and solute transport to and from the overlying water surface layer. These transfer mechanisms strongly dependent on canopy geometry, affect the amount of solute in the river, the hydrological retention and availability of dissolved solutes to organisms located in the vegetated layers, and are critical to improve water quality. In this work, we consider steady state transport in a vegetated channel under fully developed flow conditions. Under the hypothesis that the canopy layer can be described as an effective porous medium with prescribed properties, i.e., porosity and permeability, we model solute transport above and within the vegetated layer with an advection-dispersion equation with a spatially variable dispersion coefficient (diffusivity). By means of the Generalized Integral Transform Technique, we derive a semianalytical solution for the concentration field in submerged vegetated aquatic systems. We show that canopy layer's permeability affects the asymmetry of the concentration profile, the effective vertical spreading behavior, and the magnitude of the peak concentration. Due to its analytical features, the model has a low computational cost. The proposed solution successfully reproduces previously published experimental data.

  5. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature.

  6. Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javdani, K; Schwalbe, S; Fishcher, J

    1977-01-01

    This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.

  7. Knowledge Discovery for Classification of Three-Phase Vertical Flow Patterns of Heavy Oil from Pressure Drop and Flow Rate Data

    Directory of Open Access Journals (Sweden)

    Adriane B. S. Serapião

    2013-01-01

    Full Text Available This paper focuses on the use of artificial intelligence (AI techniques to identify flow patterns acquired and recorded from experimental data of vertical upward three-phase pipe flow of heavy oil, air, and water at several different combinations, in which water is injected to work as the continuous phase (water-assisted flow. We investigate the use of data mining algorithms with rule and tree methods for classifying real data generated by a laboratory scale apparatus. The data presented in this paper represent different heavy oil flow conditions in a real production pipe.

  8. Spiralling upward.

    Science.gov (United States)

    Schulgasser, Kalman; Witztum, Allan

    2004-09-21

    Thin vertical leaves often manifest twist. Perhaps the most prominent example of this is in Typha sp., but such twist is also apparent in Narcissus, Pancratium and many other genera. Such a blade is often referred to as a "spiral leaf". We will indicate the mechanical advantage afforded to the leaf by this arrangement, i.e. that it permits the leaf to achieve a greater height without losing stability, that is bending over due to its own weight. We quantify this gain and show how by a simple experiment it can be shown that the advantage is indeed utilized in nature. Typha domingensis is offered as an example.

  9. Eulerian-Lagrangian Simulations of Bubbly Flows in A Vertical Square Duct

    Science.gov (United States)

    Liu, Rui; Vanka, Surya P.; Thomas, Brian G.

    2013-11-01

    We report results of Eulerian-Lagrangian simulations of developing upward and downward bubbly flows in a vertical square duct with a bulk Reynolds number of 5000. The continuous fluid is simulated with DNS, solving the Navier-Stokes equations by a second-order accurate finite volume fractional step method. Bubbles of sizes comparable to the Kolmogorov scale are injected at the duct entrance with a mean bulk volume fraction below 10-2. A two-way coupling approach is adopted for the interaction between the continuous fluid phase and dispersed bubble phase. The bubbles are tracked by a Lagrangian method including drag and lift forces due to buoyancy and Saffman lift. A in-house code, CU-FLOW, implemented on Graphic Processing Unit (GPU) is used for simulations in this work. The preferential distributions of bubbles and their impact on local turbulence structures and their effects on turbulent kinetic energy budgets are studied. Results between an upward flow and a downward flow with the bubbles are compared. Work Supported by Continuous Casting Consortium at UIUC.

  10. Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: takagi@mach.t.u-tokyo.ac.jp

    2009-12-15

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters. (invited paper)

  11. INVITED PAPER: Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Science.gov (United States)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro

    2009-12-01

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters.

  12. Vertical flow of a multiphase mixture in a channel

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2001-01-01

    Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.

  13. Performance of a novel vertical-flow settler: a comparative study.

    Science.gov (United States)

    Zhang, Zhong-guo; Chen, Zhao-yang; Li, Yan-zhong; Fan, Jing-hua; Fan, Bin; Luan, Zhao-kun; Lu, Dao-qiang

    2006-01-01

    By increasing particle concentration and G value (root-mean-square velocity gradient) to enhance flocculation, a novel vertical-flow settler was designed to increase sedimentation effectiveness, and to simultaneously improve operational stabilization. Due to the gradual decrease in upward flow-rate of raw water, a flocs blanket would form and suspend in the middle section of the settler, not at the bottom as in a conventional clarifier. Enough large flocs, resulted from flocculation or filtration, would continuously settle out of the flocs blanket, and simultaneously, the flocs in raw water or those forming above the blanket would ceaselessly enter the flocs blanket. As a result, the flocs concentration in the blanket could keep a dynamic balance. The hydrodynamic shear in the blanket was improved by flow separation, which was induced by the abrupt change in flow channel. Due to the floes blanket and improved hydrodynamic shear, flocculation would be enhanced, which was helpful for removing fine particles in raw water. A comparative study showed that the novel vertical-flow settler had a much better performance in the removal of the particles in raw water than a conventional one, when they treated kaolin suspensions of different concentrations (500, 100 and 50 mg/L, respectively) coagulated by polyaluminum chloride(PAC1) at the up-flow rates of I and 2 mm/s, respectively.

  14. Performance of a novel vertical-flow settler: a comparative study

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-guo; CHEN Zhao-yang; LI Yan-zhong; FAN Jing-hua; FAN Bin; LUAN Zhao-kun; LU Dao-qiang

    2006-01-01

    By increasing particle concentration and G value (root-mean-square velocity gradient) to enhance flocculation, a novel vertical-flow settler was designed to increase sedimentation effectiveness, and to simultaneously improve operational stabilization.Due to the gradual decrease in upward flow-rate of raw water, a flocs blanket would form and suspend in the middle section of the settler, not at the bottom as in a conventional clarifier. Enough large flocs, resulted from flocculation or filtration, would continuously settle out of the flocs blanket, and simultaneously, the flocs in raw water or those forming above the blanket would ceaselessly enter the flocs blanket. As a result, the flocs concentration in the blanket could keep a dynamic balance. The hydrodynamic shear in the blanket was improved by flow separation, which was induced by the abrupt change in flow channel. Due to the flocs blanket and improved hydrodynamic shear, flocculation would be enhanced, which was helpful for removing fine particles in raw water. A comparative study showed that the novel vertical-flow settler had a much better performance in the removal of the particles in raw water than a conventional one, when they treated kaolin suspensions of different concentrations (500, 100 and 50 mg/L, respectively)coagulated by polyaluminum chloride(PACl) at the up-flow rates of 1 and 2 mm/s, respectively.

  15. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  16. Influence of vertical flows in wells on groundwater sampling.

    Science.gov (United States)

    McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

    2014-11-15

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  17. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 1st Report, Saturated Liquid

    OpenAIRE

    Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru

    1981-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...

  18. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 2nd Report, Subcooled Liquid

    OpenAIRE

    Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu

    1983-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...

  19. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  20. Properties of flooding waves in vertical churn flow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K.; Bai, B.; Yang, B.; Xie, C. [Xi' an Jiaotong Univ., State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi (China)

    2011-07-01

    It is more accurate to predict the critical heat flux (CHF) from the start of churn flow rather than the start of annular flow. High-speed photography has been employed for qualitative investigation of entrainment in vertical two-phase flow under churn flow condition. This paper mainly focuses on the evolution of the flooding waves close to the water inlet section and liquid distribution in the cross-section of tube. The properties of flooding wave such as frequency and amplitude have been obtained. (author)

  1. On the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows

    Science.gov (United States)

    1992-12-01

    the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows b, AUTHOR(S) Steven Reino Gilbert,Major -. Pf.IFORI.MINt ORGAN!?ATION NAMW(S...AND INTRASEASONAL FLOWS by Steven Reino Gilbert A dissertation submitted to the faculty of The University of Utah in partial fulffifment of the...requirements for the degree of Doctor of Philosophy Department of Meteorology The University of Utah La ! December 1992 Copyright @ Steven Reino Gilbert 1992

  2. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  3. Study of heat transfer in a 7-element bundle cooled with the upward flow of supercritical Freon-12

    Science.gov (United States)

    Richards, Graham

    Experimental data on SuperCritical-Water (SCW) cooled bundles are very limited. Major problems with performing such experiments are: 1) small number of operating SCW experimental setups and 2) difficulties in testing and experimental costs at very high pressures, temperatures and heat fluxes. However, SuperCritical Water-cooled nuclear Reactor (SCWRs) designs cannot be finalized without such data. Therefore, as a preliminary approach experiments in SCW-cooled bare tubes and in bundles cooled with SC modeling fluids can be used. One of the SC modeling fluids typically used is Freon- 12 (R-12) where the critical pressure is 4.136 MPa and the critical temperature is 111.97ºC. These conditions correspond to a critical pressure of 22.064 MPa and critical temperature of 373.95ºC in water. A set of experimental data obtained in a Freon-12 cooled vertical bare bundle at the Institute of Physics and Power Engineering (IPPE, Obninsk, Russia) was analyzed. This set consisted of 20 cases of a vertically oriented 7-element bundle installed in a hexagonal flow channel. To secure the bundle in the flow channel 3 thin spacers were used. The dataset was obtained at equivalent parameters of the proposed SCWR concepts. Data was collected at pressures of about 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. Heat fluxes ranged from 9 kW/m2 to 120 kW/m2 and mass fluxes ranged from 440 kg/m2s to 1320 kg/m2s. Also inlet temperatures ranged from 70ºC -- 120ºC. The test section consisted of fuel elements that were 9.5 mm in diameter with the total heated length of 1 m. Bulk-fluid and wall temperature profiles were recorded using a combination of 8 different thermocouples. The data was analyzed with respect to its temperature profile and heat transfer coefficient along the heated length of the test section. In a previous study it was confirmed that there is the existence of three distinct

  4. Interface-resolved DNS of vertical particulate channel flow in the turbulent regime

    CERN Document Server

    Uhlmann, Markus

    2011-01-01

    We have conducted a direct numerical simulation (DNS) study of dilute turbulent particulate flow in a vertical plane channel, considering thousands of finite-size rigid particles with resolved phase interfaces. The particle diameter corresponds to approximately 11 wall units and their terminal Reynolds number is set to 136. The fluid flow with bulk Reynolds number 2700 is directed upward, which maintains the particles suspended upon average. Two density ratios were simulated, differing by a factor of 4.5. The corresponding Stokes numbers of the two flow cases were O(10) in the near-wall region and O(1) in the outer flow. We have observed the formation of large-scale elongated streak-like structures with streamwise dimensions of the order of 8 channel half-widths and cross-stream dimensions of the order of one half-width. At the same time, we have found no evidence of significant formation of particle clusters, which suggests that the large structures are due to an intrinsic instability of the flow, triggered ...

  5. Transport of pesticides and artificial tracers in vertical-flow lab-scale wetlands

    Science.gov (United States)

    Durst, Romy; Imfeld, Gwenaël.; Lange, Jens

    2013-01-01

    Wetland systems can be hydrologically connected to a shallow aquifer and intercept upward flow of pesticide-contaminated water during groundwater discharge. However, pesticide transport and attenuation through wetland sediments (WSs) intercepting contaminated water is rarely evaluated quantitatively. The use of artificial tracers to evaluate pesticide transport and associated risks is a fairly new approach that requires evaluation and validation. Here we evaluate during 84 days the transport of two pesticides (i.e., isoproturon (IPU) and metalaxyl (MTX)) and three tracers (i.e., bromide (Br), uranine (UR), and sulforhodamine B (SRB)) in upward vertical-flow vegetated and nonvegetated lab-scale wetlands. The lab-scale wetlands were filled with outdoor WSs and were continuously supplied with tracers and the pesticide-contaminated water. The transport of IPU and UR was characterized by high solute recovery (approximately 80%) and low retardation compared to Br. The detection of desmethylisoproturon in the wetlands indicated IPU degradation. SRB showed larger retardation (>3) and lower recovery (approximately 60%) compared to Br, indicating that sorption controlled SRB transport. MTX was moderately retarded (approximately 1.5), and its load attenuation in the wetland reached 40%. In the vegetated wetland, preferential flow along the roots decreased interactions between solutes and sediments, resulting in larger pesticide and tracer recovery. Our results show that UR and IPU have similar transport characteristics under the tested subsurface-flow conditions, whereas SRB may serve as a proxy for less mobile and more persistent pesticides. Since UR and SRB are not significantly affected by degradation, their use as proxies for fast degrading pollutants may be limited. We anticipate our results to be a starting point for considering artificial tracers for investigating pesticide transport in environments at groundwater/surface-water interfaces.

  6. Eulerian simulation of sedimentation flows in vertical and inclined vessels

    Institute of Scientific and Technical Information of China (English)

    Wu Chun-Liang; Zhan Jie-Min

    2005-01-01

    Sedimentation of particles in inclined and vertical vessels in numerically simulated using a finite volume method where the Eulerian multiphase model is applied. The particulate phase as well as the fluid phase is regarded as a continuum while the viscosity and solid stress of the particulate phase are modelled by the kinetic theory of granular flows. The numerical results show an interesting phenomenon of the emergence of two circulation vortices of the sedimentation flow in a vertical vessel but only one in the inclined vessel. Several sensitivity tests are simulated to understand the factors that influence the dual-vortex flow structure in vertical sedimentation. Result show that a larger fluid viscosity makes the two vortex centres much closer to each other and the boundary layer effect at lateral walls is the key factor to induce this phenomenon. In the fluid boundary layer particles settle down more rapidly and drag the local carrier fluid to flow downward near the lateral walls and thus form the dual-vortex flow pattern.

  7. Experimental research on flow instability in vertical narrow annuli

    Institute of Scientific and Technical Information of China (English)

    WU Geping; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    A narrow annular test section of 1.5mm gap and 1800mm length was designed and manufactured, with good tightness and insulation. Experiments were carried out to investigate characteristics of flow instability of forced-convection in vertical narrow annuli. Using distilled water as work fluid, the experiments were conducted at pressures of 1.0~3.0 MPa, mass flow rates of 3.0~25 kg/h, heating power of 3.0~ 6.5kW and inlet fluid temperature of 20 ℃, 40 ℃ or 60℃. It was found that flow instability occured with fixed inlet condition and heating power when mass flow rate was below a special value. Effects of inlet subcooling, system pressure and mass flow rate on the system behavior were studied and the instability region was given.

  8. Forced flow heat transfer from a round wire in a vertically- mounted pipe to supercritical hydrogen

    Science.gov (United States)

    Horie, Y.; Shiotsu, M.; Shirai, Y.; Higa, D.; Shigeta, H.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.

    2015-12-01

    Forced flow heat transfer of hydrogen from a round wire in a vertically-mounted pipe was measured at pressure of 1.5 MPa and temperature of 21 K by applying electrical current to give an exponential heat input (Q=Q0exp(t/τ),τ=10 s) to the round wire. Two round wire heaters, which were made of Pt-Co alloy, with a diameter of 1.2 mm and lengths of 54.5 and 120 mm were set on the central axis of a flow channel made of FRP with inner diameter of 5.7 and 8.0 mm, respectively. Supercritical hydrogen flowed upward in the channel. Flow velocities were varied from 1 to 12.5 m/s. The heat transfer coefficients of supercritical hydrogen were compared with the conventional correlation presented by Shiotsu et al. It was confirmed that the heat transfer coefficients for a round wire were expressed well by the correlation using the hydraulic equivalent diameter.

  9. Rivulet Flow In Vertical Parallel-Wall Channel

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. Mc Creery; P. Meakin

    2006-04-01

    In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.

  10. VERTICAL CONVECTION IN NEUTRINO-DOMINATED ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Gu, Wei-Min; Li, Ang [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Kawanaka, Norita, E-mail: tongliu@xmu.edu.cn, E-mail: norita@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-05-20

    We present the effects of vertical convection on the structure and luminosity of the neutrino-dominated accretion flow (NDAF) around a stellar-mass black hole in spherical coordinates. We find that the convective energy transfer can suppress the radial advection in the NDAF and that the density, temperature, and opening angle are slightly changed. As a result, the neutrino and annihilation luminosities are increased, which allows the energy requirement of gamma-ray bursts to be achieved.

  11. Two-phase slug flow in vertical and inclined tubes

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Gas-liquid slug flow is investigated experimentally in vertical and inclined tubes.The non-invasive measuremnts of the gas-liquid slug flow are taken by using the EKTAPRO 1000 High Speed Motion Analyzer.The information on the velocity of the Talyor bubble,the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble are obtained.The experimental results are in good agreement with the available data.

  12. Upward Bound alum honored

    OpenAIRE

    Felker, Susan B.

    2005-01-01

    Robert Cobb Jr., of Greensboro, N.C., a 1986-89 participant in the Virginia Tech Upward Bound program, was recently named Virginia's TRIO Achiever for 2004. Federal TRIO programs include Upward Bound and Educational Talent Search.

  13. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  14. Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model

    Institute of Scientific and Technical Information of China (English)

    王斯民; 文键; 李亚梅; 杨辉著; 厉彦忠

    2013-01-01

    Multiple size group (MUSIG) model combined with a three-dimensional two-fluid model were em-ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu-tion patterns of void fraction in the wall-heated tube were analyzed. It was found that the average void fraction in-creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub-cooled temperature. The local void fraction exhibited a U-shape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient against experimental measurements, which demonstrated the accuracy of the numerical model.

  15. Numerical modeling and experimental analysis of volatile contaminant removal from vertical flow filters

    NARCIS (Netherlands)

    De Biase, C.

    2012-01-01

    Vertical flow filters (unplanted) and vertical flow constructed wetlands (planted), simple and inexpensive technologies to treat effectively volatile organic compounds (VOCs) contaminated water, consist of containers filled with granular material which is intermittently fed with contaminated water.

  16. Debris flow runup on vertical barriers and adverse slopes

    Science.gov (United States)

    Iverson, Richard M.; George, David L.; Logan, Matthew

    2016-12-01

    Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.

  17. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes

    NARCIS (Netherlands)

    De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The

  18. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes

    NARCIS (Netherlands)

    De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter.

  19. Flow Structure Around the Intake of a Vertical Pump

    Institute of Scientific and Technical Information of China (English)

    Akihiro WADA

    2006-01-01

    The flow structure around the intake of a vertical pump is investigated experimentally and numerically in order to obtain a guideline in designing the optimum shape of the intake of vertical pumps, in which their installation area is demanded to be minimum without losing the high performance. We concentrate our attention on the expansion ratio of the intake as a representative characteristic of the shape of the pumps and investigate the effect of the expansion ratio on pump performance. It is concluded that the optimum expansion ratio ranges in 1.1~1.2 if we take into consideration that the area needed for the installation of the pump should be minimum.

  20. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    Science.gov (United States)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  1. 超临界压力下航空煤油在竖直管内的传热研究%Experimental study on heat transfer of supercritical kerosene in vertical upward tube

    Institute of Scientific and Technical Information of China (English)

    黄丹; 陈景祥; 朱华; 李蔚

    2016-01-01

    对竖直上升管内超临界压力下航空煤油的传热特性进行了实验研究。分析了不同质量流量、热流密度、压力和进口温度对超临界压力下航空煤油传热特性的影响。实验结果表明,提高质量流量或进口温度均使煤油传热效果变好。而热流密度对流体传热的影响主要在于改变了流体和壁面温度,热流密度越大,传热系数越高。压力对煤油传热影响不大,一般情况下,提高压力会恶化传热。超临界状态下,煤油物性变化很大,因此对煤油的传输和热力学性质的准确计算是研究超临界压力下传热现象的关键。利用拓展的对比态法来计算煤油的密度和传输特性,如黏度、热导率等。给出了煤油在超临界压力下的传热关联式,其计算值和实验值吻合良好。%A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flow rate,heat flux,pressure and inlet temperature.The results show that increasing mass flow rate or inlet temperature can enhance the heat transfer.The effect of heat flux on heat transfer lies in the changes of the inner wall or fluid temperature.The heat transfer coefficient increases with increasing heat flux.The heat transfer will be deteriorated by increasing pressure.At the supercritical conditions,heat transfer is influenced by the significant changes in thermo-physical properties,thus accurate evaluations of the thermo-physical properties become the key for the supercritical heat transfer calculations.The extended corresponding-state principle could be used for evaluating the density and the transport properties of kerosene,including its viscosity and thermal conductivity,at different temperatures and pressures.The correlation for predicting heat transfer in kerosene at supercritical pressure is

  2. Film Boiling Heat Transfer from a Round Wire to Liquid Hydrogen Flowing Upward in a Concentric Annulus

    Science.gov (United States)

    Shiotsu, M.; Shirai, Y.; Oura, Y.; Horie, Y.; Yoneda, K.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.

    Hydrogen film boiling heat transfer coefficients were measured for the heater surface superheats up to 400 K under pressures from 400 to 1100 kPa, liquid subcoolings from 0 to 11 K and flow velocities up to 7 m/s. The test wire used was 1.2 mm in diameter and 120 mm in length made of PtCo (0.5 wt.%) alloy, which was located at the center of 8 mm diameter conduit made of FRP (Fiber Reinforced Plastics). The heat transfer coefficients were higher for higher pressure, higher subcooling and higher flow velocity. The heat transfer coefficients were about 1.6 times higher than those predicted by Shiotsu-Hama equation for forced flow film boiling in a wide channel. Discussions were made on the mechanism of difference between them.

  3. Magnetohydrodynamics stagnation point flow towards a stretching vertical sheet

    Science.gov (United States)

    Ishak, A.; Nazar, R.; Pop, I.

    2006-03-01

    The analysis of steady two-dimensional stagnation point flow of an incompressible viscous and electrically conducting fluid, subject to a transverse uniform magnetic field, over a vertical stretching sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. It is shown that the basic partial differential equations reduce to similarity equations. This is followed by a direct numerical solution of the resulting boundary value problem using a very efficient finite-difference method. Discussions are made to trace among them the physically realistic solution. Tables 5, Figs 13, Refs 17.

  4. VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM

    OpenAIRE

    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi

    1983-01-01

    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  5. Using Discrete Element Method to Simulate Influence of Vertical Joints and Upward Groundwater on The Stability of Dip Slope: A Case Study on Formosa Freeway

    Science.gov (United States)

    Lu, An; Hsieh, Pei-Chen; Wu, Liang-Chun; Lin, Ming-Lang

    2017-04-01

    Earthquake and rainfall weakening potential sliding surface are common causes of dip slope failure. But in recent years, certain dip slopes failure, for example dip slope sliding without rain on the roadside of Formosa Freeway in northern Taiwan, are caused by uplift groundwater in vertical joints eventually weakening the potential sliding surface. The mechanism of sliding failure should be analyzed in more detail. Furthermore, prestress dissipating in anchors causing dip slope failure is also considered in this study. In this study, conceptual model is simplified from the case of Formosa Freeway in northern Taiwan and the main control factors including angle of slope, stratum, attitude of joints. In addition, drilling data, such as hydraulic conductivity, strength, friction angle and cohesion, are utilized to discuss mechanism and dominant factors of dip slope failure caused by uplift groundwater in vertical joints. UDEC(Universal Distinct Element Code) which is particularly well suited to problems involving jointed media and has been used extensively in stability analysis of jointed rock slopes is utilized in this study. The influence of external factors such as groundwater pressure on block sliding and deformation can also be simulated in UDEC. When the results from numerical simulation fit the condition of slope failure on the roadside of Formosa Freeway, the influence of prestress dissipating in anchors on slope stability is considered subsequently. Finally, simulation results by UDEC are compared with previous research results by FLAC, and discuss the difference between each other.

  6. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    Science.gov (United States)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  7. Unsteady Viscous Dissipative Dusty Nanofluid Flow Over a Vertical Plate

    Directory of Open Access Journals (Sweden)

    D.R.V.S.R.K. Sastry

    2016-10-01

    Full Text Available The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible two-phase nanofluid has been considered by taking into account the viscous dissipative heat. Two nano particles Copper (Cu and Alumina (Al2O3 are submerged in a base fluid, Water (H20. The coupled non-linear partial differential equations which govern the flow are solved for nanofluid and dust particle phases by finite difference method. The velocity and temperature fields have been shown graphically for various parameters. Here Grashof number, (Gr being positive (cooling of the plate for dusty air. Also the effects of Eckert number on heat transfer and skin friction coefficient for various parameters are represented graphically. It is observed that dusty nanofluid enhances both skin friction and heat transfer rate in the case of cooling.

  8. Lie Group Analysis of Natural Convective Flow from a Convectively Heated Upward Facing Radiating Permeable Horizontal Plate in Porous Media Filled with Nanofluid

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Two-dimensional, steady, laminar and incompressible natural convective flow of a nanofluid over a connectively heated permeable upward facing radiating horizontal plate in porous medium is studied numerically. The present model incorporates Brownian motion and thermophoresis effects. The similarity transformations for the governing equations are developed by Lie group analysis. The transformed equations are solved numerically by Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Effects of the governing parameters on the dimensionless velocity, temperature and nanoparticle volume fraction as well as on the dimensionless rate of heat and mass transfer are presented graphically and the results are compared with the published data for special cases. Good agreement is found between numerical results of the present paper and published results. It is found that Lewis number, Brownian motion and convective heat transfer parameters increase the heat and mass transfer rates whilst thermophoresis decreases both heat and mass transfer rates.

  9. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Tietz, Alexandra [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria)]. E-mail: alexandra.tietz@boku.ac.at; Kirschner, Alexander [Clinical Institute for Hygiene and Medical Microbiology, Department for Water Hygiene - Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna (Austria); Langergraber, Guenter [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria); Sleytr, Kirsten [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria); Haberl, Raimund [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria)

    2007-07-15

    In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via {sup 14}C leucine incorporation into bacterial biomass. All methods showed that > 50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction.

  10. Mathematical model for analysis of recirculating vertical flow constructed wetlands.

    Science.gov (United States)

    Sklarz, Menachem Y; Gross, Amit; Soares, M Ines M; Yakirevich, Alexander

    2010-03-01

    The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

    Science.gov (United States)

    Hood, Renee R; DeVoe, Don L

    2015-11-18

    Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.

  12. Prediction of amount of entrained droplets in vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: ishii@purdue.edu; Mori, Michitsugu [Tokyo Electric Power Co. Inc., 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)], E-mail: michitsugu.mori@tepco.co.jp

    2009-08-15

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342-1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam-water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment

  13. Gas-solid turbulent flow and heat transfer with collision effect in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Saffar-Avval, M.; Basirat Tabrizi, H.; Ramezani, P. [Department of Mechanical Engineering, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran); Mansoori, Z. [Energy Research Center, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran)

    2007-01-15

    A turbulent gas-solid suspension upward flow in a vertical pipe is simulated numerically using Eulerian-Lagrangian approach. Particle-particle and particle-wall collisions are simulated based on deterministic approach. The influence of particle collisions on the particle concentration, mean temperature and fluctuating velocities are investigated. Numerical results are presented for different values of loading ratios. The profiles of particle concentration, mean velocity and temperature are shown to be flatter by considering inter-particle collisions, while this effect on the gas mean velocity and temperature is not significant. It is demonstrated that the effect of inter-particle collisions have a dramatic influence on the particle fluctuation velocity. It is shown that the profiles of particle concentration and particle velocity are flattened due to inter-particle collisions and this effect becomes more pronounced with increasing loading ratio. Also, the attenuation of turbulence by inter-particle collisions in the core region of the pipe is increased by increasing loading ratio. (author)

  14. Yeast suspension filtration: Flux enhancement using an upward gas/liquid slug flow -- Application to continuous alcoholic fermentation with cell recycle

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, M.; Maranges, C.; Fonade, C.; Lafforgue-Delorme, C. [Institut National des Sciences Appliquees, Toulouse (France). Centre de Bioingenierie Gilbert Durand

    1998-04-05

    This study deals with the use of an upward gas/liquid slug flow to reduce tubular mineral membrane fouling. The injection of air into the feedstream is designed to create hydrodynamic conditions that destabilize the cake layer over the membrane surface inside the filtration module complex. Experimental study was carried out by filtering a biological suspension (yeast) through different tubular mineral membranes. The effects of operating parameters, including the nature of the membrane, liquid and gas flowrates, and transmembrane pressure, were examined. When external fouling was the main limiting phenomenon, flux enhancements of a factor of three could be achieved was gas sparging compared with single liquid phase crossflow filtration. The economic benefits of this unsteady technique have also been examined. To investigate the possibility of long-term operation of the two-phase flow principle, dense cell perfusion cultures of Saccharomyces cerevisiae were carried out in a fermentor coupled with an ultrafiltration module. The air injection allowed a high and stable flux to be maintained over 100 h of fermentation, with a final cell concentration of 150 g dry weight/L. At equal biomass level, a twofold gain in flux could be attained compared with classical steady crossflow filtration at half the cost.

  15. Characteristics of critical heat flux under rolling condition for flow boiling in vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jin-Seok, E-mail: hjscd@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Yeon-Gun, E-mail: yeongun2@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Experiment was conducted on CHF under rolling condition in vertical tube. Black-Right-Pointing-Pointer CHF loop was mounted on rolling device to achieve rolling conditions. Black-Right-Pointing-Pointer Trends of CHF ratio as mass flux and pressure were studied. Black-Right-Pointing-Pointer Trends of CHF ratio under rolling motion was suggested using hypothetical CHF mechanism. - Abstract: This paper presents the characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube under rolling motion in a marine reactor. It is important to predict CHF of marine reactor under rolling motion in order to consider the safety margin of the reactor. MArine Reactor Moving Simulator (MARMS) test was conducted to measure the CHF of R-134a flowing upward in a uniformly heated vertical tube under rolling motion. A CHF loop mounted on rolling equipment, which can periodically roll from side to side through rotating by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass flux ranges from 285 kg/m{sup 2} s to 1300 kg/m{sup 2} s, inlet subcoolings from 3 to 38 Degree-Sign C and outlet pressures from 1.3 to 2.4 bar, respectively. Amplitudes of rolling range from 15 Degree-Sign to 40 Degree-Sign and period from 6 to 12 s. Fluid-to-fluid (FTF) scaling was applied to convert the test matrix of MARMS from water to R-134a equivalent conditions. CHF ratios (ratio of the CHF under rolling condition to the stationary CHF) as mass flux and pressure in rolling motion are quite different from those of other existing transient CHF experiments. For the mass fluxes below 500 kg/m{sup 2} s (region of relative low mass flux) at 13, 16 bar, CHF ratios seem smaller than unit but in region (region of relative high mass flux) where mass fluxes are above 500 kg/m{sup 2} s, it was found that the ratios increased. Moreover, rolling CHFs tend to enhance

  16. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  17. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  18. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  19. Flow regime transition criteria for two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique, E-mail: bolivar@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I., Campus de Riu Sec, 12071 Castellon (Spain); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-10-15

    Highlights: > Flow regime transition model is presented for two-phase flows in a vertical annulus. > The transition criteria is easy to be implemented in computational codes. > Final equations do not need experimental input. > New developed model shows better predicting capabilities than existing correlations. > New developed model shows good predicting capabilities in boiling flow. - Abstract: In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug-bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been

  20. Growth of Bubble layer and Onset of Flow Instability in a vertical Narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    Even numerous studies have been constantly conducted to date, however the prediction of OFI is still questionable for wide range of conditions especially for low mass flux condition in narrow rectangular channel as reported in the previous works. In addition, the understanding of subcooled flow boiling structures at OFI is not sufficient due to lack of studies with visualization. In this regards, OFI experiment for downward and upward flow boiling in a narrow rectangular channel are newly conducted while visualizing boiling structure. Image processing method is adopted to quantify bubble layer thickness, which is turned out to be important factor to understand the OFI. Experimental studies on OFI in a narrow rectangular channel having gap size of 2.35 mm was conducted not only for downward flow but also upward flow condition. Flow boiling structures are visualized using HSV method and also quantized bubble boundary layers are obtained by using image processing method. Based on observation and analysis, the merging of facing vapor layers on opposite boiling surfaces is the key phenomena triggering OFI for both upward and downward flow.

  1. Vertical cross-spectral phases in atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2014-01-01

    . The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance......, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift....

  2. Numerical Simulation of Vertical Upward Dense Phase Suspension Pneumatic Conveying Based on EMMS Model%基于EMMS模型垂直向上密相悬浮气力输送过程数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    潘刚

    2015-01-01

    基于EMMS模型,建立垂直向上密相悬浮输送过程的数学模型。对输送管道内固体颗粒的速度、体积分数以及管道内压力变化进行了研究。研究结果表明:固体颗粒在管道发生团聚现象;在高度方向上,固体颗粒速度呈现出先减小后趋于稳定的变化趋势,固相颗粒平均体积分数呈现出先增加后平稳的趋势;在高度=3.5~8 m范围内气力输送过程趋于稳定。%The mathematical model of vertical upward dense phase suspended transportation process is established based on EMMS model. The velocity and volume fraction of solid particles in the conveying pipeline and the pressure changes in the pipeline are studied. Research results show that agglomeration of solid particles in the pipeline.The velocity of solid particles decreases firstly and then tends to be stable in height direction.The average volume fraction of the solid particles increased first and then tends to be stable in height direction.The pneumatic conveying process is stable in the height h=3.5~8 m range.

  3. Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT ... Past an Impulsively Started Porous Vertical Surface with Variable Viscosity Fluid in the Presence of Viscous Dissipation: BSRM Approach.

  4. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  5. Overtopping Flow Impact on a Vertical Wall on a Dike Crest

    NARCIS (Netherlands)

    Chen, X.; Hofland, B.; Altomare, C.; Uijttewaal, J.S.W.

    2014-01-01

    In this paper the impact process and mechanism of overtopping flow on a vertical wall on a dike crest are investigated by means of a series of physical model tests. A double-peaked force was recognized in a time series of an overtoping flow. Four stages were summarized for the whole overtopping flow

  6. Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe

    Institute of Scientific and Technical Information of China (English)

    LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard

    2005-01-01

    This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.

  7. Upward-propagating capillary waves on the surface of short Taylor bubbles

    Science.gov (United States)

    Liberzon, Dan; Shemer, Lev; Barnea, Dvora

    2006-04-01

    Upward-propagating capillary waves are observed on the surface of short Taylor air bubbles rising in vertical pipes. The wave length distribution along the bubble surface is measured for bubbles rising in pipes of different diameters in stagnant and up-flowing water by digital image processing. It is shown that the waves are generated by bubble bottom oscillations, and their length is determined by wave-current interaction along the liquid film.

  8. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    Effect of viscous dissipation on mixed convection flow in a vertical double passage channel ... PROMOTING ACCESS TO AFRICAN RESEARCH ... The perturbation method which is valid for small values of perturbation parameter is used to ...

  9. Wastewater treatment performances of horizontal and vertical subsurface flow constructed wetland systems in tropical climate

    Directory of Open Access Journals (Sweden)

    Suwasa Kantawanichkul

    2013-10-01

    Full Text Available The study was carried out in 4 concrete beds: two vertical subsurface flow beds (dimension of 1x1.4 x 0.6 m3 and twohorizontal subsurface flow beds (dimension of 0.6 x 2.3x 0.6 m3 planted with Cyperus alternifolius L. Under the averagewastewater temperature of 27°C, the hydraulic loading rates (HLR were varied from 5 to 20 cm/d in order to obtain theoptimum operating conditions and compare the removal efficiency. The wastewater was intermittently fed into the verticalsubsurface flow beds (5 minutes on and 55 minutes off, and continuously into the horizontal subsurface flow beds. Themaximum removal efficiencies were found at the lowest hydraulic loading rate for both systems. The horizontal subsurfaceflow system had a higher removal rate than the vertical subsurface flow system in terms of COD (the removal rates at 5-20cm/d were 9.6-33.9 g/m2.d. The vertical subsurface flow system showed higher removal efficiency for TKN and NH4+-N, inevery hydraulic loading rate and the removal rates for TKN and NH4+-N were 0.4-1.1 g/m2.d, respectively. Furthermore, it wasfound that the uptake of N by plants in the horizontal flow system was higher than in the vertical flow system for everyhydraulic loading rate (HLR but the loss of N via adsorption/denitrification was higher in the vertical flow system than inthe horizontal flow system, at 20 cm/d HLR. The removal rate constants in the horizontal subsurface flow system for COD andNH4+-N were 0.0166 and 0.0188 m/d and 0.0204 and 0.0287 m/d for the vertical subsurface flow system, respectively

  10. Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows

    Science.gov (United States)

    Caballero-Miranda, C. I.; Alva-Valdivia, L. M.; González-Rangel, J. A.; Gogitchaishvili, A.; Urrutia-Fucugauchi, J.; Kontny, A.

    2016-02-01

    The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.

  11. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  12. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...

  13. Single-Phase Crossflow Mixing in a Vertical Tube Bundle Geometry: An Experimental Study

    NARCIS (Netherlands)

    Mahmood, A.

    2011-01-01

    The vertical rod/tube bundle geometry has a wide variety of industrial applications. Typical examples are the core of light water nuclear reactors (LWR) and vertical tube steam generators. In the core of a LWR, primarily coolant flows upward but their also exist a flow in lateral direction, called c

  14. Vertical flows and structures excited by magnetic activity in the Galactic center region

    CERN Document Server

    Kakiuchi, Kensuke; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2016-01-01

    The vertical flow structure in the galactic center region remains poorly understood. We analyzed the MHD simulation data by Suzuki et al. (2015) for better understanding. As a result, we found the fast downflows with a speed of ~100 km/s near the foot-points of magnetic loops. These downflows are flowing along a magnetic field line and accelerated by the gravity. The direction of the fast flows is changed by the magnetic loop geometry, as it moves. As a result, not only vertical motions but also azimuthal and radial motions are excited. This feature could be relevant to the observed high velocity dispersion in the position-velocity diagram.

  15. Vertically aligned carbon nanotubes for sensing unidirectional fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Keivan, E-mail: k_kiani@kntu.ac.ir

    2015-05-15

    From applied mechanics points of view, potential application of ensembles of single-walled carbon nanotubes (SWCNTs) as fluid flow sensors is aimed to be examined. To this end, useful nonlocal analytical and numerical models are developed. The deflection of the ensemble of SWCNTs at the tip is introduced as a measure of its sensitivity. The influences of the length and radius of the SWCNT, intertube distance, fluid flow velocity, and distance of the ensemble from the leading edge of the rigid base on the deflection field of the ensemble are comprehensively examined. The obtained results display how calibration of an ensemble of SWCNTs can be methodically carried out in accordance with the characteristics of the ensemble and the external fluid flow.

  16. MHD Stagnation Flow of a Newtonian Fluid towards a Uniformly Heated and Moving Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mehmet Şirin Demir

    2016-01-01

    Full Text Available Stagnation flow of an electrically conducting incompressible viscous fluid towards a moving vertical plate in the presence of a constant magnetic field is investigated. By using the appropriate transformations for the velocity components and temperature, the partial differential equations governing flow and heat transfer are reduced to a set of nonlinear ordinary differential equations. These equations are solved approximately using a numerical technique for the following two problems: (i two-dimensional stagnation-point flow on a moving vertical plate, (ii axisymmetric stagnation-point flow on a moving vertical plate. The effects of non-dimensional parameters on the velocity components, wall shear stresses, temperature and heat transfer are examined carefully.

  17. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  18. Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosi, Mexico

    Science.gov (United States)

    Carrillo-Rivera, J. J.; Cardona, A.; Moss, D.

    1996-11-01

    Fractured volcanics exert a control on groundwater flow in the San Luis Potosi (SLP) valley. The chemical composition and temperature of water pumped from boreholes partially penetrating the fractured volcanics indicate that the produced water originates from an upward vertical flow. Most of the thermal groundwater has been detected in areas related to regional faults and lineaments. Intensive and uncontrolled pumping from the upper {1}/{4} of the aquifer (total depth > 1500 m) causes the rise of water from a deep regional flow system that mixes with the shallower waters. The deep waters contain high fluoride concentrations that contaminate the mixture and cause substantial health related effects. The recharge controls on the regional flow system require further research; however, hydrogeochemical evidence supports the view that the origin of this recharge is limited to the western bounding Sierra Madre Occidental. Higher levels of dissolved Na +, Li +, F - (and SO 4-2) derived from Tertiary volcanics have been introduced into the exploited region; the concentrations indicate lengthy and deep circulation flow. Li + concentration was used as an indicator of groundwater residence time, and therefore of the length of the groundwater flow path. Hydrogeochemical interpretation indicates the presence of three flow systems: a shallow local one controlled by a clay layer that subcrops most of the valley floor, an intermediate system in which water infiltrates just beyond the boundary of the clay layer, and a deep regional system which originates outside the surface catchment. The local and intermediate systems circulate through materials with comparatively low hydraulic conductivity. Low Cl - concentrations suggest rapid flow in the regional system. Concentrations of Li + and F - can be used to calculate percentages of waters in mixtures of regional and intermediate flows. Concentrations of Na +, Ca 2+ and SO 4-2 appear to be controlled by water-rock reactions

  19. Mean vertical velocities and flow tilt angles at a fetch-limited forest site in the context of carbon dioxide vertical advection

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2009-08-01

    Full Text Available An analysis of flow angles from a fetch-limited beech forest site with clearings is presented. Flow angles and vertical velocities from two types of sonic anemometers as well as a ground based remote sensing lidar were analysed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data from the instruments were interpreted in relation to the terrain.

    Uncertainties regarding flow distortion and limited sampling time (statistical uncertainty were evaluated and found to be significant. Especially for one of the sonic anemometers, relatively small changes in the flow distortion correction could change the sign of mean vertical velocities taken during stable atmospheric stratification relative to the neutral flow. Despite the uncertainties, it was possible to some extent to relate both positive and negative mean flow angles to features in the terrain.

    Conical and linear scans with a remote sensing lidar were evaluated for estimation of vertical velocities and flow angles. The results of the vertical conical scans were promising, and yielded negative flow angles for a sector where the forest is fetch-limited. However, more data and analysis is needed for a complete evaluation of the technique. The horizontal linear scans showed the variability of the mean wind speed field. A vertical velocity was calculated from different focusing distances, but this estimate yielded unrealistically high vertical velocities, due to neglect of the transversal wind component.

    The vertical advection term was calculated using the measured mean flow angles at the mast and profile measurements of carbon dioxide, but it is not recommended to use in relation with the flux measurement as the vertical velocity measured at the mast is most likely not representative for the whole forest.

  20. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: validation with experimental data using multi-sensor conductivity probes and laser doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Chiva, S. [Univ. Jaume I, Dept. of Mechnical Engineering and Construction, Castellon (Spain); Abd El Aziz Essa, M. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Mendes, S. [Univ. Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica (Mexico)

    2011-07-01

    A set of air-water experiments have been performed under isothermal upward concurrent flow in a vertical column. The interfacial velocity, interfacial area of the bubbles and the void fraction distributions was obtained. Numerical validation of these results for bubbly flow conditions were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. Both Lagrangian and Eulerian calculations were performed in parallel and iterative self-consistent method was developed. The bubbles-induced turbulence is an important issue considered, to obtain good predictions of experimental results. (author)

  1. Experimental study of two-phase water flow in vertical thin rectangular channels

    Science.gov (United States)

    Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.

    2001-11-01

    An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.

  2. Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

    Science.gov (United States)

    Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos

    2012-08-01

    Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the

  3. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    Science.gov (United States)

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.

  4. Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

    Directory of Open Access Journals (Sweden)

    Emi Tamechika

    2012-10-01

    Full Text Available A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  5. RESONANCE RESPONSE OF ELECTRORHEOLOGICAL FLUIDS IN VERTICAL OSCILLATION SQUEEZE FLOW

    Institute of Scientific and Technical Information of China (English)

    Sun Jiu-xun; Cai Ling-cang; Wu Qiang; Jing Fu-qian

    2000-01-01

    The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external field, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the.reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G′ was presented for the purpose of investigating this influence.

  6. Flow instability and critical heat flux for downward flow in a vertical narrow rectangular channel heated from both-sides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In addition, visual observations of subcoold flow boiling was conducted by using high-speed video (HSV) for a clear understanding of both phenomena. We concluded that flow excursion (which is static instability) could be induced due to the OPDF (which is dynamic instability) when a system has no resistibility to the pressure drop perturbation, which is caused by the coalescence of facing bubbles on opposing heated surfaces. In more stable system with throttling applied, flow rate could be maintained and stable CHF could be reached. The static flow instability (FI) and critical heat flux (CHF) for subcooled flow boiling in a vertical narrow channels under low pressure condition are fairly crucial phenomena relative to thermal-hydraulic design and safety analysis for pool-type research reactors. It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date.

  7. SORET AND DUFOUR EFFECTS ON STEADY MHD CONVECTIVE FLOW PAST A CONTINUOUSLY MOVING POROUS VERTICAL PLATE

    Directory of Open Access Journals (Sweden)

    DIPAK SARMA

    2012-12-01

    Full Text Available A steady two dimensional MHD convective flow of an incompressible viscous and electrically conducting fluid past a continuously moving porous vertical plate with Soret and Dufour effects is analyzed. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. The solutions for thevelocity field, temperature and concentrations are performed for a wide range of the governing flow parameters viz the Soret number, Prandtl number, Schmidt number, Grashof number for heat transfer, Dufour number, Solutal Grashof number and Hartmann number. The effects of these flow parameters on the velocity, temperature, concentration, skin friction coefficient and Sherwood number are discussed graphically.

  8. The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf

    Science.gov (United States)

    2008-01-01

    E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of

  9. Convective MHD Oscillatory Flow past a Uniformly Moving Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    N. Ahmed

    1992-01-01

    Full Text Available The convective magnetohydrodynamic flow past a uniformly moving infinite vertical plate, with the magnetic field and the suction velocity applied normal to the plate has been analysed. Presence of heat source or sink has also been considered. The findings are expected to throw light on some problems of defence applications in the areas of aeronautical designs and also flow and heat transfer problems of a chemically reacting fluid.

  10. Characterization of Chlorinated Ethene Degradation in a Vertical Flow Constructed Wetland

    Science.gov (United States)

    2007-03-01

    pathway for chlorinated volatiles in phytoremediation applications. Although transpiration of chlorinated solvents has been confirmed in studies ... case study publications and conference presentations providing support for the use of constructed wetlands for the treatment of chlorinated solvent...groundwater. This study characterized and evaluated the concentration of chlorinated ethenes within a vertical flow constructed wetland, fed with PCE

  11. On possible flow back in vertical screw conveyors for cohesionless granular materials

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1981-01-01

    Conditions for which back flow will be initiated in vertical screw conveyors conveying cohesionless granular material are theoretically established. Use is made of existing knowledge of the performance characteristics of such conveyors. Provided the conveyor is operated at not too low an angular spe

  12. Effect of Vertical Flow Exchange on Biogeochemical Processes in Hyporheic Zones

    Science.gov (United States)

    Kim, H.; Lee, S.; Shin, D.; Hyun, Y.; Lee, K.

    2008-12-01

    Biogeochemical processes in hyporheic zones are of great interest because they make the hyporheic zones highly productive and complex environments. When contaminants or polluted water pass through hyporheic zones, in particular, biogeochemical processes play an important role in removing contaminants or attenuating contamination under certain conditions. The study site, a reach of Munsan stream (Paju-si, South Korea), exhibits severe contamination of surface water by nitrate released from Water Treatment Plant (WTP) nearby. The objectives of this study are to investigate the hydrologic and biogeochemical processes at the riparian area of the site which may contribute to natural attenuation of surface water driven nitrate, and analyze the effect of vertical (hyporheic) flow exchange on the biogeochemical processes in the area. To examine hydraulic mixing or dilution processes, vertical hydraulic gradients were measured at several depth levels using minipiezometers, and then soil temperatures were measured by using i-buttons installed inside the minipiezometers. The microbial analyses by means of polymerase chain reaction (PCR)-cloning methods were also done in order to identify the denitrification process in soil samples. In addition, correlation between vertical flow exchange, temperature data, and denitrifying bacteria activity was also investigated so as to examine the effects on one another. The results showed that there were significant effects of vertical flow exchange and hyporheic soil temperature on the biogeochemical processes of the site. This study found strong support for the idea that the biogeochemical function of hyporheic zone is a predictable outcome of the interaction between microbial activity and flow exchange.

  13. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C. alternifolius species

    Science.gov (United States)

    Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...

  14. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Science.gov (United States)

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  15. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  16. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    2013-01-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile l

  17. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  18. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical

  19. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...

  20. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile

  1. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)

    2009-11-15

    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  2. Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model

    Science.gov (United States)

    Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.

    2016-09-01

    The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.

  3. Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.

    Science.gov (United States)

    Kantawanichkul, S; Neamkam, P; Shutes, R B

    2001-01-01

    Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.

  4. Local parameters of air–water two-phase flow at a vertical T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Monrós-Andreu, G., E-mail: gmonros@uji.es; Martínez-Cuenca, R., E-mail: rcuenca@uji.es; Torró, S., E-mail: torro@uji.es; Chiva, S., E-mail: schiva@uji.es

    2017-02-15

    Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.

  5. Mixed convection aiding flow in a vertical porous annulus-two temperature model

    Science.gov (United States)

    Salman Ahmed, N. J.; AAAl-Rashed, Abdullah A.; Kamangar, Sarfaraz; Khaleed, H. M. T.; YunusKhan, T. M.; Athani, Abdulgaphur

    2016-09-01

    The effect of convective heat transfer on mixed convection flow in a vertical porous annulus embedded with fluid saturated porous medium for aiding flow is studied. The inner surface of the annular cylinder is heated with constant temperature whereas the outer surface remains at ambient temperature. The governing partial differential equations are solved using Finite Element Method (FEM). It is assumed that the Darcy law is applicable and thermal nonequilibrium TNE exists between solid and fluid phases of porous medium. The aiding flow behavior of heat transfer with respect to Radius ratioRr, Aspect ratio ArandRadiation parameter Rd for different values of Peclet number Peare investigated.

  6. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  7. Radiative Walter's memory flow along a vertical cone in induced magnetic field with thermophoretic effect

    Science.gov (United States)

    Islam, Md. Manjiul; Haque, Md. Mohidul

    2017-06-01

    A radiative heat and mass transfer study of Walter's memory flow along a vertical cone with thermophoresis is completed in the presence of induced magnetic field. A mathematical model of Walter's memory flow is developed from the basis of studying Magnetohydrodynamics(MHD). Some dimensionless quantities have been used to transform the model to non-dimensional system of equations. The dimensionless unsteady, coupled and non-linear partial differential conservation equations for the boundary layer regime are solved by an efficient, accurate and unconditionally stable finite difference scheme of the Crank-Nicolson type. The features of the flow, heat and mass transfer characteristics within the boundary layer are analyzed by plotting graphs and the physical aspects are discussed in detail. The obtained results show that the impact of flow variables plays an important role in the Walter's memory flow. Last of all, some important findings of the present problem are concluded in this work.

  8. Stagnation-Point Flow toward a Vertical, Nonlinearly Stretching Sheet with Prescribed Surface Heat Flux

    Directory of Open Access Journals (Sweden)

    Sin Wei Wong

    2013-01-01

    Full Text Available An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are considered. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for the assisting buoyant flows.

  9. Parameters in Multiphase Flowing of Natural Gas NGH Slurry via Vertical Pipe

    Directory of Open Access Journals (Sweden)

    Dai Maolin

    2016-01-01

    Full Text Available In recent years, the pipeline flowing of natural gas hydrate (hereinafter NGH slurry has been a promising technique of multiphase flowing via pipe and that of crushed hydrate mixture slurry is also a key technique in solid fluidization mining method of nondiagenetic NGH reservoir below the seabed. In this paper, by using similarity rules, a small-scale simulation model was established to shorten the calculation time. The correctness of the simulation model has been verified through comparison with experiment. Thereby, the distribution of velocity and volume fraction of each phase in the vertical pipe was obtained, and the prototype of vertical pipe was analyzed. By study on the pipe resistance, the pressure drop of slurry, when flowing in vertical pipe, could be calculated as ΔP=ρgh+0.23Cρv1.8. In the end, by adjusting volume fraction of particles in the mixture slurry, the relationship between the solid particles’ volume fraction and piezometric pressure drop was obtained. When the optimal flow velocity of the slurry is 2 m/s and the ratio of NGH volume fraction to that of sand is 4 : 1, the optimal particle volume fraction ranges from 20% to 40%.

  10. Rarefied flow and heat transfer characteristics over a vertical stretched surface

    Directory of Open Access Journals (Sweden)

    Wael Al-Kouz

    2016-08-01

    Full Text Available Similarity solution for the steady-state two-dimensional laminar natural convection heat transfer for a rarefied flow over a linearly vertical stretched surface is being proposed. Similarity conditions are obtained for the boundary layer equations for the vertical flat plate subjected to power law for the temperature variations. It is found that the similarity solution exists for linear temperature variation and linear stretching surface. The study shows that there are three different parameters affecting the flow and heat transfer characteristics for the rarefied flow over a vertical linearly stretched surface. These parameters represent the effects of the velocity slip (K1, temperature jump (K2, and the Prandtl number (Pr. The effects of these parameters are presented. It is found that the velocity slip parameter affects both the hydrodynamic and thermal behaviors of such flows. Correlations for the skin friction as well as Nusselt number are being proposed in terms of Grashof number (Grx, the slip velocity parameter (K1, and the temperature jump parameter (K2.

  11. three-step model of dispersed flow heat transfer (post chf vertical flow)

    African Journals Online (AJOL)

    user

    The resulting equation gives the total heat transferred to the flow in terms of the mass flux, flow quality, .... superheated vapour, helps of course to desuperheat ... differential evaporation around the drop. The ... Thus we must first obtain the total.

  12. Convection in rotating flows with simultaneous imposition of radial and vertical temperature gradients

    Science.gov (United States)

    Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar

    2016-11-01

    Laboratory experiments, with a rotating cylindrical annulus and thermal gradient in both radial and vertical directions (so that radial temperature difference decreases with the elevation), were conducted to study the convection dynamics and heat transport. Temperature data captured using thermocouples, combined with ANSYS Fluent simulation hinted at the co-existence of thermal plume and baroclinicity (inclined isotherms). Presence of columnar plume structure parallel to the rotation axis was found, which had a phase velocity and aided in vertical heat transport. Nusselt number (Nu) plotted as a function of Taylor number (Ta) showed the effect of rotation on heat transport in such systems, where the interplay of plumes and baroclinic waves control the scalar transport. Laser based PIV imaging at a single vertical plane also showed evidence of such flow structures.

  13. A VERTICAL 2D MATHEMATICAL MODEL FOR HYDRODYNAMIC FLOWS WITH FREE SURFACE IN σ COORDINATE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical acceleration can be ignored, but for some particular cases the hydrodynamic pressure is important. In this paper, a vertical 2D mathematical model with non-hydrostatic pressure was implemented in the σ coordinate. A fractional step method was used to enable the pressure to be decomposed into hydrostatic and hydrodynamic components and the predictor-corrector approach was applied to integration in time domain. Finally, several computational cases were studied to validate the importance of contributions of the hydrodynamic pressure.

  14. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.

    2009-07-01

    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  15. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  16. Convectively driven flow past an infinite moving vertical cylinder with thermal and mass stratification

    Indian Academy of Sciences (India)

    Rudra Kanta Deka; Ashish Paul

    2013-10-01

    An analysis is performed to study the unsteady, incompressible, one-dimensional, free convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted for finding solutions for velocity, temperature and concentration with unit Prandtl and Schmidt numbers. Solutions of unsteady state for larger times are compared with the solutions of steady state. Velocity, temperature and concentration profiles are analysed for various sets of physical parameters. Skin friction, Nusselt number and Sherwood number are shown graphically. It has been found that the thermal as well as mass stratification affects the flow appreciably.

  17. NATURAL CONVECTION IN MHD TRANSIENT FLOW PAST AN ACCELERATED VERTICAL PLATE WITH HEAT SINK

    Directory of Open Access Journals (Sweden)

    N. AHMED

    2014-09-01

    Full Text Available The problem of an MHD heat and mass transfer flow past an accelerated infinite vertical plate in a porous medium in presence of chemical reaction, thermal diffusion and first order heat sink is studied. A magnetic field of uniform strength is assumed to be applied normal to the field directed to the fluid region. The resulting system of equations governing the fluid motion is solved by adopting Laplace Transform technique in closed form. The effects of the physical parameters involved in the problem on the flow and the transport characteristics are studied graphs.

  18. Numerical investigation of flow and scour around a vertical circular cylinder

    DEFF Research Database (Denmark)

    Baykal, Cüneyt; Sumer, B. Mutlu; Fuhrman, David R.

    2015-01-01

    (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment...... transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter-rotating...

  19. Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer

    Institute of Scientific and Technical Information of China (English)

    Sohail Nadeem; Safia Akram

    2011-01-01

    In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.

  20. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    Science.gov (United States)

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  1. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  2. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Institute of Scientific and Technical Information of China (English)

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi

    2012-01-01

    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  3. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Directory of Open Access Journals (Sweden)

    Ge Y.T.

    2013-04-01

    Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  4. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Science.gov (United States)

    Fsadni, A.-M.; Ge, Y. T.

    2013-04-01

    The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  5. A two-dimensional parabolic model for vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br

    2010-07-01

    This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)

  6. Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid

    Science.gov (United States)

    Ishak, A.; Nazar, R.; Pop, I.

    2007-03-01

    The analysis of steady two-dimensional stagnation point flow of an incompressible micropolar and electrically conducting fluid subject to a transverse uniform magnetic field towards a stretching vertical sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. The governing system of partial differential equations is transformed to ordinary differential equations, which then are solved numerically using a finite difference scheme known as the Keller-box method. The velocity, microrotation and temperature distributions as well as the skin friction coefficient and the local Nusselt number are obtained for various parameters. Both the assisting and the opposing buoyant flows are considered. It is found that dual solutions exist for the opposing flow, for some regions of the buoyancy parameter, while for the assisting flow the solution is unique. Tables 3, Figs 14, Refs 26.

  7. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  8. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.

    Science.gov (United States)

    De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin

    2013-11-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile

  9. Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime

    Institute of Scientific and Technical Information of China (English)

    R.C.Chaudhary; Abhay Kumar Jha

    2008-01-01

    Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.

  10. Hotspot Liquid Microfluidic Cooling: Comparing The Efficiency between Horizontal Flow and Vertical Flow

    Science.gov (United States)

    Okamoto, Yuki; Ryoson, Hiroyuki; Fujimoto, Koji; Honjo, Keiji; Ohba, Takayuki; Mita, Yoshio

    2016-11-01

    This paper reports a novel cooling method for a local high-temperature block in an integrated circuit, which is called a “hotspot”. The method is to cool the chip in out-of-plane (3-D) direction to overcome efficiency limit of traditional horizontal (2-D) cooling. Our result indicates that high-temperature (over 180 °C) circuit block such as a phase-locked-loop (PLL), which is a performance limiting block in a modern CPU, can more efficiently be cooled by the vertical (3-D) cooling scheme.

  11. Numerical Simulation of Turbulent Bubbly Flow in a Vertical Square Duct

    Science.gov (United States)

    Vanka, Pratap; Kumar, Purushotam; Jin, Kai

    2016-11-01

    We numerically investigate the dynamics of a large number of gas bubbles in a turbulent liquid flow in a confined vertical square duct, a problem of interest to many industrial equipment. The fluid flow is simulated by Direct Numerical Simulations and the motions of the bubbles are resolved by an accurate Volume of Fluid (VOF) technique. The flow is considered periodic in the streamwise direction with an imposed pressure gradient. The surface tension force is incorporated through a Sharp Surface Force (SSF) method that is observed to generate only very small spurious velocities at the interface. The algorithm has been programmed on a multiple-GPU computer in a data parallel mode. The turbulence driven secondary flows are first ensured to agree with previous DNS/LES by other researchers. A very fine grid with 192 x 192 x 768 control volumes is used to resolve the liquid flow as well as 864 bubbles using 12 grid points across each bubble in all directions. The computations are carried out to 1.5 million time steps. It is seen that the bubbles preferentially migrate to walls, starting from a uniform layout. We present instantaneous and time mean velocities, turbulence statistics and compare them with unladen flow as well as with a bubbly flow in a planar channel.

  12. Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Shiqian Nie

    2017-01-01

    Full Text Available The fractional advection-diffusion equation (fADE model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.

  13. Numerical Simulation of Vertical Oscillations in an Axisymmetric Thick Accretion Flow around a Black Hole

    CERN Document Server

    Deb, Arnab; Chakrabarti, Sandip K

    2016-01-01

    We study time evolution of rotating, axisymmetric, two dimensional inviscid accretion flows around black holes using a grid based finite difference method. We do not use reflection symmetry on the equatorial plane in order to inspect if the disk along with the centrifugal barrier oscillated vertically. In the inviscid limit, we find that the CENtrifugal pressure supported BOundary Layer (CENBOL) is oscillating vertically, more so, when the specific angular momentum is higher. As a result, the rate of outflow produced from the CENBOL, also oscillates. Indeed, the outflow rates in the upper half and the lower half are found to be anti-correlated. We repeat the exercise for a series of specific angular momentum {\\lambda} of the flow in order to demonstrate effects of the centrifugal force on this interesting behaviour. We find that, as predicted in theoretical models of disks in vertical equilibrium, the CENBOL is produced only when the centrifugal force is significant and more specifically, when {\\lambda} > 1.5...

  14. Vertical velocity of mantle flow of East Asia and adjacent areas

    Institute of Scientific and Technical Information of China (English)

    CHENG Xianqiong; ZHU Jieshou; CAI Xuelin

    2007-01-01

    Based on the high-resolution body wave tomo- graphic image and relevant geophysical data, we calculated the form and the vertical and tangential velocities of mantle flow. We obtained the pattern of mantle convection for East Asia and the West Pacific. Some important results and under- standings are gained from the images of the vertical velocity of mantle flow for East Asia and the West Pacific. There is an upwelling plume beneath East Asia and West Pacific, which is the earth's deep origin for the huge rift valley there. We have especially outlined the tectonic features of the South China Sea, which is of the "工" type in the upper mantle shield type in the middle and divergent in the lower; the Siberian clod downwelling dives from the surface to near Core and mantle bounary (CMB), which is convergent in the upper mantle and divergent in the lower mantle; the Tethyan subduction region, centered in the Qinghai-Tibet plateau, is visible from 300 to 2 000 km, which is also convergent in the upper mantle and divergent in the lower mantle. The three regions of mantle convection beneath East Asia and the West Pacific are in accordance with the West Pacific, Ancient Asia and the Tethyan structure regions. The mantle upwelling orig- inates from the core-mantle boundary and mostly occurs in the middle mantle and the lower part of the upper mantle. The velocities of the vertical mantle flow are about 1-4 cm per year and the tangential velocities are 1-10 cm per year. The mantle flow has an effect on controlling the movement of plates and the distributions of ocean ridges, subduction zones and collision zones. The mantle upwelling regions are clearly related with the locations ofhotspots on the earth's surface.

  15. Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi

    2014-01-01

    A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.

  16. Counter-current flow in a vertical to horizontal tube with obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  17. Scrutiny of mixed convection flow of a nanofluid in a vertical channel

    Directory of Open Access Journals (Sweden)

    M. Fakour

    2014-11-01

    Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.

  18. Oscillatory Flow in a Vertical Channel Filled with Porous Medium with Radiation and Dissipation

    Directory of Open Access Journals (Sweden)

    Paresh VYAS

    2013-01-01

    Full Text Available The present discussion is an analytical study of oscillatory flow of a viscous incompressible Newtonian fluid in an infinite vertical parallel plate channel filled with porous medium. It is also assumed that the flow is fully developed and the fluid is dissipative, gray, absorbing-emitting radiation and non-scattering. The radiative heat flux in the energy equation follows Rosseland approximation. It is considered that both the plates are stationary and temperature of one of the plates oscillates about a non-zero mean temperature. Approximate solutions to the coupled non-linear partial differential equations governing the flow have been found using the double perturbation technique. The effect of various parameters on the transient velocity, the transient temperature, the amplitude and phase of the skin friction and the rate of heat transfer have been analysed and shown in the form of graphs and tables.

  19. Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik; Jeong, Yong Hun [KAIST, Daejeon (Korea, Republic of); Chang, Soon Heung [Handong Univ., Pohang (Korea, Republic of)

    2015-12-15

    There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

  20. Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder

    Institute of Scientific and Technical Information of China (English)

    H. P. RANI; G. J. REDDY; C. N. KIM

    2013-01-01

    The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.

  1. Flow patterns of natural convection in an air-filled vertical cavity

    Science.gov (United States)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  2. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  3. Two-phase flow and boiling heat transfer in two vertical narrow annuli

    Energy Technology Data Exchange (ETDEWEB)

    Peng Changhong [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China)]. E-mail: pxm321@163.com; Guo Yun [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Qiu Suizheng [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Jia Dounan [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Nie Changhua [Nuclear Power Institute of China, Chengdu 610041 (China)

    2005-07-01

    Experimental study associated with two-phase flow and heat transfer during flow boiling in two vertical narrow annuli has been conducted. The parameters examined were: mass flux from 38.8 to 163.1 kg/m{sup 2} s; heat flux from 4.9 to 50.7 kW/m{sup 2} for inside tube and from 4.2 to 78.8 kW/m{sup 2} for outside tube; equilibrium mass quality from 0.02 to 0.88; system pressure from 1.5 to 6.0 MPa. It was found that the boiling heat transfer was strongly influenced by heat flux, while the effect of mass velocity and mass quality were not very significant. This suggested that the boiling heat transfer was mainly via nucleate boiling. The data were used to develop a new correlation for boiling heat transfer in the narrow annuli. In the two-phase flow study, the comparison with the correlation of Chisholm [Chisholm, D., 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767-1778] and Mishima and Hibiki [Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703-712] indicated that the existing correlations could not predict the two-phase multiplier in the narrow annuli well. Based on the experimental data, a new correlation was developed.

  4. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  5. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  6. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  7. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  8. Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)

    2016-04-15

    Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.

  9. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Energy Technology Data Exchange (ETDEWEB)

    Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  10. Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2014-03-01

    Full Text Available The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction of the flow in the channel is considered. In the two-dimensional approach the inverse problem in the heating wall and the direct problem in the glass barrier were solved by the finite element method with Trefftz functions as shape functions (FEMT. The developed flow boiling area was studied. Heat transfer coefficient values obtained for the horizontal minichannel were higher than those obtained for the vertical one. When the heat flux supplied to heating wall grows, the share of gas-phase increases leading to the heat transfer coefficient decreases. The same courses of the experiment were observed for the two applied methods, but the results obtained in the one-dimensional approach are considerably higher than in the two-dimensional one. One-dimensional approach seems to be less sensitive to measurement errors.

  11. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    Energy Technology Data Exchange (ETDEWEB)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  12. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands.

    Science.gov (United States)

    Saeed, Tanveer; Sun, Guangzhi

    2011-05-01

    This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.

  13. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  14. Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.

    Directory of Open Access Journals (Sweden)

    Taza Gul

    Full Text Available In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM. In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM. The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.

  15. Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.

    Science.gov (United States)

    Gul, Taza; Islam, Saed; Shah, Rehan Ali; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.

  16. Slip Flow and Radiative Heat Transfer on a Convectively Heated Vertical Cylinder

    Science.gov (United States)

    Das, S.; Jana, R. N.; Makinde, O. D.

    2017-05-01

    An axisymmetric laminar boundary-layer slip flow of a viscous incompressible rarefied gas in a convectively heated vertical cylinder in the presence of thermal radiation is analyzed. The governing equations in cylindrical coordinates are transformed into ordinary differential equations by similarity transformation. These transformed equations are then solved numerically, using the fourth order Runge-Kutta method with shooting technique. The effects of the pertinent parameters on the gas velocity, temperature, as well as on the shear stress and heat transfer rate at the cylinder surface, are estimated.

  17. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui

    2014-12-01

    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  18. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  19. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  20. Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid

    Directory of Open Access Journals (Sweden)

    Nor Azizah Yacob

    2013-01-01

    Full Text Available The characteristics of fluid flow and heat transfer over a stretching vertical sheet immersed in a nanofluid are investigated numerically in this paper. Three different types of nanoparticles, namely, copper Cu, alumina Al2O3, and titania TiO2, are considered, using water as the base fluid. It is found that nanofluid with titania nanoparticles has better enhancement on the heat transfer rate compared to copper and alumina nanoparticles. For a particular nanoparticle, increasing the nanoparticle fraction is to reduce the skin friction coefficient and the heat transfer rate at the surface.

  1. Radiation effects on MHD flow past an impulsively started infinite vertical plate with mass diffusion

    Directory of Open Access Journals (Sweden)

    Chandrakala P.

    2014-02-01

    Full Text Available The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field

  2. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa

    2017-01-01

    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  3. Nonlinear Nanofluid Flow over Heated Vertical Surface with Sinusoidal Wall Temperature Variations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer approximation, the two-dimensional momentum, heat, and mass transfer equations are transferred to nonlinear partial differential equations form and solved numerically using a new method called spectral local linearisation method. The effects of the governing parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.

  4. Buoyancy effects on upward brine displacement caused by CO2 injection

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Rinaldi, A.

    2010-01-15

    Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the

  5. Tracking of Bubble Trajectories in Vertical Pipes in Bubbly Flow Regime by Coupling Lagrangian, Eulerian and 3D Random Walks Models: Validation with Experimental Data

    Directory of Open Access Journals (Sweden)

    José L. Muñoz-Cobo

    2012-09-01

    Full Text Available A set of air-water experiments has been performed under isothermal upward concurrent flow conditions, in a vertical column. The interfacial velocity, the bubble interfacial area and the void fraction distributions have been measured. Numerical simulation of these experiments were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. In the Eulerian solver the velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS. The turbulent kinetic energy k, and the dissipation rate transport equations were simultaneously solved by using the k, epsilon model in a (r,z grid by the finite volume method and the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel and an iterative self-consistent method was developed. The turbulence induced by the bubbles is an important issue considered in this paper, in order to obtain good predictions of the void fraction distribution and the interfacial velocity at different gas and liquid flow conditions. The Eulerian Code was upgraded from an axisymmetric 2D code to a 3D code in order to improve the turbulence solution. The results of the 3D CFD code have been tested and show a good agreement with the experimental results. In this paper special attention is given to the coupling between the different models.

  6. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  7. Convection in rotating flows with simultaneous imposition of radial and vertical temperature gradients

    CERN Document Server

    Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar

    2016-01-01

    Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temperature gradient ({\\Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({\\Omega}) for fixed values of {\\Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.

  8. Lorentz force effect on mixed convection micropolar flow in a vertical conduit

    Science.gov (United States)

    Abdel-wahed, Mohamed S.

    2017-05-01

    The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.

  9. EFFECTS OF THERMAL CONDUCTIVITY ON UNSTEADY MHD FREE CONVECTIVE FLOW OVER A SEMI INFINITE VERTICAL PLATE

    Directory of Open Access Journals (Sweden)

    P. LOGANATHAN,

    2010-11-01

    Full Text Available The numerical study of effects of thermal conductivity on unsteady MHD free convective flow over an isothermal semi infinite vertical plate is presented. It is assumed that the thermal conductivity of the fluid as a linear function of temperature. A magnetic field is applied transversely to the direction of the flow. The boundary layer equations of continuity, momentum and energy equations are transformed into non-linear coupled equations and then solved using implicit finite-difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of thermal conductivity, magnetic parameter and Prandtl number on the velocity and temperature profiles. In addition, the local and average skin friction, Nusselt number at the plate are shown graphically for both air and water. An analysis of the results obtained shows that the flowfield is influenced appreciably by the strength of magnetic field, thermal conductivity at the wall of the plate.

  10. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid

    Directory of Open Access Journals (Sweden)

    Yacob Nor Azizah

    2013-01-01

    Full Text Available An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and λ. Conversely, both of them increase as the material parameter increases for fixed values of M and λ.

  11. Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    Directory of Open Access Journals (Sweden)

    Ramana Reddy G.V.

    2016-02-01

    Full Text Available This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.

  12. Design of a vertical annulus with MHD flow using entropy generation analysis

    Directory of Open Access Journals (Sweden)

    Mahian Omid

    2013-01-01

    Full Text Available Optimal design of a heat exchanger is one of the concerns of energy conversion engineers. In the present work, the mixed convection flow between two vertical concentric pipes with constant heat flux at the boundaries and MHD flow effects is considered. To determine the optimal design for such a heat exchanger, at first, the momentum and energy equations are simplified and solved analytically. Next, using entropy generation analysis and cost analysis, the operational costs due to entropy generation are estimated. It is concluded that with an increase in the Hartmann number, the energy costs increase. In addition, for two small deviations from the base radius ratio 2(=P including 9.1=P and 1.2=P , the changes in the energy cost are calculated. It is found that for 9.1=P the energy cost increases by 17.5% while for P = 2.1 the energy cost is reduced by 13.6 %.

  13. Effect of Flow and Fluid Structures on the Performance of Vertical River Hydrokinetic Turbines

    Science.gov (United States)

    Birjandi, Amir Hossein

    Field and laboratory measurements characterize the performance of vertical axis hydrokinetic turbines operating in uniform and non-uniform inflow conditions for river applications. High sampling frequency velocity measurements, taken at 200 Hz upstream of a stopped and operating 25-kW H-type vertical axis hydrokinetic turbine in the Winnipeg River, show the existence of large eddies with an order of magnitude of the turbine's diameter. Scaling laws allow modeling river conditions in the laboratory for more detailed investigations. A small-scale, 30 cm diameter, squirrel-cage vertical turbine designed, manufactured and equipped with a torque and position sensors is investigated for the detail behavior of the turbine subjected to different inflow conditions in a laboratory setting to study the effect of flow and fluid structures. The adjustable design of the laboratory turbine enables operations with different solidities, 0.33 and 0.67, and preset pitch angles, 0°, +/-2.5°, +/-5° and +/-10°. Tests are first performed with uniform inflow condition to measure the sensitivity of the turbine to solidity, preset pitch angle, free-surface, and Reynolds number to obtain the optimum operating conditions. During the free-surface testing a novel dimensionless coefficient, clearance coefficient, is introduced that relates the change in turbine efficiency with change in the free-surface height. High-speed imaging at 500 fps of semi-submerged blades visualizes the vortex-shedding pattern behind the blades and air entrainment. High-speed imaging results of large eddy pattern behind the vertical turbine are consistent with theory and measurements. Subsequently, cylinders of different diameters create non-uniform inflow conditions in the water tunnel by placing them at different longitudinal and lateral locations upstream of the model turbine. Thus, the effects of non-uniform inflow generated under controlled settings shows the impact of eddies and wake on the turbine

  14. Nitrogen removal and ammonia-oxidising bacteria in a vertical flow constructed wetland treating inorganic wastewater.

    Science.gov (United States)

    Domingos, Sergio S; Dallas, Stewart; Skillman, Lucy; Felstead, Stephanie; Ho, Goen

    2011-01-01

    Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.

  15. [Study on optimization gradation of substrates in vertical flow constructed wetlands].

    Science.gov (United States)

    Wu, Jun-mei; Zhang, Xiang-ling; Wang, Rong; Xu, Dong; He, Feng; Wu, Zhen-bin

    2010-05-01

    Bio-ceramic, anthracite, zeolite, steel slag and vermiculite were used as substrate according to different kinds of gradation to treat wastewater in vertical-flow constructed wetlands simulation systems. The results show that the removal ability of COD by graded substrates according to particle size are better than single substrates, and average removal efficiency by graded bio-ceramic is up to 72.91%. The removal rate of TN by graded zeolite, which reaches 91.23%, is higher than single zeolite. No significant difference (p nitrogen removal between single and combined use of bio-ceramic and zeolite. The pH values in effluents of all columns filled with steel slag and anthracite are within normal limits, but phosphorus removal of all columns filled with steel slag and anthracite are lower than that filled with single substrates, except for the column filled with anthracite, vermiculite and steel slag from up to down. No difference between planted and unplanted systems can be observed. The present results probably provide a basis for vertical-flow constructed wetland design, among which based on the characteristic of wastewater proper selection of high-efficiency graded substrates, e.g., graded bio-ceramic, graded zeolite, graded anthracite, combined use of bio-ceramic, zeolite and anthracite, is a guarantee of better performance at a high hydraulic loading rate.

  16. PHOSPHORUS REMOVAL IN A VERTICAL FLOW CONSTRUCTED WETLAND USING DOLOMITE POWDER AND CHIPPINGS AS FILTER MEDIA

    Directory of Open Access Journals (Sweden)

    Gražina Žibienė

    2015-12-01

    Full Text Available Different kinds of natural and artificial filter media are able to retain phosphorus in the constructed wetlands. Due to the fact that the constructed wetland needs huge amounts of the filter media, it is very important to find locally available material which distinguishes itself by its ability to retain phosphorus. The materials found in Lithuania were considered and dolomite was chosen. Two dolomite fractions, dolomite powder (1–2 mm and dolomite chippings (2–5 mm, and sand media were used in the laboratory- scale installed for the comparative experiments. The laboratory-scale with dolomite as the filter media was on average by 21% more efficient in total phosphorus removal in comparison with the sand media. Based on the laboratory research pilot–scale vertical flow constructed wetland of 160 m2 was installed and planted with reed Phragmites australis. The dolomite chippings as filter media were chosen in order to avoid the danger of the clogging of constructed wetland. Efficiency of total phosphorus removal in the pilot-scale vertical flow constructed wetland was on average 95.7%, phosphates removal – 94.8% within one year.

  17. Point-of-care vertical flow allergen microarray assay: proof of concept.

    Science.gov (United States)

    Chinnasamy, Thiruppathiraja; Segerink, Loes I; Nystrand, Mats; Gantelius, Jesper; Andersson Svahn, Helene

    2014-09-01

    Sophisticated equipment, lengthy protocols, and skilled operators are required to perform protein microarray-based affinity assays. Consequently, novel tools are needed to bring biomarkers and biomarker panels into clinical use in different settings. Here, we describe a novel paper-based vertical flow microarray (VFM) system with a multiplexing capacity of at least 1480 microspot binding sites, colorimetric readout, high sensitivity, and assay time of Affinity binders were deposited on nitrocellulose membranes by conventional microarray printing. Buffers and reagents were applied vertically by use of a flow controlled syringe pump. As a clinical model system, we analyzed 31 precharacterized human serum samples using the array system with 10 allergen components to detect specific IgE reactivities. We detected bound analytes using gold nanoparticle conjugates with assay time of ≤10 min. Microarray images were captured by a consumer-grade flatbed scanner. A sensitivity of 1 ng/mL was demonstrated with the VFM assay with colorimetric readout. The reproducibility (CV) of the system was affinity point-of-care testing. © 2014 American Association for Clinical Chemistry.

  18. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department is...

  19. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  20. Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid

    Science.gov (United States)

    Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar

    2015-10-01

    A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.

  1. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems.

    Science.gov (United States)

    Hu, Yun; He, Feng; Ma, Lin; Zhang, Yi; Wu, Zhenbin

    2016-05-01

    Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs.

  2. Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system.

    Science.gov (United States)

    Kantawanichkul, Suwasa; Boontakhum, Walaya

    2012-01-01

    In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.

  3. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    Science.gov (United States)

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  4. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-09-01

    Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.

  5. Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2013-05-01

    Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.

  6. In-Situ Measurement of Vertical Bypass Flow Using a Drain Gauge

    Science.gov (United States)

    Payne, W. L.; Brooks, E. S.; Sanchez-Murillo, R.

    2012-12-01

    With widespread technological advances in precision fertilizer application in agricultural production there is an increasing need to better understand the subsurface transport and vertical leaching of nitrate fertilizers. Optimizing fertilizer application reduces cost to the grower and improves downstream water supplies. In-situ measurement of nitrate flux is difficult and expensive. In this experiment nitrate transport was measured using a passive capillary drain gauge developed by Decagon Devices in Pullman, WA. The drain gauge measures water flux from a 30 cm diameter soil core 60 cm in length. In this study the drain gauge was installed 0.9 m to 1.5 m below the soil surface in a no-till field in cereal grain production. A potassium bromide tracer was applied using a rainfall simulator over a 5 day period to the drain gage roughly one year following installation of the drain gauge and approximately 3 months after being seeded to spring wheat. Bromide tracer movement was compared to measurements of stable oxygen/hydrogen isotopes, and nitrate in the leachate and from soil water extracted within the soil profile using suction lysimeters. Significant preferential flow occurred during the experiment. Vertical leaching initiated at the 1.5 m depth at a time when the wetting front had just reached the 0.3 cm depth. By the time the wetting front had reached a 1.5 m depth, 18 kg/ha of nitrogen fertilizer had leached beyond the root zone. Once the wetting front reached 1.5 m bromide and stable isotope data indicated that 60% of the total flow occurred through macropore flow. Stable isotope measurements responded similarly to the electrical conductivity and nitrate measurements suggesting their potential use as a groundwater tracer. The nitrate leaching observed in the drain gauge would not have been accounted for if soil moisture measurements alone were used to indicate potential nitrate transport.

  7. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  8. Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow

    CERN Document Server

    Sekimoto, Atsushi

    2016-01-01

    Unstable equilibrium solutions in a homogeneous shear flow with sinuous symmetry are numerically found in large-eddy simulations (LES) with no kinetic viscosity. The small-scale properties are determined by the mixing length scale $l_S$ used to define eddy viscosity, and the large-scale motion is induced by the mean shear at the integral scale, which is limited by the spanwise box dimension $L_z$. The fraction $ R_S= L_z/l_S$, which plays the role of a Reynolds number, is used as a numerical continuation parameter. It is shown that equilibrium solutions appear by a subcritical-type bifurcation as $R_S$ increases, and that they resemble those in plane Couette flow with the same symmetry. The vortical structures of both lower- and upper-branch solutions become spontaneously localised in the vertical direction. The lower-branch solution is an edge state at low $R_S$, and takes the form of a thin critical layer as $R_S$ increases, as in the asymptotic theory of generic shear flow at high-Reynolds numbers. On the ...

  9. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    Science.gov (United States)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  10. Film stability in a vertical rotating tube with a core-gas flow.

    Science.gov (United States)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  11. Magnetohydrodynamic mixed convection flow in vertical concentric annuli with time periodic boundary condition: Steady periodic regime

    Indian Academy of Sciences (India)

    BASANT K JHA; BABATUNDE AINA

    2016-08-01

    This work reports an analytical solution for fully developed mixed convection flow of viscous,incompressible, electrically conducting fluid in vertical concentric annuli under the influence of a transverse magnetic field, where the outer surface of inner cylinder is heated sinusoidally and the inner surface of outercylinder is kept at a constant temperature. The analysis is carried out for fully developed parallel flow and steady-periodic regime. The governing dimensionless momentum and energy equations are separated into steadyand periodic parts and solved analytically. Closed form solutions are expressed in terms of modified Bessel function of first and second kind. The influence of each governing parameters such as magnetic field parameter,Prandtl number and the dimensionless frequency of heating on flow formation and thermal behaviour are discussed with the aid of graphs. During the course of investigation, it is found that the oscillation amplitude of the friction factor is maximized at a resonance frequency near the surface of the concentric annuli where there is periodic heating. Furthermore, increasing transverse magnetic field decreases the oscillation amplitude of the friction factor.

  12. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...... in the outlets. The ornamental Canna×generalis planted in the CWs grew faster and took up more N and P in the vertical flow CWs. The aquaculture fish had a feed conversion ratio of 1.53 based on feed dry weight, and 31% and 34% of N and P input, respectively, were incorporated into fish biomass. Only minor...

  13. UNSTEADY FREE CONVECTIVE FLOW PAST A MOVING VERTICAL POROUS PLATE WITH NEWTONIAN HEATING

    Directory of Open Access Journals (Sweden)

    SANKAR KUMAR GUCHHAIT

    2012-07-01

    Full Text Available The unsteady free convective flow past a vertical porous plate with Newtonian heating has been studied. The governing equations have been solved numerically by Crank-Nicolson implicit finite-difference scheme. The variations of velocity and fluid temperature are presented graphically. It is found that the fluid velocity decreases with an increase in Prandtl number. Both the fluid velocity and the fluid temperature increase with an increase in suction parameter. An increase in Grashof number leads to rise in the fluid velocity. Further, it is observed that the shear stress and the rate of heat transfer at the plate increase with an increase in either Prandtlnumber or suction parameter or time.

  14. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  15. Impacts of feeding strategy on microbial community structure diversity in vertical flow constructed wetlands

    Science.gov (United States)

    Jia, W. L.; Zhang, J.; Wang, Q.

    2016-08-01

    The impacts of feeding strategy (intermittently or continuously) on contaminant removal performance and microbial community structure in vertical flow constructed wetlands (VFCWs) were evaluated. The results showed that intermittent feeding strategy improved the removal of COD, TP and ammonium in VFCWs, although TN removal was weakened correspondingly The bacterial diversity decreased with the increase of substratum depth in all CWs. The intermittent feeding favored the growth of microorganisms due to the enhancement of oxygen content in the substratum. The feeding strategy had little impact on the microbial community in the surface substratum. However, in the bottom substratum, the impacts were of great significance. The microbial community structure similarity between the CWs with different feeding strategies was low.

  16. Unsteady MHD free convective Couette flow between vertical porous plates with thermal radiation

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-10-01

    Full Text Available This study investigates the unsteady MHD free convective Couette flow of viscous incompressible electrically conducting fluid between two infinite vertical porous plates in the presence of transverse magnetic field and thermal radiation. Solutions for time dependent energy and momentum equations are obtained by the implicit finite difference method. To check the accuracy of the numerical solutions, steady state solutions for energy and momentum equations are obtained by using the perturbation method. The effect of various parameters controlling the physical situation is discussed with the aid of line graphs. Significant results from this study are that both velocity and temperature increase with the increase in thermal radiation parameter and time. A series of numerical experiments show that steady state velocity and temperature occur when the dimensionless time approaches the values of Prandtl number of the fluid. During the course of numerical computation, an excellent agreement was found between unsteady and steady state solutions at large value of time.

  17. Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate

    Science.gov (United States)

    Mustafa, M.; Mushtaq, Ammar

    2015-09-01

    The present article addresses the classical problem of the natural convection flow past a vertical plate by considering visco-elastic nanofluid. The mathematical model is constructed by following the constitutive equations of the upper-convected Maxwell (UCM) fluid. The novel aspects of Brownian motion and thermophoresis are taken into account. The recently proposed condition of passively controlled wall nanoparticle volume fraction is used. The shooting approach combined with the fourth-fifth-order Runge-Kutta integration procedure is utilized for computing the numerical solutions. The results are in agreement with the available studies in limiting sense. Our results indicate that the velocity profile is parabolic and it decreases with an increment in the visco-elastic parameter.

  18. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  19. Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Freidooni Mehr N.

    2012-01-01

    Full Text Available In this paper, the semi-analytical/numerical technique known as the homotopy analysis method (HAM is employed to derive solutions for the laminar axisymmetric mixed convection boundary-layer nanofluid flow past a vertical cylinder. The similarity solutions are employed to transform the parabolic partial differential conservation equations into system of nonlinear, coupled ordinary differential equations, subject to appropriate boundary conditions. A comparison has been done to verify the obtained results with the purely numerical results of Grosan and Pop (2011 with excellent correlation achieved. The effects of nanoparticle volume fraction, curvature parameter and mixed convection or buoyancy parameter on the dimensionless velocity and temperature distributions, skin friction and wall temperature gradients are illustrated graphically. HAM is found to demonstrate excellent potential for simulating nanofluid dynamics problems. Applications of the study include materials processing and also thermal enhancement of energy systems.

  20. Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate

    Science.gov (United States)

    Tippa, Sowmya; Narahari, Marneni; Pendyala, Rajashekhar

    2016-11-01

    Numerical analysis is performed to investigate the unsteady natural convection flow of a nanofluid past a semi-infinite isothermal vertical plate. Five different types of water based nanofluids are considered in this investigation where Silver (Ag), Copper (Cu), Copper Oxide (CuO), Alumina (Al2O3) and Titanium Oxide (TiO2) are the nanoparticles. The governing non-dimensional partial differential equations are solved by employing an implicit finite-difference method of Crank-Nicolson type. Numerical results are computed for different values of pertinent parameters. The results for nanofluid temperature, velocity, local Skin friction and Nusselt number, average Skin friction and Nusselt number are discussed through graphs. The present numerical results for local Nusselt number have been compared with the well-established pure fluid correlation results for the limiting case and the comparison shows that the results are in excellent agreement.

  1. Temperature Impact of Nitrogen Transformation in Technological System: Vertical Flow Constructed Wetland and Polishing Pond

    Science.gov (United States)

    Myszograj, Sylwia; Bydałek, Franciszek

    2016-12-01

    The article describes the results of the research, purpose of which was to evaluate influence of the temperature on the effectiveness of nitrification and denitrification in the sewage treatment system consisting of vertical flow constructed wetland and polishing pond. During the analysed period, the efficiency of removing total nitrogen was low and amounted to 12.7%. In the polishing pond in the summer period, content of total nitrogen in treated sewages was further decreased by nearly 50%. In the winter period, the polishing pond fulfilled mainly retention role and thus did not improve effectiveness of the whole system. Temperature coefficients, calculated on the basis of single first-order kinetics, for nitrification process in the filter bed (N-NH4+) and denitrification process in the polishing pond (N-NO3-) amounted to 1.039 and 1.089, respectively.

  2. Vertical rotation effect on turbulence characteristics in an open channel flow

    Institute of Scientific and Technical Information of China (English)

    Zou Li-Yong; Bai Jing-Song; Li Bu-Yang; Tan Duo-Wang; Li Ping; Liu Cang-Li

    2008-01-01

    This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reγ=194 and the rotation number Nγ=0-0.12. When Nγ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nγ is larger than 0.06,all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface.Evident change of near-surface streak structures of the velocity fluctuations are revealed.

  3. CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2010-12-01

    Full Text Available An analysis is performed to study the unsteady flow past an exponentially accelerated infinite vertical plate with variable temperature and uniform mass diffusion, in the presence of a homogeneous chemical reaction of first-order. The plate temperature is raised linearly with time and the concentration level near the plate is raised uniformly. The dimensionless governing equations are solved using the Laplace transform. The velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, a, and time. It is observed that the velocity increases with increasing values of a or t. But the trend is just the reverse in the chemical reaction parameter.

  4. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  6. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  7. A two-stage subsurface vertical flow constructed wetland for high-rate nitrogen removal.

    Science.gov (United States)

    Langergraber, Guenter; Leroch, Klaus; Pressl, Alexander; Rohrhofer, Roland; Haberl, Raimund

    2008-01-01

    By using a two-stage constructed wetland (CW) system operated with an organic load of 40 gCOD.m(-2).d(-1) (2 m2 per person equivalent) average nitrogen removal efficiencies of about 50% and average nitrogen elimination rates of 980 g N.m(-2).yr(-1) could be achieved. Two vertical flow beds with intermittent loading have been operated in series. The first stage uses sand with a grain size of 2-3.2 mm for the main layer and has a drainage layer that is impounded; the second stage sand with a grain size of 0.06-4 mm and a drainage layer with free drainage. The high nitrogen removal can be achieved without recirculation thus it is possible to operate the two-stage CW system without energy input. The paper shows performance data for the two-stage CW system regarding removal of organic matter and nitrogen for the two year operating period of the system. Additionally, its efficiency is compared with the efficiency of a single-stage vertical flow CW system designed and operated according to the Austrian design standards with 4 m2 per person equivalent. The comparison shows that a higher effluent quality could be reached with the two-stage system although the two-stage CW system is operated with the double organic load or half the specific surface area requirement, respectively. Another advantage is that the specific investment costs of the two-stage CW system amount to 1,200 EUR per person (without mechanical pre-treatment) and are only about 60% of the specific investment costs of the singe-stage CW system. IWA Publishing 2008.

  8. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    Science.gov (United States)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  9. EXPERIMENTAL STUDY OF WAVE FLOWS AROUND THE FINITE LENGTH VERTICAL WALL

    Directory of Open Access Journals (Sweden)

    Tran Long Giang

    2012-10-01

    Full Text Available Construction of breakwater structures of modern seaports requires computational models describing interaction of waves with structural elements of ports. The model should be based on numerical hydrodynamic models that contemplate all constituents of interaction between waves and structures, including those at various stages of construction. The above model makes it possible to have construction works performed in accordance with the pre-developed plan. Experimentalresearch of the behaviour of breakwater structures is to be conducted in laboratories. A scaled natural model is to be used for the above purpose to verify the model behaviour. The authors consider the methodology and results of experiments involving models of wave loads produced on vertical breakwater structures at various stages of their construction. On the basis of the experiments conducted by the authors, it is discovered that the value of the total wave force, that the vertical wall is exposed to, increases along with the wall length in the event of a constant wave mode, which is natural. However, the per-meter value of the wave force increases along with the increase in the length of the wall until it reaches the value of the length of a transverse obstacle divided by the length of waves equal to 0.28; thereafter, the wave force goes down. The authors assume that this phenomenon is caused by the change in the nature of interaction between waves and an obstacle and a transition from a diffraction-free flow to a diffraction flow. The authors believe that further researches are necessary to explore the phenomenon.

  10. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    Science.gov (United States)

    Kang, Tae Goo; Yoon, Yong-Jin; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu

    2014-08-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min-1 for an input blood flow rate of 12.5 µl min-1. The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min-1. Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems.

  11. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    CERN Document Server

    Maréchal, Jean-Christophe

    2010-01-01

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....

  12. Upward social mobility and identity.

    Science.gov (United States)

    Destin, Mesmin; Debrosse, Régine

    2017-08-09

    As psychological research on socioeconomic status (SES) continues to expand, greater attention should be devoted to the influence of social mobility and the dynamic and malleable aspects of SES on people's lives. Status-based identity describes how people's socioeconomic circumstances relate to their broader sense of self and the meaning that they make of their own SES. Such an approach allows for complex study of the challenges and consequences of a change in SES. Research related to status-based identity suggests that although social mobility is often considered a signifier of reduced inequality, upward social mobility may also exacerbate other forms of inequality by instigating a destabilizing sense of status uncertainty that impairs motivation and well-being for class migrants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An additional challenge of Lake Kivu in Central Africa - upward movement of the chemoclines

    Directory of Open Access Journals (Sweden)

    Finn Hirslund

    2012-01-01

    Full Text Available In Lake Kivu, gases accumulate, exposing the riparian population to the perils of a limnic eruption. This primary challenge has been known for years. Measurements have now established that the chemoclines in Lake Kivu are moving upward at the following total vertical flow rates (in km3 y-1: ~0.05 below 390 m, ~0.12 below 313 m, ~0.13 below 257 m, ~0.25 below 191 m, and ~1.39 below ~140 m depth. The upward movement is caused by inflows to the deeper parts of the lake from water sources with different salinities and thus of different densities. As a result, they stratify at their different isopycnal levels (especially at 350 m and at 220 to 245 m depth and mix into the waters at those levels, thus pushing up all water above, chemoclines and mixed zones alike. Water from rivers in the catchment area remains in the mixolimnion and when cold, some may sink down to the uppermost mixolimnion. Depending on the wind direction, it is suggested that alternating outflows from Kabuno Bay with variable density ends up either in the mixolimnion or at 245 m depth. In Lake Kivu, only the uppermost chemocline remains at the same level; in this case the upward movement results in transport of mass across the chemocline. In the uppermost mixed zone of the monimolimnion, from 130 to 180 m depth, the natural dilution might suffice to outbalance methane accumulation and thus to prevent any future limnic eruption from this zone. In the next mixed zone below (at 200 to 250 m depth, the upward displacement of dissolved gases to higher levels increases the risk of future limnic eruption. In fact, over time this risk is changed to certainty, even if gas is removed from the deeper (commercially attractive layers. The limited dilution in this zone probably does not suffice to outbalance methane accumulation. Furthermore, if this upward movement is not prevented, probably within a decade or two a point of no return is likely to be passed, leaving us with no reliable means of

  14. Hydrodynamic effect on the three-dimensional flow past a vertical porous plate

    Directory of Open Access Journals (Sweden)

    M. Guria

    2005-01-01

    Full Text Available The study of unsteady hydrodynamic free convective flow of a viscous incompressible fluid past a vertical porous plate in the presence of a variable suction has been made. Approximate solutions have been derived for the velocity and temperature fields, shear stress, and rate of heat transfer using perturbation technique. It is observed that main fluid velocity decreases with increase in Prandtl number, while it increases with increase in suction parameter. The cross-velocity decreases near the plate and increases away from the plate with increase in suction parameter. On the other hand, it increases near the plate and decreases away from the plate with increase in frequency parameter. The amplitude and the tangent of phase shift of the shear stress due to main flow decrease with increase in either Prandtl number, Grashof number, or frequency parameter. It is seen that the temperature decreases with increase in either suction parameter, Prandtl number, or frequency parameter. It is also seen that the amplitude of the rate of heat transfer increases and the tangent of phase shift of rate of heat transfer decreases with increase in Prandtl number.

  15. Unsteady Hydromagnetic Flow past a Moving Vertical Plate with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth

    2016-01-01

    Full Text Available Investigation of unsteady MHD natural convection flow through a fluid-saturated porous medium of a viscous, incompressible, electrically-conducting and optically-thin radiating fluid past an impulsively moving semi-infinite vertical plate with convective surface boundary condition is carried out. With the aim to replicate practical situations, the heat transfer and thermal expansion coefficients are chosen to be constant and a new set of non-dimensional quantities and parameters are introduced to represent the governing equations along with initial and boundary conditions in dimensionless form. Solution of the initial boundary-value problem (IBVP is obtained by an efficient implicit finite-difference scheme of the Crank-Nicolson type which is one of the most popular schemes to solve IBVPs. The numerical values of fluid velocity and fluid temperature are depicted graphically whereas those of the shear stress at the wall, wall temperature and the wall heat transfer are presented in tabular form for various values of the pertinent flow parameters. A comparison with previously published papers is made for validation of the numerical code and the results are found to be in good agreement.

  16. Unsteady MHD Mixed Convection Flow of a Micropolar Fluid Over a Vertical Wedge

    Science.gov (United States)

    Roy, N. C.; Gorla, R. S. R.

    2017-05-01

    An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. The Prandtl number, the conduction-radiation parameter, the surface temperature parameter and the pressure gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient parameter and the magnetic field parameter.

  17. Natural convective boundary layer flow of a nano-fluid past a convectively heated vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350 (Pakistan)

    2012-03-15

    Natural convective flow of a nano-fluid over a convectively heated vertical plate is investigated using a similarity analysis of the transport equations followed by their numerical computations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and solid volume fraction of the nano-fluid profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on four additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy-ratio parameter Nr and convective parameter Nc. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, solid volume fraction of the nano-fluid, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These linear regression models provide a highly accurate (with a maximum standard error of 0.004) representation of the numerical data and can be conveniently used in engineering practice. (authors)

  18. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  19. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space

    Directory of Open Access Journals (Sweden)

    Sarafraz M.M.

    2012-01-01

    Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.

  20. Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate

    Directory of Open Access Journals (Sweden)

    Parasuraman Loganathan

    2015-01-01

    Full Text Available Numerical analysis is carried out on an unsteady MHD natural convective boundary layer flow of a nanofluid past an isothermal vertical plate in the presence of thermal radiation. The governing partial differential equations are solved numerically by an efficient, iterative, tri-diagonal, semi-implicit finite-difference method. In particular, we investigate the effects of radiation, magnetic field and nanoparticle volume fraction on the flow and heat transfer characteristics. The nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The numerical results indicate that in the presence of radiation and magnetic field, an increase in the nanoparticle volume fraction will decrease the velocity boundary layer thickness while increasing the thickness of the thermal boundary layer. Meanwhile, an increase in the magnetic field or nanoparticle volume fraction decreases the average skin-friction at the plate. Excellent validation of the present results has been achieved with the published results in the literature in the absence of the nanoparticle volume fraction.

  1. The Natural Convection Heat Transfer inside Vertical Pipe: Characteristic of Pipe Flow according to the Boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.

  2. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  3. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade......Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...

  4. Air–water flow in a vertical pipe: experimental study of air bubbles in the vicinity of the wall

    NARCIS (Netherlands)

    Descamps, M.N.; Oliemans, R.V.A.; Ooms, G.; Mudde, R.F.

    2008-01-01

    This study deals with the influence of bubbles on a vertical air–water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall

  5. Treatment of domestic wastewater by vertical flow constructed wetland planted with umbrella sedge and Vetiver grass.

    Science.gov (United States)

    Kantawanichkul, Suwasa; Sattayapanich, Somsiri; van Dien, Frank

    2013-01-01

    The aim of this study was to investigate the efficiency of wastewater treatment by vertical flow constructed wetland systems under different hydraulic loading rates (HLR). The comparison of two types of plants, Cyperus alternifolius (Umbrella sedge) and Vetiveria zizanioides (Vetiver grass), was also conducted. In this study, six circular concrete tanks (diameter 0.8 m) were filled with fine sand and gravel to the depth of 1.23 m. Three tanks were planted with Umbrella sedge and the other three tanks were planted with Vetiver grass. Settled domestic wastewater from Chiang Mai University (chemical oxygen demand (COD), NH4(+)-N and suspended solids (SS) of 127.1, 27.4 and 29.5 mg/L on average, respectively) was intermittently applied for 45 min and rested for 3 h 15 min. The HLR of each tank was controlled at 20, 29 and 40 cm/d. It was found that the removal efficiency of the Umbrella sedge systems was higher than the Vetiver grass systems for every parameter, and the lowest HLR provided the maximum treatment efficiency. The removal efficiency of COD and nitrogen in terms of total Kjeldahl nitrogen (TKN) was 76 and 65% at 20 cm/d HLR for Umbrella sedge compared to only 67 and 56% for Vetiver grass. Nitrogen accumulation in plant biomass was also higher in Umbrella sedge than in Vetiver grass in every HLR. Umbrella sedge was thus proved to be a suitable constructed wetland plant in tropical climates.

  6. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  7. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  8. A mass balance study on nitrification and deammonification in vertical flow constructed wetlands treating landfill leachate.

    Science.gov (United States)

    Sun, G; Austin, D

    2007-01-01

    A laboratory-scale, mass-balance study was carried out on the transformation of nitrogenous pollutants in four vertical flow wetland columns. Landfill leachate containing low organic matter, but a high concentration of ammoniacal-nitrogen, was treated under dissolved oxygen concentrations close to saturation. Influent total nitrogen (TN) comprised ammoniacal-nitrogen with less than 1% nitrate and nitrite, negligible organic nitrogen, and very low BOD. Nitrification occurred in three of the four columns. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (< 12%). Nitrogen loss under study conditions was unexpected. Two hypotheses are proposed to account for it: (1) either the loss of TN is attributed to nitrogen transformation into a form (provisionally termed alpha-nitrogen) that is undetectable by the analytical methods used; or (2) the loss is caused by microbial denitrification or deammonification. By elimination and stoichiometric mass balance calculations, completely autotrophic nitrogen-removal over nitrite (CANON) deammonification is confirmed as responsible for nitrogen loss in one column. This result reveals that CANON can be native to aerobic engineered wetland systems treating high ammonia, low organic content wastewater.

  9. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  10. Assessment of activated sludge, membrane bioreactors and vertical flow wetlands for upgrading sewage treatment works.

    Science.gov (United States)

    Besançon, A; Le Corre, K S; Dotro, G; Jefferson, B

    2017-01-01

    This paper demonstrates that utilising a vertical flow (VF) wetland after a conventional activated sludge (CAS) delivers equivalent or better effluent quality to a membrane bioreactor (MBR) based on a side-by-side pilot trial. The CAS was operated under the solids retention times (SRT) of 6, 12, and 20 days, with the effluent from each pilot plant fed onto a soil aquifer treatment column to better understand their water reuse application potential. Results showed an upgraded CAS + VF system could deliver effluents with median values of 34 mgO2.L((-1)), 7 mg.L(-1) and 1.9 mg.L(-1) for organics, solids and ammonia nitrogen, respectively, which were statistically similar to those from the MBR. Water reuse standards were achieved by the upgraded system for most parameters, with the exception of total coliform removal. The upgraded system delivered superior metal removal when compared to the CAS. An economic analysis showed upgrading a CAS with a VF wetland was more favourable than investing in an MBR system for example works of 5000 and 50,000 population equivalents if the VF system was operated at hydraulic loading rates of 0.03 m.d(-1) and 0.08 m.d(-1), respectively. This was delivered for a tenth of the carbon footprint of the MBR treatment.

  11. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Directory of Open Access Journals (Sweden)

    Wenli Cai

    Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  12. A novel effective micromixer having horizontal and vertical weaving flow motion

    Science.gov (United States)

    Yoo, Won-Sul; Go, Jung Sang; Park, Seonghun; Park, Sang-Hu

    2012-03-01

    The need for small-scale product-related biotechnology (BT) is rapidly increasing. An important product among these is high-performance biochips. In these devices, many microchannels are used for separation, filtering and mixing of various materials; therefore, for compactness, these reactions should be carried out in the small space of microfluidic systems. However, there is no turbulence that can induce materials to be mixed or reacted in the microchannel, especially with low Reynolds number laminar flow. Hence, it is difficult to sufficiently mix different materials. To address this problem, we propose the HVW (horizontal and vertical weaving) micromixer having crossed barriers inside of a microchannel, for effective mixing and reacting different materials. From CFD analysis, we have evaluated the mixing mechanism and efficiency of the HVW mixer. In this work, it is shown that the HVW mixer has the maximum mixing efficiency of 89.9% with a short mixing distance of 450 µm at a Reynolds number of 5 with the barrier angle of 30°, when water and water combined with Rhodamine B figment were used as fluids.

  13. Afocal Optical Flow Sensor for Reducing Vertical Height Sensitivity in Indoor Robot Localization and Navigation

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Yi

    2015-05-01

    Full Text Available This paper introduces a novel afocal optical flow sensor (OFS system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  14. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang

    2015-01-01

    In this study, the removal performances of organic pollutants and nitrogen in vertical flow constructed wetlands (VFCWs) with and without intermittent aeration fed with different strengths of influent were evaluated as a possible treatment for decentralized domestic wastewater in northern China. The intermittent aeration strategy not only significantly increased removal efficiencies of organic pollutants and ammonium nitrogen (NH4(+)-N), but also successfully created alternate aerobic and anaerobic conditions resulting in high total nitrogen (TN) removal. Moreover, increasing influent strength did not affect the removal efficiencies of organic matters and nitrogen in aerated VFCWs. Compared with non-aerated VFCWs, much higher removal of organic pollutants (96%), NH4(+)-N (98%), and TN (85%) was obtained simultaneously in intermittent aeration VFCWs, especially at high influent strengths. The results suggest that the intermittent aeration could be an appropriate strategy for achieving the high removal performance in VFCWs, especially for in-situ treatment of high strength decentralized domestic wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Afocal optical flow sensor for reducing vertical height sensitivity in indoor robot localization and navigation.

    Science.gov (United States)

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2015-05-13

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  16. Removal of PAHs from laboratory columns simulating the humus upper layer of vertical flow constructed wetlands.

    Science.gov (United States)

    Cottin, N; Merlin, G

    2008-10-01

    Removal of three polycyclic aromatic hydrocarbons or PAHs (fluoranthene, pyrene and benzo(k)fluoranthene) from two types of PAH-contaminated effluents was investigated using four laboratory columns filled with two different organic media: a green compost and a layer coming from the first stage of vertical flow constructed wetlands. Synthetic runoff polluted by polycyclic aromatic hydrocarbons were fed through the columns during a period of two months. After a period of hydrodynamic stabilisation, the results showed a great adsorption of PAHs (>95%) on the solid media due to their large adsorption capacities. Leaching of these compounds by water was monitored. The concentrations of PAHs in leaching samples indicated that PAHs were strongly adsorbed on organic substrates and that lixiviation was limited. Fluoranthene metabolites were also investigated. Accumulation of metabolites was transitory and located in the first few cm of the media, as was observed for PAH concentrations. A toxicity test of leachates based on the inhibition of the bioluminescence of luminescent bacteria Vibrio fischeri indicated a low inhibition which can be enhanced by metal traces.

  17. Vertical 2D Modeling of Free Surface Flow with Hydrodynamic Pressure Using SIMPLE Arithmetic in σ Coordinates

    Institute of Scientific and Technical Information of China (English)

    吴修广; 沈永明; 郑永红

    2004-01-01

    A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged NavierStokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k - e turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a curent over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.

  18. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps

    Directory of Open Access Journals (Sweden)

    Krupička Jan

    2014-06-01

    Full Text Available Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are discussed in the light of the proposed methodology. Experimentally determined vertical profiles of concentration are presented for slurry flows of four different fractions of glass beads. The tomographic application of the radiometric device is demonstrated on a measured concentration map and a suitable image reconstruction method is tested. High reliability of measured concentration distributions is proved except for regions near the pipe wall. The radiometric method is shown to be a useful tool for measurement of concentration distribution in slurry flow through a pipe.

  19. Unsteady Free Convection Flow past a Vertical Plate with Heat and Mass Fluxes in the Presence of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-01-01

    Full Text Available The problem of unsteady free convection flow past an infinite vertical plate with heat and mass fluxes in the presence of thermal radiation is studied. The dimensionless coupled linear partial differential equations governing the flow are solved by employing the Laplace transform technique. Exact solutions have been obtained for the fluid velocity, temperature and mass concentration for the cases of both uniform heat flux (UHF and uniform wall temperature (UWT. The numerical results for the fluid velocity, temperature and mass concentration are presented graphically for various pertinent flow parameters and discussed in detail.

  20. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    Science.gov (United States)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  1. Hydromagnetic convective flow past a vertical porous plate through a porous medium with suction and heat source

    Directory of Open Access Journals (Sweden)

    S.S.Das, U.K.Tripathy, J.K.Das

    2010-05-01

    Full Text Available This paper theoretically analyzes the unsteady hydromagnetic free convective flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous plate through a porous medium in presence of constant suction and heat source. Approximate solutions are obtained for velocity field, temperature field, skin friction and rate of heat transfer using multi-parameter perturbation technique. The effects of the flow parameters on the flow field are analyzed with the aid of figures and tables. The problem has some relevance in the geophysical and astrophysical studies.

  2. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Science.gov (United States)

    Mirzaei Nejad, Mehrzad; Javaherdeh, K.; Moslemi, M.

    2015-09-01

    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors.

  3. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  4. Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems

    Science.gov (United States)

    Akturk, Ali

    The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at

  5. FORCES ON PARTICLES AND THEIR EFFECTS ON VERTICAL SEDIMENT SORTING IN SOLID-LIQUID TWO-PHASE FLOWS

    Institute of Scientific and Technical Information of China (English)

    NI Jinren; MENG Xiaogang

    2001-01-01

    Vertical motion of particles was simulated by the Lagrangian method in one-dimensional solid-liquid two-phase flow. The conventional equation was modified by inserting a particle-particle interaction term,which was identified by Bagnold's experimental results. Effects of various forces have been examined under different particle concentrations. The results showed that the vertical sorting patterns are primarily determined by the joint action of inter-particle force and effective gravitational force, whereas the pace towards the steady sorting pattern was affected by Basset force and additional mass force.

  6. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico

    Science.gov (United States)

    Carrillo-Rivera, J. J.

    2000-09-01

    An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une

  7. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  8. Numerical simulation of flow boiling for organic fluid with high saturation temperature in vertical porous coated tube

    Energy Technology Data Exchange (ETDEWEB)

    Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

    2011-08-15

    Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.

  9. Does urban sprawl hold down upward mobility?

    Science.gov (United States)

    Ewing, R.; Hamidi, Shima; Grace, James B.; Wei, Y.

    2016-01-01

    Contrary to the general perception, the United States has a much more class-bound society than other wealthy countries. The chance of upward mobility for Americans is just half that of the citizens of the Denmark and many other European countries. In addition to other influences, the built environment may contribute to the low rate of upward mobility in the U.S. This study tests the relationship between urban sprawl and upward mobility for commuting zones in the U.S. We examine potential pathways through which sprawl may have an effect on mobility. We use structural equation modeling to account for both direct and indirect effects of sprawl on upward mobility. We find that upward mobility is significantly higher in compact areas than sprawling areas. The direct effect, which we attribute to better job accessibility in more compact commuting zones, is stronger than the indirect effects. Of the indirect effects, only one, through the mediating variable income segregation, is significant.

  10. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    convection in a vertical channel saturated with porous medium was studied by ... However temperature boundary condition of third kind (the local wall heat flux is a ... Hajmohammadi and Nourazar (2014) studied the effect of a thin gas layer in ...... with viscous dissipation in a vertical channel, Int. J. Heat and Mass Transfer ,.

  11. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.

    Science.gov (United States)

    Asuman Korkusuz, E; Beklioğlu, Meryem; Demirer, Göksel N

    2007-08-01

    Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.

  12. Comparison of vertical-flow constructed wetlands with and without supplementary aeration treating decentralized domestic wastewater.

    Science.gov (United States)

    Zhu, Liandong; Takala, Josu; Hiltunen, Erkki; Li, Zhaohua; Kristianto, Yohanes

    2013-01-01

    Constructed wetlands (CWs) are efficient in reducing excessive contamination from wastewaters. However, oxygen inside CW beds is frequently low especially when substrate clogging problems appear after long-term operation, and this may become a limited factor for the treatment of wastewaters. Aimed at dealing with the issue of a low oxygen content in CW systems, two laboratory-scale vertical-flow constructed wetlands (VFCWs) with and without an aeration device (called VFCW-a and VFCW-c, respectively) were designed in this study to test the contribution of supplementary aeration to the treatment of decentralized domestic wastewater. Results showed that under the intermittent operation of about 45 days, two VFCW units were successfully started up by using activated sludge as seed sludge. Compared to VFCW-c, VFCW-a had a better resistance ability to organic shock loads and its removal function could be effectively recovered within a short period after the introduction of organic shock loads. Under intermittent operation with a 12 h idling time, the ideal hydraulic retention time (HRT) of VFCW-a was 42 h, about 6 h shorter than that of VFCW-c. Likewise, under intermittent operation with 42 h HRT, the ideal idling time of VFCW-a was 12 h, still about 6 h shorter than that of VFCW-c. Under intermittent operation with HRT-42 h and an idling time of 12 h, SS, COD, TN and TP removal efficiencies in VFCW-a could reach 81.2%, 85%, 89.9% and 77.9%, respectively. The VFCW unit with supplementary aeration is an efficient innovation for the treatment of decentralized domestic wastewater.

  13. Performance of a vertical subsurface flow constructed wetland under different operational conditions

    Directory of Open Access Journals (Sweden)

    Sara G. Abdelhakeem

    2016-09-01

    Full Text Available The performance of a vertical subsurface flow constructed wetland (VSSFCW for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation (the presence or absence of common reeds “Phragmites australis”, media type (gravel or vermiculite, and mode of sewage feeding (continuous or batch. Plants had a significant effect (P < 0.05 on the removal efficiency and mass removal rate of all pollutants, except phosphorous. The average removal efficiencies of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS, ammonium (NH4 and total-P (TP were 75%, 84%, 75%, 32% and 22% for the planted beds compared to 29%, 37%, 42%, 26% and 17%, respectively, for the unplanted beds. The VSSFCW was ineffective in removing nitrate (NO3. The effect of either media type or feeding mode system on the removal efficiency of COD and BOD was insignificant. Vermiculite media significantly (P < 0.05 increased the efficiency of the wetland in removing NH4, TP and dissolved phosphorous (DP when compared with gravel particularly in the planted beds. The batch mode was more effective in removing TSS and NH4 compared to the continuous mode. Volumetric rate constant (kV was different for various pollutants and significantly increased due to the presence of plants. Media type had no significant effect on the values of kV for COD, BOD and TSS, while kV for NH4 and TP under vermiculite in the planted beds and kV for P in the unplanted beds were significantly higher than those under gravel.

  14. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes.

    Science.gov (United States)

    Huang, Xu; Liu, Chaoxiang; Li, Ke; Su, Jianqiang; Zhu, Gefu; Liu, Lin

    2015-03-01

    Antibiotics and antibiotic resistance genes (ARGs) pollution in animal feeding farms received more public attention recently. Livestock wastewater contains large quantities of antibiotics and ARGs even after traditional lagoon treatment. In this study, the performance of vertical up-flow constructed wetlands (VUF-CWs) on swine wastewater containing tetracycline compounds (TCs) and tet genes was evaluated based on three aspects, TCs and tet genes removal efficiencies, residual TCs and tet genes in soils and plants, and the effect of TCs accumulation on nutrients removal and tet genes development. High removal efficiencies (69.0-99.9%) were achieved for oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) with or without OTC spiked in the influent additionally. TCs concentrations in surface soils increased at first two sampling periods and then decreased after plants were harvested. Satisfactory nutrients removal efficiencies were also obtained, but TN and NH4-N removal efficiencies were significantly negative correlated with total concentration of TCs (∑TCs) in the soils (p < 0.01). The absolute abundances of all the target genes (tetO, tetM, tetW, tetA, tetX and intI1) were greatly reduced with their log units ranging from 0.26 to 3.3. However, the relative abundances of tetO, tetM and tetX in some effluent samples were significantly higher than those in the influent (p < 0.05). The relative abundances of tet genes except for tetO were significantly correlated with ∑TCs in the soils (p < 0.05). In summary, the proposed VUF-CWs are effective alternative for the removal of TCs and tet genes. But it is of great importance to prevent large accumulation of TCs in the soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d(-1) in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4(+) 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  16. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  17. Transient critical heat flux under flow coast-down in vertical annulus with non-uniform heat flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    2001-07-01

    An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)

  18. Enhancing treatment efficiency of swine wastewater by effluent recirculation in vertical-flow constructed wetland

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine operations, but the removal efficiency of pollutants is relatively low. Enhancing the treatment efficiency of livestock wastewater by effluent recirculation was investigated in a pilot-scale vertical-flow constructed wetland. The wetland system was composed of downflow and upflow stages, on which narrow-leafPhragmites communis and common reed Phragmites Typhia are planted, respectively; each stage has a dimension of4 m2 (2 m × 2 m). Wastewater from facultative pond was fed into the system intermittently at a flow rate of 0.4 m3/d. Recirculation rates of 0, 25%, 50%, 100% and 150% were adopted to evaluate the effect of the recirculation rate on pollutants removal. It shows that with effluent recirculation the average removal efficiencies of NH4-N, biological oxygen demand (BOD5) and suspended solids(SS)obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, dissolved oxygen(DO) and oxidation-reduction potential(ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R2 >0.93)are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by gradually enhanced nitrification process. When recirculation rate is kept constant 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.

  19. A conformal mapping technique to correlate the rotating flow around a wing section of vertical axis wind turbine and an equivalent linear flow around a static wing

    Science.gov (United States)

    Akimoto, Hiromichi; Hara, Yutaka; Kawamura, Takafumi; Nakamura, Takuju; Lee, Yeon-Seung

    2013-12-01

    In a vertical axis wind turbine (VAWT), turbine blades are subjected to the curved flow field caused by the revolution of turbine. However, performance prediction of VAWT is usually based on the fluid dynamic coefficients obtained in wind tunnel measurements of the two-dimensional static wing. The difference of fluid dynamic coefficients in the curved flow and straight flow deteriorates the accuracy of performance prediction. To find the correlation between the two conditions of curved and straight flow, the authors propose a conformal mapping method on complex plane. It provides bidirectional mapping between the two flow fields. For example, the flow around a symmetric wing in the curved flow is mapped to that around a curved (cambered) wing in the straight flow. Although the shape of mapped wing section is different from the original one, its aerodynamic coefficients show a good correlation to those of the original in the rotating condition. With the proposed method, we can reproduce the local flow field around a rotating blade from the flow data around the mapped static wing in the straight flow condition.

  20. Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation

    Directory of Open Access Journals (Sweden)

    Isaac Lare Animasaun

    2016-06-01

    Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.

  1. Role of Induced Magnetic Field on Transient Natural Convection Flow in a Vertical Channel: The Riemann Sum Approximation Approach

    Directory of Open Access Journals (Sweden)

    Jha B.K.

    2015-02-01

    Full Text Available This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.

  2. Double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 (United States); Nield, D.A. [Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2011-05-15

    The double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate is studied analytically. The model used for the binary nano-fluid incorporates the effects of Brownian motion and thermophoresis. In addition the thermal energy equations include regular diffusion and cross-diffusion terms. A similarity solution is presented. Numerical calculations were performed in order to obtain correlation formulas giving the reduced Nusselt number as a function of the various relevant parameters. (authors)

  3. MHD Flow of a Non-Newtonian Power Law Fluid over a Vertical Stretching Sheet with the Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    Azeem SHAHZAD

    2013-02-01

    Full Text Available In this article, we study the power law model of steady state, viscous, incompressible MHD flow over a vertically stretching sheet. Furthermore, heat transfer is also addressed by using the convective boundary conditions. The coupled partial differential equations are transformed into ordinary differential equations (ODEs using similarity transformations. The transformed highly non-linear ODEs are solved by using the Homotopy Analysis Method (HAM. The influence of different parameters on the velocity and temperature fields are analyzed and discussed.

  4. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps

    OpenAIRE

    Krupička, Jan; Matoušek, Václav

    2014-01-01

    Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are disc...

  5. HEAT AND MASS TRANSFER FOR VISCO-ELASTIC MHD BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE

    Directory of Open Access Journals (Sweden)

    Rita Choudhury

    2012-07-01

    Full Text Available The two-dimensional free convection flow of visco-elastic and electrically conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations are reduced to ordinary differential equation by introducing appropriate co-ordinate transformation. The analytical expressions for the velocity, temperature and species concentration fields have been obtained. The corresponding expressions for the non-dimensional rates of heat transfer and mass transfer have beenobtained. The velocity profile and the shearing stress have been illustrated graphically, for various values of flow parameters involved in the solution to observe the effect of visco-elastic parameter.

  6. MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE WITH FIRST ORDER CHEMICAL REACTION AND HEAT SOURCE/SINK

    Directory of Open Access Journals (Sweden)

    Dr.Abhay Kumar Jha

    2012-07-01

    Full Text Available The objective of this paper is to study heat and mass transfer on an unsteady two dimensional hydromagnetic laminar mixed convective boundary layer flow of an incompressible fluid past a semi-infinite vertical plate with heat source/ sink. The plate moves with constant velocity in the direction of fluid flow while the free stream velocity follows an exponentially increasing small perturbation law. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions .the results obtainedand discussed with help of graphs and tables to observe the effect of various parameter concerned in the problem under investigation.

  7. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  8. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    Science.gov (United States)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-06-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  9. Mixed convection boundary layer flow past vertical flat plate in nanofluid:case of prescribed wall heat flux

    Institute of Scientific and Technical Information of China (English)

    R. TRˆIMBIT¸AS¸; T.GROSAN; I.POP

    2015-01-01

    An analysis is carried out to investigate the steady mixed convection bound-ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the governing partial differential equations are transformed into the coupled, nonlinear ordinary (similar) differential equations, which are then solved numerically for the Prandtl number Pr = 6.2. The skin friction coeffi-cient, the local Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fractionφand the mixed convection parameterλon the fluid flow and heat transfer characteristics are thoroughly examined. Different from an assisting flow, it is found that the solutions for an opposing flow are non-unique. In order to establish which solution branch is stable and physically realizable in practice, a stability analysis is performed.

  10. Mixed convection flow of a viscoelastic fluid near the orthogonal stagnation-point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2 (Canada); Labropulu, F. [Luther College e Mathematics, University of Regina, Regina, SK S4S 0A2 (Canada); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2011-09-15

    An analysis of the steady mixed convection flow of a viscoelastic fluid stagnating orthogonally on a heated or cooled vertical flat plate has been studied. Using similarity variables, the governing equations are transformed into a system of two coupled non-linear ordinary differential equations. The resulting equations are then solved numerically using the spectral method. It is observed that the skin friction coefficient and the local heat transfer are decreasing when the Weissenberg number We is increasing in both assisting and opposing flow cases. On the other hand, the skin friction is decreasing and the local heat transfer is increasing when the Prandtl number Pr is increasing in the case of assisting flow. In the case of opposing flow, the skin friction and the local heat transfer are increasing as Pr is increasing. (authors)

  11. Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model

    Science.gov (United States)

    Naphon, P.; Arisariyawong, T.; Nualboonrueng, T.

    2017-07-01

    A computation fluid dynamics study has been performed to analyze the nanofluids heat transfer and flow characteristics in the spirally coiled tubes. Eulerian two-phase turbulent model is applied to simulate the heat transfer and flow characteristics in the vertical spirally coiled tube. The spirally coiled tubes are fabricated by bending a 8.50 mm inner diameter straight copper tube into a spiral-coil with two different curvature ratios of 0.035, 0.060. The predicted results are verified with the present measured data. Reasonable agreement is obtained from the comparison between the measured data and the predicted results. In addition, due to the centrifugal force, the induced secondary flow has significant effect on the heat transfer enhancement as flowing through the spirally coiled tube. Effects of curvature, nanofluids concentration and hot water temperature on the nanofluids heat transfer characteristics and pressure drop are considered.

  12. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, B. E.; Toledo, Y.; Shrira, V. I.

    2017-04-01

    This paper addresses a major shortcoming of the current generation of wave models, namely their inability to describe wave propagation upon ambient currents with vertical shear. The wave action conservation equation (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared currents is derived following Voronovich (1976). The resulting WAE specifies conservation of a certain depth-averaged quantity, the wave action, a product of the wave amplitude squared, eigenfunctions and functions of the eigenvalues of the boundary value problem for water waves upon a vertically sheared current. The formulation of the WAE is made explicit using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature; the adopted approximations are shown to be sufficient for most of the conceivable applications. In the limit of vanishing current shear, the new formulation reduces to that of Bretherton and Garrett (1968) without shear and the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal might lead to significant errors in wave amplitude. The new WAE which takes into account the vertical shear can be better coupled to modern circulation models which resolve the three-dimensional structure of the uppermost layer of the ocean.

  13. The Effect of Sudden Change in Pipe Diameter on Flow Patterns of Air-Water Two-Phase Flow in Vertical Pipe (Ⅱ) Sudden-Expansion Cross-Section

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this companion paper, flow patterns in the upstream and downstream tubes of a sudden-expansion cross-section (SECS) in a vertical straight pipe were presented. The effect of SECS on flow patterns upstream and downstream was analyzed by comparing with flow patterns in uniform cross-section vertical tubes. It is found the effect is great. There exist great instabilities of two-phase flow in the neighboring areas of the SECS both downstream and upstream.

  14. Natural convection unsteady magnetohydrodynamic mass transfer flow past an infinite vertical porous plate in presence of suction and heat sink

    Directory of Open Access Journals (Sweden)

    S. S. Das, S. Parija, R. K. Padhy, M. Sahu

    2012-01-01

    Full Text Available This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer are discussed with the help of figures and table. It is observed that a growing magnetic parameter or Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points, while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all points while the heat source parameter reverses the effect. The concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing Sc at all points of the flow field. The effect of increasing Prandtl number Pr is to decrease the magnitude of skin-friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing magnetic parameter M is to decrease their values at all points.

  15. The effect of flow pattern around a bubble rising near a vertical wall, on the wall to liquid heat transfer

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2016-11-01

    Two-phase flow is an effective means for heat removal due to the enhanced convective effect caused by bubbly flow and the usually high latent heat of vaporization of the liquid phase. We present a numerical study of the effect of flow patterns around a single bubble rising in shear flow near a vertical wall, on the wall-to-liquid heat transfer. The Navier-Stokes equations are solved in a frame of reference moving with the bubble, by using the front tracking method for interface tracking. Our simulations reveal an enhancement of heat transfer downstream of the bubble, and a less pronounced diminishment of heat transfer upstream of the bubble. We observe that in the range of 5 Archimedes number. The heat transfer enhancement is attributed to flow reversal happening in a confined region of the shear flow, in the presence of a bubble. The analytical solution of 2 - D inviscid shear flow over a cylinder near a wall is used to identify two parameters of flow reversal namely 'reversal height' and 'reversal width'. These parameters are then used to qualitatively explain what we observe in 3 - D simulations.

  16. Detection of Two-Phase Flow Patterns in a Vertical Minichannel Using the Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    Mosdorf Romuald

    2015-06-01

    Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.

  17. Natural convection air flow in vertical upright-angled triangular cavities under realistic thermal boundary conditions

    Directory of Open Access Journals (Sweden)

    Sieres Jaime

    2016-01-01

    Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.

  18. Velocity Field in a Vertical Foam Film

    Science.gov (United States)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  19. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    Science.gov (United States)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  20. Theoretical and experimental studies of churn flow in vertical tubes. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-27

    The pattern known as churn flow is a highly unsteady pattern with stochastic features and is extremely complex. However, calculations show that for many geothermal wells the condition of churn flow consists over much of the length of the two phase zone. Furthermore, it frequently exists at the surface so that design of separation equipment and surface piping depends on the accurate modelling of this type of flow. It has been the long term purpose of this project to develop physically based models for churn flow which can be used as a basis for predicting holdup, frictional loss and heat transfer rates for this flow pattern in geothermal systems. To achieve this end, it was necessary to develop new methods for measuring the time dependent characteristics of the flow and thus be able to uncover the basic physics of the flow. Models can then be developed based on this understanding which characterizes the flow and equations for holdup, friction and heat transfer evolved.

  1. Transient Heat Transfer from a Wire Inserted into a Vertically Mounted Pipe to Forced Flow Liquid Hydrogen

    Science.gov (United States)

    Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inatani, Yoshifumi

    The transient heat transfer from a Pt-Co wire heater inserted into a vertically mounted pipe, through which forced flow subcooled liquid hydrogen was passed, is measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and an inlet temperature of 21 K. The flow velocities range from 0.8 to 5.5 m/s. For shorter periods, the non-boiling heat transfer becomes higher than that given by the Dittus-Boelter equation due to the transient conductive heat transfer contribution. In addition, the transient critical heat flux (CHF) becomes higher than the steady-state CHF. The effect of the flow velocity and period on the transient CHF heat flux is also clarified.

  2. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  3. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2016-06-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  4. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  5. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  6. Free Convective Fluctuating MHD Flow through Porous Media Past a Vertical Porous Plate with Variable Temperature and Heat Source

    Directory of Open Access Journals (Sweden)

    A. K. Acharya

    2014-01-01

    Full Text Available Free convective magnetohydrodynamics (MHD flow of a viscous incompressible and electrically conducting fluid past a hot vertical porous plate embedded in a porous medium in the presence of heat source has been studied in this paper. The temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of porosity of the medium coupled with the variation of plate temperature with regard to space and in time. The effect of pertinent parameters characterizing the flow has been presented through the graphs. It is important to record that the presence of porous media has no significant contribution to the flow characteristics and viscous dissipation compensates for the heating and cooling of the plate due to convective current.

  7. The Instability of Void Fraction Waves in Vertical Gas—Liquid Two—Phase Flow

    Institute of Scientific and Technical Information of China (English)

    BaojiangSUN; DachunYAN; 等

    1999-01-01

    The measuring and analyzing results of void fraction waves in different flow regimes show that the propagating velocity of void fraction waves depends on flow regimes and mean void fraction.The disturbance at some frequencies can enhance the void fraction wave velocity.Non-linear analysis show that the instability process of bubble flow is a chaotic process.Before the bubbly flow transits to cap-bubbly flow the growth rate of void fraction waves becomes the maximum value when the disturbance frequency is around the main frequency of void fraction waves.

  8. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  9. Comparison of heat-pulse flow measurements and vertical gradients in a fractured limestone aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Dearborn, L.L.; Calkin, S.F.; Andolsek, R.H. [ABB Environmental Services, Inc., Portland, ME (United States); Allison, W.S. [Lockheed Martin Energy Systems, Inc., Oliver Springs, TN (United States)

    1996-11-01

    Establishing a site-specific relationship between heat-pulse flowmeter (HPFM) data and corresponding vertical gradient data may allow prediction of potential vertical gradients through BPFM logging alone. Vertical gradient and corresponding BPFM rates were determined for 117 test intervals in a fractured limestone bedrock aquifer. From these data, it appears that HPFM data can be used in place of more labor intensive borehole packer testing to provide estimates of vertical gradients in this type of hydrogeologic system. Groundwater conditions in the fractured bedrock were investigated through testing of 66 open boreholes, as part of the hazardous waste remedial investigation at the former Loring Air Force Base (LAFB) in northern Maine, USA. Borehole geophysical logging tools, including BPFM and acoustic televiewer (ATV), in conjunction with air hammer drilling logs, were used to target specific fracture(s) to test using conventional straddle packers. HPFM and head data from 41 boreholes met general requirements for comparison purposes, and a linear correlation trend was identified.

  10. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  11. Effect of upward seepage on bedload transport rate

    Directory of Open Access Journals (Sweden)

    Xiao-xie LIU

    2014-04-01

    Full Text Available The paper presents an investigation of injection effects on the bedload transport rate. According to dimensional analysis, two dimensionless groups, an Einstein’s parameter group and a modified densimetric Froude number group, were chosen to examine how injection affects the bedload transport rate. Experimental studies were conducted in an open-channel flume with an upward seepage zone. The sediment particles used for the test were 0.9 mm in diameter. The experimental results show that an increase in the injection velocity causes a reduction in the shear velocity excess, which is defined as the difference between the shear and critical shear velocities, leading to a reduction in the bedload transport rate. The equation for predicting the bedload transport rate in the presence of upward seepage was derived empirically. The proposed prediction method is suitable for engineering practice, since it only requires the undisturbed flow condition, properties of sediment particles, and the injection velocity.

  12. Experimental study of the Marangoni flow in evaporating water droplet placed on vertical vibration and heated hydrophobic surface

    Science.gov (United States)

    Park, Chang Seok; Lim, Hee Chang

    2015-11-01

    In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.

  13. Unsteady Hydromagnetic Flow of a Heat Absorbing Dusty Fluid Past a Permeable Vertical Plate with Ramped Temperature

    Directory of Open Access Journals (Sweden)

    m Das

    2014-01-01

    Full Text Available The unsteady flow and heat transfer of a viscous incompressible, electrically conducting dusty fluid past vertical plate under the influence of a transverse magnetic field is studied with a view to examine the combined effects of suction, heat absorption and ramped wall temperature. The temperature of the wall is assumed to have a temporarily ramped profile which goes on increasing up to a certain time limit and then becomes constant. To investigate the effect of rampedness in wall temperature, the solution for the flow past an isothermal wall is also obtained. The governing partial differential equations are solved using Laplace transformation technique in which the inversion is obtained numerically using Matlab. To validate the results of numerical inversion a comparison between the numerical and analytical values of fluid and particle temperatures and Nusselt number is also presented. The effects of pertinent flow parameters affecting the flow and heat transfer are investigated with the help of graphs and tables. It is found that the increase in suction, heat absorption and particle concentration contribute in thinning the thermal and momentum boundary layers and the velocity and temperature for both the fluid and particle phases are higher in the case of a flow past an isothermal plate than that of a flow past a plate with ramped temperature.

  14. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  15. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    Science.gov (United States)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  16. Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting

    Science.gov (United States)

    Zhou, J. X.; Shen, X.; Yin, Y. J.; Guo, Z.; Wang, H.

    2015-06-01

    In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC.

  17. Effect of Placements (horizontal with vertical) on Gas-solid Flow and Particle Impact Erosion in Gate Valve

    Institute of Scientific and Technical Information of China (English)

    LIN Zhe; ZHU Linhang; CUI Baoling; LI Yi; RUAN Xiaodong

    2014-01-01

    Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers (St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250μm.

  18. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  19. An Eulerian-Lagrangian open source solver for bubbly flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Munoz-Cobo, J. L.; Monros-Andreu, G.; Martinez-Cuenca, R.; Chiva, S.

    2014-07-01

    Air-water two-phase flow is present in natural and industrial processes of different nature as nuclear reactors. An accurate local prediction of the boiling flow could support safety and operation analyses of nuclear reactors. An Eulerian-Lagrangian approach is investigated in this contribution as it can be used as a virtual facility to investigate the two-phase flow phenomena. A solver based on the PISO algorithm coupled with the Lagrangian equation of motion have been implemented for computing incompressible bubbly flows. (Author)

  20. The Influence of Radiative Heat Transfer and Hall Current on MHD Flow in a Vertical Rotating Channel with Slip Condition

    Directory of Open Access Journals (Sweden)

    Hemant Poonia

    2015-06-01

    Full Text Available In this paper the effects of Hall current on MHD free convection flow in a vertical rotating channel filled with porous medium have been studied. A uniform magnetic field is applied in the direction normal to the plates. The entire system rotates about an axis normal to the planes of the plates with uniform angular velocity ' . The temperature of one of the plates varies periodically and the temperature difference of the plates is high enough to induce radiative heat transfer. The effects of various parameters on the velocity and temperature field are shown graphically. Also the results on Skin Frication and Nusselt Number are shown in tables.

  1. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  2. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  3. Heat transfer in the flow of a cold, axisymmetric vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The paper considers heat transfer characteristics of thin film flow over a hot horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface. A numerical solution of high accuracy is obtained for large Reynolds numbers using the modified Keller box method. For the flat plate, solutions for axisymmetric jets are obtained. In a parallel approximation theory an advanced polynomial approximation for the velocity and temperature distribution is employed and results are good agreement with those obtained using a simple Pohlhausen polynomial and the numerical solutions.

  4. Chemical Reaction Effects on MHD Flow Past an Impulsively Started Isothermal Vertical Plate with Uniform Mass Diffusion

    Directory of Open Access Journals (Sweden)

    Chandrakala P.

    2014-05-01

    Full Text Available A numerical technique is employed to derive a solution to the transient natural convection flow of an incompressible viscous fluid past an impulsively started infinite isothermal vertical plate with uniform mass diffusion in the presence of a magnetic field and homogeneous chemical reaction of first order. The governing equations are solved using implicit finite-difference method. The effects of velocity, temperature and concentration for different parameters such as the magnetic field parameter, chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the fluid velocity decreases with increasing the chemical reaction parameter and the magnetic field parameter.

  5. Effect of magnetic field on unsteady natural convective flow of a micropolar fluid between two vertical walls

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2017-03-01

    Full Text Available We study theoretically the boundary layer flow of an incompressible micropolar fluid under uniform magnetic field and motion takes place due to the buoyancy force between vertical walls. The governing unsteady boundary layer momentum, angular momentum and energy equations of micropolar fluid are nondimensionalized and solved numerically. Analytic result for steady state case is also discussed. The effects of magnetic parameter (M, vortex viscosity parameter (R, Prandtl number (Pr and material parameter (b on velocity, micro-rotation and Temperature profiles are discussed through several figures.

  6. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent

    Directory of Open Access Journals (Sweden)

    Wilson Treger Zydowicz Sousa

    2011-04-01

    Full Text Available Vertical flow constructed wetlands, planted with and without Spartina alterniflora, were tested for the treatment of mariculture wastewater. Wetlands with and without the emergent macrophyte produced reductions of 89 and 71% for inorganic solids, 82 and 96% for organic solids, 51 and 63% for total nitrogen, 82 and 92% for ammoniacal nitrogen, 64 and 59% for orthophosphate, and 81 and 89% for turbidity, respectively. Wetlands with S. alterniflora showed denitrification tendencies, while wetlands without S. alterniflora had higher oxygen levels leading to nitrification. The results suggest the fundamental role of oxygen controlling the purification processes as well as the potential of constructed wetlands to treat mariculture effluents.

  7. Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis

    Institute of Scientific and Technical Information of China (English)

    ABD ELMABOUD Y; MEKHEIMER Kh S; MOHAMED Mohamed S

    2015-01-01

    An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non- linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.

  8. Effects of Stress Work on MHD Natural Convection Flow along a Vertical Wavy Surface with Joule Heating

    Directory of Open Access Journals (Sweden)

    Kazi Humayun Kabir

    2015-01-01

    Full Text Available An analysis is presented to investigate the influences of viscous and pressure stress work on MHD natural convection flow along a uniformly heated vertical wavy surface. The governing equations are first modified and then transformed into dimensionless non-similar equations by using set of suitable transformations. The transformed boundary layer equations are solved numerically using the implicit finite difference method, known as Keller-box scheme. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, streamlines and isotherms are shown graphically. Some results of skin friction, rate of heat transfer are presented in tabular form for selected values of physical parameters.

  9. Effects of Pressure Stress Work and Viscous Dissipation in Mixed Convection Flow Along a Vertical Flat Plate

    Science.gov (United States)

    Bhuiyan, A. S.; Biswas, M. R.

    2011-11-01

    The effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical flat plate have been investigated. The results are obtained numerically by transforming the governing system of boundary layer equations into a system of non-dimensional equations. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter, and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction coefficient, and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters. Results are compared with previous investigation.

  10. An empirical model for estimating the atmospheric transmittance of upward infrared radiation at different altitudes

    Science.gov (United States)

    Dai, Qiumin; Fang, Xiande; Zhao, Yingjie; Xing, Daoming

    2016-12-01

    The upward infrared (IR) radiation is one of the most important factors that affect the thermal characteristics of light-than-air (LTA) vehicles. Therefore, it is necessary to propose an accurate model to evaluate the upward atmospheric transmittance. The upward IR atmospheric transmittances of 6 different atmospheric models at the altitude from sea level to 30 km are obtained from the MODTRAN atmospheric radiative transfer code. Based on the data, a new upward IR atmospheric transmittance correlation related to pressure and vertical water column is proposed by regression analysis. It has excellent prediction accuracy with the coefficient of determination of 0.928, the root mean square error of 0.028, and the mean absolute percentage error of 2.68% for the database. Based on the new correlation, the thermal characteristics of a stratospheric airship located in tropics in midsummer are numerical studied and discussed.

  11. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  12. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  13. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    Science.gov (United States)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Mosorov, Volodymyr; Hanus, Paweł

    2015-05-01

    The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  14. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    Directory of Open Access Journals (Sweden)

    Hanus Robert

    2015-01-01

    Full Text Available The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  15. Transient MHD Free Convection Flow and Heat Transfer of Nanofluid past an Impulsively Started Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2016-01-01

    Full Text Available In this paper, the problem of nanofluid flow and heat transfer due to the impulsive motion of a semi-infinite vertical plate in its own plane in the presence of magnetic field is analyzed by the implicit finite-difference numerical method. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The Tiwari-Das nanofluid model is employed. The velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are examined for different parameters such as nanoparticle volume fraction, nanofluid type, magnetic parameter and thermal Grashof number. The present simulations are relevant to magnetic nanomaterials thermal flow processing in the chemical and metallurgical industries.

  16. Natural convection flow of a nano-fluid over a vertical plate with uniform surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States)

    2011-07-15

    Natural convective flow of a nano-fluid over a vertical plate with a constant surface heat flux is investigated numerically, following a similarity analysis of the transport equations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and concentration profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on three additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy ratio parameter Nr. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, nano-particle concentration, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These correlations predict the numerical results with a maximum error of 5.5% for the reduced Nusselt number and 3.2% for the reduced Sherwood number. (authors)

  17. Unsteady forced and free convective MHD flow past an infinite vertical porous plate with constant suction and oscillatory wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Soundalgekar, V.M. (Indian Inst. of Technology, Bombay); Shende, S.R. (Walchand Coll. of Engineering, Sangli, India)

    1980-01-01

    A two-dimensional unsteady flow of a viscous, incompressible, electrically conducting fluid past an infinite vertical porous plate has been carried out under the following conditions: (1) constant suction at the plate; (2) the wall temperature oscillating in time about a non-zero mean; (3) constant free-stream; and (4) transversely applied uniform magnetic field. Approximate solutions to coupled non-linear equations governing the flow have been derived for the transient velocity, the transient temperature, the amplitude and phase of the skin friction and the rate of heat transfer. The velocity and the temperature have been shown on graphs and the numerical values of the amplitude and phase are entered in tables. It has been observed that the amplitude of the skin friction and the rate of heat transfer decrease due to the application of the transverse magnetic field, but increase due to increasing the Grashof number.

  18. NUMERICAL STUDY OF MICROPOLAR FLUID FLOW HEAT AND MASS TRANSFER OVER VERTICAL PLATE: EFFECTS OF THERMAL RADIATION AND MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    REDHA ALOUAOUI

    2015-06-01

    Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation  as well as the skin friction coefficient and the both  local Nusselt and Sherwood numbers  are significantly influenced by Magnetic parameter, material parameter  and thermal radiation parameter.

  19. Finite Element Analysis of Radiation and Mass Transfer Flow Past Semi- Infinite Moving Vertical Plate with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    V. Srinivasa Rao

    2013-01-01

    Full Text Available The objectives of the present study are to investigate the radiation effects on unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. The method of solution is applied using Finite element technique. Numerical results for the velocity, the temperature and the concentration are shown graphically for various flow parameters. The expressions for the skin-frication, Nusselt number and Sherwood number are obtained. The result shows that increased cooling (Gr>0 of the plate and the Eckert number leads to a rise in the velocity. Also, an increase in the Eckert number leads to an increase in the temperature, whereas increase in radiation lead to a decrease in the temperature distribution when the plate is being cooled.

  20. Thermal radiation effects on MHD convecture flow over a vertical porous plate embedded in a porous medium by perturbation technique

    Directory of Open Access Journals (Sweden)

    S. Sivasankaran

    2013-03-01

    Full Text Available This paper analyzes the influence of thermal radiation on the problem of unsteady magneto-convection flow of an electrically conducting fluid past a semi-infinite vertical porous plate embedded in a porous medium with time dependent suction. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity and temperature fields are obtained. For different values of the flow parameters, the values for Nusselt number and skin-friction co-efficient are calculated. It is observed that the increase in the radiation parameter implies the decrease in the boundary layer thickness and enhances the rate of heat transfer. The velocity decreases as the existence of magnetic field becomes stronger.

  1. Mass Transfer Effects on Unsteady Free Convective Flow Past an Infinite, Vertical Porous Plate with Variable Suction

    Directory of Open Access Journals (Sweden)

    C.V. Ramana Kumari

    1995-10-01

    Full Text Available A two-dimensional unsteady flow of a viscous incompressible dissipative fluid past an infinite, vertical porous plate with variable suction, is studied. Approximate solutions to the coupled non linear equations governing the flow are derived and expressions for the fluctuating parts of the velocity, the transient velocity, temperature and concentration, the amplitude and the phase of the skin-friction, and the rate of heat transfer, are derived. The effects of w(Omega(frequency, Gr (Grashof number, Gc (modified Grashof number, Sc (Schmidt number, P (Prandtl number and A (variable suction parameter, on the above physical quantities are calculated numerically and presented in figures and table. Problems of this nature find place in ablative cooling, transpiration and film cooling of rocket and jet engines.

  2. Unsteady Hydromagnetic Natural Convection Flow past an Impulsively Moving Vertical Plate with Newtonian Heating in a Rotating System

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth

    2015-01-01

    Full Text Available An investigation of unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and heat absorbing fluid past an impulsively moving vertical plate with Newtonian heating embedded in a porous medium in a rotating system is carried out. The governing partial differential equations are first subjected to Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solution for fluid velocity and fluid temperature are depicted graphically whereas the numerical values of skin friction and Nusselt number are presented in tabular form for various values of pertinent flow parameters. Present solution in special case is compared with previously obtained solution and is found to be in excellent agreement.

  3. Numerical Study on MHD Mixed Convection Flow in a Vertical Insulated Square Duct with Strong Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Muhim Chutia

    2015-01-01

    Full Text Available A numerical study on steady laminar magnetohydrodynamics (MHD mixed convection flow of an electrically conducting fluid in a vertical square duct under the action of transverse magnetic field has been investigated. The walls are assumed as perfectly electrically insulated. In this study both force and free convection flows are considered. The viscous dissipation and Joule heat are also considered in the energy equation and walls of the duct are kept at constant temperature. The enclosure is heated by uniform volumetric heat density. The governing equations of momentum, induction and energy are first transformed into dimensionless equations by using dimensionless quantities, then these are solved employing finite difference method for velocity, induced magnetic field and temperature distribution. The computed results for velocity, induced magnetic field and temperature distribution are presented graphically for different dimensionless parameters Hartmaan number M, Prandtl number Pr, Grashof number Gr and magnetic Reynolds number Rm.

  4. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...... for optimizing iron cast parts. To do so thin walled parts have to be used. I.e. flow in thin walled sections becomes important. Flow in plates with thicknesses from 2 to 4 mm have been investigated. It is shown that the main flow path can be changed even in such small thicknesses and that when conventional...

  5. Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Andersen, Uffa; Rasmussen, Niels

    consumption and pollution of passenger cars, trucks etc. The engine design can be optimized for higher efficiency, the wind resistance can be reduced, combinations of combustion engines and electrical power can be used etc. But no matter which approach is taken, parts have to be used for building the vehicles...... and in thin sections have been made via videos of the metal flow. Conventional bottom filling gating systems are shown to give relatively low control over the melt flow. The result is flow patterns being able to change radically from mould to mould due to minor fluctuations in the pouring conditions...

  6. Scour Downstream of Grade Control Structures under the Influence of Upward Seepage

    Science.gov (United States)

    Shafai-Bejestan, Mahmood; Nabavi, Seyed Mojtaba Razavi; Dey, Subhasish

    2016-06-01

    The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D'Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.

  7. Vertical Wave Impacts on Offshore Wind Turbine Inspection Platforms

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2011-01-01

    on a horizontal inspection platform is computed for five different platform levels. The computational results show details of monopile impact such as slamming pressures from the overturning wave front and the formation of run-up flow. The results show that vertical platform impacts can occur at 20 m water depth....... The dependence of the vertical platform load to the platform level is discussed. Attention is given to the significant downward force that occur after the upward force associated with the vertical impact. The effect of the numerical resolution on the results is assessed. The position of wave overturning is found...... to be influenced by the grid resolution. For the lowest platform levels, the vertical impact is found to contribute to the peak values of in-line force and overturning moment....

  8. Experimental studies of vertical mixing patterns in open channel flow generated by two delta wings side-by-side

    Science.gov (United States)

    Vaughan, Garrett

    Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for

  9. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    user

    Keywords: convective flow; wavy channel; porous medium; traveling thermal waves. ... the problems of forced convection in composite fluids and porous layers. ... Processes involving heat and mass transfer are often encountered in the ...

  10. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.

    Science.gov (United States)

    Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei

    2016-09-15

    In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage.

  11. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  12. A Study of Upward Influence in Organizations.

    Science.gov (United States)

    Schilit, Warren K.; Locke, Edwin A.

    1982-01-01

    Researchers interviewed 83 subordinate employees and 70 supervisory employees to investigate the ways subordinates try to influence their supervisors. Supervisors and subordinates reported similar agents and methods of influence, causes of success, and outcomes of attempts at upward influence, but different causes of failure. (Author/RW)

  13. Properties of disturbance waves in vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Hazuku, Tatsuya; Takamasa, Tomoji [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Mori, Michitsugu [Tokyo Electric Power Co., Inc., 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)

    2008-12-15

    Disturbance waves play an important role in interfacial transfer of mass, momentum and energy in annular two-phase flow. In spite of their importance, majority of the experimental data available in literature on disturbance wave properties such as velocity, frequency, wavelength and amplitude are limited to near atmospheric conditions (Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23, 1-53). In view of this, air-water annular flow experiments have been conducted at three pressure conditions (1.2, 4.0 and 5.8 bar) in a tubular test section having an inside diameter 9.4 mm. At each pressure condition liquid and gas phase flow rates are varied over a large range so that the effects of density ratio, liquid flow rate and gas flow rate on disturbance wave properties can be studied systematically. A liquid film thickness is measured by two flush mounted ring shaped conductance probes located 38.1 mm apart. Disturbance wave velocity, frequency, amplitude and wavelength are estimated from the liquid film thickness measurements by following the statistical analysis methods. Parametric trends in variations of disturbance wave properties are analyzed using the non-dimensional numbers; liquid phase Reynolds number (Re{sub f}), gas phase Reynolds number (Re{sub g}), Weber number (We) and Strouhal number (Sr). Finally, the existing correlations available for the prediction of disturbance wave velocity and frequency are analyzed and a new, improved correlation is proposed for the prediction of disturbance wave frequency. The new correlation satisfactorily predicted the current data and the data available in literature.

  14. Trefftz method in solving Fourier-Kirchhoff equation for two-phase flow boiling in a vertical rectangular minichannel

    Science.gov (United States)

    Hożejowska, Sylwia; Piasecka, Magdalena; Piasecki, Artur

    This paper presents the results of investigations into flow boiling heat transfer in an asymmetrically heated vertical minichannel of 1.7 mm depth. The heated element for FC-72 flowing in the minichannel was an alloy plate 0.45 mm thick, microstructured on one side, in direct contact with the flowing fluid. The computational part of the study contains approximate steady state solutions of the heat transfer problems described by Poisson.s equation and the energy equation for the heated plate and the fluid, respectively. For both equations, the boundary conditions were specified on the basis of experimental data. Temperature of the outer plate surface, measured by infrared thermography, and heat losses to ambient air were included in the calculations. For the energy equation we assumed parabolic profile of fluid velocity and the equality of temperatures and heat fluxes at the interface between the heated surface and the fluid. The void fraction was taken from a single-phase flow model. Two-dimensional temperature distributions were obtained by the Trefftz method and, due to the Robin condition at the interface between them, it was possible to calculate the heat transfer coefficient. Its values were compared to those obtained by other correlations known from literature.

  15. Trefftz method in solving Fourier-Kirchhoff equation for two-phase flow boiling in a vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2017-01-01

    Full Text Available This paper presents the results of investigations into flow boiling heat transfer in an asymmetrically heated vertical minichannel of 1.7 mm depth. The heated element for FC-72 flowing in the minichannel was an alloy plate 0.45 mm thick, microstructured on one side, in direct contact with the flowing fluid. The computational part of the study contains approximate steady state solutions of the heat transfer problems described by Poisson.s equation and the energy equation for the heated plate and the fluid, respectively. For both equations, the boundary conditions were specified on the basis of experimental data. Temperature of the outer plate surface, measured by infrared thermography, and heat losses to ambient air were included in the calculations. For the energy equation we assumed parabolic profile of fluid velocity and the equality of temperatures and heat fluxes at the interface between the heated surface and the fluid. The void fraction was taken from a single-phase flow model. Two-dimensional temperature distributions were obtained by the Trefftz method and, due to the Robin condition at the interface between them, it was possible to calculate the heat transfer coefficient. Its values were compared to those obtained by other correlations known from literature.

  16. Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder

    Directory of Open Access Journals (Sweden)

    Dinarvand Saeed

    2015-01-01

    Full Text Available This article deals with the study of the steady axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed external flow and surface temperature. By means of similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique namely homotopy analysis method (HAM. Expressions for velocity and temperature fields are developed in series form. In this study, three different types of nanoparticles are considered, namely alumina (, titania (, and copper ( with water as the base fluid. For copper-water nanofluid, graphical results are presented to describe the influence of the nanoparticle volume fraction on the velocity and temperature fields for the forced and mixed convection flows. Moreover, the features of the flow and heat transfer characteristics are analyzed and discussed for foregoing nanofluids. It is found that the skin friction coefficient and the heat transfer rate at the surface are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids.

  17. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.

    Science.gov (United States)

    Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D

    2014-11-01

    The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.

  18. Study on particle distribution in A356/SiCp upward suction castings.

    Science.gov (United States)

    Chen, Feifan; Zhao, Haidong; Sun, Fengzhen; Zhao, Yu

    2014-10-01

    In this investigation, cylindrical A356-5%50 μm SiCp and A356-10%100 μm SiCp castings of 40 mm diameter and 350 mm height were produced by stirring preparation and vertically upward suction casting process. The SiCp fractions in the casting different sections along the filling direction were quantitatively measured. The composite slurry flow during the casting mold filling was simulated based on the Euler method while the particle flow was calculated with the Lagrangian method for predicting the SiCp distribution. The simulated distributions were compared and validated with the experiment. It has shown that as the filling distance increased, the particle fractions decreased dramatically in the A356-10%100 μm SiCp casting while varied slightly in the A356-5%50 μm SiCp casting, and that the particles were prone to be aggregated near the mold wall at the filling beginning parts whereas more particles concentrated in the centre and fewer particles were present near the wall region in the casting front.

  19. PIV measurement of the vertical cross-flow structure over tube bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.

  20. Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewaters.

    Science.gov (United States)

    Chang, Jun-Jun; Wu, Su-Qing; Liang, Kang; Wu, Zhenbin; Liang, Wei

    2015-03-01

    Microbial processes play a vital important role in the removal of contaminants in constructed wetland (CW). However, the microbial physiology and community structure can be influenced by environmental conditions. In this study, four pilot-scale integrated vertical-flow constructed wetlands (IVCWs) were employed to treat domestic and nitrified wastewaters. The microbial properties, along with their response to wastewater quality characteristics and seasonal variation, were determined. The results showed higher Shannon-Weiner diversity (H) and evenness (E) index of fatty acids (FAs), and relative abundances of signature FAs in down-flow cells and in the systems fed with domestic wastewater (DW). The relative abundances of fungi and gram-negative and aerobic bacteria were greater in up-flow cells. The dominant anaerobic bacteria found in most cells might be accounted for the prevailing anaerobic environment within the wetland beds, which could mean that the system fed with nitrified wastewater (NW) should perform better in nitrogen removal. The redundancy analysis (RDA) showed that pollutant concentrations, especially organic matter, influence the FA compositions greatly, and the most significant difference of microbial community structures was detected in down-flow cells fed with DW and up-flow ones with NW. The branched FAs, which could be used to represent anaerobic bacteria, were observed in down-flow cells treating DW and had a significant positive correlation with chemical oxygen demand (COD) concentration, probably suggesting the important role of anaerobic bacteria in organic matter degradation in the IVCWs. Seasonal variation, however, did not greatly influence the microbial community structure in the IVCWs.

  1. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adesanya, S.O., E-mail: adesanyas@run.edu.ng [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Oluwadare, E.O. [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Falade, J.A., E-mail: faladej@run.edu.ng [Department of Physical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Makinde, O.D., E-mail: makinded@gmail.com [Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395 (South Africa)

    2015-12-15

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field.

  2. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  3. Geothermal Studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications

    Science.gov (United States)

    Kukkonen, I. T.; Rath, V.; Kivekäs, L.; Šafanda, J.; Čermak, V.

    2012-04-01

    Detailed geothermal studies of deep drill holes provide insights to heat transfer processes in the crust, and allow separation of different factors involved, such as palaeoclimatic and structural conductive effects as well as advective fluid flow effects. We present high resolution geothermal results of the 2,516 m deep Outokumpu Deep Drill Hole in eastern Finland drilled in 2004-2005 into a Palaeoproterozoic formation with metasedimentary rocks, ophiolite-derived altered ultramafic rocks and pegmatitic granite. The down-hole temperatures have been logged five times after end of drilling and extend to day 948 after drilling. The hole is completely cored (79% core coverage) and thermal conductivity measurements were done at 1 m intervals. The geothermal results on temperature gradient, thermal conductivity and heat flow density yield an exceptionally detailed data set and indicate a significant vertical variation in gradient and heat flow density. Heat flow density increases from about 28-32 mW m-2 in the uppermost 1000 m to 40-45 mW m-2 at depths exceeding 2000 m. The estimated undisturbed surface heat flow value is 42 mWm-2. We present results on forward and inverse transient conductive models which suggest that the vertical variation in heat flow can mostly be attributed to a palaeoclimatic effect due to ground surface temperature (GST) variations during the last 100,000 years. The modelling suggests that the average GST was about -3…-4°C during the Weichselian glaciation. Holocene GST values are within ±2 degree from the present average GST in Outokumpu (5°C). The topographic hydraulic heads and hydraulic conductivity of crystalline rocks are low which suggests that advective heat transfer in the formation is not significant. The slow replacement of fresh flushing water by saline formation fluids is observed in the hole, but it does not generate significant thermal disturbances in the logs. On the other hand, free sluggish thermal convection is present in

  4. Unsteady Hydromagnetic Flow of Radiating Fluid Past a Convectively Heated Vertical Plate with the Navier Slip

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.

  5. Sound of silo's: An experimental investigation into sound emissions from granular flows in a vertical tube

    Science.gov (United States)

    Porte, Elze; Masen, Marc; Vriend, Nathalie; de Boer, Andre

    2015-11-01

    When large storage silo's containing granular material are discharged, a loud sound emits from the silo. The noise causes disturbances for people working on site and for nearby residential areas. Insufficient knowledge exists to solve the problem efficiently and adequately. An experimental study using a scaled silo setup shows that the particle flow dynamics and system characteristics are both actors in determining the occurrence of the sound and its frequency. The extensive use of frequency analysis provides new insights into the complexity of the related parameters. The particle flow and tube characteristics are manipulated by changing the outflow rate, bulk material, wall material, wall pressure and tube dimensions. Frequency analysis of the recorded sound shows that the frequency depends on both the externally forced parameter changes and internal changes during flow. The latter indicates that during the flow, characteristic properties such as the packing fraction and sound speed change. As a result, the frequency changes as well. However, the external parameters that are manipulated as an initial condition are equally important in describing the frequency response.

  6. Modelling Vertical Variation of Turbulent Flow Across a Surf Zone Using SWASH

    NARCIS (Netherlands)

    Zijlema, M.

    2014-01-01

    This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to propagation of irregular waves in a barred surf zone, and the model results are discussed by comparing against an extensive laboratory data set. This study focus not only on wave transformation in the sur

  7. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    (2010) have studied effects of chemical reaction on two different models. ...... magneto hydrodynamic flow past a flat plate will Hall effects, Journal of the Physical ... nonisothermal stretching sheet, Hindawi Publishing Corporation Journal of ... the heat transfer performance of a sinusoidal corrugated enclosure by employing.

  8. CFD Calculations of the Air Flow Along a Cold Vertical Wall with an Obstacle

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per

    This paper deals with the ability of Computational Fluid Dynamics to predict downdraught at a plane wall and at a wall with large obstacles. Quite simple boundary conditions were used in this study. Predictions of the main flow characteristics and the velocity levels in the occupied zone showed...

  9. Bubble shape and breakage events in a vertical pipe at the boiler flow line

    Directory of Open Access Journals (Sweden)

    Fsadni Andrew

    2014-03-01

    Full Text Available The theoretical and experimental aspects concerning the typical bubble shape at the flow line of a standard domestic central heating system are investigated. This is done in support of the on-going research on two-phase flows in domestic central heating systems. Bubble nucleation and detachment at the primary heat exchanger wall of a domestic central heating boiler results in a bubbly two-phase flow in the system pipe work. Bubbly flow results in undesired cold spots at higher points in the system, consequently diminishing system performance. An experimental analysis was done on the bubble shape at the exit of the boiler through the application of photographic techniques. The results are presented in terms of the measured bubble aspect ratios at some principal system operating conditions. The dimensionless Eotvos and bubble Reynolds number were calculated and tabulated with the measured mean diameters. The data was subsequently correlated to the bubble shape regime diagram. Results suggest that most bubbles are quasi-spherical in shape with a noticeable elongation at lower bulk fluid Reynolds numbers.

  10. Bubble shape and breakage events in a vertical pipe at the boiler flow line

    Science.gov (United States)

    Fsadni, Andrew; Ge, Yunting

    2014-03-01

    The theoretical and experimental aspects concerning the typical bubble shape at the flow line of a standard domestic central heating system are investigated. This is done in support of the on-going research on two-phase flows in domestic central heating systems. Bubble nucleation and detachment at the primary heat exchanger wall of a domestic central heating boiler results in a bubbly two-phase flow in the system pipe work. Bubbly flow results in undesired cold spots at higher points in the system, consequently diminishing system performance. An experimental analysis was done on the bubble shape at the exit of the boiler through the application of photographic techniques. The results are presented in terms of the measured bubble aspect ratios at some principal system operating conditions. The dimensionless Eotvos and bubble Reynolds number were calculated and tabulated with the measured mean diameters. The data was subsequently correlated to the bubble shape regime diagram. Results suggest that most bubbles are quasi-spherical in shape with a noticeable elongation at lower bulk fluid Reynolds numbers.

  11. Mixed Convection Boundary-layer Flow of a Nanofluid Near Stagnation-point on a Vertical Plate with Effects of Buoyancy Assisting and Opposing Flows

    Directory of Open Access Journals (Sweden)

    Hossein Tamim

    2013-07-01

    Full Text Available In this study, the steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation-point on a vertical plate with prescribed surface temperature is investigated. Here, both assisting and opposing flows are considered and studied. Using appropriate transformations, the system of partial differential equations is transformed into an ordinary differential system of two equations, which is solved numerically by shooting method, coupled with Runge-Kutta scheme. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid are considered. Numerical results are obtained for the skin-friction coefficient and Nusselt number as well as for the velocity and temperature profiles for some values of the governing parameters, namely, the nanoparticle volume fraction parameter &Phiand mixed convection parameter &lambda It is found that the highest rate of heat transfer occurs in the mixed convection with assisting flow while the lowest one occurs in the mixed convection with opposing flow. Moreover, the skin friction coefficient and the heat transfer rate at the surface are highest for copper–water nanofluid compared to the alumina–water and titania–water nanofluids.

  12. Condensation heat transfer characteristics of vapor flow in vertical small-diameter tube with variable wall temperature

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [1]Nusselt,W.,Die Oberflchenkondensation des Wasserdampfes,VDI,1916,60: 541-546.[2]Sparrow,E.M.,Gregg,J.L.,A boundary layer treatment of laminar-film condensation,ASME J.Heat Transfer,1959,81: 13-18.[3]Mayhew,Y.R.,Griffiths,D.J.,Philips,J.W.,Effect of vapour drag on laminar film condensation on a vertical surface,Proc.I Mech.E,1965,180: 280-287.[4]Memory,S.B.,Rose,J.W.,Free convection laminar film condensation on a horizontal tube with variable wall temperature,Int.J.Heat Mass Transfer,1991,34: 2775-2778.[5]Suzuki,K.,Hagiwara,Y.,Izumi,H.,A numerical study of forced-convective filmwise condensation in a vertical tube,JSME Int.J.,Ser.II,1990,33(1): 134-140.[6]Shah,M.M.,A general correlation for heat transfer during film condensation inside pipes,Int.J.Heat Mass Transfer,1979,22: 547-556.[7]Reay,D.A.,Compact heat exchangers: a review of current equipment and R&D in the field,Heat Recovery System & CHP,1994,14(5): 459-479.[8]Srinivasan,V.,Shah,R.K.,Condensation in compact heat exchangers,J.Enhanced Heat Transfer,1997,4(4): 237-256.[9]Wadekar,V.V.,Improving industrial heat transfer-compact and non-so-compact heat exchangers,J.Enhanced Heat Transfer,1998,5(1): 53-69.[10]Rohsenow,W.M.,Film Condensation,Applied Mechanics Reviews,1970,23: 487-496.[11]Wang Buxuan,Yu Yufeng,Condensation heat transfer on the external surface of a small-diameter vertical tube (in Chinese),in Collected Papers of Bu-xuan Wang,Beijing: Tsinghua University Press,1992.[12]Henstock,W.H.,Hodgson,T.J.,The interfacial drag and height of the wall layer in annular flows,AIChE J.,1976,22: 990-1000.[13]Wang Buxuan,Du Xiaoze,Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube,Int.J.Heat Mass Transfer,2000,43(10): 1859-1868.[14]Wang Buxuan,Du Xiaoze,Experimental research on flow condensation heat transfer in mini-diameter tube (in Chinese with English abstract),Chinese J.Engineering Thermophysics,2000

  13. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  14. Numerical solutions for a flow with mixed convection in a vertical geometry

    Science.gov (United States)

    Torczynski, J. R.

    The K-12 Aerospace Heat Transfer Committee of the American Society of Mechanical Engineers recently specified a computational benchmark problem involving steady incompressible laminar flow with mixed convection using the Boussinesq approximation in a two-dimensional backstep geometry. FIDAP v6.0 (Fluid Dynamics International) and NEKTON v2.85 (Nektonics, Fluent) are capable of simulating situations with this type of coupled fluid flow and heat transfer. FIDAP uses conventional finite elements and has both steady and transient solvers, whereas NEKTON uses spectral elements with a transient solver (for large problems). Numerical solutions to the benchmark problem are obtained with both of these codes, and grid-refinement studies are performed to verify that grid-independence is achieved. The grid-independent solutions from both codes are found to be in excellent agreement with each other and with results in the archival literature regarding velocity and temperature profiles and the locations of separation and reattachment points.

  15. Transient heat transfer from a wire to a forced flow of subcooled liquid hydrogen passing through a vertically- mounted pipe

    Science.gov (United States)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.

    2015-12-01

    Transient heat transfers from Pt-Co wire heaters inserted into vertically-mounted pipes, through which forced flow subcooled liquid hydrogen was passed, were measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and inlet temperature of 21 K. The flow velocities ranged from 0.3 to 7 m/s. The Pt-Co wire heaters had a diameter of 1.2 mm and lengths of 60 mm, 120 mm and 200 mm and were inserted into the pipes with diameters of 5.7mm, 8.0 mm, and 5.0 mm, respectively, which were made of Fiber reinforced plastic due to thermal insulation. With increase in the heat flux to the onset of nucleate boiling, surface temperature increased along the curve predicted by the Dittus-Boelter correlation for longer period, where it can be almost regarded as steady-state. For shorter period, the heat transfer became higher than the Dittus-Boelter correlation. In nucleate boiling regime, the heat flux steeply increased to the transient CHF (critical heat flux) heat flux, which became higher for shorter period. Effect of flow velocity, period, and heated geometry on the transient CHF heat flux was clarified.

  16. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    Directory of Open Access Journals (Sweden)

    Le Tuyen Quang

    2014-06-01

    Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  17. Numerical modelling of temperature fields in the flow boiling liquid through a vertical minichannel with an enhanced heating surface

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents results of heat transfer research on flow boiling in a rectangular minichannel positioned vertically, with an enhanced surface. One of the channel walls was made of thin foil powered by direct current. This foil is enhanced on the side contacting fluid in the minichannel. It is possible to observe both surfaces of the minichannel through two openings covered with glass panes. One allows detecting temperature of the plain side of the foil by liquid crystal thermography. The opposite surface of the minichannel (from the enhanced side of the foil can be observed through the other glass pane. The observations of the flow structures allowed to calculate the void fraction for some cross-sections of selected two phase flow images. In mathematical modelling of the considered process stationary heat transfer in a glass pane, heating foil and boiling liquid can be described with Laplace equation, Poisson equation and energy equation, respectively. For completeness of the model a corresponding system of boundary conditions was given. The two-dimensional temperature fields of glass pane, heating foil and fluid was computed with the Trefftz method. The equalizing calculus used to smooth the measured data has reduced errors.

  18. Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects

    Directory of Open Access Journals (Sweden)

    Kaladhar Kolla

    2016-01-01

    Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.

  19. Vertical dipole above a dielectric or metallic half-space - energy flow considerations

    CERN Document Server

    Berman, P R; Khitrova, G

    2014-01-01

    The emission pattern from a classical dipole located above and oriented perpendicular to a metallic or dielectric half space is calculated for a dipole driven at constant amplitude. This is a problem considered originally by Sommerfeld and analyzed subsequently by numerous authors. In contrast to most previous treatments, however, we focus on the energy flow in the metal or dielectric. It is shown that the radial Poynting vector in the metal points inwards when the frequency of the dipole is below the surface plasmon resonance frequency. In this case, energy actually flows of the interface at small radii. The Joule heating in the metal is also calculated and it is shown explicitly that Poynting's theorem holds for a cylindrical surface in the metal. When the metal is replaced by a dielectric having permittivity less than that of the medium in which the dipole is immersed, it is found that energy flows out of the interface for sufficiently large radii. In all cases it is assumed that the imaginary part of the ...

  20. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Mathisen, R.P.; Eklind, O.; Norman, B.

    1964-01-15

    The hydrodynamic stability and the burnout conditions for flow of boiling water have been studied in a natural circulation loop in the pressure range from 10 to 70 atg. The test section was a round, duct of 20 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested the stability of the flow increases with increasing pressure, increasing throttling before the test section, but decreases with increasing inlet sub-cooling and increasing throttling after the test section. The measured thresholds of instability compared well with the analytical results by Jahnberg. For an inlet sub-cooling temperature of about 2 deg C the measured burnout steam qualities were low by a factor of about 1.3 compared to forced circulation data obtained with the same test section. At higher sub-cooling temperatures the discrepancy between forced and natural circulation data increased, so that at {delta}t{sub sub} = 16 deg C, the natural circulation data were low by a factor of about 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data.

  1. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    Science.gov (United States)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  2. Effects of thermal stratification on transient free convective flow of a nanofluid past a vertical plate

    Indian Academy of Sciences (India)

    NIRMAL CHAND PEDDISETTY

    2016-10-01

    An analysis of thermal stratification in a transient free convection of nanofluids past an isothermal vertical plate is performed. Nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver having volume fraction of the nanoparticles less than or equal to 0.04 with water as the base fluid are considered. The governing boundary layer equations are solved numerically. Thermal stratification effects and volume fraction of the nanoparticles on the velocity and temperature are represented graphically. It is observed that an increase in the thermal stratification parameter decreases the velocity and temperature profiles of nanofluids. An increase in the volume fraction of the nanoparticles enhances the temperature and reduces the velocity of nanofluids. Also, the influence of thermal stratification parameter and the volume fraction of the nanoparticles of local as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically.The results are found to be in good agreement with the existing results in literature.

  3. [Effect of DMPP on inorganic nitrogen transformation and leaching in vertical flow of simulated soil column].

    Science.gov (United States)

    Yu, Qiao-Gang; Chen, Ying-Xu; Zhang, Qiu-Ling; Liang, Xin-Qiang; Li, Hua; Zhang, Zhi-Jian

    2007-04-01

    Using a multi-layer soil column device, the effect of new nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen leaching was studied for understanding the nitrogen vertical transformation and lowering the nitrogen leaching losses. The results indicate that, within 60 days of experiment, the regular urea added with 1% of DMPP can effectively inhibit the ammonium oxidation in the soil, and improve the concentration of NH4(+) -N in soil solution over the 20 cm tilth profile, while decline the concentrations of NO3(-) -N and N2(-) -N. No obvious difference is found on NH4(+) -N concentrations collected from deep layer soil solution under 20 cm between regular urea and the urea added with 1% of DMPP. There is also no significant difference for the NH4(+) -N and NO3(-) -N in the soil solution of deep layer under 40 cm among the treatments of urea by adding with 1% of DMPP within 60 days. So DMPP could be used as an effective nitrification inhibitor to control ammonium oxidation, decline the nitrate leaching losses, minimize the underground water pollution risk and be beneficial for the ecological environment.

  4. A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits

    Science.gov (United States)

    Mastin, Larry G.; Ghiorso, Mark S.

    2000-01-01

    This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.

  5. Mixed Convection In The Stagnation-Point Flow Over A Vertical Stretching Sheet In The Presence Of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Manjunatha S.

    2015-12-01

    Full Text Available An unsteady two-dimensional stagnation-point mixed convection flow of a viscous, incompressible dusty fluid towards a vertical stretching sheet has been examined. The stretching velocity and the free stream velocity are assumed to vary linearly with the distance from the stagnation point. The problem is analyzed using similarity solutions. The similarity ordinary differential equations were then solved numerical by using the RKF-45 method. The effects of various physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper. Some important findings reported in this work reveal that the effect of radiation has a significant impact on controlling the rate of heat transfer in the boundary layer region.

  6. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    Science.gov (United States)

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  7. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu;

    2011-01-01

    controls. Direct plant uptake constituted only up to 8% of the total-N removal and 2% of the P removal at the lowest loading rate, and was quantitatively of low importance compared to other removal processes. The significant effects of plants were therefore related more to their indirect effects...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...... of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...

  8. Effect of double dispersion on non-Darcy mixed convective flow over vertical surface embedded in porous medium

    Institute of Scientific and Technical Information of China (English)

    A. A. AFIFY; N. S. ELGAZERY

    2013-01-01

    A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a porous medium under the effects of double dispersion, melting, and thermal radiation is investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Com-parisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of phys-ical parameters.

  9. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.

    Science.gov (United States)

    Arivoli, A; Mohanraj, R; Seenivasan, R

    2015-09-01

    The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.

  10. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-03-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  11. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  12. Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition

    Science.gov (United States)

    Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360

  13. [Purification efficiency of vertical-flow wetland system constructed by cinder and turf substrate on municipal wastewater].

    Science.gov (United States)

    Cui, Lihua; Zhu, Xizhen; Luo, Shiming; Liu, Yihu

    2003-04-01

    Vertical-flow constructed wetlands (VFCWs) system not only has a higher hydraulic loading rate (54-64 cm.d-1), but also has a good removal efficiency for organics, ammonia nitrogen (AN) and total phosphorus (TP). The removal efficiencies of COD, BOD5, AN, and TP for septic tank effluent were 76-87%, 82-92%, 75-85% and 77-91%, respectively, and the average effluent concentrations of COD, BOD5, AN, and TP in the treated effluent were less than 60, 20, 25 and 2.0 mg.L-1, respectively. A comparison of planted and unplanted columns showed that plantation of Cyperus alternifolius could increase the removal rates of AN, TN, and TP by 2-3%, 4-6%, and 10-14%, respectively.

  14. Sensitivity and Specificity of a New Vertical Flow Rapid Diagnostic Test for the Serodiagnosis of Human Leptospirosis.

    Directory of Open Access Journals (Sweden)

    Cyrille Goarant

    2013-06-01

    Full Text Available Background : Leptospirosis is a growing public health concern in many tropical and subtropical countries. However, its diagnosis is difficult because of non-specific symptoms and concurrent other endemic febrile diseases. In many regions, the laboratory diagnosis is not available due to a lack of preparedness and simple diagnostic assay or difficult access to reference laboratories. Yet, an early antibiotic treatment is decisive to the outcome. The need for Rapid Diagnostic Tests (RDTs for bedside diagnosis of leptospirosis has been recognized. We developed a vertical flow immunochromatography strip RDT detecting anti-Leptospira human IgM and evaluated it in patients from New Caledonia, France, and French West Indies. Methodology/Principal Findings : Whole killed Leptospira fainei cells were used as antigen for the test line and purified human IgM as the control line. The mobile phase was made of gold particles conjugated with goat anti-human IgM. Standards for Reporting of Diagnostic Accuracy criteria were used to assess the performance of this RDT. The Microscopic Agglutination Test (MAT was used as the gold standard with a cut-off titer of ≥400. The sensitivity was 89.8% and the specificity 93.7%. Positive and negative Likelihood Ratios of 14.18 and 0.108 respectively, and a Diagnostic Odds Ratio of 130.737 confirmed its usefulness. This RDT had satisfactory reproducibility, repeatability, thermal tolerance and shelf-life. The comparison with MAT evidenced the earliness of the RDT to detect seroconversion. When compared with other RDT, the Vertical Flow RDT developed displayed good diagnostic performances.This RDT might be used as a point of care diagnostic tool in limited resources countries. An evaluation in field conditions and in other epidemiological contexts should be considered to assess its validity over a wider range of serogroups or when facing different endemic pathogens. It might prove useful in endemic contexts or outbreak

  15. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    Science.gov (United States)

    2014-09-19

    induced turbulence of the underlying flow and the modification of the turbulent quantities by the dispersed bubbles. Due to the lack of realisable data...is modelled with the coefficient CVM taking the standard value of 0.5. Other forces which mainly act in the lateral direc- tion, like the lift, wall... values were used for αG = 0.033 and the mean gas velocity, in accordance with the case 4 from Hosokawa and Tomiyama (2009). The domain was 160D long in

  16. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  17. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    Science.gov (United States)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  18. Non-Darcian Flow Toward a Finite-Diameter Vertical Well in a Confined Aquifer

    Institute of Scientific and Technical Information of China (English)

    WEN Zhang; HUANG Guan-Hua; ZHAN Hong-Bin

    2008-01-01

    Non-Darcian radial flow toward a finite-diameter,fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect.We derived semi-analytical solutions of drawdown by using the Boltzmann transform,and obtained approximate analytical solutions of the drawdown at early and late times.MATLAB programs were developed to facilitate computation of the semi-analytical solutions.The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times,but imposed significant influence at intermediate and late times.However,the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period,provided that the observation point was not sufficiently close to the wellbore.Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore,but had much greater influence upon the well function in the aquifer.As the n values increased,the drawdown in the aquifer decreased at early times and increased at late times.The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems.This approximation would provide accurate solutions at early times,and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.

  19. Free surface flow impact on a vertical wall: a numerical assessment

    Science.gov (United States)

    Pugliese Carratelli, Eugenio; Viccione, Giacomo; Bovolin, Vittorio

    2016-10-01

    The sudden impact of a free surface flow upon a solid wall is a common occurrence in many situations in nature and technology. The design of marine structures is probably the most obvious example, but also river and dam hydraulics as well as the necessity of understanding flood and debris flow-induced damage have led to theoretical and experimental work on the mechanism of fluid slamming loads. This is therefore a very old and rich research field, which has not yet reached full maturity, so that semi-empirical methods in design practice are still the rule in many sectors. Up-to-date CFD technology with both Eulerian and Lagrangian approaches is employed to investigate highly non-stationary fluid impact on a solid wall. The development of the pressure wave produced by the impact is examined as it propagates and interacts with the fluid boundaries, as well as the subsequent build-up of high-pressure gradients of high fluid velocities. The geometry and the velocity field of the problem considered are very simple, but the results seem to provide new insight, in particular, into the connection between phenomena with different timescales.

  20. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  1. Contribution of mixing to the upward transport across the TTL

    Science.gov (United States)

    Konopka, P.; Günther, G.; Müller, R.; Dos Santos, F. H. S.; Schiller, C.; Ravegnani, F.; Ulanovsky, A.; Schlager, H.; Volk, C. M.; Viciani, S.; Pan, L.; McKenna, D.-S.; Riese, M.

    2006-11-01

    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≍350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets.

  2. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2016-02-01

    Full Text Available The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  3. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    Science.gov (United States)

    Muthucumaraswamy, R.; Sivakumar, P.

    2016-02-01

    The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  4. Clogging processes caused by biofilms growth and organic particles accumulation in lab-scale vertical flow constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lianfang; ZHU Wei; TONG Wei

    2009-01-01

    The accumulation of organic matter in substratum pores is regarded as an important factor causing clogging in the subsurface flow constructed wetlands.In this study,the developing process of clogging separately caused by biofilm growth and organic particles accumulation instead of total organic matter accumulation was investigated in two groups of lab-scale vertical flow constructed wetlands (VFCWs) fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent.Results showed that the growth of biofilms within the substratum pores certainly caused remarkable reduction of effective porosity,especially for the strong organic wastewater,whereas its influence on infiltration rate was negligible.It was implied that the most important contribution of biofilm growth to clogging is accelerating the occurrence of clogging.In comparison with biofilm growth,particles accumulation within pores could rapidly reduce infiltration rate besides effective porosity and the clogging occurred in the upper 0-15 cm layer.With approximately equal amount of accumulated organic matter,the effective porosity of the clogged layer in starch-fed systems was far less than that of glucose-fed systems,which indicated that composition and accumulation mode of the accumulated organic matter played an important role in causing clogging besides the amount.According to the results,some related methods to prevent and recover the clogging phenomenon were suggested.

  5. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  6. Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters.

    Science.gov (United States)

    Adrados, B; Sánchez, O; Arias, C A; Becares, E; Garrido, L; Mas, J; Brix, H; Morató, J

    2014-05-15

    The prokaryotic microbial communities (Bacteria and Archaea) of three different systems operating in Denmark for the treatment of domestic wastewater (horizontal flow constructed wetlands (HFCW), vertical flow constructed wetlands (VFCW) and biofilters (BF)) was analysed using endpoint PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE). Further sequencing of the most representative bacterial bands revealed that diverse and distinct bacterial communities were found in each system unit, being γ-Proteobacteria and Bacteroidetes present mainly in all of them, while Firmicutes was observed in HFCW and BF. Members of the Actinobacteria group, although found in HFCW and VFCW, seemed to be more abundant in BF units. Finally, some representatives of α, β and δ-Proteobacteria, Acidobacteria and Chloroflexi were also retrieved from some samples. On the other hand, a lower archaeal diversity was found in comparison with the bacterial population. Cluster analysis of the DGGE bacterial band patterns showed that community structure was related to the design of the treatment system and the organic matter load, while no clear relation was established between the microbial assemblage and the wastewater influent.

  7. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  8. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation.

    Science.gov (United States)

    Kizito, Simon; Lv, Tao; Wu, Shubiao; Ajmal, Zeeshan; Luo, Hongzhen; Dong, Renjie

    2017-03-15

    Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrated that CB-CW and WB-CW provide significantly higher removal efficiencies for organic matter (>59%), NH4(+)-N (>76%), TN (>37%) and phosphorus (>71%), compared with G-CW (22%-49%). The higher pollutants removal ability of biochar-packed VFCWs was mainly attribute to the higher adsorption ability and microbial cultivation in the porous biochar media. Moreover, increasing the flooded/drained ratio from 4/8h to 8/4h of the tidal operation further improved around 10% of the removal of both organics and NH4(+)-N for biochar-packed VFCWs. The phosphorus removal was dependent on the media adsorption capacities through the whole experiment. However, the NH4(+)-N biodegradation by microbial communities was demonstrated to become the dominant removal mechanism in the long term treatment, which compensated the decreased adsorption capacities of the media. The study supported that the use of biochar would increase the treatment performance and elongate the lifespan of CWs under tidal operation.

  9. Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Sporn, Michael; Hurtado, Antonio [Technische Univ. Dresden (Germany)

    2015-12-15

    TRACE is used to calculate the thermal-hydraulic sequence in nuclear power plants for accident analysis. In some postulated accidents, countercurrent flow limitation (CCFL) phenomena can occur. This phenomenon is calculated by means of empirical relationships in TRACE. Usually, not all empirical relationships used in TRACE are accessible to the user who develops the computational model for accident analysis, but in the case of CCFL, the user must specify the parameters of the empirical relationship. Additional preliminary work is needed for fitting the parameters so that experimental data matches the computational calculations and the accident analysis can be performed. Furthermore, uncertainties in measurement errors from experimental data lead to user-based variations in the parameters of the empirical relationship for CCFL. Therefore, an alternative procedure in which accident analysis is performed with consideration of the uncertainties in the empirical relationships is presented. The uncertainty was quantified by means of a stochastic linear regression model for the Wallis correlation and the Bankoff correlation. An uncertainty analysis was subsequently performed to demonstrate the influence of uncertainty in certain cases of CCFL.

  10. Stability of viscous film flow coating the interior of a vertical tube with a porous wall

    Science.gov (United States)

    Liu, Rong; Ding, Zijing

    2017-05-01

    The stability of the gravity-driven flow of a viscous film coating the inside of a tube with a porous wall is studied theoretically. We used Darcy's law to describe the motion of fluids in a porous medium. The Beaver-Joseph condition is used to describe the discontinuity of velocity at the porous-fluid interface. We derived an evolution equation for the film thickness using a long-wave approximation. The effect of velocity slip at the porous wall is identified by a parameter β . We examine the effect of β on the temporal stability, the absolute-convective instability (AI-CI), and the nonlinear evolution of the interface deformation. The results of the temporal stability reveal that the effect of velocity slip at the porous wall is destabilizing. The parameter β plays an important role in determining the AI-CI behavior and the nonlinear evolution of the interface. The presence of the porous wall promotes the absolute instability and the formation of the plug in the tube.

  11. Numerical investigation on fluid flow past transversely oscillating vertical rectangular cylinder

    Science.gov (United States)

    Kannan, Jeevananthan; Prakash, K. Arul

    2016-11-01

    In the present study, the rectangular cylinder was forced to vibrate for various flow configurations such as the AR (Aspect Ratio) ranging from 0.2 to 1 and Reynolds number based on (depth of the cylinder) as 100, 150, 200. The frequency ratio (excitation frequency, fe / natural shedding frequency, fns) chosen for the study was 0.5, 0.75, 1.0, 1.5 and 2.0. The vibrating amplitude 0.1, 0.2 and 0.3 of cylinder depth were also considered. For the slender aspect ratios (ARvortex formation length. The separated shear layers were incessantly swiveling behind the cylinder dispense the vortices in the downstream of the wake as inline shedding packets. Three dimensional Studies are also established for the selected cases. The influence of the cylinder vibration on the wake patterns, phase plane, lift, drag force etc. are presented and discussed. This Investigation has been sponsored by ARDB-Aerodynamics Panel, Grant No: (DARO /08/ 1031663/M/I Dated 08/08/2012), India.

  12. MHD Mixed Convection Flow from a Vertical Plate Embedded in a Saturated Porous Medium with Melting and Heat Source or Sink

    Directory of Open Access Journals (Sweden)

    M.V.D.N.S.Madhavi

    2017-03-01

    Full Text Available We analysed in this paper the problem of MHD mixed convection flow from a vertical plate embedded in a saturated porous medium in the presence of melting, thermal dispersion, radiation and heat absorption or generation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by Runge-Kutta fourth order method coupled with shooting technique. The effect of melting and heat absorption or generation under different parametric conditions on velocity, temperature and heat transfer was analyzed for both aiding and opposing flows

  13. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Directory of Open Access Journals (Sweden)

    Sidra Aman

    2017-01-01

    Full Text Available Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs and multiple walls carbon nanotubes (MWCNTs in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil. Xue [Phys. B Condens. Matter 368, 302–307 (2005] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  14. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  15. Transient Thermal Behavior of a Vertical Solar Storage Tank with a Mantle Heat Exchanger During No-Flow Operation

    Directory of Open Access Journals (Sweden)

    A. Barzegar

    2009-01-01

    Full Text Available Transient thermal behavior of a vertical storage tank of a domestic solar heating system with a mantle heat exchanger has been investigated numerically in the charging mode. It is assumed that the tank is initially filled with uniform cold water. At an instant of time, the hot fluid from collector outlet is uniformly injected in the upper section of the mantle heat exchanger and after heat transfer with the fluid inside the tank, withdrawn from the bottom part of the heat exchanger. The conservation equations in the cylindrical coordinate and in axis-symmetric condition have been used according to the geometry under investigation. Governing equations have been discretized by employing the finite volume method and the SIMPLER algorithm has been used for coupling between momentum and pressure equations. The Low Reynolds Number (LRN k −ω model is utilized for treating turbulence in the fluid. First, the transient thermal behavior of heat storage tank and the process of formation of thermal stratification in the heat storage tank were investigated. Then, the influence of Rayleigh number in the heat storage tank, Reynolds number in the mantle heat exchanger and vertical positioning of mantle on the flow and thermal fields and the formation of the thermal stratification was investigated. It is found that for higher values of Rayleigh number, a more suitable thermal stratification is established inside the tank. Also it is noticed that increasing the incoming fluid velocity through the mantle heat exchanger causes a faster formation of the thermal stratification. A superior thermal performance was achieved when the mantle heat exchanger is positioned at the middle height of the storage tank.

  16. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  17. Study of three-phase flow vertical patterns applied to the lift and transport of heavy oil; Estudo dos padroes de fluxo trifasico vertical aplicado a elevacao e transporte de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Fernando Fabris; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil)

    2003-07-01

    The E and P activity has a great importance in the oil industry. First, it assesses hydrocarbon reserves that can be recovered in order to provide the highest revenues. Second, it supplies the forecast oil and gas production through adequate lift and transportation methods. These flows become rather difficult and requires high investments for heavy oils, which can be understood as having density larger than 934 kg/m{sup 3} (API grade smaller than about 20) and viscosity higher than 100 cP at reservoir conditions. In this work, the flow of a heavy crude oil and air mixture was made viable by injecting water in the pipe, in order to lubricate the flow and reduce pressure drop, as in the core flow technique. The main objective is to observe the three-phase flow patterns formed in the vertical pipe at different mixture compositions, for application in artificial lift. The oil flow rate was measured through a mass flow meter. Water and gas flow rates were given by rotameters. A high-speed VHS camera (1000 frames/s) attached to the pipeline was used to record the experiments for the determination of the final patterns. These are described and represented in flow maps. (author)

  18. A burnout correlation for flow of boiling water in vertical rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.

    1967-04-15

    The rod bundle burnout correlation described in the present report is a development from our earlier published rod bundle correlation for low pressures. The correlation is based on the Becker round duct correlation and is written on the form x{sub BO} = 0.68*{eta}*{eta}{sub L}*X{sub RD} where x{sub RD} is the burnout steam quality in a round duc at corresponding flow conditions, {eta} is the ratio of heated to total perimeter and {eta}{sub l} is a correction factor, which is a function of q/A only. It is demonstrated that this equation combined with the heat balance equation q/A = G/(4L/D{sub H})*({delta}h{sub SUB} + X{sub BO}*H{sub fg}) predicts the burnout heat fluxes for 312 measurements obtained in our laboratory within a scatter of {+-}7. 5 per cent and with an RMS error of 3.8 per cent. The measurements were obtained in the following ranges of variables. Number of rods n 1, 3, 6 and 7; Rod diameter d{sub i} 10.05 - 13.80 mm; Shroud diameter d{sub o} 17. 42 - 71. 0 mm; Rod clearance s 3.7 - 8.8 mm; Heated length L 608 - 4440 mm; Pressure p 20-71 kg/cm{sup 2}, Inlet sub-cooling {delta}t{sub sub} 3 - 240 deg C; Mass velocity G 80-1,500 kg/m{sup 2}; Burnout heat flux q/A 74-314 W/cm{sup 2}; Burnout steam quality x{sub BO} 0. 1 - 0.55. The correlation shows that the burnout conditions in wide ranges of variables are independent of the inlet sub-cooling and the heated length, and that the effects of mass velocity and pressure are the same in rod bundles and in round tubes. It is also demonstrated that the effects of a radial heat flux variation within the rod bundle can be handled by the correlation by modifying the {eta}-value for the bundle. The rod bundle data presented by Janssen and Kervinen, Hench, Obertelli, Matzner, Haslam, Edwards and Obertelli and Hench and Boehm were also analysed in terms of the measured and predicted burnout heat fluxes. These data covered bundles consisting of 3, 4, 6, 7, 9. 19 and 36 rods and it was found that a very good agreement

  19. Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

    Directory of Open Access Journals (Sweden)

    Garg B.P.

    2015-02-01

    Full Text Available An analysis of an oscillatory magnetohydrodynamic (MHD convective flow of a second order (viscoelastic, incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

  20. Welfare state: Convergence: Downward versus upward

    Directory of Open Access Journals (Sweden)

    Josifidis Kosta

    2010-01-01

    Full Text Available The aim of this paper is to contribute, in the theoretical and empirical sense, to better understanding the challenges of the EU welfare regimes and how particular regimes react on them. Despite significant differences among the EU welfare regimes, it is real to expect that they will converge because of the common challenges confronting them. In this paper, using the model of sigma and beta convergence, we are trying to predict the possible direction of convergence in the sense that Europe will go toward to more or less generosity or in other words it will converge downward or upward. The downward convergence means the strengthen competition among existing welfare regimes, in order to maintain and/or attract capital, that could reduce the social spending generosity. On the other hand, the upward convergence above involves the strengthening of coordination among existing welfare regimes according to the values of solidarity and social justice, which characterise not only the most developed EU countries but also the supranational European social model. .

  1. Mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region

    Science.gov (United States)

    Musakaev, N. G.; Borodin, S. L.

    2016-05-01

    The mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region is presented. The comparison of the calculation's results with experimental data, the results of numerical experiments by determining the flow structure, the temperature distribution in a well, influence of the temperature distribution on paraffin deposition and change in time of the radius of thawing in the frozen ground are presented.

  2. Investigating the effect of variable gutter technique as a novel method on vertical flow of material in closed die forging processes

    Energy Technology Data Exchange (ETDEWEB)

    Pourbashiri, M.; Sedighi, M. [Iran University, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Recently, Variable gutter technique has been introduced as a novel method in order to reduce waste materials in closed-die forging processes. In this paper, the capability of this method is investigated for a family of forged parts that the vertical flow of material is the last stage of forming process. As a case study, using the variable gutter technique, the amount of waste material is decreased about 50% for a sample forged part with a local rising. The results of FVM simulations and experiments confirmed the effectiveness of the variable gutter technique in such forging processes. The vertical flow of material in the die cavity (h parameter), as a criterion, for different gutter width and thickness dimensions was examined by FVM simulations. The results shown that the gutter thickness has more effect on vertical flow of material than the gutter width. By decreasing the gutter thickness and increasing the gutter width, the amount of vertical flow of material is increased about 120% and 29%, respectively. Finally, A/H ratio (A = Max width of sectional area of a forged part, H = Max height of a forged part) is proposed as shape complexity factor of a forged part. The results of FVM simulations are indicated that for the ratio of A/H > 2, the variable gutter thickness technique is more effective and can be successfully used to reduce the amount of waste materials.

  3. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  4. Hall current effect on radiating span-wise fluctuating MHD convective flow through porous medium in a vertical porous channel

    Directory of Open Access Journals (Sweden)

    Dev Krishan Singh

    2015-01-01

    Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.

  5. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  6. Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For a vertical insulating wall,a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance.Under the global constraints of fixed external dimensions and safety requirements,the constructal optimization of the wall is carried out by taking the complex function maximization as the objective.It is shown that the maximum of the complex-objective function and its corresponding optimal internal structure design under a certain environmental condition can be obtained by allowing the internal structure of the wall to vary(evolve)freely.The validity,effectivity and applicability of the complex function are proved by the results and the power weight parameter in the range from 0.4 to 4 can compromise between the requirements of insulating and strength simultaneously and preferably.The constructal optimization with coequal attention to heat flow and strength and the corresponding results are discussed in detail.The optimal structure design and the corresponding performance analyses under various environmental conditions of application are presented.When the change of environment is greater and the total Rayleigh number is bigger,the insulating wall with large number of cavities should be employed.When the total Rayleigh number is small,the better performance can be obtained by reasonably employing the insulating wall with small number of cavities.The complex function has better selfadaptability,and the results in the recent literature are special cases of this paper.

  7. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda

    2016-01-01

    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  8. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.

    Science.gov (United States)

    Gervin, L; Brix, H

    2001-01-01

    Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.

  9. Finite Difference Analysis of Radiative Free Convection Flow Past an Impulsively Started Vertical Plate with Variable Heat and Mass Flux

    Directory of Open Access Journals (Sweden)

    V. Ramachandra Prasad

    2011-01-01

    Full Text Available A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skinfriction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing values of radiation parameter the local as well as average Nusselt number increases.

  10. Environmental impact of irrigation with greywater treated by recirculating vertical flow constructed wetlands in two climatic regions.

    Science.gov (United States)

    Gross, Amit; Alfiya, Yuval; Sklarz, Menachem; Maimon, Adi; Friedler, Eran

    2014-01-01

    Reuse of greywater (GW) has raised environmental and public health concerns. Specifically, these concerns relate to onsite treatment operated by non-professionals; systems must therefore be reliable, simple to use and also economically feasible if they are to be widely used. The aims of this study were to: (a) investigate GW treatment efficiency using 20 full-scale recirculating vertical flow constructed wetlands (RVFCWs) operated in households in arid and Mediterranean regions; and (b) study the long-term effects of irrigation with treated GW on soil properties. RVFCW systems were installed and monitored routinely over 3 years. Raw, treated and disinfected treated GW samples were analyzed for various physicochemical and microbial parameters. Native soil plots and nearby freshwater (FW) and treated GW irrigated soil plots were sampled twice a year - at the end of the winter and at the end of the summer. Soil samples were analyzed for various physicochemical and microbial parameters. Overall, the RVFCW proved to be a robust and reliable GW treatment system. The treated GW quality met strict Israeli regulations for urban irrigation. Results also suggest that irrigation with sufficiently treated GW has no adverse effects on soil properties. Yet, continued monitoring to follow longer term trends is recommended.

  11. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water

    Institute of Scientific and Technical Information of China (English)

    Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81%,87% and 37%,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57%) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.

  12. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    Science.gov (United States)

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Comparison of single-stage and a two-stage vertical flow constructed wetland systems for different load scenarios.

    Science.gov (United States)

    Langergraber, Guenter; Pressl, Alexander; Leroch, Klaus; Rohrhofer, Roland; Haberl, Raimund

    2010-01-01

    Constructed wetlands (CWs) are known to be robust wastewater treatment systems and are therefore very suitable for small villages and single households. When nitrification is required, vertical flow (VF) CWs are widely used. This contribution compares the behaviour and treatment efficiencies of a single-stage VF CW and a two-stage VF CW system under varying operating and loading conditions according to standardized testing procedures for small wastewater treatment plants as described in the European standard EN 12566-3. The single-stage VF CW is designed and operated according to the Austrian design standards with an organic load of 20 g COD m(-2) d(-1) (i.e. 4 m(2) per person equivalent (PE)) The two-stage VF CW system is operated with 40 g COD m(-2) d(-1) (i.e. 2 m(2) per PE). During the 48 week testing period the Austrian threshold effluent concentrations have not been exceeded in either system. The two-stage VF CW system showed to be more robust as compared to the single-stage VF CW especially during highly fluctuating loads at low temperatures.

  14. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  15. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  16. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  17. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  18. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-03-01

    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  19. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands.

    Science.gov (United States)

    A, Dan; Fujii, Daiki; Soda, Satoshi; Machimura, Takashi; Ike, Michihiko

    2017-02-01

    Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  1. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate.

    Science.gov (United States)

    Li, Juan; Liu, Xinchun; Yu, Zhisheng; Yi, Xin; Ju, Yiwen; Huang, Jing; Liu, Ruyin

    2014-01-01

    This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.

  2. Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajesh

    2017-05-01

    The present study demonstrated the understating of municipal wastewater treatment in five types of CWs operated under semi continuous vertical flow mode. All CWs treatment conditions show the significantly lower pollutants concentrations. The average NH4(+)-N, TN, NO2(-)-N, NO3(-)-N, SO4(2-), and PO4(3-) removal efficiency in the ISs-CWs were 83.60%, 82.43%, 15.61%, 48.93%, 80.45%, and 78.94% respectively. The average NO2(-)-N removal efficiency shows that highest nitrite accumulation occurred in the Cont-CWs followed by C-CWs. The lowest increase in the biomass (127.5%) was observed in the Eichhornia crassipes planted in the ISs-CWs. The ISs filtration barrier created in the constructed wetlands was sufficient enough to remove all the pollutants. Principal components EFA 2D deformation plots show the distribution of the various nitrogenous species in the constructed wetlands along different components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Establishing a design for passive vertical flow constructed wetlands treating small sewage discharges to meet British Standard EN 12566.

    Science.gov (United States)

    Weedon, Christopher Michael; Murphy, Clodagh; Sweaney, Geoff

    2017-01-01

    Owing to legislation change (which made General Binding Rules effective from 1 January 2015) unless discharge is to specified environmentally sensitive sites, small sewage discharges (SSDs) in England - that is, wetlands, unless covered by an EP, because the cost of certification to EN 12566 for bespoke designs is prohibitive. EPs take up to four months to obtain. Therefore, the new legislation has created a commercial disadvantage for constructed wetlands treating SSDs, compared with mass-produced sewage treatment plants. However, the UK statutory pollution regulators have maintained a dialogue with the Constructed Wetland Association (CWA), with a view to assessing whether treatment of SSD using constructed wetlands might be allowable, without requiring EPs. This paper presents treatment performance data obtained over 15 years, from a variety of full-scale operational treatment wetlands, as supporting evidence for design guidelines, proposed by the CWA to the UK regulators, for the implementation of constructed wetlands continuously passively treating SSD to 20:30:20 mg l(-1) BOD/SS/NH4-N under a wide range of loading rates. Relevant experience of UK designers, installers and operators since the early 1990s is included, resulting in recommended physical design criteria and loading rates for compact vertical flow reed beds, presented here as key elements of the draft guidelines.

  4. Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip

    Directory of Open Access Journals (Sweden)

    V. Ramachandra Prasad

    2016-01-01

    Full Text Available This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We, the power law index (n, Velocity slip (Sf, Thermal jump (ST, Prandtl number (Pr and dimensionless tangential coordinate ( on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number is increased with increasing Weissenberg number (We, whereas the temperature is decreased. Increasing power law index (n enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr, is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications.

  5. Magnetic field effects on unsteady convective flow along a vertical porous flat surface embedded in a porous medium with constant suction and heat sink

    Directory of Open Access Journals (Sweden)

    S. S. Das, J. Mohanty, P. Das

    2011-07-01

    Full Text Available The magnetohydrodynamic unsteady convective flow of a viscous incompressible fluid along a vertical porous plate embedded in a porous medium with constant suction and heat sink is considered. Approximate solutions for velocity, temperature, skin friction and rate of heat transfer are obtained by solving the governing equations of the flow field using multi parameter perturbation technique. The effects of various flow parameters affecting the flow field are discussed with the help of figures and table. It is observed that a growing magnetic parameter or heat sink parameter retards the transient velocity of the flow field while the Grashof number or permeability parameter reverses the effect. Further, an increase in magnetic parameter or Prandtl number or heat sink parameter decreases the transient temperature of the flow field. A growing permeability parameter enhances the magnitude of skin friction and the rate of heat transfer at the wall, while the magnetic parameter reverses the effect.

  6. Transient MHD Free Convective Flow of an Optically Thick Gray Gas Past a Moving Vertical Plate in the Presence of Thermal Radiation and Mass Diffusion

    Directory of Open Access Journals (Sweden)

    S.K Ghosh

    2015-01-01

    Full Text Available The purpose of present investigation is to analyse bouyancy-driven radiation-convection flow past a moving vertical plate with reference to an optically dense medium in the presence of mass concentration, using Rosseland approximation permeated by a magnetic field. The flow is considered to be gray in the presence of free convection, mass transfer and radiation. An exact solution of the governing equations is obtained by applying the Laplace transform method. Numerical results of velocity distributions, shear stress, temperature distribution and mass concentration are presented graphically to give physical insight into the flow pattern.

  7. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    Science.gov (United States)

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  8. Radiation and Dufour Effects on Unsteady MHD Mixed Convective Flow in an Accelerated Vertical Wavy Plate with Varying Temperature and Mass Diffusion

    Directory of Open Access Journals (Sweden)

    Jagdish PRAKASH

    2014-01-01

    Full Text Available This paper studies flow, heat, and mass transfer characteristics of unsteady mixed convective magnetohydrodynamic (MHD flow of a heat absorbing fluid in an accelerated vertical wavy plate, subject to varying temperature and mass diffusion, with the influence of buoyancy, thermal radiation and Dufour effect. The momentum, energy and mass diffusion equations are coupled non-linear partial differential equations, which are solved by perturbation technique. The features of the fluid flow, heat and mass transfer characteristics are analyzed by plotting graphs, and the physical aspects are discussed in detail to interpret the effects of significant parameters of the problem.doi:10.14456/WJST.2014.69

  9. A Study on Mixed Convective, MHD Flow from a Vertical Plate Embedded in Non-Newtonian Fluid Saturated Non- Darcy Porous Medium with Melting Effect

    Directory of Open Access Journals (Sweden)

    J. Siva Ram Prasad

    2016-01-01

    Full Text Available We analyzed in this paper the problem of mixed convection along a vertical plate in a non-Newtonian fluid saturated non-Darcy porous medium in the presence of melting and thermal dispersion-radiation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by using Runge-kutta fourth order method coupled with shooting technique. The effects of melting (M, thermal dispersion (D, radiation (R, magnetic field (MH, viscosity index (n and mixed convection (Ra/Pe on fluid velocity and temperature are examined for aiding and opposing external flows.

  10. Upward mobilization of 137Cs in surface soils of Chamaecyparis obtusa Sieb. et Zucc. (hinoki) plantation in Japan.

    Science.gov (United States)

    Fukuyama, Taijiro; Takenaka, Chisato

    2004-01-05

    The use of 137Cs has recently been adopted to estimate erosion in hinoki plantations in Japan. However, there have been several reports of the upward mobilization of 137Cs in forest humus layers. In this study, the vertical distribution of 137Cs within the soil profile was measured in a hinoki plantation. In order to confirm the upward migration of 137Cs from mineral soil to fresh surface litter and to identify mechanisms of the transfer, changes in 137Cs specific activity in the contents of litterbags were examined in a hinoki plantation. A controlled laboratory experiment was also conducted to assess the effect of microbial activity on the upward migration of 137Cs. As a result, the higher 137Cs activities in the surface organic layer of a hinoki plantation than in fresh litter and the increasing 137Cs total content of litterbags with time demonstrated the upward mobilization of 137Cs from mineral soil to the surface organic layer. Physical movement of soil particles by raindrop splash was considered an important process in 137Cs upward migration. The results of our laboratory experiment indicate an influence from soil microbial activity on the upward mobilization of 137Cs. Thus, upward migration of 137Cs and constant litter removal by runoff may induce 137Cs loss from steep forested catchments and underestimation of the 137Cs inventory leading to the overestimation of soil redistribution rates.

  11. Contribution of mixing to the upward transport across the TTL

    Directory of Open Access Journals (Sweden)

    P. Konopka

    2006-11-01

    Full Text Available During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO in the altitude range up to 20 km (or up to 450 K potential temperature, i.e. spanning the TTL region roughly extending between 350 and 420 K.

    Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS. In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates.

    Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets.

  12. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    Science.gov (United States)

    Vitale, Sarah A; Robbins, Gary A

    2017-03-22

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.

  13. Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: effect of different design and operational parameters.

    Science.gov (United States)

    Bohórquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    2017-01-01

    This study assessed the treatment of domestic wastewater to find the optimum vertical flow-constructed wetland (VFCW) configuration under tropical conditions. Eight pilot-scale configurations units were studied to compare between fine sand and medium gravel used as substrate, two feeding frequencies (20 pulses d(-1) and 10 pulses d(-1)), and the presence or absence of tropical plants (Heliconia psittacorum). The results showed that the sand beds were significantly more efficient in the removal of organic matter, ammonia nitrogen, and total suspended solids than gravel beds, presenting average removal rates of 48 and 24 g m(-2) d(-1) of COD; 35 and 16 g m(-2) d(-1) of BOD5; 7 and 4 g m(-2) d(-1) of [Formula: see text]; 9 and 0 g m(-2) d(-1) for sand and gravel, respectively. The oxygen consumption rates were calculated and a value of 65 g m(-2) d(-1) was obtained for sand beds while for the gravel beds the consumption rate was 30 g m(-2 )d(-1). The assessment of different kinds of nitrogen showed interesting dynamics in the nitrification processes. The presence of H. psittacorum showed positive effects in the total nitrogen (TN) removal. The different loading frequencies applied did not show significant statistical differences in the removal of the tested contaminants. Preliminary results were found in the pathogen removal, where the sand is favorable as the substrate. This work represents the first step in the research of optimum VFWC design and operation parameters for Colombia as well as the use of plants of the genus Heliconia.

  14. Ecoulements intermittents de gaz et de liquide en conduite verticale Intermittent Gas and Liquid Flows in a Vertical Pipe.

    Directory of Open Access Journals (Sweden)

    Line A.

    2006-11-01

    Full Text Available Le modèle présenté ici permet la pré-détermination du gradient de pression, du taux global de gaz, et de grandeurs caractéristiques de l'intermittence, dans un écoulement à poches et bouchons en conduite verticale. L'écriture des lois de conservation en moyenne phasique conditionnelle conduit à la définition d'une cellule moyenne équivalente. La fermeture du modèle est assurée par des lois de contrainte de cisaillement film-paroi, film-poche, bouchon-paroi, par une loi d'arrachage du gaz au culot de la poche, une loi de glissement du gaz dans les bouchons et par une loi de la vitesse moyenne de propagation des fronts de poches. Le calibrage et la qualification du modèle s'appuient sur deux banques de données, dont l'une a été obtenue avec des fluides pétroliers dans des conditions proches des situations industrielles (boucle diphasique de Boussens. The model described here can be used to predetermine the pressure gradient, the overall gas rate and the characteristic intermittence magnitudes in pocket and slug flow in a vertical pipe. The way governing equations in the conditional phase average are written defines an equivalent average cell. The model is closed by film/wall, film/pocket and slug/wall shear-stress laws, by a pulloff law for the gas at the bottom of the pocket, a slippage law for the gas in the slugs, and a mean propagation velocity law for the pocket fronts. The calibration and qualification of the model are based on two data banks, one of which contains data on petroleum fluids under conditions close to industrial situations (two-phase loop at Boussens.

  15. Effects of Cd2+ and Pb2+ on the substrate biofilms in the integrated vertical-flow constructed wetland

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinlian; CHENG Shuiping; HE Feng; LIANG Wei; WU Zhenbin

    2008-01-01

    The effects of single Cd2+ and Pb2+ and combined Cd2+ and Pb2+ on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland (IVCW) were studied. Dehydrogenase activities decreased linearly with the increasing concentrations of Cd2+ and Pb2+ at different times (6, 24, 72, and 120 h). The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments. The single Cd2+ and Pb2+ treatments significantly inhibited dehydrogenase activities at concentrations in excess of 20 μmol/L Cd2+ (equal to 2.24 mg/L Cd2+) and 80 μmol/L Pb2+ (equal to 16.56 mg/L Pb2+), respectively. The inhibitory effect of Cd2+ was much greater than that of Pb2+. At the same time, the combined treatment of Cd2+ and Pb2+ significantly inhibited dehydrogenase activities at all five concentrations studied and the lowest combined concentration was 1.25 μmol/L Cd2+ and 5 μmol/L Pb2+ (equal to 0.14 mg/L Cd2+ and 1.04 mg/L Pb2+). A synergistic effect of Cd2+ and Pb2+ was observed. On the other hand, polysaccharide contents varied unpredictably with the increasing concentrations of Cd2+ and Pb2+ and extended experimental time. There were no significant statistical differences within the range of concentration and time studied, whether singly or in combination. These results implied that the effects of heavy metals on biofilms should be a concern for the operation and maintenance of constructed wetlands.

  16. Experiences from the full-scale implementation of a new two-stage vertical flow constructed wetland design.

    Science.gov (United States)

    Langergraber, Guenter; Pressl, Alexander; Haberl, Raimund

    2014-01-01

    This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays. The CW treatment system was designed for a hydraulic load of 2,500 L.d(-1) with a specific surface area requirement of 2.7 m(2) per person equivalent (PE). It was built in fall 2009 and started operation in April 2010 when the restaurant was re-opened. Samples were taken between July 2010 and June 2013 and were analysed in the laboratory of the Institute of Sanitary Engineering at BOKU University using standard methods. During 2010 the restaurant at Bärenkogelhaus was open 5 days a week whereas from 2011 the Bärenkogelhaus was open only on demand for events. This resulted in decreased organic loads of the system in the later period. In general, the measured effluent concentrations were low and the removal efficiencies high. During the whole period the ammonia nitrogen effluent concentration was below 1 mg/L even at effluent water temperatures below 3 °C. Investigations during high-load periods, i.e. events like weddings and festivals at weekends, with more than 100 visitors, showed a very robust treatment performance of the two-stage CW system. Effluent concentrations of chemical oxygen demand and NH4-N were not affected by these events with high hydraulic loads.

  17. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    Science.gov (United States)

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  18. Effects of Radiation and free Convection Currents on Unsteady Couette Flow between two Vertical Parallel Plates with Constant Heat flux and Heat Source Through Porous Medium

    Directory of Open Access Journals (Sweden)

    Damala Ch Kesavaiah

    2013-04-01

    Full Text Available The present study the free convection in unsteady Couette flow of a viscous incompressible fluid confined between two vertical parallel plates in the presence of thermal radiation with heat source in the presence of uniform magnetic field is presented. The flow is induced by means of Couette motion and free convection currents occurring as a result of application of constant heat flux on the wall with a uniform vertical motion in its own plane while constant temperature on the stationary wall. The fluid considered here is a gray, absorbing-emitting but non-scattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the analysis. The dimensionless governing partial differential equations are solved by using regular perturbation technique. The results for the velocity, temperature and the skin-friction are shown graphically. The effects of different parameters are discussed.

  19. Heat and mass transfer for natural convection MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation

    Science.gov (United States)

    Shateyi, Stanford

    2017-07-01

    The spectral relaxation method is employed to examine natural convective heat and mass transfer, MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation, thermal radiation and chemical reaction. The governing partial differential equations were transformed into a system of nonlinear ordinary differential equations by using a similarity approach. The pertinent results are then displayed in tabular form and graphically.

  20. View the PDF document Oscillating plate temperature effects on mixed convection Flow past a semi infinite vertical Porous Plate (Short Communication

    Directory of Open Access Journals (Sweden)

    N.V. Vighnesam

    2001-10-01

    Full Text Available "The effects on mixed convection flow past a semi-infinite vertical porous plate have been studied when the plate temperature oscillates about a non-zero mean. Only out-of-phase component of unsteady part of the temperature is shown graphically. The results show that there is always a phase-lead in the rate of heat transfer at small values of w. "