WorldWideScience

Sample records for flow tests volume

  1. DETERMINATION OF THE AGR-1 CAPSULE TO FPMS SPECTROMETER TRANSPORT VOLUMES FROM LEADOUT FLOW TEST DATA

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Hartwell; J. B. Walter; D. M. Scates; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a fueled multiple-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. A flow experiment conducted during the AGR-1 irradiation provided data that included the effect of flow rate changes on the decay of a short-lived radionuclide (23Ne). This data has been analyzed to determine the capsule-specific downstream transport volume through which the capsule effluents must pass before arrival at the fission product monitoring system spectrometers. These resultant transport volumes when coupled with capsule outlet flow rates determine the transport times from capsule-to-detector. In this work an analysis protocol is developed and applied in order to determine capsule-specific transport volumes to precisions of better than +/- 7%.

  2. Columbia University flow instability experimental program: Volume 6. Single annulus tests, transient test program

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1 to 2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. This report presents the experimental results for the transient portion of the single annulus test program. The test program was designed to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a ribless heater and a ribbed heater under steady state as well as transient conditions. The ribbed heater testing is currently underway and will be reported separately. The steady state portion of this test program with ribless heater was completed and reported in report No. CU-HTRF-T3A. The present report presents transient test results obtained from a ribless, uniform annulus test section. A total of thirty five transients were conducted with six cases in which flow excursion occurred. No unstable conditions resulted for tests in which the steady state Q{sub ratio} OFI limit was not exceeded.

  3. A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays.

    Science.gov (United States)

    Ragavendar, M S; Anmol, Chopra M

    2012-01-01

    Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immunoreactions in nitrocellulose membrane typically seen in LFIA. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.

  4. Relation Between Pressure and Volume Unloading During Ramp Testing in Patients Supported with a Continuous-Flow Left Ventricular Assist Device

    DEFF Research Database (Denmark)

    Jung, Mette H; Hassager, Christian; Balling, Louise

    2015-01-01

    Pulmonary capillary wedge pressure (PCWP) is the key to describing left ventricular (LV) unloading, however, the relation between pressure and the echocardiography-derived surrogate of LV volume (left ventricular end-diastolic diameter (LVEDD)) as a function of pump speed (RPM) in continuous......-flow left ventricular assist device (CF-LVAD) patients is unknown. In this study the pressure-volume relationship as a function of RPM during ramp testing was investigated by simultaneously measuring PCWP by Swan-Ganz catheter and LVEDD by echocardiography. The ramp protocol started at usual pump setting...

  5. Flow tests of the Willis Hulin Well. Volume III. Final report for the period October 1985--October 1990

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The initial flow test of the Hulin well was done to obtain brine and gas samples and to get a first measure of the reservoir properties. The 20,602 to 20,690-foot interval was perforated and tested in two short-term draw-down and buildup tests. This zone had an initial pressure of 17,308 psia and temperature of 339 F. The total dissolved solids of 207,000 mg/L (mostly sodium chloride) is higher than for previously tested Gulf Coast geopressured-geothermal wells. The gas content in the brine of 31 to 32 SCF/STB indicates that the brine is at or near saturation with natural gas. The permeability, as deduced from the draw-down and buildup tests, is 13 md for the lower 80-foot-thick sand member. The duration of the tests was too short to determine the lateral extent of the reservoir; but declining measured values for static bottomhole pressure prior to each flow test suggests a relatively small reservoir. When the uppermost interval in the zone of interest (20,220 to 20,260 feet) was perforated such that flow from this zone would commingle with flow from the lower zone, little to no free gas was observed. It had been speculated before the test that there might be free gas in this upper zone. These speculations were generally deduced from logs after assuming the formation contained brine that had a salinity between 70,000 and 100,000 mg/L. The actual salinity was more than twice that number. it is now apparent that the amount of free gas, if any, is too small to make a significant contribution to production in a short-term test. This does not preclude the possibility of mobilization of gas by higher drawdown or coning down from an offsetting gas cap in one or more of the sand members. However, there was no evidence that this was occurring in this test. No measurements of the reservoir parameters, such as permeability, were made for the shallowest interval tested. But substantially lower drawdown for the commingled zones suggests either higher permeability or lower skin

  6. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    International Nuclear Information System (INIS)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data

  7. Annular Flow Distribution test

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L. (ed.) (Westinghouse Savannah River Co., Aiken, SC (United States)); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. (Babcock and Wilcox Co., Alliance, OH (United States). Research Center)

    1990-12-01

    This report documents the Babcock and Wilcox (B W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.

  8. Annular Flow Distribution test

    International Nuclear Information System (INIS)

    Kielpinski, A.L.; Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J.

    1990-12-01

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  9. Vector Volume Flow in Arteriovenous Fistulas

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Heerwagen, Søren; Pedersen, Mads Møller

    2013-01-01

    . The Ultrasound Dilution Technique is the reference method for volume flow measurement, but it only works in conjunction with the dialysis machine, and use is therefore restricted to dialysis sessions. Volume flow measurement with conventional Doppler ultrasound provides a non invasive, highly accessible solution...

  10. Single-well and inter-well dual-tracer test design for quantifying phase volumes and interface areas in subsurface flow and transport systems

    Science.gov (United States)

    Ghergut, I.; Behrens, H.; Licha, T.; Maier, F.; Nottebohm, M.; Schaffer, M.; Sauter, M.

    2012-04-01

    -resolved) tracer monitoring, a inter-well conservative-tracer test still yields very valuable information, which can be poured into the shape of a flow-storage repartition[2],[3]. Furthermore, considering a CO2 plume with the radius-thickness relationship derived by [4], and 'integrating' it 'over' the particular-site stratigraphy, with the 'weighting' defined by the flow-storage repartition (cumulative distribution function for q against Bφ) that was derived from the inter-well, conservative-tracer test, we get: A ( t , θ° ) ≈ (t/π)1/2 - [ μ(θ° ) + 1/μ(θ° ) ] - Σi (qiBi/φi)1/2 , from which the evolution of CO2-brine interface areas (A) during early injection regimes (immiscible displacement) can roughly be estimated as a function of time t and temperature θ° , with μ(θ° ) denoting the mobility ratio between CO2 and brine (mobilities being taken at each one's saturation). The comparison of CO2 plume volumes and CO2-brine interface areas predicted for the Heletz MMV experiment under different stratigraphy assumptions demonstrates the importance of brine-phase (single-phase!), conservative-tracer tests for characterizing the 'transport-effective hydrogeology' of a candidate CCS site, prior to initiating any experiments involving a CO2 phase.

  11. Flight Test Measurement Techniques for Laminar Flow. Volume 23(Les techniques de mesure en vol des ecoulements laminaires)

    Science.gov (United States)

    2003-10-01

    Maddalon, D. V.; Fisher, D. F.; Jennett , L. A.; Fischer, M. C .; “Simulated Airline Service Experience With Laminar-Flow Control Leading-Edge Systems...Width of disturbance or step, calibration constant in King’s Law CD Drag coefficient CL Lift coefficient Cp Pressure coefficient c Wing or HLF...nacelle fan cowl chord length Cd Section drag coefficient C ’ƒ Skin friction coefficient Cl Section lift coefficient dB Decibel E Anemometer output

  12. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard

    DEFF Research Database (Denmark)

    Hansen, Susan; Dahl, Ronald; Hoffmann, Hans Jürgen

    2008-01-01

    Flow cytometers have a constant flow rate. This enables flow cytometers to measure leukocyte concentrations in a determined volume by acquiring data at a fixed rate over a fixed time and is called constant volume acquisition (CVA). The volume aspirated by a FACS Calibur flow cytometer in 4 min...... at a high rate has a median of 163 microl (IQR 156-170) with TruCount tubes. Leukocyte concentrations of 26 healthy volunteers were measured twice on up to four occasions with a Bürker-Türk chamber, by single platform technology (SPT) with TruCount tubes and on the same data set using CVA. Total leukocyte...... concentrations determined by CVA correlated better with measurements in a Bürker-Türk (BT) chamber than with SPT. Concentrations determined with CVA were 1.86% higher than with BT whereas SPT data were 5.35% higher than BT (pconcentrations

  13. Successful well test application of portable multi-phase flow meter for high gas-volume and high water-cut wells in east Kalimantan, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Kaura, Jiten D.; Finley, D.B. [PT Halliburton Indonesia, Jakarta (Indonesia); Sudradjat, Wangsa; Riyanto, Latief [Tota E and P Indonesie, Jakarta (Indonesia); Halverson, Martin [FlowSys AS, Bergen (Norway)

    2004-07-01

    Recently, testing was needed on production wells in East Kalimantan. The wells were in a mature field, and productivity from the wells field featured high water cut (WC) and extremely high gas-volume fractions (GVF). The WC and GVF ranged from 80 to 100% and 90 to 100%, respectively. Moreover, most of the wells are low productivity so they are very sensitive to back-pressure. The high WC, high GVF and low-productivity from these wells in this area present an extreme challenge for accurate production measurement. Barges are commonly used to perform well services in the swamp area of this marginal field, and production allocations from wells in this difficult area were previously monitored and measured with conventional well-test equipment on-board a well testing barge. The well test equipment traditionally used requires a large footprint, and the associated flaring presents an environmental situation in this sensitive swamp area. Hence, the MPFM solution was chosen. To better meet the challenges presented by the testing conditions, a portable multiphase flow meter (MPFM) was chosen to perform the testing from the well-testing barge. For comparative purposes, the MPFM was installed on the barge immediately upstream of the well testing equipment. Initial measurements with the MPFM yielded results that were {+-} 30% of the test separator reading. A slight modification was introduced to the MPFM system in the form of a gas knock-out (GKO) vessel. Subsequent measurements with the modified MPFM system yielded readings that were {+-}10% of the test separator reading. (author)

  14. Flow rate measurement in a volume

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, Cristhian

    2018-04-17

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate of the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.

  15. A volume-balance model for flow on porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2015-11-01

    Volume-balance models are used by petroleum engineers for simulating multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Numerical tests for phase separation under gravity are presented for multiphase three dimensional flow in heterogeneous porous media. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER grant number 42536 (DGAJ-SPI-34-170412-217).

  16. Characteristics of bulk goods volume flow measurement on conveyors

    Directory of Open Access Journals (Sweden)

    Aleksandrović Snežana S.

    2015-01-01

    Full Text Available Volume flow measuring system is indirect method of conveyor belt bulk material mass flow determining. This paper deals with on-line measurement of the flow of material by using the optic and ultrasonic flow measuring devices. The advantages and disadvantages of the described methods are presented as well as the necessity of the application of high accuracy flowmeters.

  17. Strategy for Alternative Occupant Volume Testing

    Science.gov (United States)

    2009-10-20

    This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...

  18. Fluid mechanics experiments in oscillatory flow. Volume 1

    International Nuclear Information System (INIS)

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)

  19. Volume management for fault-tolerant continuous-flow microfluidics

    DEFF Research Database (Denmark)

    Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

    2017-01-01

    fault models and test techniques for continuous flow biochips. Six typical defects: Block, leak, misalignment, faulty pumps, degradation of valves and dimensional errors have been identified. The resulting faults can be abstracted into blocks and leaks for simplicity. Both fault types can occur...... in the control-as well as the flow channel, some common causes being environmental particles, imperfections in molds or bubbles in the PDMS gel. While some faults may be detected before the execution of an application by introducing a test run, other faults occur only during runtime as a result of deterioration...... or caused by the applied pressure. If such a fault is detected during runtime, e.g. with a CCD camera, we propose a just in time solution that calculates and assigns fluid volumes to alternate components and routes allowing for the completion of the application despite the occurring fault....

  20. Eddy current testing, volume 1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1981-11-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  1. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  2. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  3. Measurable inhomogeneities in stock trading volume flow

    Science.gov (United States)

    Cortines, A. A. G.; Riera, R.; Anteneodo, C.

    2008-08-01

    We investigate the statistics of volumes of shares traded in stock markets. We show that the stochastic process of trading volumes can be understood on the basis of a mixed Poisson process at the microscopic time level. The beta distribution of the second kind (also known as q-gamma distribution), that has been proposed to describe empirical volume histograms, naturally results from our analysis. In particular, the shape of the distribution at small volumes is governed by the degree of granularity in the trading process, while the exponent controlling the tail is a measure of the inhomogeneities in market activity. Furthermore, the present case furnishes empirical evidence of how power law probability distributions can arise as a consequence of a fluctuating intrinsic parameter.

  4. Methodology update for estimating volume to service flow ratio.

    Science.gov (United States)

    2015-12-01

    Volume/service flow ratio (VSF) is calculated by the Highway Performance Monitoring System (HPMS) software as an indicator of peak hour congestion. It is an essential input to the Kentucky Transportation Cabinets (KYTC) key planning applications, ...

  5. Flow list and test results

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data accompany the manuscript 'Critical Review of Elementary Flows in LCA Data'. Each file presents a subgroup of the elementary flows (data used for analysis)...

  6. Determination of volume and direction of flow of Kainji Reservoir ...

    African Journals Online (AJOL)

    geomatics techniques. ... river bed were produced to create a 3D effect of Kainji reservoir flow direction. A depth of 23.50m was obtained during the sounding field operation. Keywords: Kainji Dam, Reservoir, Bathymetry, Volume, Direction of flow ...

  7. Interpretation of flow dimensions from constant pressure injection test

    International Nuclear Information System (INIS)

    Kuusela-Lahtinen, A.; Poteri, A.

    2010-06-01

    for different borehole locations over the heterogeneous fracture. The channelling of flow is not clearly reflected in the analysed flow dimensions. Most of the analysed cases showed rather similar behaviour that is represented by a flow dimension of two. It could be that the single-hole testing is more sensitive to the connectivity of the fracture network and channelling of the flow to different flow routes of connected fractures than on the channelling of the flow in the individual fracture planes. Hydraulic single-hole testing activates a limited volume of rock around the packed off section of the borehole. If the tested volume of rock is mainly limited to the fracture that is intersecting the borehole, then in principle, the transient flow characteristics can be used to separate linear (channelled) flow from the radial two dimensional flow. If a larger network of fractures is activated during the hydraulic testing, then the transient hydraulic response can be used to identify possible channelling of the flow that should show up as a lower flow dimension (n = 1 - 2) of the flow field compared to the cylindrical or spherical pressure field of the experiment. (orig.)

  8. Calculating Study of the Turbine at Last Stage Flow Field in the Small Volume Flow Condition

    Directory of Open Access Journals (Sweden)

    Jiang Tieliu

    2017-11-01

    Full Text Available Based on basic equation and boundary layer theory of pneumodynamics, the thesis conducts numerical modeling and theoretical analysis on the last stage of turbine characteristics at a small volume flow by using FLUENT, gives an emphasized analysis on the position of first occurrence of backflow and its expansion direction and comes up with flow structure of the turbine flow field at last stage in the small volume flow condition. In connection with specific experiments, it puts forward the flow model of backflow occurring in the last stage field and the solution to the model. The flow field at last stage for a 100MW turbine in the small volume flow condition that is calculated by using the model is basically in conformity to the actual result.

  9. Assessment of tidal volume and thoracoabdominal motion using volume and flow-oriented incentive spirometers in healthy subjects

    Directory of Open Access Journals (Sweden)

    V.F. Parreira

    2005-07-01

    Full Text Available The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne and flow-oriented (Triflo II and Respirex devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45º. Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02 and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01 were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm. Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively. Abdominal motion was larger (P < 0.05 during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex. We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices.

  10. Annular Flow Distribution test. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L. [ed.] [Westinghouse Savannah River Co., Aiken, SC (United States); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center

    1990-12-01

    This report documents the Babcock and Wilcox (B&W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ``hydraulic similarity`` between an instrumented fuel assembly with the BFI removed and a ``reference`` fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.

  11. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction......, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  12. Flow tests of the Gladys McCall well

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. (Institute of Gas Technology, Chicago, IL (United States))

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  13. Cross flow tests of APR+ core simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kih Wan; Chu, In Cheol; Choi, Hae Seob; Euh, Dong Jin; Kwon, Tae Soon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    An accurate prediction of an APR+ core flow is in demand since the APR+ has 257 fuel assemblies, unlike in the APR1400. The APR+ reactor flow distribution test facility, which was named ACOP (APR+ Core Flow and Pressure Test Facility), was developed to conduct various hydraulic tests. The 257 core simulators were installed in the ACOP to measure the hydraulic characteristics at the inlet and outlet of the fuel assemblies. The simulator was designed with a linear reduced scale of 1/5 to preserve a geometrically similar flow without hindering the dynamic similarity. The cross flow characteristic of the simulator may be regarded as of major importance to evaluate the pressure distribution at the outlet of the fuel assembly. This paper shows a cross flow test for each core simulator which are arranged in a row. The results are also compared with those of the HIPER and core simulators obtained from the CFD code, and are carefully examined.

  14. Tracer responses and control of vessels with variable flow and volume

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1990-01-01

    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  15. CANFLEX fuel bundle cross-flow endurance test (test report)

    International Nuclear Information System (INIS)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs

  16. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  17. Design verification and cold-flow modeling test report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  18. Connection between encounter volume and diffusivity in geophysical flows

    Science.gov (United States)

    Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.

    2018-04-01

    Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.

  19. Flow-induced vibration -- 1994. PVP-Volume 273

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume

  20. 21 CFR 862.1130 - Blood volume test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume test system. 862.1130 Section 862...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1130 Blood volume test system. (a) Identification. A blood volume test system is a device intended to...

  1. Powder Flow Testing: Judicious Choice of Test Methods.

    Science.gov (United States)

    Tay, Justin Yong Soon; Liew, Celine Valeria; Heng, Paul Wan Sia

    2017-07-01

    Flow property of pharmaceutical powders can be assessed by various flow testers and test methods. In this study, eight commercially available lactose grades were sourced and tested for angles of repose, tapping studies, shear cell measurements, stirred powder rheometry, and avalanching powder measurements. The relationships between various flow parameters and particle size were analyzed. Deviations from the general trend could be attributed to either the insensitivity of the test or differences in particle shape. The basic flowability energy of the powder rheometer was unable to reconcile the effects of shape and particle size on powder flowability. Avalanche time of the revolving drum powder analyzer and angle of repose exhibited good correlation with each other (r = 0.92) but experienced poor resolution for samples of smaller particle sizes due to powder cohesiveness and the propensity for agglomerative flow. Flow test parameters could be categorized into three broad types, based on their relationship with particle size: (i) linear relationship, (ii) test parameter more sensitive to smaller sized particles, and (iii) test parameter more sensitive to larger sized particles. Choice of test parameters used to represent powder flow should be dependent on the sensitivity of the selected flow test methods to the sample types.

  2. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    Science.gov (United States)

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise

  3. Quantifiable Lateral Flow Assay Test Strips

    Science.gov (United States)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  4. Blood flow and blood volume in a transplanted rat fibrosarcoma

    International Nuclear Information System (INIS)

    Tozer, G.M.; Morris, C.C.

    1990-01-01

    Blood flow measurements following i.v. infusion of iodi-antipyrine labelled with 14 C ( 14 C-IAP) and blood volume measurements following i.v. injection of 125 I human serum albumin and 51 Cr-labelled red blood cells were made in a transplanted rat fibrosarcoma for comparison with various normal tissues. The tumour-blood partition co-efficient for 14 C-IAP w as found to be 0.79 ± 0.07 which is similar to most of the normal tissues studied. The solubility of 14 C-IAP in plasma was found to be higher than that in whole blood. Blood flow to tumours 3 was found to be 17.9 ± 4.0 ml blood 100 g tissue -1 xmin -1 . These values were considered to be primarily measurements of nutritive flow. Blood in the tumours was found to occupy around 1% of the tissue space which was similar to that found for normal muscle and skin. There was no direct correlation between % blood volume and blood flow for the different tissues studied. Th haematocrit of blood contained in tumour tissue was calculated to be significantly lower than that of blood contained in the normal tissues. It was suspected that permeability of tumour blood vessel walls to 125 I-HSA could have accounted for this difference. (author). 41 refs.; 2 figs.; 3 tabs

  5. Experimental validation of uterine artery volume blood flow measurement by Doppler ultrasonography in pregnant sheep.

    Science.gov (United States)

    Acharya, G; Sitras, V; Erkinaro, T; Mäkikallio, K; Kavasmaa, T; Päkkilä, M; Huhta, J C; Räsänen, J

    2007-04-01

    To test the hypothesis that Doppler-derived (calculated) uterine artery volume blood flow (cQ(UtA)) reflects accurately volume blood flow measured directly (mQ(UtA)) in an experimental setting. Five pregnant sheep were instrumented at 122-130 days of gestation under general anesthesia. After a 4-day recovery period, maternal hemodynamics were varied by administering to the sheep under general anesthesia noradrenaline, beta-blocker, low oxygen gas mixture, epidural bupivacaine and ephedrine, consecutively. The central venous pressure was obtained with the help of a thermodilution catheter. The mean arterial pressure and acid-base status were monitored using a 16-gauge polyurethane catheter inserted into the descending aorta via a femoral artery. A 6-mm transit-time ultrasonic perivascular flow probe was used to measure the mQ(UtA). Doppler ultrasonography of the uterine artery was performed and volume blood flow was obtained simultaneously by the transit-time ultrasonic perivascular flow probe during each phase of the experiment. A total of 31 observations were made. The mQ(UtA) varied between 90 and 800 (mean +/- SD, 419 +/- 206) mL/min during the experiments. The corresponding values for the cQ(UtA) were 110 and 900 (mean +/- SD, 459 +/- 211) mL/min. There was a significant correlation (R = 0.76; P blood flow measured directly. Doppler-derived uterine artery absolute blood flow velocities reflect uteroplacental volume blood flow in pregnant sheep. Published by John Wiley & Sons, Ltd. Copyright (c) 2007 ISUOG.

  6. Experimental Tests of Particle Flow Calorimetry

    CERN Document Server

    Sefkow, Felix; Kawagoe, Kiyotomo; Pöschl, Roman; Repond, José

    2016-01-01

    Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R\\&D, mainly conducted within the CALICE collaboration, for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g.\\ hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.

  7. An advective volume-balance model for flow in porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2016-11-01

    Volume-balance models are used by petroleum engineers to simulate multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Preliminary numerical tests of phase separation due to gravity suggest the model reproduces qualitatively the physical phenomena. Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  8. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  9. ICP curve morphology and intracranial flow-volume changes

    DEFF Research Database (Denmark)

    Unnerbäck, Mårten; Ottesen, Johnny T.; Reinstrup, Peter

    2018-01-01

    to examine cerebral arterial inflow and venous cerebral outflow as well as flow of cerebrospinal fluid over the foramen magnum. The difference in total flow into and out from the cranial cavity (Flowtot) over time provides the ΔICV. The ICP curve was compared to the Flowtot and the ΔICV. Correlations were...... calculated through linear and logarithmic regression. Student's t test was used to test the null hypothesis between paired samples. RESULTS: Excluding the initial ICP wave, P1, the mean R 2 for the correlation between the ΔICV and the ICP was 0.75 for the exponential expression, which had a higher...

  10. Blood flow restriction: the metabolite/volume threshold theory.

    Science.gov (United States)

    Loenneke, J P; Fahs, C A; Wilson, J M; Bemben, M G

    2011-11-01

    Traditionally it has been thought that muscle hypertrophy occurs primarily from an overload stimulus produced by progressively increasing an external load using at least 70% of one's concentric one repetition maximum (1RM). Blood flow restricted exercise has been demonstrated to result in numerous positive training adaptions, specifically muscle hypertrophy and strength at intensities much lower than this recommendation. The mechanisms behind these adaptions are currently unknown but a commonly cited concept is that acute elevations of systemic hormones, specifically growth hormone (GH), play a large role with resistance training induced muscle hypertrophy, possibly through stimulating muscle protein synthesis (MPS). We hypothesize that the alterations in the intramuscular environment which results in the rapid recruitment of FT fibers, is the large driving force behind the skeletal muscle hypertrophy seen with blood flow restriction, whereas the external load and systemic endogenous hormone elevations may not be as important as once thought. It is further hypothesized that although skeletal muscle hypertrophy can be achieved at low intensities without blood flow restriction when taken to muscular failure, the overall volume of work required is much greater than that needed with blood flow restriction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Well balanced finite volume methods for nearly hydrostatic flows

    International Nuclear Information System (INIS)

    Botta, N.; Klein, R.; Langenberg, S.; Luetzenkirchen, S.

    2004-01-01

    In numerical approximations of nearly hydrostatic flows, a proper representation of the dominant hydrostatic balance is of crucial importance: unbalanced truncation errors can induce unacceptable spurious motions, e.g., in dynamical cores of models for numerical weather prediction (NWP) in particular near steep topography. In this paper we develop a new strategy for the construction of discretizations that are 'well-balanced' with respect to dominant hydrostatics. The classical idea of formulating the momentum balance in terms of deviations of pressure from a balanced background distribution is realized here through local, time dependent hydrostatic reconstructions. Balanced discretizations of the pressure gradient and of the gravitation source term are achieved through a 'discrete Archimedes' buoyancy principle'. This strategy is applied to extend an explicit standard finite volume Godunov-type scheme for compressible flows with minimal modifications. The resulting method has the following features: (i) It inherits its conservation properties from the underlying base scheme. (ii) It is exactly balanced, even on curvilinear grids, for a large class of near-hydrostatic flows. (iii) It solves the full compressible flow equations without reference to a background state that is defined for an entire vertical column of air. (iv) It is robust with respect to details of the implementation, such as the choice of slope limiting functions, or the particularities of boundary condition discretizations

  12. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cebolla, Rafeal O [Joint Research Centre, Petten, the Netherlands; Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands

    2017-11-06

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of

  13. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  14. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  15. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report

    International Nuclear Information System (INIS)

    Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.

    1996-03-01

    The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration

  17. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2003-09-15

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 +- 39.7 ml/min for the right side and 127.6 +- 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 +- 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 +- 59.19 ml/min in male, and 217.28 +- 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  18. Nanofilm processors controlled by electrolyte flows of femtoliter volume.

    Science.gov (United States)

    Nolte, Marius; Knoll, Meinhard

    2013-06-25

    Nanofilm processors are a new kind of smart system based on the lateral self-oxidation of nanoscale aluminum films. The time dependency of these devices is controlled by electrolyte flows of femtoliter volume which can be modulated by different mechanisms. In this paper, we provide a deeper investigation of the electrolyte transport in the nanofilm processor and the different possibilities to control the aluminum oxidation velocity. A method for the in situ investigation of the acidic characteristic of the channel electrolyte is demonstrated. The obtained results form a set of instruments for constructing more complex electrolyte circuits and should allow the creation of nanofilm processors of arbitrary time dependence. Because the nanofilm processor combines different functional blocks and can operate in a self-sustained manner, without requiring batteries, this smart system may serve as a basis for many potential applications.

  19. Reading: Tests and Reviews. Volume I.

    Science.gov (United States)

    Buros, Oscar Krisen, Ed.

    This monograph presents a comprehensive bibliography of all reading tests published in English-speaking countries as of May 1, 1968, as well as a classified index to all tests and reviews in the six Mental Measurements Yearbooks (MMY). The MMY Test Index is a master index or key to all tests, reviews, excerpts, and references to be found in The…

  20. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  1. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  2. Plenoptic Flow Imaging for Ground Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Instantaneous volumetric flow imaging is crucial to aerodynamic development and testing. Simultaneous volumetric measurement of flow parameters enables accurate...

  3. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  4. Evaluation of plasma eosinophil count and mean platelet volume in patients with coronary slow flow

    Directory of Open Access Journals (Sweden)

    Mehmet Demir

    2014-01-01

    Full Text Available OBJECTIVE: The pathophysiology of coronary slow flow has not been clearly defined, although multiple abnormalities including arteritis, endothelial dysfunction, and atherothrombosis, have been reported. It is known that eosinophils play an important role in inflammation, endothelial dysfunction, and thrombosis. We aimed to compare the eosinophil counts of coronary slow flow patients versus healthy controls. METHODS: This study included 50 coronary slow flow patients (19 males, mean age 65.6±13.7 years and 30 healthy controls (10 males, mean age 57.86±11.6 years. These participants were evaluated using concurrent routine biochemical tests as well as neutrophil, lymphocyte, and eosinophil counts and mean platelet volume (MPV, which were obtained from the whole blood count. These parameters were compared between groups. RESULTS: The baseline characteristics of the study groups were comparable. The coronary slow flow patients had a higher mean platelet volume and eosinophil count than the control group (8.38±0.86 vs 6.28±1.6 fL and 0.31±0.42 vs 0.09±0.05; p<0.001 and 0.008, respectively. CONCLUSION: Our study demonstrated a relationship between eosinophil count and MPV in patients with coronary slow flow.

  5. Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI.

    Science.gov (United States)

    Gaeta, Stephen; Dyverfeldt, Petter; Eriksson, Jonatan; Carlhäll, Carl-Johan; Ebbers, Tino; Bolger, Ann F

    2018-04-01

    4D Flow MRI has been used to quantify normal and deranged left ventricular blood flow characteristics on the basis of functionally distinct flow components. However, the application of this technique to the atria is challenging due to the presence of continuous inflow. This continuous inflow necessitates plane-based emission of particle traces from the inlet veins, leading to particles that represents different amounts of blood, and related quantification errors. The purpose of this study was to develop a novel fixed-volume approach for particle tracing and employ this method to develop quantitative analysis of 4D blood flow characteristics in the left atrium. 4D Flow MRI data were acquired during free-breathing using a navigator-gated gradient-echo sequence in three volunteers at 1.5T. Fixed-volume particle traces emitted from the pulmonary veins were used to visualize left atrial blood flow and to quantitatively separate the flow into two functionally distinct flow components: Direct flow=particle traces that enter and leave the atrium in one heartbeat, Retained flow=particle traces that enter the atrium and remains there for one cardiac cycle. Flow visualization based on fixed-volume traces revealed that, beginning in early ventricular systole, flow enters the atrium and engages with residual blood volume to form a vortex. In early diastole during early ventricular filling, the organized vortical flow is extinguished, followed by formation of a second transient atrial vortex. Finally, in late diastole during atrial contraction, a second acceleration of blood into the ventricle is seen. The direct and retained left atrial flow components were between 44 and 57% and 43-56% of the stroke volume, respectively. In conclusion, fixed-volume particle tracing permits separation of left atrial blood flow into different components based on the transit of blood through the atrium. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo....... This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel...... to cross-sectional scans of the fistulas, the major axis was on average 10.2 mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5 mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather...

  7. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  8. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  9. Self Test of FlowMon Probe

    OpenAIRE

    Kříž, Blažej

    2009-01-01

    Cílem této práce je navrhnout a implementovat autotest sondy FlowMon, monitorující síťový provoz na základě IP toků, která byla vyvinuta během projektu Liberouter. Práce se věnuje teorii testování a kategoriím testů, které nejvíce souvisejí s vyvíjeným autotestem. Zde se také nachází stručný popis monitorování sítí pomocí NetFlow protokolu, spolu s popisem architektury sondy FlowMon. Práce dále obsahuje samotný návrh a řešení autotestu. Součástí řešení jsou dva programové celky. První předsta...

  10. Least Cost Test Profile. Volume II.

    Science.gov (United States)

    1982-04-01

    B) ES-59-VERSAMAT PROBLEMS, CHEMISTRY CORROSION. 28 A) ES-59-FLOOR DELAMINATIONS, WALL DELAMINA- 28 TIONS. CHEMICALS CORRODE WALLS. HAVE HIGH TRAFFIC...discontinued. H-17 TABLE 13. PROFFERED TESTING SEQUENCE FOR ARMY 2:1 EXPANDABLE SHELTER TESI PER SPECIFICATION DES X-1-77 Order of Test Paragraph in In

  11. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Licastro, P.H.; Roy, D.M.

    1986-05-01

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  12. Fusion Engineering Device. Volume III. Test plan

    International Nuclear Information System (INIS)

    1981-10-01

    The description of the test plan begins with a statement of the key objectives and the presentation of a timetable for meeting those objectives. In so doing, it is convenient to regard the operating history of the devices as consisting of a number of distinct stages for resolving the outstanding physics and engineering questions. These states are identified and related to the overall test plan. succeeding chapters relate the test plan to other elements of the design process. Chapter 2 describes how the basic ingredients of the device mission are to be fulfilled. Chapter 2 ddescribes how the basic ingredients of the device mission are to be fulfilled. This narrative revolves around the three themes that are central to the mission statement: the demonstration o integrated machine operation, the production of sustained fusion energy, and the extraction of fusion power. Chapter 3 describes the impact of the testing program on FED design and operation, with the primary focus being upon nuclear system testing

  13. Vadose zone flow convergence test suite

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-05

    Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustrate these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.

  14. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  15. Flow boiling test of GDP replacement coolants

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [comp.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  16. Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)

    Energy Technology Data Exchange (ETDEWEB)

    G. G. Loomis (INEEL); A. P. Zdinak (MSE); M. A. Ewanic (MSE); J. J. Jessmore (INEEL)

    1998-01-01

    During the summer and fall of Fiscal Year 1997, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Treatability Study was performed at the Idaho National Engineering and Environmental Laboratory. The study involved subsurface stabilization of a mixed waste contaminated soil site called the Acid Pit. This study represents the culmination of a successful technology development effort that spanned Fiscal Years 1994-1996. Research and development of the in situ grout stabilization technique was conducted. Hardware and implementation techniques are currently documented in a patent pending with the United States Patent and Trademark Office. The stabilization technique involved using jet grouting of an innovative grouting material to form a monolith out of the contamination zone. The monolith simultaneously provides a barrier to further contaminant migration and closes voids in the soil structure against further subsidence. This is accomplished by chemical incorporation of contaminants into less soluble species and achieving a general reduction in hydraulic conductivity within the monolith. The grout used for this study was TECT-HG, a relatively dense iron oxide-based cementitious grout. The treatability study involved cold testing followed by in situ stabilization of the Acid Pit. Volume 1 of this report discusses cold testing, performed as part of a ''Management Readiness Assessment'' in preparation for going hot. Volume 2 discusses the results of the hot Acid Pit Stabilization phase of this project. Drilling equipment was specifically rigged to reduce the spread of contamination, and all grouting was performed under a concrete block containing void space to absorb any grout returns. Data evaluation included examination of implementability of the grouting process and an evaluation of the contaminant spread during grouting. Following curing of the stabilized pit, cores were obtained and evaluated for toxicity

  17. Evaluation of oscillation-free fluid-porous interface treatments for segregated finite volume flow solvers

    NARCIS (Netherlands)

    Staniç, M.; Nordlund, M.; Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2016-01-01

    The volume-averaged approach to simulate flow in porous media is often used because of its practicality and computational efficiency. Derivation of the volume-averaged porous flow equations introduces additional porous resistance terms to the momentum equation. These porous resistance terms create

  18. Relative impact of respiratory muscle activity on tidal flow and end expiratory volume in healthy neonates

    NARCIS (Netherlands)

    Hutten, Gerard J.; van Eykern, Leo A.; Latzin, Philipp; Kyburz, Manuela; van Aalderen, Wim M.; Frey, Urs

    2008-01-01

    Introduction: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous

  19. Pad-weighing test performed with standardized bladder volume

    DEFF Research Database (Denmark)

    Lose, G; Rosenkilde, P; Gammelgaard, J

    1988-01-01

    The result of the one-hour pad-weighing test proposed by the International Continence Society has been demonstrated to depend on the urine load during the test. To increase reproducibility of the pad-weighing test by minimizing the influence of variation in urine load the test was done...... with a standardized bladder volume (50% of the cystometric bladder capacity). Twenty-five female patients with stress or mixed incontinence underwent two separate tests. Test-retest results were highly correlated (r = 0.97, p less than 0.001). Nonetheless, analysis of test-retest differences revealed a variation up...... to +/- 24 g between two tests. It is concluded that this setup (i.e., standardized bladder volume) of the one-hour pad-weighing test allows for a more reliable assessment of urinary incontinence for quantitative purposes....

  20. Underground Test Area Subproject Phase I Data Analysis Task. Volume VIII - Risk Assessment Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VIII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the risk assessment documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  1. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  2. The 1980-81 AFOSR-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 1. Objectives, Evaluation of Data, Specifications of Test Cases, Discussion, and Position Papers

    Science.gov (United States)

    1980-09-01

    research community on provision for accu- racy and oil the difficulties of laboratory control of fluid flow been brought to bear in a timely manner...numbnr)I. 2. Constitutive (e.g., polymers) 3. Energy release (e.g., chemical reactions) 4.Surface tension (e.g., oil -slick calming) 5.Cryogenic...thp following flows: a. In "thin shear layer" flows, i.e., having small d6/dx and negligible ;p/3y, the equations are essencially parabolic, and the

  3. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.

    Science.gov (United States)

    Hurley, Edward H; Keszler, Martin

    2017-03-01

    The ability to ventilate babies with tidal volumes (V T s) below dead space has been demonstrated both in vivo and in vitro, though it appears to violate classical respiratory physiology. We hypothesised that this phenomenon is made possible by rapid flow of gas that penetrates the dead space allowing fresh gas to reach the lungs and that the magnitude of this phenomenon is affected by flow rate or how rapidly air flows through the endotracheal tube. We conducted two bench experiments. First, we measured the time needed for complete CO 2 washout from a test lung to assess how fixed V T but different inflation flow rates affect ventilation. For the second experiment, we infused carbon dioxide at a low rate into the test lung, varied the inflation flow rate and adjusted the V T to maintain stable end tidal carbon dioxide (ETCO 2 ). At all tested V T s, lower flow rate increased the time it took for CO 2 to washout from the test lung. The effect was most pronounced for V T s below dead space. The CO 2 steady-state experiment showed that ETCO 2 increased when the flow rate decreased. Ventilating with a slower flow rate required a nearly 20% increase in V T for the same effective alveolar ventilation. Inflation flow rate affects the efficiency of CO 2 removal with low V T . Our results are relevant for providers using volume-controlled ventilation or other modes that use low inflation flow rates because the V T required for normocapnia will be higher than published values that were generated using pressure-limited ventilation modes with high inflation flows. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Plasma Volume Expansion Resulting from Intravenous Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Robert G. Hahn

    2011-01-01

    Full Text Available Objective. To quantify the degree of plasma volume expansion that occurs during an intravenous glucose tolerance test (IVGTT. Methods. Twenty healthy volunteers (mean age, 28 years underwent IVGTTs in which 0.3 g/kg of glucose 30% was injected as a bolus over 1 min. Twelve blood samples were collected over 75 min. The plasma glucose and blood hemoglobin concentrations were used to calculate the volume distribution (Vd and the clearance (CL of both the exogenous glucose and the injected fluid volume. Results. The IVGTT caused a virtually instant plasma volume expansion of 10%. The half-life of the glucose averaged 15 min and the plasma volume expansion 16 min. Correction of the fluid kinetic model for osmotic effects after injection reduced CL for the infused volume by 85%, which illustrates the strength of osmosis in allocating fluid back to the intracellular fluid space. Simulations indicated that plasma volume expansion can be reduced to 60% by increasing the injection time from 1 to 5 min and reducing the glucose load from 0.3 to 0.2 g/kg. Conclusion. A regular IVGTT induced an acute plasma volume expansion that peaked at 10% despite the fact that only 50–80 mL of fluid were administered.

  5. A comparison of preoperative and postoperative testicular volume and blood flow in patients with inguinal hernia, hydrocele, and cord cyst: A prospective cohort study.

    Science.gov (United States)

    Tuncer, Ahmet Ali; Peker, Tamer; Acar, Mehtap Berke; Embleton, Didem Baskin; Cetinkursun, Salih

    2017-01-01

    To evaluate the effect of inguinal operations performed with a modified Ferguson technique upon testicular volume and blood flow. This study involved 23 children receiving surgery for inguinal hernia, hydrocele, and cord cyst. This was a prospective study performed between April 2016 and June 2016 in a medical faculty pediatric surgery unit. The color Doppler ultrasound (CDUS) was used to assess testicular volume and blood flow before and after a modified Ferguson technique surgery. The pre- and post operative testicular volume and blood flow were compared with the contralateral testes. SPSS software was used to statistically analyze the data arising; the Mann-Whitney U test and Friedman test were used to compare samples, and P<0.05 was accepted as statistically significant. Preoperative and postoperative testicular volumes were not statistically different when compared to contralateral testes. In patients with right sided inguinal pathology, testicular blood flow on the right side was significantly lower than that on the left side (P=0.023). The testicular blood flow was not statistically different compared with the contralateral testes during the first week evaluation and first month evaluation. The blood flow, probably reduced due to the pressure caused by inguinal pathology, was normalized through surgery. The modified Ferguson technique do not change the testes volume and blood flow.

  6. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    Science.gov (United States)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  7. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller

    2014-01-01

    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  8. Computed tomography angiography: the effect of different chaser flow rates, volumes, and fluids on contrast enhancement.

    Science.gov (United States)

    Behrendt, Florian F; Jost, Gregor; Pietsch, Hubertus; Keil, Sebastian; Mottaghy, Felix M; Günther, Rolf W; Mahnken, Andreas H

    2011-04-01

    The aim of this study was to intraindividually compare the effect of different chaser flow rates, volumes, and fluids on contrast enhancement in multidetector-row computed tomography. Multidetector-row computed tomography scanning of 5 dogs was performed under standardized conditions using an adapted injection protocol to ensure an identical iodine delivery rate of 1.0 gI/s and a total iodine dose of 300 mg/kg body weight (iopromide 300 and 370). The contrast medium application was followed by a 10-mL saline chaser at different injection rates (0, 2.7, 4, 6, and 8 mL/s) or by different saline chaser volumes (0, 5, 10, and 15 mL) at a flow rate of 4 mL/s. Furthermore, different chaser fluids (NaCl, hydroxyethyl starch 10%, and Dextran 1%) with different viscosities (hydroxyethyl starch 10% and dextran 1%: 3.28 and 5.98 mPa · s at 37°C) were tested (volume: 10 mL; flow rate: 6 mL/s). Each dog was examined with each protocol. The interval between each computed tomography scan session which included 2 measurements was at least 3 days. Dynamic computed tomography scans were acquired at the level of the cephalic vein, cranial vena cava, pulmonary artery, and ascending and descending aorta. Time-enhancement curves were computed, and pulmonary and aortic peak enhancements as well as time-to-peak were analyzed. Increased saline chaser flow rates or increased saline chaser volumes resulted in increased pulmonary and aortic peak contrast enhancement. Peak enhancement was highest and significantly greater compared with no saline chaser for a flow rate of 8 mL/s (pulmonary artery: 816.8 vs. 471.5 HU, P = 0.0079; ascending aorta: 578.7 vs. 384.1 HU, P = 0.0079; descending aorta: 581.4 HU vs. 390.6 HU, P = 0.0159) and a saline volume of 15 mL (pulmonary artery: 670.2 vs. 453.5 HU, P = 0.0079; ascending aorta: 512.1 vs. 370.6 HU, P = 0.0317; descending aorta: 504.0 HU vs. 394.4 HU, P = 0.0159). No significant differences between the peak times for different saline chasers were

  9. Miniaturized, High Flow, Low Dead Volume Preconcentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. has demonstrated feasibility in Phase I and now proposes a Phase II effort to develop a miniaturized high flow, low dead-volume...

  10. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  11. Are urine flow-volume nomograms developed on Caucasian men optimally applicable for Indian men? Need for appraisal of flow-volume relations in local population

    Directory of Open Access Journals (Sweden)

    Mayank M Agarwal

    2010-01-01

    Full Text Available Introduction : Flow-volume nomograms and volume-corrected flow-rates (cQ are tools to correct uroflow rates (Q with varied voided volumes (VV of urine. We investigated the applicability of the available nomograms in our local population. Materials and Methods : Raw data of our previous study on variation in Q with voiding position (standing, sitting, and squatting in healthy adult men was reanalyzed. Additionally, the departmental urodynamic database of the last four years was searched for uroflow data of men with voiding symptoms (International Prostatic Symptom Score (IPSS > 7 and global quality of life score >2. These results were projected on the Liverpool and Siroky nomograms for men. The Q-VV relations were statistically analyzed using curve-estimation regression method to examine the current definition of corrected maximum flow rate (Qmax. Results : We found a cubic relation between Q and VV; based on this we developed novel equation for cQ [cQ=Q/(VV 1/3 ] and novel confidence-limit flow-volume nomograms. The imaginary 16 th percentile line of Liverpool nomogram, -1 standard-deviation line of Siroky nomogram and lower 68% confidence-limit line of our nomogram had sensitivity of 96.2%, 100% and 89.3%, and specificity of 75.3% 69.3% and 86.0%, respectively for Qmax-VV relations. Corresponding values for average flow rate (Qave-volume relations were 96.2%, 100% and 94.6%, and 75.2%, 50.4% and 86.0%, respectively. The area under curve of the receiver operating characteristics (ROC curve for cQmax and cQave was 0.954 and 0.965, respectively, suggesting significantly higher discriminatory power than chance (P = 0.0001. Conclusion : Flow-volume nomograms developed on Caucasian population may not be optimally applicable to the Indian population. We introduce flow-volume nomograms and cQ, which have high sensitivity and specificity.

  12. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  13. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor

    2017-06-01

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.

  14. Surveillance for hemodialysis access stenosis: usefulness of ultrasound vector volume flow

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Jensen, Jonas; Hansen, Kristoffer L.

    2016-01-01

    Purpose: To investigate if ultrasound vector-flow imaging (VFI) is equal to the reference method ultrasound dilution technique (UDT) in estimating volume flow and changes over time in arteriovenous fistulas (AVFs) for hemodialysis. Materials and methods: From January 2014 to January 2015, patient...

  15. Quantitative evaluation of myocardial function by a volume-normalized map generated from relative blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Fukami, Tadanori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Sato, Hidenori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Wu, Jin [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Lwin, Thet-Thet- [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yuasa, Tetsuya [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kawano, Satoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Iida, Keiji [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Akatsuka, Takao [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Hontani, Hidekata [Department of Computer Science and Engineering, Nagoya Institute of Technology, Aichi 466-8555 (Japan); Takeda, Tohoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Tamura, Masao [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yokota, Hiroshi [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan)

    2007-07-21

    Our study aimed to quantitatively evaluate blood flow in the left ventricle (LV) of apical hypertrophic cardiomyopathy (APH) by combining wall thickness obtained from cardiac magnetic resonance imaging (MRI) and myocardial perfusion from single-photon emission computed tomography (SPECT). In this study, we considered paired MRI and myocardial perfusion SPECT from ten patients with APH and ten normals. Myocardial walls were detected using a level set method, and blood flow per unit myocardial volume was calculated using 3D surface-based registration between the MRI and SPECT images. We defined relative blood flow based on the maximum in the whole myocardial region. Accuracies of wall detection and registration were around 2.50 mm and 2.95 mm, respectively. We finally created a bull's-eye map to evaluate wall thickness, blood flow (cardiac perfusion) and blood flow per unit myocardial volume. In patients with APH, their wall thicknesses were over 10 mm. Decreased blood flow per unit myocardial volume was detected in the cardiac apex by calculation using wall thickness from MRI and blood flow from SPECT. The relative unit blood flow of the APH group was 1/7 times that of the normals in the apex. This normalization by myocardial volume distinguishes cases of APH whose SPECT images resemble the distributions of normal cases.

  16. 46 CFR 162.018-7 - Flow rating tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of...

  17. Practicing the Test Produces Strength Equivalent to Higher Volume Training.

    Science.gov (United States)

    Mattocks, Kevin T; Buckner, Samuel L; Jessee, Matthew B; Dankel, Scott J; Mouser, J Grant; Loenneke, Jeremy P

    2017-09-01

    To determine if muscle growth is important for increasing muscle strength or if changes in strength can be entirely explained from practicing the strength test. Thirty-eight untrained individuals performed knee extension and chest press exercise for 8 wk. Individuals were randomly assigned to either a high-volume training group (HYPER) or a group just performing the one repetition maximum (1RM) strength test (TEST). The HYPER group performed four sets to volitional failure (~8RM-12RM), whereas the TEST group performed up to five attempts to lift as much weight as possible one time each visit. Data are presented as mean (90% confidence interval). The change in muscle size was greater in the HYPER group for both the upper and lower bodies at most but not all sites. The change in 1RM strength for both the upper body (difference of -1.1 [-4.8, 2.4] kg) and lower body (difference of 1.0 [-0.7, 2.8] kg for dominant leg) was not different between groups (similar for nondominant). Changes in isometric and isokinetic torque were not different between groups. The HYPER group observed a greater change in muscular endurance (difference of 2 [1,4] repetitions) only in the dominant leg. There were no differences in the change between groups in upper body endurance. There were between-group differences for exercise volume (mean [95% confidence interval]) of the dominant (difference of 11,049.3 [9254.6-12,844.0] kg) leg (similar for nondominant) and chest press with the HYPER group completing significantly more total volume (difference of 13259.9 [9632.0-16,887.8] kg). These findings suggest that neither exercise volume nor the change in muscle size from training contributed to greater strength gains compared with just practicing the test.

  18. Development of energy-efficient comfort ventilation plants with air quality controlled volume flow rate and continuous detection of the status of the windows aperture. Part 3. Final report with documentation of the field test; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 3. Endbericht mit Dokumentation des Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Hacke, Ulrike [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2012-10-25

    Residential ventilation systems with a heat recovery contribute to the improvement of the air quality and to the reduction of heat losses caused by ventilation. An additional opening of the windows in residential buildings results in a clearly increasing consumption of thermal heat because the thermal heat of the out coming air cannot be utilized furthermore. Continuous information on the energetic effects of the opening of windows is helpful. Under this aspect, the authors of the contribution under consideration report on the development of energy efficient comfort ventilation systems with an air quality controlled volume flow rate and continuous detection of the status of the windows aperture. The contribution under consideration is the third part of a project concerning to this theme. This part encompasses a field test with four single-family houses in which the air quality control as well as the detection of the status of the windows aperture is tested and optimized for a long period. This contribution also contains the results of the second part of the project. The second project investigate the technical implementation of a air quality regulation at prototypes and test facilities.

  19. An Eulerian finite volume solver for multi-material fluid flows with cylindrical symmetry

    International Nuclear Information System (INIS)

    Bernard-Champmartin, Aude; Ghidaglia, Jean-Michel; Braeunig, Jean-Philippe

    2013-01-01

    In this paper, we adapt a pre-existing 2D cartesian cell centered finite volume solver to treat the compressible 3D Euler equations with cylindrical symmetry. We then extend it to multi-material flows. Assuming cylindrical symmetry with respect to the z axis (i.e. all the functions do not depend explicitly on the angular variable h), we obtain a set of five conservation laws with source terms that can be decoupled in two systems solved on a 2D orthogonal mesh in which a cell as a torus geometry. A specific up-winding treatment of the source term is required and implemented for the stationary case. Test cases will be presented for vanishing and non-vanishing azimuthal velocity uh. (authors)

  20. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  1. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char-for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests

  2. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    International Nuclear Information System (INIS)

    Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef

    2016-01-01

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in the simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.

  3. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  4. Advances in two-phase flow and heat transfer fundamentals and applications volumes I and II

    International Nuclear Information System (INIS)

    Kakac, S.; Ishil, M.

    1983-01-01

    Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide variety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. Leading scientists and practicing engineers from NATO and non-NATO countries convened to discuss two-phase flow and heat transfer and formulated recommendations for future research directions. These two volumes incorporate a systematic approach to two-phase flow analysis, and present both basic and applied information. The volumes identify the unresolved problem areas and provide suggestions for priority research topics in the field of two-phase flow and heat transfer

  5. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    International Nuclear Information System (INIS)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon

    2002-01-01

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  6. A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.

  7. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    International Nuclear Information System (INIS)

    Melnikov, A A; Popov, S G; Vikulov, A D; Nikolaev, D V

    2013-01-01

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  8. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  9. The Marviken critical flow test. A description and early results

    International Nuclear Information System (INIS)

    Hall, D.G.; Ericson, L.

    1978-01-01

    The Marviken critical flow tests are a multinational project designed to obtain critical flow data under conditions similar to those which might occur in a full-scale reactor loss-of-coolant accident. The test facility and procedure used to obtain critical flow data at supply pressures up to 5 MPa and at fluid conditions from 30 0 C subcooling to low-quality saturated conditions are described. Sample data of the type obtained using ruptured-pipe simulators having internal diameters up to 500 mm and length-to-diameter ratios of 1 and 3 are presented and discussed. It is concluded that the results of the tests will probably provide an important measure of the effect of piping size on the critical flow phenomenon and increase the certainty with which critical flows can be predicted in fullscale reactor calculations. (author)

  10. Analysis of tidal breathing flow volume loop in dogs with tracheal masses.

    Science.gov (United States)

    Adamama-Moraitou, Kk; Pardali, D; Prassinos, N N; Papazoglou, L G; Makris, D; Gourgoulianis, K I; Papaioannou, N; Rallis, T S

    2010-09-01

    To investigate whether there are any changes in the tidal breathing flow volume loop (TBFVL) in calm, non-dyspnoeic dogs with intratracheal masses. We compared 4 dogs with intratracheal masses (group 1) with 10 healthy dogs (group 2). Routine clinical and laboratory examinations of the dogs were unremarkable, except for episodic upper respiratory obstructive signs in the dogs in group 1. Lateral radiography of the neck and thorax showed that group 1 dogs had masses that appeared to protrude into the tracheal lumen. Tracheoscopy and surgery or necropsy was performed to confirm the presence of the mass. Arterial blood gas and TBFVL analysis was carried out in all dogs to assess respiratory status. The shape of the TBFVL for dogs in group 1 was narrower and ovoid compared with that for the group 2 dogs. Tidal volume and expiratory and inspiratory times were significantly reduced, whereas the respiratory rate was increased for dogs in group 1 compared with dogs in group 2. Arterial blood gas analysis was unremarkable for all dogs. TBFVL is a non-invasive technique that is easy to perform and well tolerated by dogs. In the absence of abnormalities detected by routine diagnostic evaluations and arterial blood gas analysis in dogs with intratracheal masses, the TBFVL contributes to the definition of the physiologic status of the airways at the time of testing, and results suggests that these dogs breathe quite normally when they are calm and non-dyspnoeic.

  11. Flow and Reading Comprehension: Testing the Mediating Role of Emotioncy

    Science.gov (United States)

    Shahian, Leila; Pishghadam, Reza; Khajavy, Gholam Hassan

    2017-01-01

    Considering the importance of psychological factors in learners' reading abilities, this study examines the relationship between flow, emotioncy, and reading comprehension. To this end, 238 upper-intermediate and advanced English as a Foreign Language (EFL) learners were asked to take four tests of reading comprehension along with flow and…

  12. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    Science.gov (United States)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  13. Flow tests of the Willis Hulin well

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

  14. Influence of volume and flow change on the electrical impedance signal (in vitro)

    Science.gov (United States)

    Bodo, M.; Garcia, A.; Pearce, F.; Van Albert, S.; Armonda, R.

    2010-04-01

    On the basis of preliminary results, rheoencephalography (REG) shows promise as a practical, noninvasive and continuous monitoring modality of brain injuries. However, REG literature reflects uncertainty about whether the signal reflects flow or volume. Presented here are results of in vitro studies manipulating flow/volume to model clinical conditions (such as brain ischemia and vasospasm) while recording the electrical impedance signal. A loop was created using tubing filled with 0.9 % NaCl. This loop was comprised of a Doppler in-line flow probe connected to an ultrasound flow meter, a peristaltic pump, a pressure transducer and home-made electrical impedance measuring cell, incorporating a balloon catheter. Bipolar impedance amplifiers were used for measuring impedance pulse waves. Data were stored on a PC and processed off-line. This in vitro study confirmed that 1) Doubling flow rate influenced the pulse amplitude and mean flow of the Doppler signal; 2) Doubling flow rate had no influence on the amplitudes of the pressure or electrical impedance signals; 3) An increase in amplitude was observed in the pressure and electrical impedance signals when the first derivative was taken. 4) Balloon inflation decreased electrical impedance and Doppler flow pulse amplitudes; 5) With balloon inflation, Doppler and electrical impedance signals showed an identical relationship to decreased flow (R2=0.966).

  15. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    Science.gov (United States)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  16. Pelvic Blood Flow Predicts Fibroid Volume and Embolic Required for Uterine Fibroid Embolization: A Pilot Study With 4D Flow MR Angiography.

    Science.gov (United States)

    Malone, Christopher D; Banerjee, Arjun; Alley, Marcus T; Vasanawala, Shreyas S; Roberts, Anne C; Hsiao, Albert

    2018-01-01

    We report here an initial experience using 4D flow MRI in pelvic imaging-specifically, in imaging uterine fibroids. We hypothesized that blood flow might correlate with fibroid volume and that quantifying blood flow might help to predict the amount of embolic required to achieve stasis at subsequent uterine fibroid embolization (UFE). Thirty-three patients with uterine fibroids and seven control subjects underwent pelvic MRI with 4D flow imaging. Of the patients with fibroids, 10 underwent 4D flow imaging before UFE and seven after UFE; in the remaining 16 patients with fibroids, UFE had yet to be performed. Four-dimensional flow measurements were performed using Arterys CV Flow. The flow fraction of the internal iliac artery was expressed as the ratio of internal iliac artery flow to external iliac artery flow and was compared between groups. The flow ratios between the internal iliac arteries on each side were calculated. Fibroid volume versus internal iliac flow fraction, embolic volume versus internal iliac flow fraction, and embolic volume ratio between sides versus the ratio of internal iliac artery flows between sides were compared. The mean internal iliac flow fraction was significantly higher in the 26 patients who underwent imaging before UFE (mean ± standard error, 0.78 ± 0.06) than in the seven patients who underwent imaging after UFE (0.48 ± 0.07, p flow fraction correlated well with fibroid volumes before UFE (r = 0.7754, p flow (r = 0.6776, p = 0.03). Internal iliac flow measured by 4D flow MRI correlates with fibroid volume and is predictive of the ratio of embolic required to achieve stasis on each side at subsequent UFE and may be useful for preprocedural evaluation of patients with uterine fibroids.

  17. Effects of anti-VEGF on predicted antibody biodistribution: roles of vascular volume, interstitial volume, and blood flow.

    Directory of Open Access Journals (Sweden)

    C Andrew Boswell

    Full Text Available BACKGROUND: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. METHODOLOGY/PRINCIPAL FINDINGS: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF antibody (10 mg/kg 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05 on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048 in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05 in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25% in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. CONCLUSIONS/SIGNIFICANCE: These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF.

  18. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    Science.gov (United States)

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...

  19. Microgravity Multi-Phase Flow Experiment for Suborbital Testing (MFEST)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to conduct a pathfinder, suborbital flight experiment for two-phase fluid flow and separator operations.The primary purpose of this test...

  20. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    Science.gov (United States)

    Louda, Petr; Sváček, Petr; Kozel, Karel; Příhoda, Jaromír

    2014-12-01

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  1. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Louda, Petr; Příhoda, Jaromír [Institute of Thermomechanics, Czech Academy of Sciences, Prague (Czech Republic); Sváček, Petr; Kozel, Karel [Czech Technical University in Prague, Fac. of Mechanical Engineering (Czech Republic)

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  2. ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans.

    Science.gov (United States)

    Unnerbäck, Mårten; Ottesen, Johnny T; Reinstrup, Peter

    2018-02-01

    The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set to examine cerebral arterial inflow and venous cerebral outflow as well as flow of cerebrospinal fluid over the foramen magnum. The difference in total flow into and out from the cranial cavity (Flow tot ) over time provides the ΔICV. The ICP curve was compared to the Flow tot and the ΔICV. Correlations were calculated through linear and logarithmic regression. Student's t test was used to test the null hypothesis between paired samples. Excluding the initial ICP wave, P1, the mean R 2 for the correlation between the ΔICV and the ICP was 0.75 for the exponential expression, which had a higher correlation than the linear (p = 0.005). The first ICP peaks correlated to the initial peaks of Flow tot with a mean R 2  = 0.88. The first part, or the P1, of the ICP curve seems to be created by the first rapid net inflow seen in Flow tot while the rest of the ICP curve seem to correlate to the ΔICV.

  3. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  4. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    Science.gov (United States)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  5. Control volume based modelling in one space dimension of oscillating, compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction......, and multidimensional effects are calculated using empirical correlations. Transformations of the conservation equations into new variables, artificial dissipation for dissipating acoustic phenomena, and an asymmetric interpolation method for minimising numerical diffusion and non physical temperature oscillations...

  6. Determination of fan flow and water rate adjustment for off-design cooling tower tests

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-02-01

    The determination of the performance of a mechanical draft cooling tower requires that the air mass flow through the tower be known. Since this flow is not measured, it has been customary to use the manufacturer's design air flow and adjust it by the one-third power of the ratio of the design to test fan horsepower. The most nearly correct approximation of air flow through a tower can be obtained by incrementally moving through the tower from air inlet to outlet while calculating mass flows, energy balances, and pressure drops for each increment and then utilizing fan curves to determine volumetric and mass flows. This procedure would account for changes in air humidity and density through the tower, evaporation of water, effect of water rate on air pressure drop, and changes in fan characteristics. These type calculations may be within the capabilities of all in the near future, but for the interim, it is recommended that a more elementary approach be used which can be handled with a good calculator and without any proprietary data. This approach depends on certain assumptions which are acceptable if the tower test is conducted within CTI code requirements. The fan must be considered a constant suction volume blower for a given blade pitch. The total pressure at the fan, a function of volumetric flow and wet air density, must be assumed to be unaffected by other considerations, and the fan horsepower must be assumed to change only as volumetric flow and wet air density changes. Given these assumptions, along with design information normally provided with a tower, the determination of air flow through a tower in a test can be made from CTI test data. The air flow, and consequently the water rate adjustment and corrected water to air ratio, are derived and found to be direct functions of horsepower and density and an inverse function of wet air humidities

  7. Well test analysis of partially penetrating wells in a circular cylinder drainage volume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [Kade Technologies Inc., Calgary, AB (Canada)

    2003-07-01

    Steady-state and unsteady-state pressure-transient tests are useful for evaluating in-situ reservoir and wellbore parameters that identify production characteristics of a well. This study presents a new pressure drawdown formula of partially penetrating wells. The formula is presented for circular cylinder drainage volume with constant pressure at boundary conditions. Analytical solutions are proposed which assume uniform fluid withdrawal along the portion of the wellbore open to flow. A formula is also presented to calculate pseudo-skin factor resulting from partial penetration. Equations of fully penetrating wells were obtained in cases where the producing well length was equal to the pay zone thickness. 23 refs.

  8. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  9. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  10. Construction of the two-phase critical flow test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-03-01

    The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility

  11. Optimizing human semen cryopreservation by reducing test vial volume and repetitive test vial sampling

    DEFF Research Database (Denmark)

    Jensen, Christian F S; Ohl, Dana A; Parker, Walter R

    2015-01-01

    : Prospective clinical laboratory study. SETTING: University assisted reproductive technology (ART) laboratory. PATIENT(S): A total of 594 patients undergoing semen analysis and cryopreservation. INTERVENTION(S): Semen analysis, cryopreservation with different intermediate steps and in different volumes (50......-1,000 μL), and long-term storage in LN2 or VN2. MAIN OUTCOME MEASURE(S): Optimal TV volume, prediction of cryosurvival (CS) in ART procedure vials (ARTVs) with pre-freeze semen parameters and TV CS, post-thaw motility after two- or three-step semen cryopreservation and cryostorage in VN2 and LN2. RESULT......(S): Test vial volume of 50 μL yielded lower CS than other volumes tested. Cryosurvival of 100 μL was similar to that of larger volumes tested. An intermediate temperature exposure (-88°C to -93°C for 20 minutes) during cryopreservation did not affect post-thaw motility. Cryosurvival of TVs and ARTVs from...

  12. Electrokinetic pumping and detection of low-volume flows in nanochannels

    NARCIS (Netherlands)

    Mela, P.; Tas, Niels Roelof; Berenschot, Johan W.; van Nieuwkasteele, Jan William; van den Berg, Albert

    2004-01-01

    Electrokinetic pumping of low-volume rates was performed on-chip in channels of small cross sectional area and height in the sub-m range. The flow was detected with the current monitoring technique by monitoring the change in resistance of the fluid in the channel upon the electroosmosis-driven

  13. Limited bronchoconstriction to methacholine using partial flow-volume curves in nonasthmatic subjects

    NARCIS (Netherlands)

    Sterk, P. J.; Daniel, E. E.; Zamel, N.; Hargreave, F. E.

    1985-01-01

    We investigated whether the plateau of the dose-response to nonsensitizing stimuli, such as methacholine, could be explained by the airway dilation that follows lung inflation in nonasthmatics. We used maximal expiratory partial flow-volume curves to measure the response of the airways to doubling

  14. A spheroidal control volume for the quantitative measurement of regurgitant flow by cardiac MRI.

    Science.gov (United States)

    Kortright, Eduardo; Rayarao, Geetha; Li, Longchuan; Anayiotos, Andreas S; Biederman, Robert W W; Doyle, Mark

    2008-01-01

    We sought to show that a spheroidally shaped control volume (CV), formed from a minimal MRI data set, can be used to measure regurgitant flow through a defective cardiac valve consistently and accurately under a variety of flow conditions. Using a pulsatile flow pump and phantoms simulating severe valvular regurgitation, we acquired 31 scans of two or three radially oriented slices, using a variety of flow waveforms and regurgitant volumes of 12 to 55 ml. Data sets included high- and low-resolution scans, and variable-rate sparse sampling was also applied to reduce the scan time. An oblate spheroid was placed in the pump chamber opposite the jet and fit as tightly as possible to isomagnitude velocity contours at 25% of the velocity encoding limit. Normalized regurgitant volumes (NRVs) expressed as a percentage of the pump setting were obtained from the product of the spheroid surface area with the velocities normal to it. Mean +/- SD NRV values were 96.8 +/- 6.6% for all scans. Imaging times in the breath-hold range were obtained using reduced resolution and variable-rate sparse sampling approaches without significant degradation in accuracy. In our preliminary findings, the spheroidal CV method showed clear potential for the development of a robust, clinically feasible technique for the measurement of regurgitant volume.

  15. Can flow-volume loops be used to diagnose exercise induced laryngeal obstructions?

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Maltbæk, Niels; Jørgensen, Inger M

    2013-01-01

    BACKGROUND: Pre- and post-exercise flow-volume loops are often recommended as an easy non-invasive method for diagnosing or excluding exercise-induced laryngeal obstructions in patients with exercise-related respiratory symptoms. However, at present there is no evidence for this recommendation. A...

  16. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  17. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  18. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  19. Tidal breathing flow-volume loop analysis for clinical assessment of airway obstruction in conscious dogs.

    Science.gov (United States)

    Amis, T C; Kurpershoek, C

    1986-05-01

    Using a mask, pneumotachograph, and X-Y recorder, tidal breathing flow-volume loops (TBFVL) were evaluated in 33 healthy dogs and in 18 dogs with acquired obstructive respiratory tract disease. The loops were evaluated for qualitative shape, tidal volume (VT), respiratory rate, peak and midtidal inspiratory flow (PIF and IF50, respectively), peak and midtidal expiratory flow (PEF and EF50, respectively), inspiratory and expiratory flow at end expiratory volume plus 25% VT (IF25 and EF25, respectively), inspiratory time, and expiratory time. Indices of loop shape were developed by division of flow measurements (eg, PEF/PIF and IF50/IF25). Twenty healthy dogs had the same TBFVL (type 1). Typically, PEF occurred at the beginning of expiration, and PIF occurred toward the end of inspiration. Three other TBFVL types were identified in the remaining dogs. Mean coefficients of variation for TBFVL indices ranged from 7% to 18%. Dogs with a fixed-type upper airway obstruction (pharyngeal or laryngeal mass, n = 7) had TBFVL abnormalities, indicating inspiratory and expiratory phase flattening. Concavity or late expiratory phase flattening was detected in TBFVL from dogs with chronic bronchitis/tracheal collapse (n = 11). The TBFVL were easily evaluated in conscious dogs and were useful in the functional assessment of airway obstruction.

  20. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2018-03-01

    This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.

  1. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media

    Science.gov (United States)

    Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.

    2018-01-01

    We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.

  2. Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods

    Science.gov (United States)

    Bilger, C.; Aboukhedr, M.; Vogiatzaki, K.; Cant, R. S.

    2017-09-01

    Two principal methods have been used to simulate the evolution of two-phase immiscible flows of liquid and gas separated by an interface. These are the Level-Set (LS) method and the Volume of Fluid (VoF) method. Both methods attempt to represent the very sharp interface between the phases and to deal with the large jumps in physical properties associated with it. Both methods have their own strengths and weaknesses. For example, the VoF method is known to be prone to excessive numerical diffusion, while the basic LS method has some difficulty in conserving mass. Major progress has been made in remedying these deficiencies, and both methods have now reached a high level of physical accuracy. Nevertheless, there remains an issue, in that each of these methods has been developed by different research groups, using different codes and most importantly the implementations have been fine tuned to tackle different applications. Thus, it remains unclear what are the remaining advantages and drawbacks of each method relative to the other, and what might be the optimal way to unify them. In this paper, we address this gap by performing a direct comparison of two current state-of-the-art variations of these methods (LS: RCLSFoam and VoF: interPore) and implemented in the same code (OpenFoam). We subject both methods to a pair of benchmark test cases while using the same numerical meshes to examine a) the accuracy of curvature representation, b) the effect of tuning parameters, c) the ability to minimise spurious velocities and d) the ability to tackle fluids with very different densities. For each method, one of the test cases is chosen to be fairly benign while the other test case is expected to present a greater challenge. The results indicate that both methods can be made to work well on both test cases, while displaying different sensitivity to the relevant parameters.

  3. Sodium flow distribution in test fuel assembly P-23B

    International Nuclear Information System (INIS)

    Taylor, J.P.S.

    1978-08-01

    Relatively large cladding diametral increases in the exterior fuel pins of HEDL's test fuel subassembly P-23B were successfully explained by a thermal-hydraulic/solid mechanics analysis. This analysis indicates that while at power, the subassembly flow was less than planned and that the fuel pins were considerably displaced and bowed from their nominal position. In accomplishing this analysis, a method was developed to estimate the sodium flow distribution and pin distortions in a fuel subassembly at power

  4. Benchmark testing the flow and solidification modeling of AI castings

    Science.gov (United States)

    Sirrell, B.; Holliday, M.; Campbell, J.

    1996-03-01

    Although the heat flow aspects of the simulation of castings now appears to be tolerably well advanced, a recent exercise has revealed that computed predictions can, in fact, be widely different from experimentally observed values. The modeling of flow, where turbulence is properly taken into account, appears to be good in its macroscopic ability. However, better resolution and the possible general incorporation of surface tension will be required to simulate the damaging effect of air entrainment common in most metal castings. It is envisaged that the results of this excercise will constitute a useful benchmark test for computer models of flow and solidification for the foreseeable future.

  5. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  6. Numerical Calibration of Mass Flow Plug for Inlet Testing

    Science.gov (United States)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  7. Simulation and Verificaiton of Flow in Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2005-01-01

    Simulations and experimental results of L-box and slump flow test of a self-compacting mortar and a self-compacting concrete are compared. The simulations are based on a single fluid approach and assume an ideal Bingham behavior. It is possible to simulate the experimental results of both tests f...... for a given set of rheological parameters. However, it is important to include boundary conditions related to the lifting procedure in the two tests....

  8. Blood flow, volume and arterio-venous passages in induced mammary tumours of the rat.

    Science.gov (United States)

    Hultborn, Ragnar

    2018-03-01

    To study blood flow, vascular volume and arterio-venous passages in induced mammary tumours of the rat to characterize parameters possibly responsible for tumour hyponutrition. Dimethylbenzanthracene-induced mammary tumours in Sprague-Dawley rats were studied. Regional blood flow was studied by use of the radioactive microsphere tracer technique using 141 Cerium-labelled 15μm spheres coinjected into the left cardiac ventricle with 125 Iodine-labelled 25μm spheres. Blood volume was studied by use of 125 Iodine- or 99m Technetium-labelled human serum albumin, the latter allowing autoradiography of tumour sections for visualization of flow and volume. Twenty-seven rats with 170 tumours had a mean tumour blood flow of 48 and 67mL×min -1 ×100g -1 using 15 and 25μm sphere data, respectively, indicating a significant passage through vessels between 15 and 25μm. The lungs showed a "nominal bronchial" blood flow of 260 and 135mL×min -1 ×100g -1 for the 15 and 25μm spheres, respectively, indicating pulmonary trapping, particularly of small spheres passing the systemic circulation in vessels larger than 15μm. There was a positive correlation between the total tumour blood flow within individual rats and trapped spheres of both dimensions in the lungs, indicating shunts also larger than 25μm. Normal tissues disclosed only small differences in regional blood flow as measured by the two spheres. Blood volume was studied in 20 rats with 120 tumours, with a vascular volume of 3.6mL×100g -1 representing a blood turnover >15 times/min. Blood volume co-localized with perfusion as seen in autoradiographs. In induced rat mammary tumours, a high fraction of blood, 28%, passes arterio-venous vessels between 15 and 25μm and there also exist passages >25μm. These findings indicate that the functional capacity of the tumour vascular bed might be impaired, adding to the abnormal microenvironment of tumours. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Testing large volume water treatment and crude oil ...

    Science.gov (United States)

    Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A

  10. Liver volume, portal vein flow, and clearance of indocyanine green and antipyrine in hyperthyroidism before and after antithyroid treatment

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Sonne, J; Court-Payen, M

    1999-01-01

    The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment.......The aim of the study was to examine liver volume, portal vein flow, and indocyanine green (ICG) and antipyrine clearance in hyperthyroidism before and after antithyroid drug treatment....

  11. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  12. A Weil-Balanced Node-Centered Finite Volume Scheme for Shallow Water Flows with Wetting and Drying

    Science.gov (United States)

    Delis, A. I.; Nikolos, I. K.

    2009-09-01

    We present a conservative, node-centered finite-volume (FV) algorithm for triangular grids in order to simulal unsteady, two-dimensional, shallow-water flows over arbitrary topography with wetting and drying. The algorithm utilize Roe's approximate Riemann solver to compute the numerical fluxes, while second-order spatial accuracy is achieved with MUSCL reconstruction technique. The novel aspects of the algorithm include the extension to second order of the topography source term treatment and the wet/dry front treatment, within the node-centered FV formulation. The numerical scheme is validated against benchmark test cases and experimental data related to propagation and run-up of long waves.

  13. Gas-pressurized dispersive powder flow tester for low volume sample characterization.

    Science.gov (United States)

    Majid, Ainnur Marlyana Abd; Wong, Tin Wui

    2013-05-01

    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Phase-contrast MRI volume flow – a comparison of breath held and navigator based acquisitions

    International Nuclear Information System (INIS)

    Andersson, Charlotta; Kihlberg, Johan; Ebbers, Tino; Lindström, Lena; Carlhäll, Carl-Johan; Engvall, Jan E.

    2016-01-01

    Magnetic Resonance Imaging (MRI) 2D phase-contrast flow measurement has been regarded as the gold standard in blood flow measurements and can be performed with free breathing or breath held techniques. We hypothesized that the accuracy of flow measurements obtained with segmented phase-contrast during breath holding, and in particular higher number of k-space segments, would be non-inferior compared to navigator phase-contrast. Volumes obtained from anatomic segmentation of cine MRI and Doppler echocardiography were used for additional reference. Forty patients, five women and 35 men, mean age 65 years (range 53–80), were randomly selected and consented to the study. All underwent EKG-gated cardiac MRI including breath hold cine, navigator based free-breathing phase-contrast MRI and breath hold phase-contrast MRI using k-space segmentation factors 3 and 5, as well as transthoracic echocardiography within 2 days. In navigator based free-breathing phase-contrast flow, mean stroke volume and cardiac output were 79.7 ± 17.1 ml and 5071 ± 1192 ml/min, respectively. The duration of the acquisition was 50 ± 6 s. With k-space segmentation factor 3, the corresponding values were 77.7 ml ± 17.5 ml and 4979 ± 1211 ml/min (p = 0.15 vs navigator). The duration of the breath hold was 17 ± 2 s. K-space segmentation factor 5 gave mean stroke volume 77.9 ± 16.4 ml, cardiac output 5142 ± 1197 ml/min (p = 0.33 vs navigator), and breath hold time 11 ± 1 s. Anatomical segmentation of cine gave mean stroke volume and cardiac output 91.2 ± 20.8 ml and 5963 ± 1452 ml/min, respectively. Echocardiography was reliable in 20 of the 40 patients. The mean diameter of the left ventricular outflow tract was 20.7 ± 1.5 mm, stroke volume 78.3 ml ± 15.2 ml and cardiac output 5164 ± 1249 ml/min. In forty consecutive patients with coronary heart disease, breath holding and segmented k-space sampling techniques for phase-contrast flow produced stroke volumes and cardiac outputs similar

  15. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  16. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  17. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki

    2000-01-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year (ΔD) were significantly greater than in groups R and B (%TFV: 74.1±0.07 vs 15.2±0.03 vs 11.8±0.04, p<0.01; ΔD: 3.62±0.82 vs 0 vs 0.58±0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and ΔD (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  18. Assessment of the adequacy of bronchial stenting by flow-volume loops

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Clare A.; Roebuck, Derek J. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Pigott, Nick; Elliott, Martin J. [Great Ormond Street Hospital for Children, Cardiothoracic Unit, London (United Kingdom); Dunne, Catherine [Great Ormond Street Hospital for Children, Department of Physiotherapy, London (United Kingdom)

    2006-08-15

    Airway compression is a common problem in children with certain forms of congenital heart disease. Although various surgical approaches are available to overcome this form of airway obstruction, internal stenting is necessary in a minority of patients. It can be difficult to assess the success of stenting at the time of the procedure, and the interval to successful extubation is usually used as an outcome measure. Measurement of relevant parameters of respiratory physiology with flow-volume and volume-pressure loops permits immediate quantitative assessment of the adequacy of stenting. A 3-month-old infant who underwent bronchial stenting and physiological assessment at the time of the procedure is described. (orig.)

  19. Assessment of the adequacy of bronchial stenting by flow-volume loops

    International Nuclear Information System (INIS)

    McLaren, Clare A.; Roebuck, Derek J.; Pigott, Nick; Elliott, Martin J.; Dunne, Catherine

    2006-01-01

    Airway compression is a common problem in children with certain forms of congenital heart disease. Although various surgical approaches are available to overcome this form of airway obstruction, internal stenting is necessary in a minority of patients. It can be difficult to assess the success of stenting at the time of the procedure, and the interval to successful extubation is usually used as an outcome measure. Measurement of relevant parameters of respiratory physiology with flow-volume and volume-pressure loops permits immediate quantitative assessment of the adequacy of stenting. A 3-month-old infant who underwent bronchial stenting and physiological assessment at the time of the procedure is described. (orig.)

  20. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    Science.gov (United States)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  1. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  2. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  3. A finite volume method for density driven flows in porous media

    Directory of Open Access Journals (Sweden)

    Hilhorst Danielle

    2013-01-01

    Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.

  4. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  5. Flow Over Backward Facing Step with Inclined Wall Solved by Finite Volume and Finite Element Method

    Science.gov (United States)

    Louda, Petr; Sváček, Petr; Kozel, Karel; Příhoda, Jaromír

    2010-09-01

    The work deals with numerical solution of 2D incompressible flow over backward facing step. The inclination angles of the upper wall of the channel were chosen as in measurements by Driver and Seegmiller [1]. Two numerical methods are considered. One is finite volume method, the other one is finite element method. Turbulence is modeled using two-equation turbulence models of k-ω type. The influence of outlet boundary condition is discussed and do-nothing-like condition found suitable also for finite volume method. The comparison of both methods is presented for laminar as well as turbulent cases, including experimental results. The differences of the results are studied using one turbulence model and both numerical methods or one method and more turbulence models. It is found that sensitivity of the computation to these circumstances increases for higher inclination angles (diffuser flow).

  6. Application of the finite volume method in the simulation of saturated flows of binary mixtures

    International Nuclear Information System (INIS)

    Murad, M.A.; Gama, R.M.S. da; Sampaio, R.

    1989-12-01

    This work presents the simulation of saturated flows of an incompressible Newtonian fluid through a rigid, homogeneous and isotropic porous medium. The employed mathematical model is derived from the Continuum Theory of Mixtures and generalizes the classical one which is based on Darcy's Law form of the momentum equation. In this approach fluid and porous matrix are regarded as continuous constituents of a binary mixture. The finite volume method is employed in the simulation. (author) [pt

  7. Mercury flow tests (first report). Wall friction factor measurement tests and future tests plan

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio

    1999-07-01

    In the neutron science project at JAERI, we plan to inject a pulsed proton beam of a maximum power of 5 MW from a high intense proton accelerator into a mercury target in order to produce high energy neutrons of a magnitude of ten times or more than existing facilities. The neutrons produced by the facility will be utilized for advanced field of science such as the life sciences etc. An urgent issue in order to accomplish this project is the establishment of mercury target technology. With this in mind, a mercury experimental loop with the capacity to circulate mercury up to 15 L/min was constructed to perform thermal hydraulic tests, component tests and erosion characteristic tests. A measurement of the wall friction factor was carried out as a first step of the mercury flow tests, while testing the characteristic of components installed in the mercury loop. This report presents an outline of the mercury loop and experimental results of the wall friction factor measurement. From the wall friction factor measurement, it was made clear that the wettability of the mercury was improved with an increase of the loop operation time and at the same time the wall friction factors were increased. The measured wall friction factors were much lower than the values calculated by the Blasius equation at the beginning of the loop operation because of wall slip caused by a non-wetted condition. They agreed well with the values calculated by the Blasius equation within a deviation of 10% when the sum of the operation time increased more than 11 hours. This report also introduces technical problems with a mercury circulation and future tests plan indispensable for the development of the mercury target. (author)

  8. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity

    Science.gov (United States)

    Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.

    2015-08-01

    Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

  9. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    Science.gov (United States)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    eruption volume and pre-eruption interval, which will in turn improve our capacity to forecast the size and duration of future dome-forming events at Santorini. The new topographic dataset, and the detailed historical accounts of the eruptions which formed those lava flows, offers a tremendous opportunity to test the current generation of lava flow models.

  10. Cerebral blood flow, blood volume, and brain tissue hematocrit during isovolemic hemodilution with hetastarch in rats.

    Science.gov (United States)

    Todd, M M; Weeks, J B; Warner, D S

    1992-07-01

    The influence of isovolemic hemodilution with 6% hetastarch [hematocrits (Hct) ranging from 43 to 20%] on cerebral blood flow (CBF), cerebral red blood cell and plasma volumes, total cerebral blood volume (CBV), and cerebral Hct was examined in normothermic, normocarbic, halothane-anesthetized Sprague-Dawley rats. CBF was measured via the indicator-fractionation method ([3H]nicotine), red blood cell volume was measured using 99mTc-labeled red blood cells, while plasma volume was measured using [14C]dextran. Brain tissue was fixed in situ by microwave irradiation. All data plots (e.g., CBF vs. Hct) were fitted by linear regression methods. Hemodilution was associated with a progressive increase in forebrain CBF (from a fitted value of 78 ml.100 g-1.min-1 at Hct = 43%, to 171 ml.100 g-1.min-1 at 20%). Cerebral plasma volume also rose, while red blood cell volume decreased. Total CBV (i.e., the sum of red blood cell and plasma volumes) increased in parallel with CBF (from 2.51 ml/100 g at Hct = 43 to 4.94 ml/100 g at Hct = 20%). This increase is larger than can be explained by a simple increase in the diameter of arterial/arteriolar resistance vessels and may be due to either capillary recruitment or to an increase in the volume of postarteriolar structures. Calculated cerebral tissue hematocrit decreased. The magnitude of this decrease was larger than the reduction in arterial Hct; the ratio of cerebral to arterial Hct decreased from 0.780 at an arterial Hct equaling 43% to 0.458 at Hct equaling 20%.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Perioperative evaluation of blood volume flow in high-flow cerebral arteriovenous malformation using phase-contrast magnetic resonance angiography

    Directory of Open Access Journals (Sweden)

    Shigeki Yamada

    2015-06-01

    Full Text Available Phase-contrast magnetic resonance angiography (PC-MRA is useful for the quantitative measurement of blood flow volume (BFV in the internal cerebral arteries (ICAs and basilar artery (BA. A 45-year-old man was diagnosed with a non-hemorrhagic high-flow arteriovenous malformation (AVM in the right temporal lobe. PC-MRA examinations of the bilateral ICAs and BA were conducted before treatment, at five days and at one and three months after the operation. The patient underwent preceding endovascular embolization of the deep part of the nidus and feeders. There were numerous feeders from the superior MCA trunk, which directly passed through the nidus to the normal brain. Therefore, the nidus was completely removed while maintaining the flow of the main superior MCA trunk in a passing artery. The BFV of the right ICA before AVM treatment was extremely high (mean: 675.7, systolic: 896.1, diastolic: 518.5 mL/min. Five days after the nidus resection, the BFV of the right ICA was decreased by almost half of that before treatment, and it was decreased even more at one month after the operation. The BFVs of the left ICA and BA were slightly increased before the operation and returned to normal values after the operation. The diastolic total BFV was immediately decreased after the operation, but the systolic total BFV was not sufficiently decreased at five days after the operation. Therefore, the difference between these systolic and diastolic total BFVs was higher at five days after the operation than before the operation. The systolic and diastolic total BFVs were decreased to normal levels one month after the operation. PC-MRA is a convenient and useful tool for quantifying BFVs in AVMs and can help plan the treatments. More research is needed to establish a definite role for PC-MRA in the quantification of flow changes in the treatment of high-flow AVMs.

  12. Applying well flow adapted filtering to transient pumping tests

    Science.gov (United States)

    Zech, Alraune; Attinger, Sabine

    2014-05-01

    Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et

  13. Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Directory of Open Access Journals (Sweden)

    K. Yapici

    2013-12-01

    Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.

  14. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  15. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2017-12-01

    We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

  16. Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures

    Science.gov (United States)

    Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese

    2017-04-01

    In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.

  17. Test of Flow Characteristics in Tubular Fuel Assembly I - Establishment of test loop and measurement validation test

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2005-12-01

    Tubular type fuel has been developed as one of candidates for Advanced HANARO Reactor(AHR). It is necessary to test the flow characteristics such as velocity in each flow channels and pressure drop of tubular type fuel. A hydraulic test-loop to examine the hydraulic characteristics for a tubular type fuel has been designed and constructed. It consists of three parts; a) piping-loop including pump and motor, magnetic flow meter and valves etc, b) test-section part where a simulated tubular type fuel is located, and 3) data acquisition system to get reading signals from sensors or instruments. In this report, considerations during the design and installation of the facility and the selection of data acquisition sensors and instruments are described in detail. Before doing the experiment to measure the flow velocities in flow channels, a preliminary tests have been done for measuring the coolant velocities using pitot-tube and for validating the measurement accuracy as well. Local velocities of the radial direction in circular tubes are measured at regular intervals of 60 degrees by three pitot-tubes. Flow rate inside the circular flow channel can be obtained by integrating the velocity distribution in radial direction. The measured flow rate was compared to that of magnetic flow meter. According to the results, two values had a good agreement, which means that the measurement of coolant velocity by using pitot-tube and the flow rate measured by the magnetic flow meter are reliable. Uncertainty analysis showed that the error of velocity measurement by pitot-tube is less than ±2.21%. The hydraulic test-loop also can be adapted to others such as HANARO 18 and 36 fuel, in-pile system of FTL(Fuel Test Loop), etc

  18. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  19. Introduction to flow visualization system in SPARC test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wooyoung; Song, Simon [Hanyang University, Seoul (Korea, Republic of); Na, Young Su; Hong, Seong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm{sup 2} limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV.

  20. Prediction of infarction and reperfusion in stroke by flow- and volume-weighted collateral signal in MR angiography.

    Science.gov (United States)

    Ernst, M; Forkert, N D; Brehmer, L; Thomalla, G; Siemonsen, S; Fiehler, J; Kemmling, A

    2015-02-01

    In proximal anterior circulation occlusive strokes, collateral flow is essential for good outcome. Collateralized vessel intensity in TOF- and contrast-enhanced MRA is variable due to different acquisition methods. Our purpose was to quantify collateral supply by using flow-weighted signal in TOF-MRA and blood volume-weighted signal in contrast-enhanced MRA to determine each predictive contribution to tissue infarction and reperfusion. Consecutively (2009-2013), 44 stroke patients with acute proximal anterior circulation occlusion met the inclusion criteria with TOF- and contrast-enhanced MRA and penumbral imaging. Collateralized vessels in the ischemic hemisphere were assessed by TOF- and contrast-enhanced MRA using 2 methods: 1) visual 3-point collateral scoring, and 2) collateral signal quantification by an arterial atlas-based collateral index. Collateral measures were tested by receiver operating characteristic curve and logistic regression against 2 imaging end points of tissue-outcome: final infarct volume and percentage of penumbra saved. Visual collateral scores on contrast-enhanced MRA but not TOF were significantly higher in patients with good outcome. Visual collateral scoring on contrast-enhanced MRA was the best rater-based discriminator for final infarct volume 50% (area under the curve, 0.67; P = .04). Atlas-based collateral index of contrast-enhanced MRA was the overall best independent discriminator for final infarct volume of collateral index combining the signal of TOF- and contrast-enhanced MRA was the overall best discriminator for effective reperfusion (percentage of penumbra saved >50%; area under the curve, 0.89; P collateral assessment, TOF- and contrast-enhanced MRA both contain predictive signal information for penumbral reperfusion. This could improve risk stratification in further studies. © 2015 by American Journal of Neuroradiology.

  1. Studies concerning average volume flow and waterpacking anomalies in thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Ching, J.T.; Mecham, D.C.

    1977-01-01

    One-dimensional hydrodynamic codes have been observed to exhibit anomalous behavior in the form of non-physical pressure oscillations and spikes. It is our experience that sometimes this anomaloous behavior can result in mass depletion, steam table failure and in severe cases, problem abortion. In addition, these non-physical pressure spikes can result in long running times when small time steps are needed in an attempt to cope with anomalous solution behavior. The source of these pressure spikes has been conjectured to be caused by nonuniform enthalpy distribution or wave reflection off the closed end of a pipe or abrupt changes in pressure history when the fluid changes from subcooled to two-phase conditions. It is demonstrated in this paper that many of the faults can be attributed to inadequate modeling of the average volume flow and the sharp fluid density front crossing a junction. General corrective models are difficult to devise since the causes of the problems touch on the very theoretical bases of the differential field equations and associated solution scheme. For example, the fluid homogeneity assumption and the numerical extrapolation scheme have placed severe restrictions on the capability of a code to adequately model certain physical phenomena involving fluid discontinuities. The need for accurate junction and local properties to describe phenomena internal to a control volume often points to additional lengthy computations that are difficult to justify in terms of computational efficiency. Corrective models that are economical to implement and use are developed. When incorporated into the one-dimensional, homogeneous transient thermal-hydraulic analysis computer code, RELAP4, they help mitigate many of the code's difficulties related to average volume flow and water-packing anomalies. An average volume flow model and a critical density model are presented. Computational improvements due to these models are also demonstrated

  2. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    Science.gov (United States)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at Mresearch test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  3. Radial Hydraulic Flow Testing of an Argillaceous Limestone

    Science.gov (United States)

    Jenner, Luc

    This thesis describes the use of both steady state and transient radial flow tests for determining the permeability of the argillaceous Lindsay Limestone. The results obtained from this research investigation are compared with data available in the literature for similar argillaceous limestones found in the Lindsay (Cobourg) formation. The efficiency and consistency of the transient and steady state results show computational modeling using finite element programs such as COMSOL Multiphysics(TM) can be used, under the appropriate meshing scheme, to analyse test results on low permeability geomaterials. The results give a permeability range between 1x10 -22 m2 to 1.68 x 10-19 m 2 with flow along the bedding plane under unconfined conditions. The permeability of the Lindsay Limestone is of importance in understanding and predicting radionuclide spread within a proposed Deep Ground Repository for storing radioactive waste.

  4. Importance of the test volume on the lag phase in biodegradation studies

    DEFF Research Database (Denmark)

    Ingerslev, F.; Torang, Lars; Nyholm, Niels

    2000-01-01

    Increasing the total volume of test medium resulted in decreased lag times (TL) in biodegradability shake flask batch tests conducted with either surface water or with synthetic mineral medium inoculated with supernatant from settled activated sludge. Experiments were performed with test volumes...

  5. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available This paper presents a weakly compressible volume-of-fluid formulation for modelling immiscible high density ratio two-fluid flow under low Mach number conditions. This follows findings of experimental analyses that concluded the compressibility...

  6. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  7. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation.

    Science.gov (United States)

    Lyazidi, Aissam; Thille, Arnaud W; Carteaux, Guillaume; Galia, Fabrice; Brochard, Laurent; Richard, Jean-Christophe M

    2010-12-01

    During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume. In a bench study at a research laboratory in a university hospital, we compared nine ICU ventilators equipped with compensation algorithms, one with a proximal pneumotachograph and one without compensation. Each ventilator was evaluated under normal, obstructive, and restrictive conditions of respiratory mechanics. For each condition, three tidal volumes (V (T)) were set (300, 500, and 800 ml), with and without an inspiratory pause. The insufflated volume and the volume delivered at the Y-piece were measured independently, without a humidification device, under ambient temperature and pressure and dry gas conditions. We computed the actually delivered V (T) to the lung under body temperature and pressure and saturated water vapour conditions (BTPS). For target V (T) values of 300, 500, and 800 ml, actually delivered V (T) under BTPS conditions ranged from 261 to 396 ml (-13 to +32%), from 437 to 622 ml (-13 to +24%), and from 681 to 953 ml (-15 to +19%), respectively (p ventilators.

  8. A method for bubble volume calculating in vertical two-phase flow

    International Nuclear Information System (INIS)

    Wang, H Y; Dong, F

    2009-01-01

    The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.

  9. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  10. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  11. Lateral flow-based antibody testing for Chlamydia trachomatis.

    Science.gov (United States)

    Gwyn, Sarah; Mitchell, Alexandria; Dean, Deborah; Mkocha, Harran; Handali, Sukwan; Martin, Diana L

    2016-08-01

    We describe here a lateral flow-based assay (LFA) for the detection of antibodies against immunodominant antigen Pgp3 from Chlamydia trachomatis, the causative agent of urogenital chlamydia infection and ocular trachoma. Optimal signal detection was achieved when the gold-conjugate and test line contained Pgp3, creating a dual sandwich capture assay. The LFA yielded positive signals with serum and whole blood but not with eluted dried blood spots. For serum, the agreement of the LFA with the non-reference multiplex assay was 96%, the specificity using nonendemic pediatric sera was 100%, and the inter-rater agreement was κ=0.961. For whole blood, the agreement of LFA with multiplex was 81.5%, the specificity was 100%, and the inter-rater agreement was κ=0.940. The LFA was tested in a field environment and yielded similar results to those from laboratory-based testing. These data show the successful development of a lateral flow assay for detection of antibodies against Pgp3 with reliable use in field settings, which would make antibody-based testing for trachoma surveillance highly practical, especially after cessation of trachoma elimination programs. Published by Elsevier B.V.

  12. Flow cytometry susceptibility testing for conventional antifungal drugs and Comparison with the NCCLS Broth Macrodilution Test

    Directory of Open Access Journals (Sweden)

    M.J. Najafzadeh

    2009-08-01

    Full Text Available Introduction: During the last decade, the incidence of fungal infection has been increased in many countries. Because of the advent of resistant to antifungal agents, determination of an efficient strategic plan for treatment of fungal disease is an important issue in clinical mycology. Many methods have been introduced and developed for determination of invitro susceptibility tests. During the recent years, flow cytometry has developed to solving the problem and many papers have documented the usefulness of this technique. Materials and methods: As the first step, the invitro susceptibility of standard PTCC (Persian Type of Culture Collection strain and some clinical isolates of Candida consisting of Candida albicans, C. dubliniensis, C. glabrata, C. kefyer and C. parapsilosis were evaluated by macrodilution broth method according to NCCLS (National Committee for Clinical Laboratory Standards guidelines and flow cytometry susceptibility test. Results:  The data indicated that macro dilution broth methods and flow cytometry have the same results in determination of MIC (Minimum Inhibitory Concentration for amphotericin B, clotrimazole, fluconazole, ketoconazole and miconazole in C. albicans PTCC 5027 as well as clinical Candida isolates, such as C.albicans, C.dubliniensis, C.glabrata C.kefyr, and C.parapsilosis. Discussion: Comparing the results obtained by macrodilution broth and flow cytometry methods revealed that flow cytometry was faster. It is suggested that flow cytometry susceptibility test can be used as a powerful tool for determination of MIC and administration of the best antifungal drug in treatment of patients with Candida infections.

  13. Methods to Increase the Robustness of Finite-Volume Flow Models in Thermodynamic Systems

    Directory of Open Access Journals (Sweden)

    Sylvain Quoilin

    2014-03-01

    Full Text Available This paper addresses the issues linked to simulation failures during integration in finite-volume flow models, especially those involving a two-phase state. This kind of model is particularly useful when modeling 1D heat exchangers or piping, e.g., in thermodynamic cycles involving a phase change. Issues, such as chattering or stiff systems, can lead to low simulation speed, instabilities and simulation failures. In the particular case of two-phase flow models, they are usually linked to a discontinuity in the density derivative between the liquid and two-phase zones. In this work, several methods to tackle numerical problems are developed, described, implemented and compared. In addition, methods available in the literature are also implemented and compared to the proposed approaches. Results suggest that the robustness of the models can be significantly increased with these different methods, at the price of a small increase of the error in the mass and energy balances.

  14. Measurement of hepatic volume and effective blood flow with radioactive colloids: Evaluation of development in liver diseases

    International Nuclear Information System (INIS)

    Fujii, M.; Uchino, H.; Kyoto Univ.

    1982-01-01

    Changes in hepatic volume and the blood flow effectively perfusing the liver parenchyma were studied as an assessment of the severity of liver diseases. Hepatic effective blood flow was estimated as the hepatic fractional clearance of radioactive colloids, obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic fractional clearance was normal or not markedly decreased in patients with acute hepatitis which had developed favorably, but was severely decreased in patients with fulminant hepatitis. In liver diseases, the ratio of hepatic volume to fractional clearance was found to increase as the clearance decreased. In subjects with normal clearance, hepatic fractional clearance was correlated significantly with liver volume, indicating that hepatic effective blood flow is proportional to parenchymal volume in an unanesthetized, resting state. In biopsied cases changes in volume and blood flow accorded well with changes indicated by morphological criteria. In chronic persistent hepatitis, effective hepatic blood flow is not diminished. However, hepatic blood flow were observed between the cirrhosis or chronic aggressive hepatitis, and normal control groups. Extension of chronic inflammatory infiltration into the parenchyma distinguishes chronic aggressive hepatitis from chronic persistent hepatitis. Architecture is often disturbed in the former. These changes should be accompanied by disturbance of microcirculation. The present study indicates that the decrease in effective hepatic blood flow in chronic hepatitis and cirrhosis has two aspects: one is a summation of microcirculatory disturbances, and the other is a decrease in liver cell mass. (orig.)

  15. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

    International Nuclear Information System (INIS)

    Minato, Akihiko; Naitoh, Masanori

    1987-01-01

    A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

  16. Regional blood flow analysis and its relationship with arterial branch lengths and lumen volume in the coronary arterial tree

    International Nuclear Information System (INIS)

    Molloi, Sabee; Wong, Jerry T

    2007-01-01

    The limitations of visually assessing coronary artery disease are well known. These limitations are particularly important in intermediate coronary lesions (30-70% diameter stenosis) where it is difficult to determine whether a particular lesion is the cause of ischaemia. Therefore, a functional measure of stenosis severity is needed. The purpose of this study is to determine whether the expected maximum coronary blood flow in an arterial tree is predictable from its sum of arterial branch lengths or lumen volume. Using a computer model of a porcine coronary artery tree, an analysis of blood flow distribution was conducted through a network of millions of vessels that included the entire coronary artery tree down to the first capillary branch. The flow simulation results show that there is a linear relationship between coronary blood flow and the sum of its arterial branch lengths. This relationship holds over the entire arterial tree. The flow simulation results also indicate that there is a 3/4 er relation between coronary blood flow (Q) and the sum of its arterial lumen volume (V). Moreover, there is a linear relationship between normalized Q and normalized V raised to a power of 3/4 over the entire arterial tree. These results indicate that measured arterial branch lengths or lumen volumes can be used to predict the expected maximum blood flow in an arterial tree. This theoretical maximum blood flow, in conjunction with an angiographically measured blood flow, can potentially be used to calculate fractional flow reserve based entirely on angiographic data

  17. Development of ultrasonic velocity profile method for flow rate measurements of power plant (effect of measurement volume on turbulent flow measurement)

    International Nuclear Information System (INIS)

    Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi; Yasushi, Takeda; Michitsugu, Mori

    2001-01-01

    Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)

  18. Measurement of regional pulmonary blood volume in patients with increased pulmonary blood flow or pulmonary arterial hypertension

    International Nuclear Information System (INIS)

    Wollmer, P.; Rozcovek, A.; Rhodes, C.G.; Allan, R.M.; Maseri, A.

    1984-01-01

    The effects of chronic increase in pulmonary blood flow and chronic pulmonary hypertension on regional pulmonary blood volume was measured in two groups of patients. One group of patients had intracardiac, left-to-right shunts without appreciable pulmonary hypertension, and the other consisted of patients with Eisenmenger's syndrome or primary pulmonary hypertension, i.e. patients with normal or reduced blood flow and severe pulmonary hypertension. A technique based on positron tomography was used to measure lung density (by transmission scanning) and regional pulmonary blood volume (after inhalation of /sup 11/CO). The distribution of pulmonary blood volume was more uniform in patients with chronic increase in pulmonary blood flow than in normal subjects. There were also indications of an absolute increase in intrapulmonary blood volume by about 15%. In patients with chronic pulmonary arterial hypertension, the distribution of pulmonary blood volume was also abnormally uniform. There was, however, no indication that overall intrapulmonary blood volume was substantially different from normal subjects. The abnormally uniform distribution of pulmonary blood volume can be explained by recruitment and/or dilatation of vascular beds. Intrapulmonary blood volume appears to be increased in patients with intracardiac, left-to-right shunts. With the development of pulmonary hypertension, intrapulmonary blood volume falls, which may be explained by reactive changes in the vasculature and/or obliteration of capillaries

  19. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  20. Comparison of Flow and Volume Incentive Spirometry on Pulmonary Function and Exercise Tolerance in Open Abdominal Surgery: A Randomized Clinical Trial

    Science.gov (United States)

    Kumar, Amaravadi Sampath; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan

    2016-01-01

    Introduction Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. Aim To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. Materials and Methods A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni’s ‘t’-test. Exercise tolerance was analysed by Paired ‘T’-test. Results Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1st, 2nd and 3rd postoperative day when compared with preoperative day. On 4th and 5th postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group

  1. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured......, forming water-insoluble K-aluminosilicate. The amount of K captured by 1 g kaolin rose when increasing the molar ratio of K/Si in the reactant. Changing of reaction temperature from 1100 °C to 1300 °C did not influence the extent of reaction, which is different from the results observed in previous fixed...

  2. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  3. Effects of posture on flow-volume curves during normocapnia and hypercapnia in patients with obstructive sleep apnoea.

    OpenAIRE

    Miura, C; Hida, W; Miki, H; Kikuchi, Y; Chonan, T; Takishima, T

    1992-01-01

    BACKGROUND: A high ratio of forced expiratory to forced inspiratory maximal flow at 50% of vital capacity (FEF50/FIF50) may identify upper airway dysfunction. Since hypercapnia increases the motor activity of airway dilating muscles its effects on the maximum expiratory and inspiratory flow-volume curves (MEIFV) in patients with obstructive sleep apnoea and in normal subjects in different postures was studied. METHODS: The effects of posture on the maximum expiratory and inspiratory flow-volu...

  4. Assessment of TRAC codes with dartmouth college countercurrent flow tests

    International Nuclear Information System (INIS)

    Rohatgi, U.S.

    1985-01-01

    The TRAC series of codes was developed to simulate pressurized water reactors (PWRs) and boiling water reactors (BWRs) under hypothetical accident conditions. The thermal hydraulics of these codes are based on a two-fluid formulation. These codes were applied to the Dartmouth College countercurrent flow tests to assess the ability of the interfacial momentum transfer models in the code to predict the countercurrent behavior. The TRAC-BD1 code, developed for the BWR analysis, qualitatively predicted the proper countercurrent flow behavior, but always overpredicted the liquid downflow. This led to the conclusion that interfacial momentum transfer in the annular regime was underestimated. The PWR version of the TRAC code, TRAC-PF1, had better agreement with the data but computed unusual behavior for the 0.152-m-i.d. pipe due to the use of Dukler's correlation outside the data base. The code prediction improved when Bharathan-Wallis' correlation was incorporated into this code. The correlations based on cocurrent data were not accurate in predicting countercurrent flows

  5. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    Directory of Open Access Journals (Sweden)

    Berteau C

    2015-11-01

    Full Text Available Cecile Berteau,1 Orchidée Filipe-Santos,1 Tao Wang,2 Humberto E Rojas,2 Corinne Granger,1 Florence Schwarzenbach1 1Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France; 2Eli Lilly and Company, Indianapolis, IN, USA Aim: The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC injection pain tolerance. Methods: The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP combined with two different injection flow rates (0.02 and 0.3 mL/s. All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS (0 mm/no pain, 100 mm/extreme pain. The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results: Viscosity levels had significant impact on perceived injection pain (P=0.0003. Specifically, less pain was associated with high viscosity (VAS =12.6 mm than medium (VAS =16.6 mm or low (VAS =22.1 mm viscosities, with a significant difference between high and low viscosities (P=0.0002. Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89. Slow (0.02 mL/s or fast (0.30 mL/s injection rates also showed no significant impact on perceived pain during SC injection (P=0.79. In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion: The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High

  6. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  7. The use of low-volume dosing in the eye irritation test.

    Science.gov (United States)

    Lambert, L A; Chambers, W A; Green, S; Gupta, K C; Hill, R N; Hurley, P M; Lee, C C; Lee, J K; Liu, P T; Lowther, D K

    1993-02-01

    The Draize rabbit eye test was developed to provide a method for assessing the irritation potential of materials that might come in contact with human eyes. The method involves the instillation of 0.1 ml of a test liquid (100 mg solid) into the conjunctival sac of an animal's eye. A refinement of the Draize test is the low-volume eye test in which 0.01 ml of a substance is placed directly on the cornea of the eye. Studies indicate that the low-volume method provides a better correlation to human eye irritation experience for some substances. The Interagency Regulatory Alternatives Group (IRAG) proposes that the low-volume eye test can be used to substantiate the irritancy of suspect severe ocular irritants that have not been eliminated by various pre-eye test 'screens'. A substance testing positive by the low-volume method can be classified as an irritant; one that tests negative will require further testing by the use of the 0.1-ml volume procedure. For all other definitive testing, the Draize test (0.1 ml) should be used. Results from a questionnaire distributed at the IRAG workshop showed that many workshop participants thought that the low-volume test should be used as an eye irritation screening procedure.

  8. Development testing of large volume water sprays for warm fog dispersal

    Science.gov (United States)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.

    1986-01-01

    A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.

  9. Determination of volume fractions in two-phase flows from sound speed measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  10. Entrainment Phenomena in Potential Flow: Brachistochrones and Finite-Time Corrections to Darwin's Drift Volume

    Science.gov (United States)

    Moore, Matthew; McLaughlin, Rich; Camassa, Roberto; Vaidya, Ashwin

    2008-11-01

    For a body moving uniformly in an ideal fluid there exists a region in which particles are swept in the same direction as the motion of the body, called the drift region, as well as a region in which particles are forced in the opposite direction as that of the body, called the reflux region. In Darwin's Theorem, the drift volume is defined as the volume swept out by particles originating on a plane perpendicular to the motion of the body, as the body moves from an infinite distance upstream of the plane to an infinite distance downstream of the plane. Here, we present finite-time corrections to Darwin's calculation of the drift volume for a sphere, which extend the previously obtained semi-infinite correction of Eames, Belcher, and Hunt (1994). Additionally, we solve the problem of finding the particle who minimizes its time of flight for uniform flow past a sphere. The path of this particle who minimizes flight time is termed the brachistochrone path, and a connection is drawn to the geometry of the reflux region.

  11. Shear flow suppresses the volume of the nucleation precursor clusters in lysozyme solutions

    Science.gov (United States)

    Byington, Michael C.; Safari, Mohammad S.; Conrad, Jacinta C.; Vekilov, Peter G.

    2017-06-01

    Shear flow alters the rate at which crystals nucleate from solution, yet the underlying mechanisms remain poorly understood. To fill this knowledge gap, we explore the response to shear of dense liquid clusters, which may serve as crystal nucleation precursors. Solutions of the protein lysozyme were sheared in a Couette cell at rates from 0.3 to 200 s-1 for up to seven hours. The cluster size and total population volume were characterized by dynamic light scattering. We demonstrate that shear rates greater than 10 s-1 applied for longer than one hour reduce the volume of the cluster population. The likely mechanism of the observed response involves enhanced partial unfolding of the lysozyme molecules, which exposes hydrophobic surfaces between the constituent domains to the aqueous solution. We show that disruption of the intramolecular S-S bridges does not contribute to the mechanism of response to shear. The decrease of the cluster population volume with increasing shear rate or shear time implies that nucleation could be inhibited at moderate shear rates.

  12. Volume changes of extremely large and giant intracranial aneurysms after treatment with flow diverter stents

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Angelo; Byrne, James V. [ohn Radcliffe Hospital, Oxford Neurovascular and Neuroradiology Research Unit, Nuffield Department of Surgical Sciences, Oxford (United Kingdom); Rane, Neil; Kueker, Wilhelm; Cellerini, Martino; Corkill, Rufus [John Radcliffe Hospital, Department of Neuroradiology, Oxford (United Kingdom)

    2014-01-15

    This study assessed volume changes of unruptured large and giant aneurysms (greatest diameter >20 mm) after treatment with flow diverter (FD) stents. Clinical audit of the cases treated in a single institution, over a 5-year period. Demographic and clinical data were retrospectively collected from the hospital records. Aneurysm volumes were measured by manual outlining at sequential slices using computerised tomography (CT) or magnetic resonance (MR) angiography data. The audit included eight patients (seven females) with eight aneurysms. Four aneurysms involved the cavernous segment of the internal carotid artery (ICA), three the supraclinoid ICA and one the basilar artery. Seven patients presented with signs and symptoms of mass effect and one with seizures. All but one aneurysm was treated with a single FD stent; six aneurysms were also coiled (either before or simultaneously with FD placement). Minimum follow-up time was 6 months (mean 20 months). At follow-up, three aneurysms decreased in size, three were unchanged and two increased. Both aneurysms that increased in size showed persistent endosaccular flow at follow-up MR; in one case, failure was attributed to suboptimal position of the stent; in the other case, it was attributed to persistence of a side branch originating from the aneurysm (similar to the endoleak phenomenon of aortic aneurysms). At follow-up, five aneurysms were completely occluded; none of these increased in volume. Complete occlusion of the aneurysms leads, in most cases, to its shrinkage. In cases of late aneurysm growth or regrowth, consideration should be given to possible endoleak as the cause. (orig.)

  13. BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans.

    Science.gov (United States)

    Chen, J Jean; Pike, G Bruce

    2009-12-01

    To understand and predict the blood-oxygenation level-dependent (BOLD) fMRI signal, an accurate knowledge of the relationship between cerebral blood flow (DeltaCBF) and volume (DeltaCBV) changes is critical. Currently, this relationship is widely assumed to be characterized by Grubb's power-law, derived from primate data, where the power coefficient (alpha) was found to be 0.38. The validity of this general formulation has been examined previously, and an alpha of 0.38 has been frequently cited when calculating the cerebral oxygen metabolism change (DeltaCMRo(2)) using calibrated BOLD. However, the direct use of this relationship has been the subject of some debate, since it is well established that the BOLD signal is primarily modulated by changes in 'venous' CBV (DeltaCBV(v), comprising deoxygenated blood in the capillary, venular, and to a lesser extent, in the arteriolar compartments) instead of total CBV, and yet DeltaCBV(v) measurements in humans have been extremely scarce. In this work, we demonstrate reproducible DeltaCBV(v) measurements at 3 T using venous refocusing for the volume estimation (VERVE) technique, and report on steady-state DeltaCBV(v) and DeltaCBF measurements in human subjects undergoing graded visual and sensorimotor stimulation. We found that: (1) a BOLD-specific flow-volume power-law relationship is described by alpha = 0.23 +/- 0.05, significantly lower than Grubb's constant of 0.38 for total CBV; (2) this power-law constant was not found to vary significantly between the visual and sensorimotor areas; and (3) the use of Grubb's value of 0.38 in gradient-echo BOLD modeling results in an underestimation of DeltaCMRo(2).

  14. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  15. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  16. Space power distribution system technology. Volume 3: Test facility design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  17. Mass residuals in implicit finite volume models for overland and groundwater flow

    Science.gov (United States)

    Lal, A. M. Wasantha; Wang, Naming; Moustafa, M. Z.; Brown, M. C.

    2010-04-01

    SummaryA primary advantage in using the finite volume method for simulating groundwater flow and overland flow is the conservation property or the ability to conserve mass. However, when implicit finite volume methods are used with large time steps, small cell areas, or parameters with extreme value ranges, the conservation of mass equation becomes slightly unbalanced with a residual. Problems with large mass residuals can be predicted using the condition number of the solution matrix, and the convergence criterion used in the sparse matrix solver. The amount of practical guidance available on how to manage the magnitude of the mass residual or the matrix condition number is limited. To address this need, the current paper shows the usefulness of the mesh ratio. The mesh ratio is a dimensionless number that is a function of the mesh resolution and the temporal resolution. It is directly related to the condition number of the matrix, which in turn affects the mass residual and the model run time. During the current study, several numerical experiments are carried out to determine how the mesh ratio and the water level are related to the condition number, how the critical mesh ratio is related to the number of cells, how the run time is related to the mesh ratio, and how the mass residual is related to the mesh ratio. The results are useful in creating guidelines for mesh design during large-scale model applications. These guidelines can be applied to reducing the mass residual and the run time. The usefulness of the mesh ratio is illustrated using a Regional Simulation Model (RSM) (Lal, A.M.W., Van Zee, Randy, Belnap, Mark, 2005. Case study: model to simulate regional flow in South Florida. Journal of Hydraulic Engineering 131 (4), 247-258) application in south Florida.

  18. Compatibility tests of steels in flowing liquid lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, F.; Benamati, G. E-mail: benamati@brasimone.enea.it; Fazio, C.; Rusanov, A

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10{sup -6} wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 {mu}m) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  19. DECOVALEX I - Test Case 1: Coupled stress-flow model

    International Nuclear Information System (INIS)

    Rosengren, L.; Christianson, M.

    1995-12-01

    This report presents the results of the coupled stress-flow model, test case 1 of Decovalex. The model simulates the fourth loading cycle of a coupled stress-flow test and subsequent shearing up to and beyond peak shear resistance. The first loading sequence (A) consists of seven normal loading steps: 0, 5, 15, 25, 15, 5, 0 MPa. The second loading sequence (B) consists of the following eight steps: unstressed state, normal boundary loading of 25 MPa (no shearing), and then shearing of 0.5, 0.8, 2, 4, 2, 0 mm. Two different options regarding the rock joint behaviour were modeled in accordance with the problem definition. In option 1 a linear elastic joint model with Coulomb slip criterion was used. In option 2 a non-linear empirical (i.e. Barton-Bandis) joint model was used. The hydraulic condition during both load sequence A and B was a constant head of 5 m at the inlet point and 0 m at the outlet point. All model runs presented in this report were performed using the two-dimensional distinct element computer code UDEC, version 1.8. 30 refs, 36 figs

  20. HIGH-RESOLUTION DEBRIS FLOW VOLUME MAPPING WITH UNMANNED AERIAL SYSTEMS (UAS AND PHOTOGRAMMETRIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. S. Adams

    2016-06-01

    Full Text Available Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  1. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows

    Science.gov (United States)

    Gholipour Peyvandi, R.; Islami Rad, S. Z.

    2017-12-01

    The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.

  2. Sympathetic vascular control of the pig nasal mucosa: adrenoceptor mechanisms in blood flow and volume control.

    Science.gov (United States)

    Lacroix, J. S.; Lundberg, J. M.

    1989-01-01

    1. The adrenoceptor mechanisms influencing the total blood flow, volume and superficial blood flow in the nasal mucosa of pigs anaesthetized with pentobarbitone have been characterized by use of various agonists and antagonists. 2. Local intra-arterial bolus injection of the selective alpha 1-agonist phenylephrine, the selective alpha 2-agonist UK 14.304, the mixed alpha 1/alpha 2-agonist oxymetazoline and the mixed alpha/beta-agonists noradrenaline (NA) and adrenaline induced dosed-related reduction of nasal arterial blood flow (BF), nasal mucosal volume (V, reflecting capacitance vessel function) and the laser Doppler flowmetry signal (LDF, reflecting superficial movement of blood cells). The rank order of alpha-agonist potency regarding BF reduction was UK 14.304 greater than oxymetazoline greater than phenylephrine = adrenaline. For the volume response the potency order was UK 14.304 greater than oxymetazoline = NA = adrenaline greater than phenylephrine while for the reduction of the LDF signal the potency was UK 14.304 = NA = adrenaline greater than oxymetazoline greater than phenylephrine. The selective beta 2-agonist terbutaline caused dose-dependent increase of BF whereas only a small augmentation of the V was obtained upon the highest dose (40 nmol) while no modification of the LDF signal was observed. 3. After pretreatment with the selective alpha 1-antagonist prazosin, the response to phenylephrine was abolished while the selective alpha 2-antagonist idazoxan attenuated the effect of UK 14.304. After pretreatment with alpha-antagonists, both NA and adrenaline caused biphasic effects with constriction followed by vasodilatation for BF, but not for V or LDF. This vasodilatation was blocked by the beta-antagonist propranolol. 4. The reduction in nasal BF and V upon sympathetic nerve stimulation was attenuated both by prazosin and idazoxan. Propranolol enhanced the remaining reduction of BF but not of V in the presence of alpha-antagonists. 5. It is

  3. Supercritical water oxidation data acquisition testing. Final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  4. Drunk driving warning system (DDWS). Volume 2, Field test evaluation

    Science.gov (United States)

    1983-12-01

    The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test (the Critical Tracking Task or CTT) in order to drive the car in a normal manner....

  5. 640-slice DVCT multi-dimensionally and dynamically presents changes in bladder volume and urine flow rate

    Science.gov (United States)

    Su, Yunshan; Fang, Kewei; Mao, Chongwen; Xiang, Shutian; Wang, Jin; Li, Yingwen

    2018-01-01

    The present study aimed to explore the application of 640-slice dynamic volume computed tomography (DVCT) to excretory cystography and urethrography. A total of 70 healthy subjects were included in the study. Excretory cystography and urethrography using 640-slice DVCT was conducted to continuously record the motions of the bladder and the proximal female and male urethra. The patients' voiding process was divided into early, early to middle, middle, middle to late, and late voiding phases. The subjects were analyzed using DVCT and conventional CT. The cross-sectional areas of various sections of the male and female urethra were evaluated, and the average urine flow rate was calculated. The 640-slice DVCT technique was used to dynamically observe the urine flow rate and changes in bladder volume at all voiding phases. The urine volume detected by 640-slice DVCT exhibited no significant difference compared with the actual volume, and no significant difference compared with that determined using conventional CT. Furthermore, no significant difference in the volume of the bladder at each phase of the voiding process was detected between 640-slice DVCT and conventional CT. The results indicate that 640-slice DVCT can accurately evaluate the status of the male posterior urethra and female urethra. In conclusion, 640-slice DVCT is able to multi-dimensionally and dynamically present changes in bladder volume and urine flow rate, and could obtain similar results to conventional CT in detecting urine volume, as well as the status of the male posterior urethra and female urethra. PMID:29467853

  6. Role of Doppler ultrasonography evaluation of superior mesenteric artery flow volume in the assessment of Crohn's disease activity

    Directory of Open Access Journals (Sweden)

    Fabiana Paiva Martins

    2013-09-01

    Full Text Available Objective To investigate superior mesenteric artery flow measurement by Doppler ultrasonography as a means of characterizing inflammatory activity in Crohn's disease. Materials and Methods Forty patients were examined and divided into two groups – disease activity and remission – according to their Crohn's disease activity index score. Mean superior mesenteric artery flow volume was calculated for each group and correlated with Crohn's disease activity index score. Results The mean superior mesenteric artery flow volume was significantly greater in the patients with active disease (626 ml/min ± 236 × 376 ml/min ± 190; p = 0.001. As a cut off corresponding to 500 ml/min was utilized, the superior mesenteric artery flow volume demonstrated sensitivity of 83% and specificity of 82% for the diagnosis of Crohn's disease activity. Conclusion The present results suggest that patients with active Crohn's disease have increased superior mesenteric artery flow volume as compared with patients in remission. Superior mesenteric artery flow measurement had a good performance in the assessment of disease activity in this study sample.

  7. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  8. LNG cascading damage study. Volume I, fracture testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  9. The impact of interpreted flow regimes during constant head injection tests on the estimated transmissivity from injection tests and difference flow logging

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Ludvigsson, Jan-Erik; Harrstroem, Johan [Geosigma AB, Uppsala (Sweden)

    2013-04-15

    A large number of constant head injection tests were carried out in the site investigation at Forsmark using the Pipe String System, PSS3. During the original evaluation of the tests the dominating transient flow regimes during both the injection and recovery period were interpreted together with estimation of hydraulic parameters. The flow regimes represent different flow and boundary conditions during the tests. Different boreholes or borehole intervals may display different distributions of flow regimes. In some boreholes good agreement was obtained between the results of the injection tests and difference flow logging with Posiva flow log (PFL) but in other boreholes significant discrepancies were found. The main objective of this project is to study the correlation between transient flow regimes from the injection tests and other borehole features such as transmissivity, depth, geology, fracturing etc. Another subject studied is whether observed discrepancies between estimated transmissivity from difference flow logging and injection tests can be correlated to interpreted flow regimes. Finally, a detailed comparison between transient and stationary evaluation of transmissivity from the injection tests in relation to estimated transmissivity from PFL tests in corresponding sections is made. Results from previous injection tests in 5 m sections in boreholes KFM04, KFM08A and KFM10A were used. Only injection tests above the (test-specific) measurement limit regarding flow rate are included in the analyses. For all of these tests transient flow regimes were interpreted. In addition, results from difference flow logging in the corresponding 5 m test sections were used. Finally, geological data of fractures together with rock and fracture zone properties have been used in the correlations. Flow regimes interpreted from the injection period of the tests are generally used in the correlations but deviations between the interpreted flow regimes from the injection and

  10. The impact of interpreted flow regimes during constant head injection tests on the estimated transmissivity from injection tests and difference flow logging

    International Nuclear Information System (INIS)

    Hjerne, Calle; Ludvigsson, Jan-Erik; Harrstroem, Johan

    2013-04-01

    A large number of constant head injection tests were carried out in the site investigation at Forsmark using the Pipe String System, PSS3. During the original evaluation of the tests the dominating transient flow regimes during both the injection and recovery period were interpreted together with estimation of hydraulic parameters. The flow regimes represent different flow and boundary conditions during the tests. Different boreholes or borehole intervals may display different distributions of flow regimes. In some boreholes good agreement was obtained between the results of the injection tests and difference flow logging with Posiva flow log (PFL) but in other boreholes significant discrepancies were found. The main objective of this project is to study the correlation between transient flow regimes from the injection tests and other borehole features such as transmissivity, depth, geology, fracturing etc. Another subject studied is whether observed discrepancies between estimated transmissivity from difference flow logging and injection tests can be correlated to interpreted flow regimes. Finally, a detailed comparison between transient and stationary evaluation of transmissivity from the injection tests in relation to estimated transmissivity from PFL tests in corresponding sections is made. Results from previous injection tests in 5 m sections in boreholes KFM04, KFM08A and KFM10A were used. Only injection tests above the (test-specific) measurement limit regarding flow rate are included in the analyses. For all of these tests transient flow regimes were interpreted. In addition, results from difference flow logging in the corresponding 5 m test sections were used. Finally, geological data of fractures together with rock and fracture zone properties have been used in the correlations. Flow regimes interpreted from the injection period of the tests are generally used in the correlations but deviations between the interpreted flow regimes from the injection and

  11. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes

    International Nuclear Information System (INIS)

    Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.

    2014-01-01

    The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and those available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper

  12. MCV (Mean Corpuscular Volume): MedlinePlus Lab Test Information

    Science.gov (United States)

    ... it may indicate: Iron-deficiency anemia or other types of anemia Anemia is a condition in which your blood ... ... of Health and Human Services; Types of Blood Tests [updated 2012 Jan 6; cited ...

  13. Successful flow testing of a gas reservoir in 3,500 feet of water

    International Nuclear Information System (INIS)

    Shaughnessy, J.M.; Carpenter, R.S.; Coleman, R.A.; Jackson, C.W.

    1992-01-01

    The test of Viosca Knoll Block 957 Well No. 1 Sidetrack No. 2 was Amoco Production Co.'s deepest test from a floating rig. Viosca Knoll 957 is 115 miles southeast of New Orleans in 3,500 ft of water. The test, at a record water depth for the Gulf of Mexico, also set a world water-depth record for testing a gas reservoir. Safety to crew and the environmental were top priorities during the planning. A team consisting of drilling, completion, reservoir, and facilities engineers and a foreman were assigned to plan and implement the test. Early planning involved field, service company, and engineering groups. Every effort was made to identify potential problems and to design the system to handle them. This paper reports that the goals of the test were to determine reservoir properties and reservoir limits. Several significant challenges were involved in the well test. The reservoir was gas with a potentially significant condensate yield. The ability to dispose of the large volumes of produced fluids safely without polluting was critical to maintaining uninterrupted flow. Potential shut-in surface pressure was 6,500 psi. Seafloor temperature in 3,500 ft of water was 39 degrees F

  14. Can Emergency Physicians Perform Common Carotid Doppler Flow Measurements to Assess Volume Responsiveness?

    Directory of Open Access Journals (Sweden)

    Stolz, Lori A.

    2015-02-01

    Full Text Available Introduction: Common carotid flow measurements may be clinically useful to determine volume responsiveness. The objective of this study was to assess the ability of emergency physicians (EP to obtain sonographic images and measurements of the common carotid artery velocity time integral (VTi for potential use in assessing volume responsiveness in the clinical setting. Methods: In this prospective observational study, we showed a five-minute instructional video demonstrating a technique to obtain common carotid ultrasound images and measure the common carotid VTi to emergency medicine (EM residents. Participants were then asked to image the common carotid artery and obtain VTi measurements. Expert sonographers observed participants imaging in real time and recorded their performance on nine performance measures. An expert sonographer graded image quality. Participants were timed and answered questions regarding ease of examination and their confidence in obtaining the images. Results: A total of 30 EM residents participated in this study and each performed the examination twice. Average time required to complete one examination was 2.9 minutes (95% CI [2.4-3.4 min]. Participants successfully completed all performance measures greater than 75% of the time, with the exception of obtaining measurements during systole, which was completed in 65% of examinations. Median resident overall confidence in accurately performing carotid VTi measurements was 3 (on a scale of 1 [not confident] to 5 [confident]. Conclusion: EM residents at our institution learned the technique for obtaining common carotid artery Doppler flow measurements after viewing a brief instructional video. When assessed at performing this examination, they completed several performance measures with greater than 75% success. No differences were found between novice and experienced groups. [West J Emerg Med. 2015;16(2:255–259.

  15. Breakdown Tests of Composite Materials, and the Importance of the Volume Effect

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Holbøll, Joachim; Henriksen, Mogens

    2005-01-01

    High voltage testing of inhomogeneous composite materials often shows that the stressed volume has a great influence on the result. This paper tries to develop methods of estimating the stressed volume by calculating the theoretical extent of streamer propagation along insulating surfaces...

  16. A numerical investigation of three-dimensional flows in large volumes in the context of passive containment cooling in BWRs

    International Nuclear Information System (INIS)

    Smith, Brian L.

    2007-01-01

    The paper describes Computational Fluid Dynamics (CFD) calculations undertaken in support of analyses of three-dimensional flows that take place in the drywell volumes of advanced boiling water reactors with passive decay-heat removal systems. Data for comparison are taken from the 1/40th-scale European Simplified Boiling Water Reactor (ESBWR) mock-up facility PANDA under conditions of symmetric steam injection and asymmetric outflow. Steady-state simulations for pure steam conditions illustrate how the separate flow streams mix to ensure balanced outflow conditions to the condenser units. A transient calculation has also been performed to examine how air, assumed to be released from solution in the PANDA boiler, would ultimately accumulate in the separate condenser units. Results provide a possible explanation for the rundown in performance of one of the condensers, behaviour which was repeatedly observed in some of the earlier PANDA tests. The work also provides more general insights on how trace amounts of non-condensable gases may accumulate in passive cooling equipment

  17. Dipyridamole cerebral flow stress test evaluating ischemic cerebrovascular diseases

    International Nuclear Information System (INIS)

    Xiu, Y.; Chen, S.; Sun, X.; Liu, S.; Li, W.; Fan, W.; Wang, X.

    2000-01-01

    To detect the clinical value of dipyridamole cerebral blood flow stress test in cerebrovascular diseases (CVD). Nineteen patients (9 male, 10 female, mean age=65) who were diagnosed as CVD were included. One suffered from infarct, two suffered from thrombosis, one feel dizziness. All 4 performed rest and stress test. The other 15 were VBI, 9 of them performed stress test. Rest and stress test were done two-day method using Elscint Apex SP-6 SPECT equipped with low energy all purpose collimator. Rest perfusion imaging was started 30 min after injecting 1.11 GBq 99m Tc-ECD. Dipyridamole stress test was done within one week. 0.56 mg/Kg dipyridamole was injected intravenously during 4 min the same dose of ECD was injected 2 min later. The acquisition started 30 min later with the same parameter. Heart rate, ECG and the patient's complaint were monitored 2 min before and after dipyridamole. After correction for attenuation, transverse, coronal and sagittal slices were reconstructed. Eighteen ROIs were drawn symmetrically on cingulate, frontal, temporal-parietal, temporal, occipital, vision cortex, basal ganglia, superior frontal and parietal on the 3 rd , 6 th , 9 th transverse slices, selecting the contralateral as the reference region. The counts per pixel in each ROI were divided by the counts of the mirror region to obtain the relative uptake ratio. We think it abnormality when the ratio is above 1,1 or below 0.9. The sensitivity for rest and stress rCBF test was compared. rCBF was decreased at 10 of 19 patients (sensitivity 52.6%). 14 had low rCBF after dipyridamole (sensitivity 72.3%), Among the patients who studied stress test, 6 had normal rCBF at rest and low rCBF after stress. The abnormal area was enlarged after dipyridamole for 1 patients, 2 improved and 2 unchanged. 8 of 15 VBI had normal rCBF at rest (sensitivity 53.3%). 9 of 15 VBI performed stress test. rCBF was normal at rest for 5 patients, rCBF was decreased after stress, it was improved for one

  18. Experimental Methods to Observe Asymmetric Instability of Intermediate-Reduced-Volume Vesicles in Extensional Flow

    Science.gov (United States)

    Dahl, Joanna; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric; Muller, Susan

    2014-11-01

    Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These enclosed lipid bilayer membranes are suitable for complementary theoretical and experimental analysis. A recent study (Narsimhan et al., J. Fluid Mech. 750, 144 (2014)) predicted that intermediate-aspect-ratio vesicles break up asymmetrically in extensional flow. Upon infinitesimal perturbation to its shape, the vesicle stretches into an asymmetric dumbbell. In this work, we present preliminary results from cross-slot microfluidic experiments observing this instability. The onset of breakup depends on two non-dimensional parameters: reduced volume (vesicle asphericity) and capillary number (ratio of viscous to bending forces). We will present strategies for accurately measuring these quantities in order to plot a stability diagram. Specifically, we will describe our synthesis of floppy, intermediate-reduced-volume vesicles and our measurement of their bending moduli by analyzing membrane thermal fluctuations. We will discuss coupling particle-image velocimetry (PIV) with cross-slot trapping of vesicles to ensure that breakup occurs at the stagnation point. A preliminary phase diagram for asymmetric breakup will be reported.

  19. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  20. Cerebral blood flow in temporal lobe epilepsy: a partial volume correction study

    International Nuclear Information System (INIS)

    Giovacchini, Giampiero; Bonwetsch, Robert; Theodore, William H.; Herscovitch, Peter; Carson, Richard E.

    2007-01-01

    Previous studies in temporal lobe epilepsy (TLE) have shown that, owing to brain atrophy, positron emission tomography (PET) can overestimate deficits in measures of cerebral function such as glucose metabolism (CMR glu ) and neuroreceptor binding. The magnitude of this effect on cerebral blood flow (CBF) is unexplored. The aim of this study was to assess CBF deficits in TLE before and after magnetic resonance imaging-based partial volume correction (PVC). Absolute values of CBF for 21 TLE patients and nine controls were computed before and after PVC. In TLE patients, quantitative CMR glu measurements also were obtained. Before PVC, regional values of CBF were significantly (p glu in middle and inferior temporal cortex, fusiform gyrus and hippocampus both before and after PVC. A significant positive relationship between disease duration and AIs for CMR glu , but not CBF, was detected in hippocampus and amygdala, before but not after PVC. PVC should be used for PET CBF measurements in patients with TLE. Reduced blood flow, in contrast to glucose metabolism, is mainly due to structural changes. (orig.)

  1. An Improved Ground Vibration Test Method. Volume 1. Research Report

    Science.gov (United States)

    1980-09-01

    peak value with very short duration. This causes the force to overdrive (i.e., excite the nonlinearities) the system while putting very little total...Stiffness and Mass Matrices from Experimental Vibration Modes" Ross , R. G., Jr. SAE Paper No. 710787 19/1, 9 pp. 177. "Vibroacoustic Testing of Space

  2. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  3. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  4. Pore-to-Darcy Scale Hybrid Multiscale Finite Volume Model for Reactive Flow and Transport

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2016-12-01

    In the present work we develop a hybrid scheme for the coupling and temporal integration of grid-based, continuum models for pore-scale and Darcy-scale flow and reactive transport. The hybrid coupling strategy consists on applying Darcy-scale and pore-scale flow and reactive transport models over overlapping subdomains Ω C and Ω F, and enforcing continuity of state and fluxes by means of restriction and prolongation operations defined over the overlap subdomain Ω hs ≡ Ω C \\cap Ω F. For the pore-scale model, we use a Multiscale Finite Volume (MsFV) characterization of the pore-scale state in terms of Darcy-scale degrees of freedom and local functions defined as the solution of pore-scale problems. The hybrid MsFV coupling results in a local-global combination of effective mass balance relations for the Darcy-scale degrees of freedom and local problems for the pore-scale degrees of freedom that capture pore-scale behavior. Our scheme allows for the rapid coarsening of pore-scale models and the adaptive enrichment of Darcy-scale models with pore-scale information. Additionally, we propose a strategy for modeling the dynamics of the pore-scale solid-liquid boundary due to precipitation and dissolution phenomena, based on the Diffuse Domain method (DDM), which is incorporated into the MsFV approximation of pore-scale states. We apply the proposed hybrid scheme to a reactive flow and transport problem in porous media subject to heterogeneous reactions and the corresponding precipitation and dissolution phenomena.

  5. Science Library of Test Items. Volume Ten. Mastery Testing Programme. [Mastery Tests Series 2.] Tests M14-M26.

    Science.gov (United States)

    New South Wales Dept. of Education, Sydney (Australia).

    As part of a series of tests to measure mastery of specific skills in the natural sciences, copies of tests 14 through 26 include: (14) calculating an average; (15) identifying parts of the scientific method; (16) reading a geological map; (17) identifying elements, mixtures and compounds; (18) using Ohm's law in calculation; (19) interpreting…

  6. COMPARE: a computer program for the transient calculation of a system of volumes connected by flowing vents

    International Nuclear Information System (INIS)

    Gido, R.G.; Grimes, C.I.; Lawton, R.G.; Kudrick, J.A.

    1976-09-01

    A description is given of the COMPARE computer program developed for performing transient subcompartment pressure response analyses of nuclear power plants. The subcompartments are represented as volumes (less than or equal to 100) which are connected by junctions (less than or equal to 200) and may have blowdown (less than or equal to 5 sets). The volume thermodynamics and flow equations are for a homogeneous mixture, assumed to be in thermodynamic equilibrium consisting of any one, or any combination, of the following: (a) steam, (b) two-phase water, and (c) any three perfect gases such as air, helium, etc. Flow between volumes is based on (a) the Moody equation, with an arbitrary multiplier, when the flow is critical, (b) compressible, polytropic, orifice flow of an ideal gas-like mixture when the flow is subcritical, and (c) an incompressible subelement method when inertia effects exist. A quasi-static explicit numerical solution technique is used. The program requires 40,000 words on the LASL CDC-7600 and 124,000 10 bytes on an IBM 360/370 computer. A two-volume, one-junction problem requires 0.002 s per time step on the CDC-7600 and 0.012 s on the IBM 360/370

  7. Similarity Analysis for Reactor Flow Distribution Test and Its Validation

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Ha, Jung Hui; Lee, Taehoo; Han, Ji Woong

    2015-01-01

    facility. It was clearly found in Hong et al. In this study the feasibility of the similarity analysis of Hong et al. was examined. The similarity analysis was applied to SFR which has been designed in KAERI (Korea Atomic Energy Research Institute) in order to design the reactor flow distribution test. The length scale was assumed to be 1/5, and the velocity scale 1/2, which bounds the square root of the length scale (1/√5). The CFX calculations for both prototype and model were carried out and the flow field was compared

  8. Supercritical water oxidation data acquisition testing. Final report, Volume II

    International Nuclear Information System (INIS)

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone ampersand Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology

  9. RSRM top hat cover simulator lightning test, volume 1

    Science.gov (United States)

    1990-01-01

    The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.

  10. Testing flow diversion in animal models: a systematic review.

    Science.gov (United States)

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  11. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    Science.gov (United States)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  12. Inventory Smoke Munition Test. (Phase IIa). Volume I

    Science.gov (United States)

    1978-06-01

    field of view was similar to that of the optical instruments. The system was available for immediate playback and review of the screening operation...luminance in the visible range (0.4-0. 7 um, photopically corrected). (See Appendix B-I and B-II.) Review of these curves will show that the peak of...aberrations may be seeu in those segments which do not re- present part of the cloud. Additional data are also included in the Test Day Data Summaries

  13. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 2. Performance Tests.

    Science.gov (United States)

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  14. Pore-scale mechanisms of two-phase flow in porous materials : Volume-of-Fluid method and pore-network modelling

    NARCIS (Netherlands)

    Yin, Xiaoguang

    2018-01-01

    We present direct simulations of several experiments with different geometries using Volume of Fluid (VOF) method. Pressure-flow rate correspondence and flow patterns are compared between numerical and experimental data. For a simple geometry, wecan reproduce experimental results satisfactorily,

  15. Petrophysical properties, mineralogy, fractures, and flow tests in 25 deep boreholes at Yucca Mountain, Nevada

    Science.gov (United States)

    Nelson, Philip H.; Kibler, Joyce E.

    2014-01-01

    As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.

  16. Fabrics, Facies And Flow Through A Large-Volume Ignimbrite: Pampa De Oxaya, Chile.

    Science.gov (United States)

    Platzman, Ellen; Cooper, Frances

    2016-04-01

    Large volume pyroclastic currents form during some of the most destructive volcanic eruptions on the planet, yet because they are underrepresented in the geological record they remain poorly understood. The Miocene Oxaya ignimbrites, exposed along the western Andean slopes in northern Chile, form one of the largest ignimbrite provinces on earth. We use anisotropy of magnetic susceptibility (AMS) in conjunction with rock magnetic measurements to investigate flow behavior and depositional processes in one of the largest members of the Oxaya succession, the Cardones ignimbrite. Despite its prominence the location of the source caldera remains unknown and fundamental processes remain poorly constrained. During 2012 nearly 8km (7,773m) of core was recovered from the early Miocene ignimbrites in 11 holes at elevations ranging from 2336m to 3805m along the Andean escarpment east of Arica, Chile. The drill cores are remarkable in that they penetrate through the entirety of the ignimbrite sequence and into the basement below. Samples for this study were collected from a > 1 km long core drilled at an altitude 3692m. The core sampled 981 m of Cardones ignimbrite and 15 m of underlying sediments and volcaniclastics before penetrating 148 m of basement. Detailed measurements of the variation in bulk magnetic properties including natural remanent magnetization (NRM), susceptibility, ARM, and IRM, were used to monitor changes in concentration, composition and grainsize of the magnetic components though the ignimbrite. AMS in conjunction with detailed rock magnetic measurements were used to constrain flow processes. The data reveal a well-defined flow direction and systematic variations in flow processes with depth. Low field bulk magnetic susceptibility averages 3.2x10-3 SI. Rock magnetic studies and petrographic examination indicate that magnetite is likely to be the dominant magnetic phase although paramagnetic mineral phases also contribute to the magnetic fabric. The degree

  17. An in-well heat-tracer-test method for evaluating borehole flow conditions

    Science.gov (United States)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  18. Oscillating-flow loss test results in rectangular heat exchanger passages

    Science.gov (United States)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  19. Phase-shift between arterial flow and ICP pulse during infusion test.

    Science.gov (United States)

    Kim, Dong-Joo; Czosnyka, Marek; Kim, Hakseung; Balédent, Olivier; Smielewski, Piotr; Garnett, Matthew R; Czosnyka, Zofia

    2015-04-01

    The dynamic relationship between pulse waveform of intracranial pressure (ICP) and transcranial Doppler (TCD) cerebral blood flow velocity (CBFV) may contain information about cerebrospinal compliance. This study investigated the possibility by focusing on the phase shift between fundamental harmonics of CBFV and ICP. Thirty-seven normal pressure hydrocephalus patients (20 men, mean age 58) underwent the cerebrospinal fluid (CSF) infusion tests. The infusion was performed via pre-implanted Ommaya reservoir. The TCD FV was recorded in the middle cerebral artery. Resulting continuous ICP and pressure-volume (PV) signals were analyzed by ICM+ software. In initial stage of the CSF infusion, the phase shift was negative (median value = -11°, range = +60 to -117). There was significant inverse association of phase shift with brain elasticity (R = -0.51; p = 0.0009). In all tests, phase shift consistently decreased during gradual elevation of ICP (p = 0.00001). Magnitude of decrease in phase shift was inversely related to the peak-to-peak amplitude of ICP pulse waveform at a baseline (R = -0.51; p = 0.001). Phase shift between fundamental harmonics of ICP and TCD waveforms decreases during elevation of ICP. This is caused by an increase of time delay between systolic peak of flow velocity wave and ICP pulse.

  20. Investigation results on water quality and volume of flowing-in water to the Yotsugi slag heap site. 2

    International Nuclear Information System (INIS)

    Naganuma, Masaki; Taki, Tomihiro; Takimoto, Sadao; Makita, A.

    2000-05-01

    Mining water flowing into the Yotsugi slag heap site at the Ningyo-toge Environment Technical Center is exhausted to a common river after carrying out the treatment of uranium and radium in the mining water at the previously settled mining water treatment facility and confirming it to be less than management target value on the river water within the site boundary regulated by the agreement on environmental conservation with Okayama prefecture and Kami-saihara mura. In order to elucidate some required treatment on every water system flowing-in the heap site as a part of reduction of flowing volume on taking action of the heap site, an investigation on its water quality and volume was carried out. As a result, it was confirmed on water quality that uranium values of every river were all less than their target values but radium values of them were all over their target values which necessitated conventional water treatment. And, on water volume, it was confirmed that flowing water volume from the exposed excavation site was reduced about 40% in comparison with same rain-fall before removing from rain water. (G.K.)

  1. A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows

    Science.gov (United States)

    Lucas, G. P.; Cory, J. C.; Waterfall, R. C.

    2000-10-01

    This paper describes the design and construction of a local six-electrode conductivity probe which can be used in solids-water pipe flows to simultaneously measure the local solids volume fraction and the local solids axial velocity. Using finite element analysis, the probe electrode geometry was designed so that the regions of the solids-water mixture that were interrogated by the probe were optimal for measurement of the volume fraction and for cross correlation velocity measurement. The probe was used, in conjunction with a computer controlled traversing mechanism, to obtain distributions of the local solids volume fraction and the local solids axial velocity both in vertical upward and in upward inclined solids-water flows. Such distributions can be used to validate volume fraction and velocity profiles obtained using dual-plane electrical resistance tomography systems. Experimental results indicated that the six-electrode probe can be used to estimate the local solids volume fraction in vertical upward solids-water flows with a mean absolute error of approximately 0.01. Experimental results also indicated that the six-electrode probe can be used to measure the local axial solids velocity with a mean error of 2% of the reading.

  2. Cerebral blood flow in temporal lobe epilepsy: a partial volume correction study

    Energy Technology Data Exchange (ETDEWEB)

    Giovacchini, Giampiero [University Milano-Bicocca, Milan (Italy); Bonwetsch, Robert; Theodore, William H. [National Institute of Neurological Diseases and Strokes, Clinical Epilepsy Section, Bethesda, MD (United States); Herscovitch, Peter [National Institutes of Health, PET Department, Clinical Center, Bethesda, MD (United States); Carson, Richard E. [Yale PET Center, New Haven, CT (United States)

    2007-12-15

    Previous studies in temporal lobe epilepsy (TLE) have shown that, owing to brain atrophy, positron emission tomography (PET) can overestimate deficits in measures of cerebral function such as glucose metabolism (CMR{sub glu}) and neuroreceptor binding. The magnitude of this effect on cerebral blood flow (CBF) is unexplored. The aim of this study was to assess CBF deficits in TLE before and after magnetic resonance imaging-based partial volume correction (PVC). Absolute values of CBF for 21 TLE patients and nine controls were computed before and after PVC. In TLE patients, quantitative CMR{sub glu} measurements also were obtained. Before PVC, regional values of CBF were significantly (p<0.05) lower in TLE patients than in controls in all regions, except the fusiform gyrus contralateral to the epileptic focus. After PVC, statistical significance was maintained in only four regions: ipsilateral inferior temporal cortex, bilateral insula and contralateral amygdala. There was no significant difference between patients and controls in CBF asymmetry indices (AIs) in any region before or after PVC. In TLE patients, AIs for CBF were significantly smaller than for CMR{sub glu} in middle and inferior temporal cortex, fusiform gyrus and hippocampus both before and after PVC. A significant positive relationship between disease duration and AIs for CMR{sub glu}, but not CBF, was detected in hippocampus and amygdala, before but not after PVC. PVC should be used for PET CBF measurements in patients with TLE. Reduced blood flow, in contrast to glucose metabolism, is mainly due to structural changes. (orig.)

  3. Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data

    Directory of Open Access Journals (Sweden)

    Piotr Gurgul

    2013-09-01

    Full Text Available This paper is concerned with a dependence analysis of returns, return volatility and trading volume for five companies listed on the Vienna Stock Exchange and five from theWarsaw Stock Exchange. Taking into account high frequency data for these companies, tests based on a comparison of Bernstein copula densities using the Hellinger distance were conducted. The paper presents some patterns of causal and other relationships between stock returns, realized volatility and expected and unexpected trading volume. There is a linear causality running from realized volatility to expected trading volume, and a lack of nonlinear dependence in the opposite direction. The authors detected strong linear and nonlinear causality from stock returns to expected trading volume. They did not find causality running in the opposite direction. In addition, the existence of fractional cointegration was examined. Despite the equality of the long memory parameters of realized volatility and trading volumes, they do not move together in the long term horizon.

  4. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    Science.gov (United States)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  5. Probability and volume of potential postwildfire debris flows in the 2010 Fourmile burn area, Boulder County, Colorado

    Science.gov (United States)

    Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine

    2010-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.

  6. Estimation of the Lateral Ventricles Volumes from a 2D Image and Its Relationship with Cerebrospinal Fluid Flow

    Science.gov (United States)

    Bader, Chaarani; Cyrille, Capel; Jadwiga, Zmudka; Joel, Daouk; Fichten, Anthony; Catherine, Gondry-Jouet; Roger, Bouzerar; Olivier, Balédent

    2013-01-01

    Purpose. This work suggests a fast estimation method of the lateral ventricles volume from a 2D image and then determines if this volume is correlated with the cerebrospinal fluid flow at the aqueductal and cerebral levels in neurodegenerative diseases. Materials and Methods. FForty-five elderly patients suffering from Alzheimer's disease (19), normal pressure hydrocephalus (13), and vascular dementia (13) were involved and underwent anatomical and phase contrast MRI scans. Lateral ventricles and stroke volumes were assessed on anatomical and phase contrast scans, respectively. A common reference plane was used to calculate the lateral ventricles' area on 2D images. Results. The largest volumes were observed in hydrocephalus patients. The linear regression between volumes and areas was computed, and a strong positive correlation was detected (R 2 = 0.9). A derived equation was determined to represent the volumes for any given area. On the other hand, no significant correlations were detected between ventricles and stroke volumes (R 2 ≤ 0.15). Conclusion. Lateral ventricles volumes are significantly proportional to the 2D reference section area and could be used for patients' follow-up even if 3D images are unavailable. The cerebrospinal fluid fluctuations in brain disorders may depend on many physiological parameters other than the ventricular morphology. PMID:24151585

  7. Estimation of the Lateral Ventricles Volumes from a 2D Image and Its Relationship with Cerebrospinal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Chaarani Bader

    2013-01-01

    Full Text Available Purpose. This work suggests a fast estimation method of the lateral ventricles volume from a 2D image and then determines if this volume is correlated with the cerebrospinal fluid flow at the aqueductal and cerebral levels in neurodegenerative diseases. Materials and Methods. FForty-five elderly patients suffering from Alzheimer’s disease (19, normal pressure hydrocephalus (13, and vascular dementia (13 were involved and underwent anatomical and phase contrast MRI scans. Lateral ventricles and stroke volumes were assessed on anatomical and phase contrast scans, respectively. A common reference plane was used to calculate the lateral ventricles’ area on 2D images. Results. The largest volumes were observed in hydrocephalus patients. The linear regression between volumes and areas was computed, and a strong positive correlation was detected (R2=0.9. A derived equation was determined to represent the volumes for any given area. On the other hand, no significant correlations were detected between ventricles and stroke volumes (R2≤0.15. Conclusion. Lateral ventricles volumes are significantly proportional to the 2D reference section area and could be used for patients’ follow-up even if 3D images are unavailable. The cerebrospinal fluid fluctuations in brain disorders may depend on many physiological parameters other than the ventricular morphology.

  8. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    DEFF Research Database (Denmark)

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu

    2015-01-01

    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology...

  9. Probability and volume of potential postwildfire debris flows in the 2012 Waldo Canyon Burn Area near Colorado Springs, Colorado

    Science.gov (United States)

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce

  10. The diagnostic utility of sonographic carotid flow time in determining volume responsiveness.

    Science.gov (United States)

    Shokoohi, Hamid; Berry, Grant W; Shahkolahi, Murteza; King, Jackson; King, Jordan; Salimian, Mohammad; Poshtmashad, Ameneh; Pourmand, Ali

    2017-04-01

    We aimed to predict volume responsiveness and to assess the diagnostic accuracy of carotid flow time (FTc) with the change in hydration status before and after a passive leg raise (PLR) maneuver. Participants who presented at a community health fair in a dehydrated state following a prolonged fast while observing the month of Ramadan were recruited. Sonographic FTc measurements were obtained in the semi-Fowler position and after a PLR maneuver while participants were in a fasting state and repeated approximately 3 hours after breaking their fast. In total, 123 participants with mean age of 47±14 years, 55% male, were enrolled. Participants had fasted for an average of 16.9 hours and consumed an average of 933 mL between the 2 ultrasound measurements. Mean FTc values were significantly lower in the fasting state compared with the nonfasting state (312±22 vs 345±25milliseconds, P value change in FTc of ≥5% provides a reliable diagnostic accuracy for predicting fluid status. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A finite-volume module for cloud-resolving simulations of global atmospheric flows

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Kühnlein, Christian; Grabowski, Wojciech W.

    2017-07-01

    The paper extends to moist-precipitating dynamics a recently documented high-performance finite-volume module (FVM) for simulating global all-scale atmospheric flows (Smolarkiewicz et al., 2016) [62]. The thrust of the paper is a seamless coupling of the conservation laws for moist variables engendered by cloud physics with the semi-implicit, non-oscillatory forward-in-time integrators proven for dry dynamics of FVM. The representation of the water substance and the associated processes in weather and climate models can vary widely in formulation details and complexity levels. The representation adopted for this paper assumes a canonical "warm-rain" bulk microphysics parametrisation, recognised for its minimal physical intricacy while accounting for the essential mathematical complexity of cloud-resolving models. A key feature of the presented numerical approach is global conservation of the water substance to machine precision-implied by the local conservativeness and positivity preservation of the numerics-for all water species including water vapour, cloud water, and precipitation. The moist formulation assumes the compressible Euler equations as default, but includes reduced anelastic equations as an option. The theoretical considerations are illustrated with a benchmark simulation of a tornadic thunderstorm on a reduced size planet, supported with a series of numerical experiments addressing the accuracy of the associated water budget.

  12. The effect of glycerol on regional cerebral blood flow, blood volume and oxygen metabolism

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Kobayashi, Akira; Yonekura, Yoshiharu; Nishizawa, Sadahiko.

    1989-01-01

    Using positron emission tomography with 15 O-labelled CO 2 , O 2 and CO gases, the effects of glycerol on regional cerebral blood flow (CBF), blood volume (CBV) and oxygen metabolism (CMRO 2 ) were investigated in 6 patients with meningioma accompanying peritumoral brain edema. The same study was done in 5 normal volunteers. The changes of blood gases, hematocrit and hemoglobin were also examined. After a drip infusion of glycerol, the regional CBF increased not only in the peritumoral cortex and white matter but also in the intact cortex and white matter on the contralateral side. The increase of CBF was extensive and substantially there were no regional differences. In contrast, the changes of CMRO 2 were not significant. This was derived from the increase in oxygen extraction fraction throughout extensive areas including the peritumoral area. There were no changes in CBV. Hematocrit and hemoglobin decreased to a small degree. In the normal volunteers, the same findings were noted. Thus, glycerol increases the functional reserve for cerebral oxygen metabolism, not only in the peritumoral regions but also in the intact regions. The effects of glycerol on hemodynamics and metabolism were discussed with reference to some differences from mannitol. (author)

  13. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  14. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  15. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.

    Science.gov (United States)

    Brunette, J; Mongrain, R; Laurier, J; Galaz, R; Tardif, J C

    2008-11-01

    Blood flow dynamics has an important role in atherosclerosis initiation, progression, plaque rupture and thrombosis eventually causing myocardial infarction. In particular, shear stress is involved in platelet activation, endothelium function and secondary flows have been proposed as possible variables in plaque erosion. In order to investigate these three-dimensional flow characteristics in the context of a mild stenotic coronary artery, a whole volume PIV method has been developed and applied to a scaled-up transparent phantom. Experimental three-dimensional velocity data was processed to estimate the 3D shear stress distributions and secondary flows within the flow volume. The results show that shear stress reaches values out of the normal and atheroprotective range at an early stage of the obstructive pathology and that important secondary flows are also initiated at an early stage of the disease. The results also support the concept of a vena contracta associated with the jet in the context of a coronary artery stenosis with the consequence of higher shear stresses in the post-stenotic region in the blood domain than at the vascular wall.

  16. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    International Nuclear Information System (INIS)

    Töger, Johannes; Carlsson, Marcus; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2011-01-01

    Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle

  17. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model

    Science.gov (United States)

    Barns, Gareth L.; Wilson, Ryan D.; Thornton, Steven F.

    2012-02-01

    This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties. DFTT = Dipole Flow Tracer Test, PPT = Push Pull Tracer Test.

  18. Testing a random phase approximation for bounded turbulent flow

    International Nuclear Information System (INIS)

    Ulitsky, M.; Clark, T.; Turner, L.

    1999-01-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., left-angle c(k 1 )c(k 2 )right-angle=δ(k 1 +k 2 )left-angle c(k 1 )c(k 2 )right-angle, where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N 3 grid points actually requires N 3 +1 members in the ensemble. The open-quotes randomnessclose quotes of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N 3 +1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between

  19. Effects of Air Stacking Maneuver on Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Sarmento, Antonio; Resqueti, Vanessa; Dourado-Júnior, Mario; Saturnino, Lailane; Aliverti, Andrea; Fregonezi, Guilherme; de Andrade, Armele Dornelas

    2017-11-01

    To assess the acute effects of air stacking on cough peak flow (CPF) and chest wall compartmental volumes of persons with amyotrophic lateral sclerosis (ALS) versus healthy subjects positioned at 45° body inclination. Cross-sectional study with a matched-pair design. University hospital. Persons (N=24) with ALS (n=12) and age-matched healthy subjects (n=12). CPF, chest wall compartmental inspiratory capacity, chest wall vital capacity, chest wall tidal volume and operational volumes, breathing pattern, and percentage of contribution of the compartments to the inspired volume were measured by optoelectronic plethysmography. Compared with healthy subjects, significantly lower CPF (P=.007), chest wall compartmental inspiratory capacity (P<.001), chest wall vital capacity (P<.001), and chest wall tidal volume (P<.001) were found in subjects with ALS. Immediately after air stacking, CPF (P<.001) and chest wall compartmental inspiratory capacity (P<.001) significantly increased in both groups, with values returning to basal only in healthy subjects. After air stacking, the abdominal compartment (P=.004) was determined to be responsible for the inspired volume in subjects with ALS. Significantly higher chest wall vital capacity (P=.05) was observed in subjects with ALS 5 minutes after air stacking, with the rib cage compartment (P=.049) being responsible for volume change. No differences were found in chest wall vital capacity and compartmental volumes of healthy subjects. Chest wall tidal volume (P<.001) significantly increased during the protocol in the healthy subjects, mainly because of end-inspiratory (P<.001) and abdominal volumes (P=.008). No significant differences were observed in percentage of contribution of the compartments to the inspired volume and end-expiratory volume of both groups. No significant differences were found in chest wall tidal volume, operational volume, and breathing pattern in persons with ALS. Air stacking is effective in increasing CPF

  20. Probability and volume of potential postwildfire debris flows in the 2012 High Park Burn Area near Fort Collins, Colorado

    Science.gov (United States)

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and

  1. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  2. Reducing blood volume requirements for clinical pathology testing in toxicologic studies-points to consider.

    Science.gov (United States)

    Poitout-Belissent, Florence; Aulbach, Adam; Tripathi, Niraj; Ramaiah, Lila

    2016-12-01

    In preclinical safety assessment, blood volume requirements for various endpoints pose a major challenge. The goal of this working group was to review current practices for clinical pathology (CP) testing in preclinical toxicologic studies, and to discuss advantages and disadvantages of methods for reducing blood volume requirements. An industry-wide survey was conducted to gather information on CP instrumentation and blood collection practices for hematology, clinical biochemistry, and coagulation evaluation in laboratory animals involved in preclinical studies. Based on the survey results and collective experience of the authors, the working group proposes the following "points to consider" for CP testing: (1) For most commercial analyzers, 0.5 mL and 0.8 mL of whole blood are sufficient for hematology and biochemistry evaluation, respectively. (2) Small analyzers with low volume requirements and low throughput have limited utility in preclinical studies. (3) Sample pooling or dilution is inappropriate for many CP methods. (4) Appropriate collection sites should be determined based on blood volume requirements and technical expertise. (5) Microsampling does not provide sufficient volume given current analyzer and quality assurance requirements. (6) Study design considerations include: the use of older/larger animals (rodents), collection of CP samples before toxicokinetic samples, use of separate subsets of mice for hematology and clinical biochemistry testing, use of a priority list for clinical biochemistry, and when possible, eliminating coagulation testing. © 2016 American Society for Veterinary Clinical Pathology.

  3. Development of the Porous-Slot Geometry of the NWTC Test Section

    National Research Council Canada - National Science Library

    Steinle, Frank

    1997-01-01

    .... Flow quality requirements concerning stream angle homogeneity at the outer edge of the test volume, requirements for maximum wall interference, optical access, and test volume acoustic considerations...

  4. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  5. Simulation of biological flow and transport in complex geometries using embedded boundary/volume-of-fluid methods

    International Nuclear Information System (INIS)

    Trebotich, David

    2007-01-01

    We have developed a simulation capability to model multiscale flow and transport in complex biological systems based on algorithms and software infrastructure developed under the SciDAC APDEC CET. The foundation of this work is a new hybrid fluid-particle method for modeling polymer fluids in irregular microscale geometries that enables long-time simulation of validation experiments. Both continuum viscoelastic and discrete particle representations have been used to model the constitutive behavior of polymer fluids. Complex flow environment geometries are represented on Cartesian grids using an implicit function. Direct simulation of flow in the irregular geometry is then possible using embedded boundary/volume-of-fluid methods without loss of geometric detail. This capability has been used to simulate biological flows in a variety of application geometries including biomedical microdevices, anatomical structures and porous media

  6. Weibull statistics effective area and volume in the ball-on-ring testing method

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund

    2014-01-01

    to geometries relevant for the application of the material, the effective area or volume for the test specimen must be evaluated. In this work analytical expressions for the effective area and volume of the ball-on-ring test specimen is derived. In the derivation the multiaxial stress field has been accounted...... for by use of the Weibull theory, and the multinomial theorem has been used to handle the integration of multiple terms raised to the power of the Weibull modulus. The analytical solution is verified with a high number of finite element models for various geometric parameters. The finite element model...

  7. Radionuclide assessment of peripheral hemodynamics: a new technique for measurement of forearm blood volume and flow

    Energy Technology Data Exchange (ETDEWEB)

    Todo, Y.; Tanimoto, M.; Yamamoto, T.; Iwasaki, T.

    1986-02-01

    A new peripheral hemodynamic measurement system using /sup 99m/Tc-labeled red blood cells has been developed. This method was carried out on 22 normal subjects, 29 with coronary artery disease, and two with dilated cardiomyopathy. Peripheral hemodynamic indices obtained from this method included forearm blood volume (FBV), venous capacity (FVC), venous capacity index (VCI), blood flow (FBF), and vascular resistance (FVR), and were compared with the central hemodynamic parameters of left ventricular filling pressure (LVFP), cardiac output (CO), and total systemic vascular resistance (TSVR) obtained with an invasive technique. The normal values were FBV 8.54 +/- 2.04 ml/100 ml; FVC 4.54 +/- 1.23 ml/100 ml; VCI 65.5 +/- 3.8%; FBF 4.26 +/- 0.56 ml/100 ml/min; and FVR 20.9 +/- 4.4 mmHg/ml/100 ml/min. These values were in good agreement with the values reported using conventional plethysmography. The 16 patients with congestive heart failure (NYHA Class II or III) showed significantly lower FBV, FVC, and FBF values and significantly higher VCI and FVR values than the healthy subjects. Capacitance vessel parameters (FBV, FVC, and VCI) and LVFP, FBF and CO, and FVR and TSVR each showed significant correlation; reproducibility was also good. The advantages of this method are (a) the detector does not come in contact with the region being measured; (b) it is possible to ascertain the absolute quantity of blood in the tissue; (c) extravasation of the plasma component can be ignored; and (d) data processing is simple.

  8. Brain blood-flow changes during motion sickness. [thalamus vascular changes in dogs during swing tests

    Science.gov (United States)

    Johnson, W. H.; Hsuen, J.

    1973-01-01

    The possibility of diminished blood flow in the brain is studied as one of the factors resulting from an increase in skeletal muscle blood volume concomitant with other characteristics of motion sickness. Thermistors are implanted in the thalamus of dogs and blood flow changes are recorded while they are subjected to sinusoidal movement on a two pole swing. Results of these initial steps in a proposed long term exploration of different areas of the brain are presented.

  9. A robust and extendable sheath flow interface with minimal dead volume for coupling CE with ESI-MS.

    Science.gov (United States)

    Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2018-04-01

    In this paper, we describe a robust sheath flow-based CE-MS interface with minimal interface dead volume based on an extended pattern. A 20µm i.d. × 90µm o.d. fused-silica capillary with a chemically-etched thin-wall tip (30µm o.d.) was used as the separation capillary as well as electrospray emitter, and a 200µm i.d. × 375µm o.d. capillary with a tapered tip (40µm o.d.) was used as the sheath flow capillary. An extendable sheath-flow interface mode was adopted by decreasing the thickness of separation capillary tip and extending the separation capillary tip out from the sheath flow capillary tip, and allowing the sheath flow to be transferred to the separation capillary tip along its outer surface, forming a surface sheath flow to mix with sample flow at the separation capillary tip. Such a strategy could significantly reduce the interface dead volume and thus improve the CE separation efficiency and detection sensitivity, as well as evidently enhance the working reliability of the CE-MS interface. We investigated various factors affecting the interface performance, including capillary extending distance, emitter diameters, sheath flow capillary shape, and sheath flow rate. Under the optimized conditions, a minimal interface dead volume of ca. 4pL was obtained which is the smallest one compared with previously-reported sheath flow-based CE-MS interfaces. The feasibility and applicability of the present CE-MS interface were demonstrated in the separation of a peptide mixture with high separation efficiency of 2.07-3.38µm plate heights and good repeatabilities (< 6.1% RSD, n = 5). We except such a simple and robust interface could provide a possible solution for the development of commercial CE-MS interfaces differing from the currently-used ones, and has the potentials to be applied in routine analytical laboratories for various studies such as proteomics, metabolomics, or single cell analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Upscaling the Navier-Stokes Equation for Turbulent Flows in Porous Media Using a Volume Averaging Method

    Science.gov (United States)

    Wood, Brian; He, Xiaoliang; Apte, Sourabh

    2017-11-01

    Turbulent flows through porous media are encountered in a number of natural and engineered systems. Many attempts to close the Navier-Stokes equation for such type of flow have been made, for example using RANS models and double averaging. On the other hand, Whitaker (1996) applied volume averaging theorem to close the macroscopic N-S equation for low Re flow. In this work, the volume averaging theory is extended into the turbulent flow regime to posit a relationship between the macroscale velocities and the spatial velocity statistics in terms of the spatial averaged velocity only. Rather than developing a Reynolds stress model, we propose a simple algebraic closure, consistent with generalized effective viscosity models (Pope 1975), to represent the spatial fluctuating velocity and pressure respectively. The coefficients (one 1st order, two 2nd order and one 3rd order tensor) of the linear functions depend on averaged velocity and gradient. With the data set from DNS, performed with inertial and turbulent flows (pore Re of 300, 500 and 1000) through a periodic face centered cubic (FCC) unit cell, all the unknown coefficients can be computed and the closure is complete. The macroscopic quantity calculated from the averaging is then compared with DNS data to verify the upscaling. NSF Project Numbers 1336983, 1133363.

  11. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report.

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Kyle K. (Wetzel Engineering, Inc. Lawrence, Kansas); Hermann, Thomas M. (Wichita state University, Wichita, Kansas); Locke, James (Wichita state University, Wichita, Kansas)

    2005-11-01

    Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-plane displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup

  12. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  13. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  14. Nonlinear flow model of multiple fractured horizontal wells with stimulated reservoir volume including the quadratic gradient term

    Science.gov (United States)

    Ren, Junjie; Guo, Ping

    2017-11-01

    The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.

  15. Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Awara, Kousuke; Takeno, Kenichi; Miyazaki, Tsuyoshi; Kubota, Masafumi; Negoro, Kohei; Baba, Hisatoshi

    2010-08-01

    Phalen's test has been one of the most significant of clinical signs when making a clinical diagnosis of idiopathic carpal tunnel syndrome (CTS). However, it is unknown whether intraneural blood flow changes during Phalen's test in patients with CTS. In this study, an intraoperative Phalen's test was conducted in patients with CTS to observe the changes in intraneural blood flow using a laser Doppler flow meter. During Phalen's test, intraneural blood flow showed a sharp decrease, which lasted for 1 min. Intraneural blood flow decreased by 56.7%-100% (average, 78.0%) in the median nerve relative to the blood flow before the test. At 1 min after completing the test, intraneural blood flow returned to the baseline value. After carpal tunnel release, there was no marked decrease in intraneural blood flow. This study demonstrated that the blood flow in the median nerve is reduced when Phalen's test is performed in vivo. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    National Research Council Canada - National Science Library

    Richardson, Aaron W; Eshbaugh, Jonathan P; Hofacre, Kent C; Gardner, Paul D

    2006-01-01

    ...) and biological test aerosols under breather flow rates associated with high work rates. The inert test challenges consisted of solid and oil aerosols having nominal diameters ranging from 0.02...

  17. Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer's disease

    OpenAIRE

    Lacalle-Aurioles, María; Mateos-Pérez, José M; Guzmán-De-Villoria, Juan A; Olazarán, Javier; Cruz-Orduña, Isabel; Alemán-Gómez, Yasser; Martino, María-Elena; Desco, Manuel

    2014-01-01

    The purpose of this study was to elucidate whether cerebral blood flow (CBF) can better characterize perfusion abnormalities in predementia stages of Alzheimer's disease (AD) than cerebral blood volume (CBV) and whether cortical atrophy is more associated with decreased CBV or with decreased CBF. We compared measurements of CBV, CBF, and mean cortical thickness obtained from magnetic resonance images in a group of healthy controls, patients with mild cognitive impairment (MCI) who converted t...

  18. Effect of volume-oriented versus flow-oriented incentive spirometry on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly.

    Science.gov (United States)

    Lunardi, Adriana C; Porras, Desiderio C; Barbosa, Renata Cc; Paisani, Denise M; Marques da Silva, Cibele C B; Tanaka, Clarice; Carvalho, Celso R F

    2014-03-01

    Aging causes physiological and functional changes that impair pulmonary function. Incentive spirometry is widely used for lung expansion, but the effects of volume-oriented incentive spirometry (VIS) versus flow-oriented incentive spirometry (FIS) on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly are poorly understood. We compared VIS and FIS in elderly subjects and healthy adult subjects. Sixteen elderly subjects (9 women, mean ± SD age 70.6 ± 3.9 y, mean ± SD body mass index 23.8 ± 2.5 kg/m(2)) and 16 healthy adults (8 women, mean ± age 25.9 ± 4.3 y, mean ± body mass index 23.6 ± 2.4 kg/m(2)) performed quiet breathing, VIS, and FIS in randomized sequence. Chest wall kinematics (via optoelectronic plethysmography) and inspiratory muscle activity (via surface electromyography) were assessed simultaneously. Synchrony between the superior thorax and abdominal motion was calculated (phase angle). In the elderly subjects both types of incentive spirometry increased chest wall volumes similarly, whereas in the healthy adult subjects VIS increased the chest wall volume more than did FIS. FIS and VIS triggered similar lower thoracoabdominal synchrony in the elderly subjects, whereas in the healthy adults FIS induced lower synchrony than did VIS. FIS required more muscle activity in the elderly subjects to create an increase in chest wall volume. Incentive spirometry performance is influenced by age, and the differences between elderly and healthy adults response should be considered in clinical practice.

  19. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    . This paper presents a numerical axi-symmetric approach for simulation of the slump flow test. Simulations are compared to experimental test results on the rheological properties and slump flow. Former rheological investigations on SCC indicate a non-Newtonian behaviour according to the Bingham model....

  20. On Parameters Affecting Metal Flow and Friction in the Double Cup Extrusion Test

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    1998-01-01

    Friction and lubrication in metal-forming processes are usually evaluated by a process test with a friction-sensitive divided flow like the ring-compression test. Parameters affecting metal flow are not only friction, but also strain hardening, tool geometry etc. The current friction models appli...

  1. Test of s-wave pairing in heavy-fermion systems due to Kondo volume collapse

    International Nuclear Information System (INIS)

    Svozil, K.

    1987-01-01

    It is proposed to utilize resonant Raman scattering on heavy-fermion superconductors as a test for Cooper pairing via an effective phonon-mediated attraction due to the Kondo volume collapse. The suggested experiment might help to discriminate between singlet and triplet pairing

  2. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  3. Crown Zellerbach Well No. 2, Livingston Parish, Louisiana. Volume I. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Crown Zellerbach Well No. 2, approximately 23 miles east of Baton Rouge, Louisiana, is the eighth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. Two flow tests and one reservoir pressure buildup test were conducted on the lower zone during a 13-day period. A total of 12,489 barrels of water was produced. The highest flow rate achieved was about 3887 BWPD. One flow test followed by a buildup period was conducted on the combined upper and lower zones during a 3-day period. A total of 4739 barrels of water was produced. The highest flow rate achieved was about 3000 BWPD. The gas/water ratio measured during testing was about 32.0 SCF/BBL for the lower zone. The extrapolated latoratory data indicates that the solubility of the gas is 55.7 SCF/BBL. It appears that the reservoir brine is considerably undersaturated. The methane content of the flare line gas averaged 71.0 mole percent. Crown Zellerbach Company carefully studied the commercial feasibility of using the well to produce energy for a wood-drying facility and decided against the project.

  4. SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis

    Science.gov (United States)

    Oren, J. A.; Williams, D. R.

    1975-01-01

    The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.

  5. Flow velocity and volume measurement of superior and inferior mesenteric artery with cine phase contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Cooper, T.G.; Jenner, G.; Potchen, E.J.; Ishigaki, Takeo.

    1994-01-01

    The flow velocity and volume of the superior and inferior mesenteric arteries (SMA, IMA) were measured with cine phase contrast magnetic resonance (MR) imaging in five healthy volunteers. Each volunteer was first measured in a fasting state, and then one, two, and three hours after a meal. The average SMA flow volume of the volunteers was 230.3±46.8 ml/min (mean±standard error) during the fasting state, and 714.7±207.7 ml/min, 339.2±85.7 ml/min, and 263.8±21.0 ml/min, respectively, at one, two, and three hours postmeal. The increase at one hour postmeal was statistically significant (p<0.05). The corresponding flow measurements in the IMA were 63.1±11.2 ml/min, 67.6±11.2 ml/min, 57.9±8.6 ml/min, and 53.2±6.8 ml/min. These values do not represent a statistically significant flow volume change in the IMA. In all volunteers, the SMA volumetric flow increased the most one hour after the food challenge (72-400% relative to baseline). Diastolic velocity in the SMA increased significantly one hour postmeal, but systolic velocity did not change significantly. The IMA did not demonstrate a significant change in either systolic or diastolic velocity. The difference between the SMA and IMA in the way of reacting against the food challenge is thought to represent the difference between the requirements of small and large intestine for blood supply after the food challenge. These data demonstrate the possibility of this modality for the assessment of conditions such as chronic mesenteric ischemia. (author)

  6. Measurement of testicular volume in smaller testes: how accurate is the conventional orchidometer?

    Science.gov (United States)

    Lin, Chih-Chieh; Huang, William J S; Chen, Kuang-Kuo

    2009-01-01

    The aim of this study was to evaluate the accuracy of different methods, including the Seager orchidometer (SO) and ultrasonography (US), for assessing testicular volume of smaller testes (testes volume less than 18 mL). Moreover, the equations used for the calculations--the Hansen formula (length [L] x width [W](2) x 0.52, equation A), the prolate ellipsoid formula (L x W x height [H] x 0.52, equation B), and the Lambert equation (L x W x H x 0.71, equation C)--were also examined and compared with the gold standard testicular volume obtained by water displacement (Archimedes principle). In this study, 30 testes from 15 men, mean age 75.3 (+/-8.3) years, were included. They all had advanced prostate cancer and were admitted for orchiectomy. Before the procedure, all the testes were assessed using SO and US. The dimensions were then input into each equation to obtain the volume estimates. The testicular volume by water displacement was 8.1 +/- 3.5 mL. Correlation coefficients (R(2)) of the 2 different methods (SO, US) to the gold standard were 0.70 and 0.85, respectively. The calculated testicular volumes were 9.2 +/- 3.9 mL (measured by SO, equation A), 11.9 +/- 5.2 mL (measured by SO, equation C), 7.3 +/- 4.2 mL (measured by US, equation A), 6.5 +/- 3.3 mL (measured by US, equation B) and 8.9 +/- 4.5 mL (measured by US, equation C). Only the mean size measured by US and volume calculated with the Hansen equation (equation A) and the mean size measured by US and volume calculated with the Lambert equation (equation C) showed no significant differences when compared with the volumes estimated by water displacement (mean difference 0.81 mL, P = .053, and 0.81 mL, P = .056, respectively). Based on our measurements, we categorized testicular volume by different cutoff values (7.0 mL, 7.5 mL, 8.0 mL, and 8.5 mL) to calculate a new constant for use in the Hansen equation. The new constant was 0.59. We then reexamined the equations using the new 0.59 constant, and found

  7. Conversion Method of the Balance Test Results in Open Jet Tunnel on the Free Flow Conditions

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available The paper considers a problem of sizing a model and converting the balance test results in the low speed open-jet wind tunnel to free-flow conditions. The ANSYS Fluent commercial code performs flow model calculations in the test section and in the free flow, and the ANSYS ICEM CFD module is used to provide grid generation. A structured grid is generated in the free flow and an unstructured one is provided in the test section. The changes of aerodynamic coefficients are determined at the different values of the blockage factor for the segmental-conical and hemisphere cylinder-cone shapes of the model. The blockage factor values are found at which the interference of the test section – model is neglected. The paper presents a technique to convert the wind tunnel test results to the free flow conditions.

  8. Coupled deformation and fluid-flow behavior of a natural fracture in the CSM in situ test block

    International Nuclear Information System (INIS)

    Gertsch, L.S.

    1989-01-01

    The primary goal was the evaluation of an in situ block test as a data source for modeling the coupled flow and mechanical behavior of natural rock fractures. The experiments were conducted with the Colorado School of Mines in situ test block, an 8 m 3 (280 ft 3 ) gneiss cube which has been the focus of several previous studies. A single continuous fracture within the block was surrounded with instruments to measure stresses, deformations, and gas conductivity. The setup was subjected to combinations of normal and shear stress by pressurizing the block sides differentially with hydraulic flatjacks. The induced fracture deformation, as measured by two separate sensor systems, did not correlate closely with the fracture conductivity changes or with each other. The test fracture is more complicated physically than two parallel rock faces. Many joints which were not detected by mapping intersect the test fracture and strongly influence its behavior. These invisible joints create sub-blocks which react complexly to changes in applied load. The flow tests reflected the aggregate sub-block dislocations in the flow path. The deformation readings, however, were the movements of discrete points sparsely located among the sub-blocks. High-confidence extrapolation of block test results to large volumes, such as required for nuclear waste repository design, is not feasible currently. Present instrumentation does not sample rock mass behavior in situ at the proper scales. More basically, however, a fundamental gap exists between the nature of jointed rock and our conception of it. Therefore, the near-field rock mass must be discounted as an easily controllable barrier to groundwater flow, until radically different approaches to rock mass testing and modeling are developed

  9. A generalised solution for step-drawdown tests including flow ...

    African Journals Online (AJOL)

    drinie

    2001-07-03

    Jul 3, 2001 ... Numerous constant rate tests, of which a few are discussed in this paper, has shown that this is not ... Although the model proposed for multi-rate tests is still based on constant time steps, the one for step-drawdown tests allows the ..... is a highly non-linear equation in the mathematical sense in that it.

  10. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  11. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  12. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    International Nuclear Information System (INIS)

    1979-01-01

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program

  13. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  14. Test and Evaluation of CGC POLAR STAR WAGB 10. Volume II. Test Plans.

    Science.gov (United States)

    1978-09-01

    water voyage leg between Seattle and Unimak Pass, operations in the Bering and Chukchi Seas will encompass the period late January throughMarch...Eight weeks of testing north of Unimak Pass can be planned. Analysis of environmental conditions in the area and past experience from full-scale testing

  15. Reduction of contrast medium volume in abdominal aorta CTA: Multiphasic injection technique versus a test bolus volume

    Energy Technology Data Exchange (ETDEWEB)

    Nijhof, Wouter H., E-mail: w.h.nijhof@student.utwente.nl [University of Twente, MIRA-Institute for Biomedical Technology and Technical Medicine, P.O. Box 21, 7500 AE Enschede (Netherlands); Vos, Charlotte S. van der, E-mail: c.s.vandervos@student.utwente.nl [University of Twente, MIRA-Institute for Biomedical Technology and Technical Medicine, P.O. Box 21, 7500 AE Enschede (Netherlands); Anninga, Bauke, E-mail: b.anninga@student.utwente.nl [University of Twente, MIRA-Institute for Biomedical Technology and Technical Medicine, P.O. Box 21, 7500 AE Enschede (Netherlands); Jager, Gerrit J., E-mail: g.jager@JBZ.nl [Department of Radiology, Jeroen Bosch Hospital, Henri Dunantstraat 1, 5223 GZ ’s-Hertogenbosch (Netherlands); Rutten, Matthieu J.C.M., E-mail: mj.rutten@online.nl [Department of Radiology, Jeroen Bosch Hospital, Henri Dunantstraat 1, 5223 GZ ’s-Hertogenbosch (Netherlands)

    2013-09-15

    Objective: The purpose of this study is to reduce the administered contrast medium volume in abdominal CTA by using a test bolus injection, with the preservation of adequate quantitative and qualitative vessel enhancement. Study design: For this technical efficacy study 30 patients, who were referred for a CTA examination of the abdominal aorta, were included. Randomly 15 patients were assigned to undergo a multiphasic injection protocol and received 89 mL of contrast medium (Optiray 350) (protocol I). Fifteen patients were assigned to the test bolus injection protocol (protocol II), which implies injection of a 10 mL test bolus of Optiray 350 prior to performing CTA with a 40 mL of contrast medium. Quantitative assessment of vascular enhancement was performed by measuring the amount of Hounsfield Units in the aorta at 30 positions from the celiac trunk to the iliac arteries in both groups. Qualitative assessment was performed by three radiologists who scored the images at a 5-point scale. Results: Quantitative assessment showed that there was no significant difference in vascular enhancement for patients between the two protocols, with mean attenuation values of 280.9 ± 50.84 HU and 258.60 ± 39.28 HU, respectively. The image quality of protocol I was rated 4.31 (range: 3.67/5.00) and of protocol II 4.11 (range: 2.67/5.00). These differences were not statistically significant. Conclusion: This study showed that by using a test bolus injection and the administration of 50 mL of contrast medium overall, CTA of the abdominal aorta can reliably be performed, with regard to quantitative and qualitative adequate vessel enhancement.

  16. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    Science.gov (United States)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  17. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    International Nuclear Information System (INIS)

    Peixoto, Philippe N.B.; Salgado, Cesar M.

    2015-01-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  18. Angle β of greater than 80° at the start of spirometry may identify high-quality flow volume curves.

    Science.gov (United States)

    Lian, Ningfang; Li, Li; Ren, Weiying; Jiang, Zhilong; Zhu, Lei

    2017-04-01

    The American Thoracic Society (ATS) and European Respiratory Society (ERS) emphasize a satisfactory start in maximal expiratory flow-volume (MEFV) curves and highlight subjective parameters: performance without hesitation and expiration with maximum force. We described a new parameter, angle β for characterization of the start to the MEFV curve. Subjects completed the MEFV curve at least three times and at least two curves met ATS/ERS quality. Subjects were divided into normal, restrictive and obstructive groups according to pulmonary function test results. The tangent line was drawn at the start of the MEFV curve's ascending limb to the x-axis and the angle β between the tangent line and x-axis was obtained. The relationships between tangent of β, pulmonary function parameters (PFPs) and anthropometric data were assessed. The MEFV curves with insufficient explosion at the start were considered as poor-quality MEFV curves. In 998 subjects with high-quality spirometry, although PFP varied in relation to the three aspects: the angle β and its tangent were similar (P > 0.05), the tangent of β did not correlate with PFP or anthropometric measurements (P > 0.05) and the lower limit of normal (LLN) of the angle β was 80° in the group with high-quality spirometry (P < 0.05). Angle β derived from poor-quality MEFV curves was smaller than that from good quality one (P < 0.05). Angle β may function as a parameter to assess the expiratory efforts, which can be used to assess the quality of the MEFV curve start. © 2016 Asian Pacific Society of Respirology.

  19. Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W

    2017-01-01

    Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r 2  = 0.839; p Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model.

    Science.gov (United States)

    Barns, Gareth L; Wilson, Ryan D; Thornton, Steven F

    2012-02-01

    This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration

    Science.gov (United States)

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... flowmeter parameters that relate the flow rate at each point. Three conditions must be maintained to assure.... U-Tube Manometers 6. Temperature Indicator with type J Thermocouples 7. A variable flow restrictor...

  2. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  3. Thermal mixing tests in a semiannular downcomer with interacting flows from cold legs: International Agreement Report

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H; Mustonen, P

    1986-10-01

    This report describes the test facility and test program for studying thermal mixing of high-pressure injection (HPI) water in the two-fifths scale model of three cold legs, semiannular downcomer and lower plenum of a pressurized water reactor. This test series has been carried out by mutual agreement on the pressurized thermal shock (PTS) information exchange between the US Nuclear Regulation Commission and Imatran Voima Oy. The test facility was originally designed to model the Finnish Loviisa plant but it was redesigned and modified for this test program. The facility can be operated at atmospheric pressure with loop and HPI flows from different cold legs in the area of interest to PTS. Transparent materials were used to allow flow visualization during the tests. The choice of transparent materials limit the upper temperature to 75/sup 0/C. The full buoyancy effect was induced by salt addition and the HPI temperature was used as a tracer. The test matrix consists of 20 tests. The varied parameters were flow rates and the number and configuration of cold legs with HPI and loop flows. Four tests were done with decreasing loop flow temperature to simulate primary flows during steam line breaks.

  4. A generalised solution for step-drawdown tests including flow ...

    African Journals Online (AJOL)

    drinie

    2001-07-03

    , South Africa. Abstract ..... factors may also contribute to turbulence in a producing borehole. - a high discharge rate and a restrictive ... discharge rate used in the test represents an acceptable measure for the long-term yield of ...

  5. Applying control volume finite element for modelling direct injection boom spraying flow

    OpenAIRE

    El Aissaoui, Abdellah; Lebeau, Frédéric; Destain, Marie-France; Houmy, Karim

    2009-01-01

    Assessment of injection lag transport and uniformity of direct injection boom sprayer is an important issue for successful variable rate spraying technology. To estimate the boom lag transport and pressure loss, a numerical model is formulated on the basis of fluid hydrodynamic conservation equations. The software is implemented in visual basic. To solve the pressure – velocities equations, control volume finite element method (CV) is used to delimit elementary volumes of the boom. Linearizat...

  6. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  7. Testing MODFLOW-LGR for simulating flow around Buried Quaternary valleys - synthetic test cases

    DEFF Research Database (Denmark)

    Vilhelmsen, Troels Norvin; Christensen, Steen

    In Denmark the water supply is entirely based on ground water. In some parts of the country these resources are found in buried quaternary tunnel valleys. Intensive mapping has shown that the valleys typically have a complex internal hydrogeology with multiple cut and ­fill structures. The admini......In Denmark the water supply is entirely based on ground water. In some parts of the country these resources are found in buried quaternary tunnel valleys. Intensive mapping has shown that the valleys typically have a complex internal hydrogeology with multiple cut and ­fill structures....... The administration of groundwater resources has been based on simulations using regional scale groundwater models. However, regional scale models have difficulties with accurately resolving the complex geology of the buried valleys, which bears the risk of poor model predictions of local scale effects of groundwater...... abstraction. To enable effective administration of the groundwater resources new methods need to be investigated to improve simulation of local scale flow in buried valleys that interact with surrounding regional groundwater systems. The purpose of this synthetic case study is to test the Local Grid Re...

  8. A testing procedure for triaxial tests and a numerical method for the calculation of powder flow properties

    NARCIS (Netherlands)

    Eelkman Rooda, J.; Haaker, G.

    1977-01-01

    A testing procedure for measuring flow properties of powders is developed which makes it possible to use results from triaxial tests in the Jenike bin theory. For the elaboration of the results a numerical method is used, based upon the Warren Spring equation (τ/C)N = (σ + T)/T. In this equation σ

  9. A finite-volume/Newton method for a two-phase heat flow problem using primitive variables and collocated grids

    International Nuclear Information System (INIS)

    Liang, M.C.; Lan, C.W.

    1996-01-01

    A finite-volume/Newton's method is presented for solving the incompressible heat flow problem in an inclined enclosure with an unknown melt/solid interface using primitive variables and collocated grids. The unknown melt/solid interface is solved simultaneously with all of the field variables by imposing the weighted melting-point isotherm. In the finite-volume formulation of the continuity equation, a modified momentum interpolation scheme is adopted to enhance velocity/pressure coupling. During Newton's iterations, the ILU (0) preconditioned GMRES matrix solver is applied to solve the linear system, where the sparse Jacobian matrix is estimated by finite differences. Nearly quadratic convergence of the method is observed. The robustness of the method is further enhanced with the implementation of the pseudo-arclength continuation. The effects of the Rayleigh number and gravity orientation on flow patterns and the interface are demonstrated. Bifurcation diagrams are also constructed to illustrate flow transition and multiple steady states. 42 refs., 13 figs., 5 tabs

  10. A Coupled Lattice Boltzmann-Volume Penalization for Flows Past Fixed Solid Obstacles with Local Mesh Refinement

    Directory of Open Access Journals (Sweden)

    Kai Guo

    2018-01-01

    Full Text Available A coupled Lattice Boltzmann-Volume Penalization (LBM-VP with local mesh refinement is presented to simulate flows past obstacles in this article. Based on the finite-difference LBM, the local mesh refinement is incorporated into the LBM to improve computing efficiency. The volume penalization method is introduced into the LBM by an external forcing term. In the LBM-VP method, the processes of interpolating velocities on the boundaries points and distributing the force density to the Eulerian points near the boundaries are unnecessary. Performing the LBM-VP on a certain point, only the variables of this point are needed, which means the whole procedure can be conducted parallelly. As a consequence, the whole computing efficiency can be improved. To verify the presented method, flows past a single circular cylinder, a pair of cylinders in tandem arrangement, and a NACA-0012 are investigated. A good agreement between the present results and the data in the previous literatures is achieved, which demonstrates the accuracy and effectiveness of the present method to solve the flows past obstacle problems.

  11. Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of Radionuclides in Heterogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Amaziane Brahim

    2014-07-01

    Full Text Available In this paper, we consider adaptive numerical simulation of miscible displacement problems in porous media, which are modeled by single phase flow equations. A vertex-centred finite volume method is employed to discretize the coupled system: the Darcy flow equation and the diffusion-convection concentration equation. The convection term is approximated with a Godunov scheme over the dual finite volume mesh, whereas the diffusion-dispersion term is discretized by piecewise linear conforming finite elements. We introduce two kinds of indicators, both of them of residual type. The first one is related to time discretization and is local with respect to the time discretization: thus, at each time, it provides an appropriate information for the choice of the next time step. The second is related to space discretization and is local with respect to both the time and space variable and the idea is that at each time it is an efficient tool for mesh adaptivity. An error estimation procedure evaluates where additional refinement is needed and grid generation procedures dynamically create or remove fine-grid patches as resolution requirements change. The method was implemented in the software MELODIE, developed by the French Institute for Radiological Protection and Nuclear Safety (IRSN, Institut de Radioprotection et de Sûreté Nucléaire. The algorithm is then used to simulate the evolution of radionuclide migration from the waste packages through a heterogeneous disposal, demonstrating its capability to capture complex behavior of the resulting flow.

  12. Experimental and Theoretical Study of Air Flow with Obstruction Through Test Section of Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hayder Kraidy Rashid

    2016-03-01

    Full Text Available This paper estimates the sound and flow generated by a turbulent air flow in a duct from the knowledge of mean quantities (average velocity and sound pressure level.The sound excitation by fluid flow through duct can be used to predict fluid behavior. This behavior can be carried out by discovering the relation between sound excitation and fluid flow parameters like Reynolds number, Strouhal number and frequencies of turbulent fluid flow. However, the fluid flow container stability has to be taken in account simultaneously with fluid flow effect on sound generation and propagation. The experimental system used in this work is air flow through subsonic wind tunnel duct.The sound pressure levels of air flows through test section of subsonic wind tunnel (at three air flow velocities2.5, 7.3 and 12.5 m/s respectively were carried out experimentally. The sound excitation or generation by air flow throughout the test section of subsonic wind tunnel without any obstruction can't be used to imagine the fluid behavior. To predict fluid flow properties,an infinite cylinder was immersed in order to obstruct the air flow and generate a new source of sound.This case is relevant to a wide range of engineering applications including aircraft landing gear, rail pantographs and automotive side-mirrors. Sound measurements have been taken in an anechoic room at Babylon University. ANSYS program software is used to simulate all experimental results.The experimental and theoretical data that were presented in this paper will give further insight into the underlying sound generation mechanism.In the presented work, the linkage between sound generation and CFD results using thepresented work results and ANSYS simulation results was done.The results discuss the effects of fluid flow parameters such as Reynolds and Strouhal numbers on the sound generation, propagation features and vice-versa. The results are compared with other researchers which give good agreements.

  13. Survival and growth of newly transformed Lampsilis cardium and Lampsilis siliquoidea in a flow-through, continuous feeding test system

    Science.gov (United States)

    Meinertz, Jeffery R.; Schreier, Theresa M.; Hess, Karina R.; Bartsch, Michelle

    2011-01-01

    A test system was evaluated for assessing chronic toxicity of waterborne chemicals with early life stage mussels. To determine if the test system could result in ≥80% survival in a control (unexposed) group, fat mucket mussels (Lampsilis siliquoidea Barnes, 1823) and plain pocketbook mussels (L. cardium Rafinesque, 1820) 1 day post transformation were stocked into test chambers (250 mL beakers, water volume, 200 mL, 21 °C, 40 mussels of 1 species per chamber) within a test system constructed for conducting chronic, continuous exposure, flow-through toxicity tests. The test system contained 60 chambers containing silica sand, 30 chambers with L. siliquoidea, and 30 with L. cardium. Each chamber in the continuous feeding system received 1 of 6 food types prepared with concentrated algal products. After 28 days, mussels were harvested from chambers to assess survival and growth. For L. siliquoidea, mean survival ranged from 34 to 80% and mean shell length ranged from 464 to 643 µm. For L. cardium, mean survival ranged from 12 to 66% and mean shell length ranged from 437 to 612 µm. The maximum mean growth rate for L. siliquoidea was 12.7 µm/d and for L. cardium was 11.8 µm/d. When offered a continuous diet of Nannochloropsis, Tetraselmis, and Chlorella for 28 days in the test system, the survival of 1 day post transformation L. siliquoidea was 80%. The test system can be easily enhanced with a pumping system continuously delivering test chemical to the test system's flow stream allowing for chronic toxicity tests with 1 day post transformation mussels.

  14. Tamper-indicating devices and safeguards seals evaluation test report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Horton, P.R.V.; Waddoups, I.G.

    1995-08-01

    Volume I was based on a survey and an evaluation of seals that are used as tamper-indicating devices at DOE facilities. For that evaluation, currently available seals were physically and environmentally evaluated under two broad categories: handling durability and tamper resistance. Our study indicated that the environmental testing had no negative effects on the results of the mechanical tests. In Volume II, we evaluate some loop, fiber optic loop, and pressure-sensitive seals that are not used at DOE facilities. However, we continue to focus on qualities required by DOE: durability and tamper resistance. The seals are comparatively rated, and recommendations are made for using currently available seals and new tamper-indicating device technology.

  15. Tamper-indicating devices and safeguards seals evaluation test report. Volume 2

    International Nuclear Information System (INIS)

    Horton, P.R.V.; Waddoups, I.G.

    1995-08-01

    Volume I was based on a survey and an evaluation of seals that are used as tamper-indicating devices at DOE facilities. For that evaluation, currently available seals were physically and environmentally evaluated under two broad categories: handling durability and tamper resistance. Our study indicated that the environmental testing had no negative effects on the results of the mechanical tests. In Volume II, we evaluate some loop, fiber optic loop, and pressure-sensitive seals that are not used at DOE facilities. However, we continue to focus on qualities required by DOE: durability and tamper resistance. The seals are comparatively rated, and recommendations are made for using currently available seals and new tamper-indicating device technology

  16. Determination of volume fraction in biphasic flows oil-gas and water-gas using artificial neural network and gamma densitometry

    International Nuclear Information System (INIS)

    Peixoto, Philippe Netto Belache

    2016-01-01

    This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of 137 Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)

  17. Infantry Weapons Test Methodology Study. Volume 3. Light Machine Gun Test Methodology

    Science.gov (United States)

    1972-06-01

    in a quasi -tactical environment. The determination of factors influencing the evaluation of machine guns in a realistic combat environment was...reduced. For example, the type small arms ammunition being considered for use in new weapons is now being handmade today at $1.70 per round. If a test...Tactical Application 23-15 Browning Automatic Rifle, Caliber .30, M1918A2 * 23-16 Change 1, Automatic Rifle Marksmanship 23-23 Change I, Antipersonnel Mine

  18. FlowPing - The New Tool for Throughput and Stress Testing

    Directory of Open Access Journals (Sweden)

    Ondrej Vondrous

    2015-01-01

    Full Text Available This article presents a new tool for network throughput and stress testing. The FlowPing tool is easy to use, and its basic output is very similar to standard Linux ping application. The FlowPing tool is not limited to reach-ability or round trip time testing but is capable of complex UDP based throughput stress testing with rich reporting capabilities on client and server sides. Our new tool implements features, which allow the user to perform tests with variable packet size and traffic rate. All these features can be used in one single test run. This allows the user to use and develop new methodologies for network throughput and stress testing. With the FlowPing tool, it is easy to perform the test with the slowly increasing the amount of network traffic and monitor the behavior of network when the congestion occurs.

  19. Flow for Exercise Adherence: Testing an Intrinsic Model of Health Behavior

    Science.gov (United States)

    Petosa, R. Lingyak; Holtz, Brian

    2013-01-01

    Background: Health behavior theory generally does not include intrinsic motivation as a determinate of health practices. Purpose: The purpose of this study was to test the flow theory of exercise adherence. Flow theory posits that exercise can be intrinsically rewarding if the experiences of self/time transcendence and control/mastery are achieved…

  20. Comparison of Flow-Through Cell and Paddle Methods for Testing ...

    African Journals Online (AJOL)

    HP

    Purpose: To evaluate the usefulness of the flow-through cell apparatus for testing commercial vaginal tablets containing poorly water-soluble clotrimazole. Methods: The effect of experimental conditions (type of dissolution medium, flow rate and positioning of the tablet) on the dissolution profile of clotrimazole were ...

  1. A generalised solution for step-drawdown tests including flow ...

    African Journals Online (AJOL)

    The drawdowns in these boreholes are not only influenced by the peculiar geometry of the aquifers, but also the non-linear deformation of the aquifers during the pumping of a borehole. The two new non-linear models for the analysis of step-drawdown and multi-rate tests introduced here, tries to account for these factors; ...

  2. Precise Measurement of Gas Volumes by Means of Low-Offset MEMS Flow Sensors with μL/min Resolution.

    Science.gov (United States)

    Piotto, Massimo; Del Cesta, Simone; Bruschi, Paolo

    2017-10-31

    Experiments devoted to evaluate the performance of a MEMS thermal flow sensor in measuring gas volumes are described. The sensor is a single-chip platform, including several sensing structures and a low-offset, low-noise readout interface. A recently proposed offset compensation approach is implemented obtaining low temperature drift and excellent long time stability. The sensor is fabricated by applying a simple micromachining procedure to a chip produced using the BCD6s process of STMicroelectronics. Application of a gas conveyor allowed inclusion of the sensing structure into a channel of sub-millimeter cross-section. The results of measurements performed by making controlled air volumes pass through the sensor channel in both directions at rates from 0.1 to 5 mL/min are described.

  3. Final report of the Buffer Mass Test. Volume II: test results

    International Nuclear Information System (INIS)

    Pusch, R.; Boerjesson, L.; Ramqvist, G.

    1985-08-01

    The evaluation of the Buffer Mass Test mainly concerned the heating of the bentonite/rock system that simulated hot canisters in deposition holes, the swelling and swelling pressure of the expanding bentonite in the heater holes, and the water uptake of the bentonite in the holes as well as in the tunnel backfill. These processes had been predicted on the basis of laboratory-derived data and FEM calculations with due consideration of the actual geometry. The recorded temperatures of the bentonite and surrounding rock were found to be below the maximum temperature that had been set, but higher than the expected values in the initial period of testing. The heater surface temperatures dropped in the course of the tests due to the uptake of water from the rock even in the driest hole which was located in almost fracture-free rock. The water uptake in the highly compacted bentonite in the heater holes was manifested by a successively increased swelling pressure at the bentonite/rock interface. It was rather uniformly distributed over this interface and reached a maximum value of about 10 MPa. The water content determination confirmed that water had been absorbed by the bentonite from the rock even in the driest holes where the counteracting thermal gradient was rather high. In the wettest holes the saturation became almost complete and a high degree of saturation was also observed in the tunnel backfill. Both in the heater holes and the tunnel, the moistening was found to be very uniform along the periphery, which is at least partly explained by the self-sealing ability of bentonite buffer materials. A general conclusion is that the involved physical processes are well understood and that the ultimate physical state of the buffer materials under repository conditions can be safely predicted. With 15 refs. (Author)

  4. Reducing the number of rabbits in the low-volume eye test.

    Science.gov (United States)

    Bruner, L H; Parker, R D; Bruce, R D

    1992-10-01

    Although the Draize eye irritation test has provided important and useful information for eye safety assessments, considerable effort has been directed toward refining the assay procedure, reducing the number of animals used, and replacing this assay with alternative methods. The low-volume eye test (LVET) is a refinement of the Draize eye irritation test that uses 1/10 the volume of test substance placed directly on the cornea. The level and duration of eye irritation in the LVET are less than those in the Draize procedure, which means that it is a less stressful test. Furthermore, LVETs are more predictive of human response. Statistical studies have been conducted to determine the effects of reducing the number of animals used in the Draize test. These results suggested that a three-animal test would provide essentially the same information as the six-animal test. A similar analysis has not been performed on results from the LVET. Accordingly, the present study was undertaken to evaluate previously existing LVET data to determine if the number of animals used in a LVET can be decreased as has been shown for the Draize test. The results of the analysis are consistent with the findings of earlier evaluations of classical Draize data. Three-animal subsets from 119 six-animal LVETs provided the correct classification greater than 92% of the time for three different classification schemes. Furthermore, the discrepancies between the three-animal subsets and the six-animal maximum average score tended to be smaller than those observed for the Draize test.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Experimental onset of flow instability testing by Creare, Inc. Book 1

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1992-11-01

    Flow excursions can occur during subcooled heated flow if the supply system is not adequate to meet the heated channel pressure demand. Available experimental flow instability (FI) data for ribbed annuli such as used in the SRS production reactors is very limited. Creare Inc. completed a series of FI tests which included two annular geometries; one of these included metallic ribs which separated the annulus into four sub-channels. This report summarizes the results of the onset of flow instability (OFI) testing which was completed by Creare in support of the SRS Reactor Restart Program. A copy of the final test report has been attached and the archival locations for the supporting documentation and electronic test data is also included. The purpose of this report is to: Archive the Creare Program data; inspect the data which has been archived; review the results presented by Creare; and evaluate if the Creare Program data may be used in critical applications

  6. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  7. Single-well push-pull test in transient Forchheimer flow field

    Science.gov (United States)

    Wang, Quanrong; Zhan, Hongbin; Wang, Yanxin

    2017-06-01

    Using the single-well push-pull (SWPP) test to quantify in situ aquifer characteristics associated with solute transport (dispersion coefficient, geobiochemical reaction rates), the accuracy of parameter estimation was not only dependent on the solute transport models but also the groundwater flow models. However, many previous studies on the SWPP test were based on assumptions over-simplifying the flow field, namely, groundwater flow followed Darcy's law; flow was in the steady state during the entire test duration; the wellbore storage could be negligible. In this study, we have carefully examined such assumptions by developing a new finite-difference model of the SWPP test under the transient Forchheimer flow condition, considering the wellbore storage. The SWPP test included an injection phase, a chaser phase, a rest phase, and an extraction phase. The results showed that the concentration of the steady-state flow solution was greater than that of the transient flow solution at the beginning, and its peak value was also greater than that of the transient flow solution. The difference between the breakthrough curves (BTCs) of the transient flow SWPP model and the steady-state flow SWPP model was not negligible, and such a difference increased with the decreasing specific storage. We also found that BTCs were not sensitive to the inertial force coefficient, while they were sensitive to the wellbore storage. BTCs with different radius of the wellbore (rw) were clearly different from each other, and a larger rw resulted in a greater concentration at the well during the extraction phase.

  8. Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Marques Salgado, Cesar; Brandao, Luis E.B.; Schirru, Roberto; Pereira, Claudio M.N.A.; Silva, Ademir Xavier da; Ramos, Robson

    2009-01-01

    This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.

  9. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  10. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  11. Investigation of EUV tapeout flow issues, requirements, and options for volume manufacturing

    Science.gov (United States)

    Cobb, Jonathan; Jang, Sunghoon; Ser, Junghoon; Kim, Insung; Yeap, Johnny; Lucas, Kevin; Do, Munhoe; Kim, Young-Chang

    2011-04-01

    Although technical issues remain to be resolved, EUV lithography is now a serious contender for critical layer patterning of upcoming 2X node memory and 14nm Logic technologies in manufacturing. If improvements continue in defectivity, throughput and resolution, then EUV lithography appears that it will be the most extendable and the cost-effective manufacturing lithography solution for sub-78nm pitch complex patterns. EUV lithography will be able to provide a significant relaxation in lithographic K1 factor (and a corresponding simplification of process complexity) vs. existing 193nm lithography. The increased K1 factor will result in some complexity reduction for mask synthesis flow elements (including illumination source shape optimization, design pre-processing, RET, OPC and OPC verification). However, EUV does add well known additional complexities and issues to mask synthesis flows such as across-lens shadowing variation, across reticle flare variation, new proximity effects to be modeled, significant increase in pre-OPC and fracture file size, etc. In this paper, we investigate the expected EUV-specific issues and new requirements for a production tapeout mask synthesis flow. The production EUV issues and new requirements are in the categories of additional physical effects to be corrected for; additional automation or flow steps needed; and increase in file size at different parts in the flow. For example, OASIS file sizes after OPC of 250GigaBytes (GB) and files sizes after mask data prep of greater than three TeraBytes (TB) are expected to be common. These huge file sizes will place significant stress on post-processing methods, OPC verification, mask data fracture, file read-in/read-out, data transfer between sites (e.g., to the maskshop), etc. With current methods and procedures, it is clear that the hours/days needed to complete EUV mask synthesis mask data flows would significantly increase if steps are not taken to make efficiency improvements

  12. TR-PIV Performance Test for a Flow Field Measurement in a Single Rod Test Section

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yong; Shin, Chang Hwan; Lee, Chi Young; Oh, Dong Seok; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    For large enhancement of performance of Pressurized Water Reactor(PWR), dual-cooled fuel is being developed in Korea Atomic Energy Research Institute(KAERI). This nuclear fuel is a ring shape fuel which is different from conventional cylindrical nuclear fuel and cooling water flows both inner and outer channel. For this fuel, it widens the surface area. But it is bigger outer diameter of fuel rods. So, interval between fuel rods narrows. This because of outer channel flow is unstable. So, measurement of turbulence flow and perturbation that influence in heat transfer elevation is important.. To understand heat transfer characteristics by turbulence, measurement of flow perturbation element is necessary. To measure these turbulence characteristics, hot wire anemometer is widely used. However, it has many disadvantages such as low durability of prove, and big probe size. For these reasons, TR-PIV(Time-Resolved Particle Image Velocimetry) system is employed for better flow measurement in our research institute. TR-PIV system is consisted of laser system and high-speed camera that have high frequency. So, was judged that can measurement complicated turbulence flow and perturbation. In this paper, introduce TR-PIV system, and with results acquiring in single rod flow through this system, and wish to introduce about after this practical use plan

  13. TR-PIV Performance Test for a Flow Field Measurement in a Single Rod Test Section

    International Nuclear Information System (INIS)

    Park, Ju Yong; Shin, Chang Hwan; Lee, Chi Young; Oh, Dong Seok; In, Wang Kee

    2011-01-01

    For large enhancement of performance of Pressurized Water Reactor(PWR), dual-cooled fuel is being developed in Korea Atomic Energy Research Institute(KAERI). This nuclear fuel is a ring shape fuel which is different from conventional cylindrical nuclear fuel and cooling water flows both inner and outer channel. For this fuel, it widens the surface area. But it is bigger outer diameter of fuel rods. So, interval between fuel rods narrows. This because of outer channel flow is unstable. So, measurement of turbulence flow and perturbation that influence in heat transfer elevation is important.. To understand heat transfer characteristics by turbulence, measurement of flow perturbation element is necessary. To measure these turbulence characteristics, hot wire anemometer is widely used. However, it has many disadvantages such as low durability of prove, and big probe size. For these reasons, TR-PIV(Time-Resolved Particle Image Velocimetry) system is employed for better flow measurement in our research institute. TR-PIV system is consisted of laser system and high-speed camera that have high frequency. So, was judged that can measurement complicated turbulence flow and perturbation. In this paper, introduce TR-PIV system, and with results acquiring in single rod flow through this system, and wish to introduce about after this practical use plan

  14. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  15. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  16. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura

    2015-11-01

    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  17. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  18. Brief description of out-of-pile test facilities for study in corrosion and fission product behaviour in flowing sodium

    International Nuclear Information System (INIS)

    Iizawa, K.; Sekiguchi, N.; Atsumo, H.

    1976-01-01

    The experimental methods to perform tests for study in corrosion and fission products behaviour in flowing sodium are outlined. Flow diagrams for the activated materials and fission products behaviour test loop are given

  19. Lumbar Puncture Test in Normal Pressure Hydrocephalus: Does the Volume of CSF Removed Affect the Response to Tap?

    Science.gov (United States)

    Thakur, S K; Serulle, Y; Miskin, N P; Rusinek, H; Golomb, J; George, A E

    2017-07-01

    There is limited evidence to support the use of high-volume lumbar taps over lower-volume taps in the diagnosis of normal pressure hydrocephalus. The purpose of this study is to detect whether the volume of CSF removed from patients undergoing high-volume diagnostic lumbar tap test for normal pressure hydrocephalus is significantly associated with post-lumbar tap gait performance. This retrospective study included 249 consecutive patients who underwent evaluation for normal pressure hydrocephalus. The patients were analyzed both in their entirety and as subgroups that showed robust response to the lumbar tap test. The volume of CSF removed was treated as both a continuous variable and a discrete variable. Statistical tests were repeated with log-normalized volumes. This study found no evidence of a relationship between the volume of CSF removed during the lumbar tap test and subsequent gait test performance in the patient population (Pearson coefficient r = 0.049-0.129). Log normalization of the volume of CSF removed and controlling for age and sex failed to yield a significant relationship. Subgroup analyses focusing on patients who showed greater than 20% improvement in any of the gait end points or who were deemed sufficiently responsive clinically to warrant surgery also yielded no significant relationships between the volume of CSF removed and gait outcomes, but there were preliminary findings that patients who underwent tap with larger-gauge needles had better postprocedure ambulation among patients who showed greater than 20% improvement in immediate time score ( P = .04, n = 62). We found no evidence to support that a higher volume of CSF removal impacts gait testing, suggesting that a high volume of CSF removal may not be necessary in a diagnostic lumbar tap test. © 2017 by American Journal of Neuroradiology.

  20. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    Science.gov (United States)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  1. Carbon transfer tests of FBR structural materials in flowing sodium

    International Nuclear Information System (INIS)

    Ohta, Y.; Atsumo, H.; Maruyama, A.; Nakasuji, T.

    1980-01-01

    Since the secondary cooling system of Liquid-Metal Fast Breeder Prototype Reactor Monju consists of a bimetallic loop of austenitic stainless steel and ferritic low alloy steel, carburization occurs in stainless steel and decarburization in low alloy steel mainly due to the difference in carbon activity between the two materials. This phenomenon is thought of suffer reduction in their mechanical properties. In Japan also, since it is necessary to clarify these phenomena quantitatively and feed back the result to the design standard, quantitative evaluation of the amounts of carburization and decarburization as well as studies on the changes in strength of the structural materials caused by these carbon transfer have been underway. Since these studies have not yet reached the final stage, this paper provides mainly an interim report on carbon transfer behavior test and introduction of partial data

  2. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  3. Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

  4. Flux schemes based finite volume method for internal transonic flow with condensation

    Czech Academy of Sciences Publication Activity Database

    Halama, Jan; Benkhaldoun, F.; Fořt, J.

    2011-01-01

    Roč. 65, č. 8 (2011), s. 953-968 ISSN 0271-2091 Institutional research plan: CEZ:AV0Z20760514 Keywords : VFFC flux * SRNH flux * two - phase homogeneous flow * fractional step method * condensation Subject RIV: BK - Fluid Dynamics Impact factor: 1.176, year: 2011

  5. Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method

    Science.gov (United States)

    Agbaglah, Gilou; Delaux, Sébastien; Fuster, Daniel; Hoepffner, Jérôme; Josserand, Christophe; Popinet, Stéphane; Ray, Pascal; Scardovelli, Ruben; Zaleski, Stéphane

    2011-02-01

    We describe computations performed using the Gerris code, an open-source software implementing finite volume solvers on an octree adaptive grid together with a piecewise linear volume of fluid interface tracking method. The parallelisation of Gerris is achieved by domain decomposition. We show examples of the capabilities of Gerris on several types of problems. The impact of a droplet on a layer of the same liquid results in the formation of a thin air layer trapped between the droplet and the liquid layer that the adaptive refinement allows to capture. It is followed by the jetting of a thin corolla emerging from below the impacting droplet. The jet atomisation problem is another extremely challenging computational problem, in which a large number of small scales are generated. Finally we show an example of a turbulent jet computation in an equivalent resolution of 6×1024 cells. The jet simulation is based on the configuration of the Deepwater Horizon oil leak.

  6. Waste-aware fluid volume assignment for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

    2017-01-01

    complex Fluidic Units (FUs) such as switches, micropumps, mixers and separators can be constructed. When running a biochemical application on a FBMB, fluid volumes are dispensed from input reservoirs and used by the FUs. Given a biochemical application and a biochip, we are interested in determining...... is able to minimize the fluid consumption through optimal fluid assignment and reuse of fluid waste. Due to the algorithm's low complexity, fluid requirements can also be calculated during runtime for error recovery or statically unknown cases....

  7. On the mixture flow problem in lubrication of hydrodynamic bearings - Small solid volume fraction

    Science.gov (United States)

    Khonsari, M. M.; Dai, Fuling

    1992-01-01

    The lubrication problem of infinitely long slider bearings with a mixture of fluid and particulate solid at small volume fraction level is studied. Closed-form analytical solutions for pressure and shear stress are obtained for a class of solid aggregates. The results reduce to those of pure fluid in the limiting case. A parametric study of the bearing performance with particulate solid is presented.

  8. A new method of well test analysis in naturally fractured reservoirs based on elliptical flow

    Energy Technology Data Exchange (ETDEWEB)

    Igbokoyi, A.O.; Tiab, D. [Oklahoma Univ., Norman, OK (United States)

    2008-07-01

    Well testing analysis in naturally fractured reservoirs is usually based on the radial flow model. However, this model is only applicable to purely homogeneous system and long time solution and cannot provide complete formation analysis in a reservoir that exhibits anisotropy. This paper presented a new method of estimating permeability anisotropy in naturally fractured reservoirs. Maximum and minimum permeability were obtained in one well test. The paper discussed the mathematical formulation for the study which used Warren and Root's matrix pseudo-steady state model. The paper presented the assumptions for this model which included an isotropic homogeneous or anisotropic homogeneous formation; a slightly compressible fluid with single phase flow in both the matrix and fracture; initial reservoir pressure; two-dimensional flow; and laminar flow which obeys Darcy's law. The paper also discussed the computation of wellbore pressure and interpretation methods for both early linear flow and the long time radial flow regimes. Anisotropy was also outlined as the purpose of the study was to use an elliptical flow model in quantifying the permeability anisotropy of the reservoir. The type curve model was also explained to demonstrate the validity of the method of quantifying the permeability anisotropy with a known problem. Last, the paper explained the direct method with several example. It was concluded that the elliptical flow model is the most appropriate method of analyzing pressure transient data in naturally fractured reservoirs. 22 refs., 5 tabs., 15 figs., 3 appendices.

  9. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    Alavi, P.; Oldaker, I.E.; Chung, C.H.; Suk, H.C.

    1997-01-01

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  10. Technology test bed and hydrogen cold flow facilities at the Marshall Space Flight Center

    Science.gov (United States)

    Lightfoot, Robert; Gautney, Tim

    1993-01-01

    The Technology Test Bed and Hydrogen Cold Flow facilities at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama provide unique testing capabilities for the aerospace community. Located at the Advanced Engine Test Facility (AETF), these facilities are operated and maintained by MSFC Propulsion Laboratory personnel. They provide a systems and components level testing platform for validating new technology concepts and advanced systems design and for gaining a better understanding of the test article internal environments. A discussion follows of the particular capabilities of each facility to provide a range of testing options for specific test articles.

  11. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2014-06-28

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  12. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Sekimoto, Hiroshi

    2003-03-01

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  13. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  14. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    International Nuclear Information System (INIS)

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality

  15. Reproducibility of up-flow column percolation tests for contaminated soils.

    Science.gov (United States)

    Yasutaka, Tetsuo; Naka, Angelica; Sakanakura, Hirofumi; Kurosawa, Akihiko; Inui, Toru; Takeo, Miyuki; Inoba, Seiji; Watanabe, Yasutaka; Fujikawa, Takuro; Miura, Toshihiko; Miyaguchi, Shinji; Nakajou, Kunihide; Sumikura, Mitsuhiro; Ito, Kenichi; Tamoto, Shuichi; Tatsuhara, Takeshi; Chida, Tomoyuki; Hirata, Kei; Ohori, Ken; Someya, Masayuki; Katoh, Masahiko; Umino, Madoka; Negishi, Masanori; Ito, Keijiro; Kojima, Junichi; Ogawa, Shohei

    2017-01-01

    Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III) to determine the reproducibility (variability inter laboratory) of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268-3. This procedure consists of percolating solution (calcium chloride 1 mM) from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research). For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean), as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean) was observed in the test results related to Soils II and III, with a variability lower than 30% in more than

  16. Reproducibility of up-flow column percolation tests for contaminated soils.

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasutaka

    Full Text Available Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III to determine the reproducibility (variability inter laboratory of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268-3. This procedure consists of percolating solution (calcium chloride 1 mM from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research. For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean, as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean was observed in the test results related to Soils II and III, with a variability lower than 30

  17. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test

    Science.gov (United States)

    2017-11-01

    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition

  18. Echocardiographic outflow pump ramp test in centrifugal-flow left ventricular assist device.

    Science.gov (United States)

    Iacovoni, Attilio; Vittori, Claudia; Fontana, Alessandra; Carobbio, Alessandra; Fino, Carlo; D'Elia, Emilia; Terzi, Amedeo; Senni, Michele

    2017-04-18

    This study sought to develop a novel echocardiogram outflow ramp test to detect device malfunctions in centrifugal-flow left ventricular assist devices (LVADs). This new ramp pump test is based on the direct analyses of systolic and diastolic ratio (S/D) Doppler velocity in the outflow cannula in the HeartWare LVAD during progressive increases in speed. The results showed that in patients with normal pump function, the Doppler velocity S/D ratio gradually decreased during LVAD speed increases. This test is easily performed and seems promising to detect normal pump function in patients assisted by a centrifugal flow LVAD.

  19. High Resolution DNS of Turbulent Flows using an Adaptive, Finite Volume Method

    Science.gov (United States)

    Trebotich, David

    2014-11-01

    We present a new computational capability for high resolution simulation of incompressible viscous flows. Our approach is based on cut cell methods where an irregular geometry such as a bluff body is intersected with a rectangular Cartesian grid resulting in cut cells near the boundary. In the cut cells we use a conservative discretization based on a discrete form of the divergence theorem to approximate fluxes for elliptic and hyperbolic terms in the Navier-Stokes equations. Away from the boundary the method reduces to a finite difference method. The algorithm is implemented in the Chombo software framework which supports adaptive mesh refinement and massively parallel computations. The code is scalable to 200,000 + processor cores on DOE supercomputers, resulting in DNS studies at unprecedented scale and resolution. For flow past a cylinder in transition (Re = 300) we observe a number of secondary structures in the far wake in 2D where the wake is over 120 cylinder diameters in length. These are compared with the more regularized wake structures in 3D at the same scale. For flow past a sphere (Re = 600) we resolve an arrowhead structure in the velocity in the near wake. The effectiveness of AMR is further highlighted in a simulation of turbulent flow (Re = 6000) in the contraction of an oil well blowout preventer. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-05-CH11231.

  20. A hydraulic test device for free-flowing artesian boreholes with a ...

    African Journals Online (AJOL)

    Accurate parameter estimation for aquifers is very challenging, particularly for artesian aquifers in which the potentiometric surface is above ground level. A common approach to parameter estimation for artesian aquifers is to make use of free-flowing and recovery tests. However, such aquifer tests on artesian boreholes are ...

  1. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    Science.gov (United States)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  2. Laboratory and field tests on photo-electric probes and ultrasonic Doppler flow switch for remote control of turbidity and flowrate of a water-sand mixture flow

    Science.gov (United States)

    Pellegrini, M.; Saccani, C.

    2017-08-01

    The paper describes the experimental apparatus and field tests carried on to remotely control through non-invasive and non-intrusive instruments turbidity and flowrate of a water-sand mixture flow conveyed by a pipeline. The mixture flow was produced by an innovative plant for seabed management. The turbidity was monitored by thru-beam infra-red photo-electric sensors, while flowrate was monitored by an ultrasonic Doppler flow switch. In a first phase, a couple of photo-electric sensors and a mechanical flow switch were preliminary tested in laboratory to verify installations concerns and measurement repeatability and precision. After preliminary test completion, photo-electric sensors and mechanical flow switch were installed in the real scale plant. Since the mechanical flow switch did not reach high reliability, an ultrasonic Doppler flow switch was identified and tested as alternative. Then, two couple of photo-electric sensors and ultrasonic Doppler flow switch were installed and tested on two pipelines of the plant. Turbidity and minimum flow signals produced by the instruments were integrated in the PLC logic for the automatic management of the plant. The paper also shows how ultrasonic Doppler flow switch measurement repeatability was negatively affected by the presence of the other ultrasonic Doppler flow switch working in a close pipeline and installed inside a steel casing.

  3. Catheter-based flow measurements in hemodialysis fistulas - Bench testing and clinical performance

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Lönn, Lars; Schroeder, Torben V

    2012-01-01

    Purpose: The purpose of this study was to perform bench and clinical testing of a catheter-based intravascular system capable of measuring blood flow in hemodialysis vascular accesses during endovascular procedures. Methods: We tested the Transonic ReoCath Flow Catheter System which uses...... the thermodilution method. A simulated vascular access model was constructed for the bench test. In total, 1960 measurements were conducted and the results were used to determine the accuracy and precision of the catheters, the effects of external factors (e.g., catheter placement, injection duration), and to test....... Blood flow measurements provide unique information on the hemodynamic status of a vascular access and have the potential to optimize results of interventions....

  4. Analysis for transient temperature distribution two phase flow using test section QUEEN-02

    International Nuclear Information System (INIS)

    Ainur Rosidi; Joko Prasetio; Edy Sumarno; Kiswanta; Heru Bambang

    2013-01-01

    Experiments on the transient temperature distribution using a two-phase flow test facility QUEEN-02 and BETA test loop was conducted. Purpose of the experiment is to study temperature distribution during the transient cooling process. Experiments performed with the variation of the initial temperature of hot rod test section QUEEN-02 of 350 °C and 500 °C as well as the flow of cooling water temperature is 90 °C with the direction of flow from the bottom up from the BETA test loop. The analysis shows that temperature have the same downward trend in its every point thermocouple for the same initial temperature during cooling. Initial temperature of 350 °C hot rods produced when temperatures drop to 90 °C (the same as the temperature of the cooling water) for 78 seconds while the initial temperature of 500 °C produces hot rod drop time 190 seconds. (author)

  5. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    Science.gov (United States)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  6. Control volume analyses of glottal flow using a fully-coupled numerical fluid-structure interaction model

    Science.gov (United States)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2013-11-01

    Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.

  7. Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm

    Science.gov (United States)

    Algabri, Y. A.; Rookkapan, S.; Chatpun, S.

    2017-09-01

    An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.

  8. Analysis of gas flow measurements from the IFA-633 UO2/MOX comparison test

    International Nuclear Information System (INIS)

    Rossiter, Glyn

    2005-01-01

    The release rate to birth rate ratio (R/B) results from the gas flow measurements performed during the joint programme irradiation of the IFA-633 UO 2 /MOX comparison test have been analysed using both classical and fractal methodologies. Possible calculational procedures for precursor enhancement factors and rod average diffusion coefficients were considered and suitable procedures were then implemented. The surface area to volume ratio (S/V) and recoil R/B values generated using the two methodologies have been compared to each other and to results obtained for other Halden Project gas flow rigs (IFAs 504, 558, 563, 569 and 655). The merits of the methodologies have then been discussed. It was found that the trends in the classical recoil R/B and in the fractal S/V for the shortest lived isotopes were in better agreement with the expected S/V behaviour than the trends in the classical S/V and in the fractal S/V for the longer lived isotopes. The beginning of life (BOL) S/V versus temperature behaviour for both IFA-633 and IFA-655 has been investigated and has been found to be more consistent with expectation when the fractal methodology is used. The peak fuel temperature versus rod average burnup behaviour of the IFA-633 fuel rods has been examined in order to investigate whether there is any correlation between the S/V results and the extent of periods during which the Halden (or Vitanza) threshold for significant fission gas release was exceeded. The behaviour was more consistent with the trends in the classical recoil R/B and fractal S/V for the shortest lived isotopes than with the trends in the classical S/V and the fractal S/V for the longer lived isotopes. The analysis of the through-life and BOL S/V and recoil R/B results generated using the classical and fractal methodologies has shown that the behaviour of the classical recoil R/B is difficult to explain. This is evidence that the classical recoil R/B results contain a diffusional release component

  9. 78 FR 27860 - Revocation of TSCA Section 4 Testing Requirements for One High Production Volume Chemical Substance

    Science.gov (United States)

    2013-05-13

    ... Revocation of TSCA Section 4 Testing Requirements for One High Production Volume Chemical Substance AGENCY... Production Volume (HPV) chemical substance, benzenesulfonic acid, [[4-[[4-(phenylamino)phenyl][4-(phenylimino)-2,5- cyclohexadien-1-ylidene]methyl]phenyl]amino]- (CAS No. 1324-76-1), also known as C.I. Pigment...

  10. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  11. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  12. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  13. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  14. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  15. Construction and demolition waste: Comparison of standard up-flow column and down-flow lysimeter leaching tests.

    Science.gov (United States)

    Butera, Stefania; Hyks, Jiri; Christensen, Thomas H; Astrup, Thomas F

    2015-09-01

    Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (<4mm particle size) and unsaturated, intermittent down-flow lysimeters (<40mm particle size). While standardised column tests are meant primarily to provide basic information on characteristic leaching properties and mechanisms and not to reproduce field conditions, the lysimeters were intended to mimic the actual leaching conditions when C&DW is used in unbound geotechnical layers. In practice, results from standardised percolation tests are often interpreted as estimations of actual release from solid materials in percolation scenarios. In general, the two tests yielded fairly similar results in terms of cumulative release at liquid-to-solid ratio (L/S) 10l·kgTS; however, significant differences were observed for P, Pb, Ba, Mg and Zn. Further differences emerged in terms of concentration in the early eluates (L/S<5l·kg(-1)TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Zn. Observed differences between tests are likely to be due to differences in pH related to crushing and exposure of fresh particle surfaces, as well as in equilibrium conditions. In the case of C&DW, the standardised column tests, which are more practical, are considered to acceptably describe cumulative releases at L/S 10l·kg(-1)TS in percolation scenarios. However, when the focus is on estimation of initial concentrations for (for example) risk assessment, data from standardised column tests may not be fully applicable, and data from lysimeters may be used for validation purposes. Se, Cr and, to a lesser extent, SO4 and Sb were leaching from C&DW in critical amounts compared with existing limit values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Coupling of albumin flux to volume flow in skin and muscles of anesthetized rats

    International Nuclear Information System (INIS)

    Renkin, E.M.; Gustafson-Sgro, M.; Sibley, L.

    1988-01-01

    Bovine serum albumin (BSA) labeled with 131 I or 125 I was injected intravenously in pentobarbital sodium-anesthetized rats, and tracer clearances into leg skin and muscles were measured over 30, 60, and 120 min. BSA labeled with the alternate tracer was used as vascular volume reference. Two minutes before injection of the tracer, a ligature was tied around one femoral vein to occlude outflow partially and raise capillary pressure in that leg. The unoccluded leg served as control. Skin and muscles of the occluded leg had variably and substantially higher water contents (delta W) than paired control tissues and slightly but consistently increased albumin clearances (CA). The delta CA/delta W, equivalent to the albumin concentration of capillary filtrate relative to plasma determined by linear regression, were as follows: leg skin 0.004 (95% confidence limits -0.001 to +0.009), muscle biceps femoris 0.005 (0.001-0.010), muscle gastrocnemius 0.011 (0.004-0.019), muscle tibialis anterior 0.016 (0.012-0.021). All these values are significantly less than 0.10, which corresponds to a reflection coefficient for serum albumin (sigma A) of 0.90. Convective coupling of albumin flux to volume flux in skin and muscles of intact, anesthetized rats is low, with sigma AS in the range 0.98 to greater than 0.99

  17. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  18. Features and optimization approaches of the entrance section cooling gas flow of the IFMIF high flux test module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, F.; Gordeev, S.; Heinzel, V.; Ihli, T.; Leichtle, D. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit; Moeslang, A. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Materialforschung

    2007-07-01

    The International Fusion Materials Irradiation Facility (IFMIF) is devised to contribute experimental evidence to an irradiated material properties database for candidate materials exposed to irradiation spectra and doses relevant for future fusion power reactors. Due to neutron fluxes generated by high energy deuterons reacting in a liquid lithium target, damage rates of 20-50 displacements per atom in one full power year can be achieved in steel specimens inside a volume of approximately 0.5 litres. The design of the High Flux Test Module developed at the Forschungszentrum Karlsruhe (FZK) allows for maximizing the space available in the high flux neutron field for material irradiation, while at the same time allowing precise adherence of the irradiation temperature of the specimen stacks. Since enhancement of the neutron irradiation requires to locate the specimens as close as possible to the neutron source, the design proposes thin container structures (obeying mechanical constraints), and flat coolant channels between the rigs. A helium gas flow is designated to remove the heat from the rigs to keep the required irradiation temperature, which may be chosen between 250-650 C. As a result of the thin container walls and the small channel dimensions, the helium cooling gas flow is characterized by low pressure, transitional Reynolds numbers and intermediate Mach numbers. Dedicated experimental investigations on such minichannel cooling gas flows have been conducted with the ITHEX helium loop facility. Results obtained by Laser Doppler Anemometry indicate a complex three dimensional evolution of the transitional laminarturbulent flow field in the hydraulic entrance section. In the short cooling channels, a relevant portion of the flow alongside the rigs is influenced by this developing region. Detailed knowledge of the flow development and the resulting heat transfer coefficients is necessary to optimize the flow channel inlet design and to avoid in

  19. Features and optimization approaches of the entrance section cooling gas flow of the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, F. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: arbeiter@irs.fzk.de; Gordeev, S.; Heinzel, V.; Ihli, T.; Leichtle, D. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Institut fuer Materialforschung I, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Slobotchouk, V. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-15

    The International Fusion Materials Irradiation Facility (IFMIF) is devised to contribute experimental evidence to an irradiated material properties database for candidate materials exposed to irradiation spectra and doses relevant for future fusion power reactors. Due to neutron fluxes generated by high-energy deuterons reacting in a liquid lithium target, damage rates of 20-50 displacements per atom in one full power year can be achieved in steel specimens inside a volume of approximately 0.5 L. The design of the high flux test module developed at the Forschungszentrum Karslruhe (FZK) allows for maximizing the space available in the high flux neutron field for material irradiation, while at the same time allowing precise adherence of the irradiation temperature of the specimen stacks. Since enhancement of the neutron irradiation requires placement of the specimens as close as possible to the neutron source, the design proposes thin container structures (obeying mechanical constraints) and flat coolant channels between the rigs. A helium gas flow is designated to remove the heat from the rigs to keep the required irradiation temperature, which may be chosen between 250 and 650 deg. C. As a result of the thin container walls and the small channel dimensions, the helium cooling gas flow is characterized by low pressure, transitional Reynolds numbers and intermediate Mach numbers. Dedicated experimental investigations on such minichannel cooling gas flows have been conducted with the ITHEX helium loop facility. Results obtained by laser Doppler anemometry indicate a complex three-dimensional evolution of the transitional laminar-turbulent flow field in the hydraulic entrance section. In the short cooling channels, a relevant portion of the flow alongside the rigs is influenced by this developing region. Detailed knowledge of the flow development and the resulting heat transfer coefficients is necessary to optimize the flow channel inlet design and to avoid

  20. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko

    2001-01-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H 2 15 O dynamic study method, and blood volume was measured by means of the 15 O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean ±SD: 3.52±1.2), and blood volume was 1.67-6.03 ml/100 g (mean ±SD: 3.00±1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  1. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field

    Science.gov (United States)

    Hwang, Yong Keun; Endres, Anthony L.; Piggott, Scott D.; Parker, Beth L.

    2008-04-01

    An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing

  2. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  3. OConGraX - Automatically Generating Data-Flow Test Cases for Fault-Tolerant Systems

    Science.gov (United States)

    Nunes, Paulo R. F.; Hanazumi, Simone; de Melo, Ana C. V.

    The more complex to develop and manage systems the more software design faults increase, making fault-tolerant systems highly required. To ensure their quality, the normal and exceptional behaviors must be tested and/or verified. Software testing is still a difficult and costly software development task and a reasonable amount of effort has been employed to develop techniques for testing programs’ normal behaviors. For the exceptional behavior, however, there is a lack of techniques and tools to effectively test it. To help in testing and analyzing fault-tolerant systems, we present in this paper a tool that provides an automatic generation of data-flow test cases for objects and exception-handling mechanisms of Java programs and data/control-flow graphs for program analysis.

  4. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  5. Expectation and expectoration: Information manipulation alters spitting volume, a common proxy for salivary flow.

    Science.gov (United States)

    Running, Cordelia A; Hayes, John E

    2016-12-01

    Saliva is becoming an increasingly useful research material across multiple fields of inquiry, including biomedical, dental, psychological, nutritional, and food choice research. However, both the flow rate and protein composition of stimulated saliva differ as a function of the collection method. We hypothesized that the context in which a stimulus is presented to participants may alter salivation via top down cognitive effects and/or behavioral changes (i.e., spitting efficiency). We presented participants with one stimulus (commercially available green tea) in two distinct contexts, once where the tea was described as a food item ("tea") and once where it was described as a disgusting non-food item ("rabbit hair extract"). Saliva and the expectorated stimulus were collected following 15s of oral exposure in a crossover design with the identical stimulus presented in both contexts; saliva was also collected for 5min after stimulation while chewing a piece of wax. Participants also completed validated personality instruments to measure food involvement, sensation seeking, sensitivity to reward, and sensitivity to punishment. Our data suggest participants spat out more sample when told they received the 'non-food' stimulus compared to the 'food' stimulus, particularly when they were given the non-food stimulus first. Further, individuals who were higher in sensation seeking spat out more sample during the 'food' condition compared to individuals with lower sensation seeking scores, but this difference was absent in the 'non-food' condition. While consistent with a top down cognitive effect on salivary flow, we believe a greater motivation to spit out the 'non-food' stimulus is a more likely explanation. In either case, it is clear the context in which a stimulus is presented alters how much sample/saliva is expectorated, suggesting context needs to be carefully considered in future work on salivary flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Open-source software for demand forecasting of clinical laboratory test volumes using time-series analysis

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2017-01-01

    Full Text Available Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand.

  7. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  8. Historical sketches of Sandia National Laboratories nuclear field testing. Volume 1: Full discussion except for sensitive references

    International Nuclear Information System (INIS)

    Banister, J.R.

    1994-10-01

    This report contains historical sketches that cover the major activities of Sandia nuclear field testing, from early atmospheric shots until 1990. It includes a chronological overview followed by more complete discussions of atmospheric, high-altitude, underwater, cratering, and underground nuclear testing. Other activities related to nuclear testing and high-explosive tests are also described. A large number of references are cited for readers who wish to learn more about technical details. Appendices, written by several authors, provide more insight for a variety of special aspects of nuclear testing and related work. Two versions of this history were published: volume 1 has an unlimited distribution, and volume 2 has a limited distribution

  9. Evaluating the Effect of Control Flow on the Unit Testing Effort of Classes: An Empirical Analysis

    OpenAIRE

    Badri, Mourad; Toure, Fadel

    2012-01-01

    The aim of this paper is to evaluate empirically the relationship between a new metric (Quality Assurance Indicator—Qi) and testability of classes in object-oriented systems. The Qi metric captures the distribution of the control flow in a system. We addressed testability from the perspective of unit testing effort. We collected data from five open source Java software systems for which JUnit test cases exist. To capture the testing effort of classes, we used different metrics to quantify the...

  10. A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling

    OpenAIRE

    Jiang, Yingjun; Wong, Louis Ngai Yuen; Ren, Jiaolong

    2015-01-01

    In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GCRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical resu...

  11. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  12. Recent experience with testing of parallel disc gate valves under accident flow conditions

    International Nuclear Information System (INIS)

    LaPointe, P.A.; Clayton, J.K.

    1992-01-01

    This paper presents the nuclear valve industry's latest and most extensive valve qualification test program experience. The test program includes a variety of 25 different gate and globe valves. All the test valves are power operated using either air, electric, or gas/hydraulic operators. The valves are categorized in size and pressure class so as to form a group of appropriate parent valve assemblies. Parent valve assembly qualification is used as the basis for qualification of candidate valve assemblies. The parent and candidate valve assemblies are representative of a nuclear plant's safety-related valve applications. The test program was performed in accordance with ANSI B16.41-1983 'Functional Qualification Requirements for Power Operated Active Valve Assemblies for Nuclear Power Plants.' The focus of this paper is on functional valve qualification test experience and specifically flow interruption testing to Annex G of the aforementioned test standard. Results of the flow test are summarized, including the coefficient of friction for each of the gate type valves reported. Information on valve size, pressure class, and actuator are given for all valves in the program. Although all valves performed extremely well, only selected test data are presented. The effects of the speed of operation and the effects of different fluid flow rates as they relate to the coefficient of friction between the valve disc and seat are discussed. The variation in the coefficient of friction based on other variables in the thrust equation, namely, differential pressure area is cited

  13. Test Methods for Telemetry Systems and Subsystems. Volume 5: Test Methods for Digital Recorder/Reproducer Systems and Recorder Memory Modules

    Science.gov (United States)

    2016-09-26

    REPRODUCER SYSTEMS AND RECORDER MEMORY MODULES ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE WHITE SANDS MISSILE RANGE YUMA...ARNOLD ENGINEERING DEVELOPMENT COMPLEX NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...AND SUBSYSTEMS VOLUME V TEST METHODS FOR DIGITAL RECORDER/REPRODUCER SYSTEMS AND RECORDER MEMORY MODULES September 2016

  14. Flow and Heat Transfer Tests in New Loop at 2757 kPa (400 psi)

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    A helium flow and heat transfer experiment has been designed for the new helium flow loop facility at LANL. This new facility is centered on an Aerzen GM 12.4 Root’s blower, selected for operation at higher pressure, up to 2757 kPa, and mass flow rate, up to 400 g/s. This replaces the previous Tuthill PD plus 3206 blower and loop limited to 2067 kPa (300 psi) and 100 g/s. The resistively heated test piece is comprised of 7 electric heaters with embedded thermocouples. The plant design for the Mo100 to Mo99 targets requires sharp bends and geometry changes in the helium flow tube immediately before and after the target. An idealized fully developed flow configuration with straight entry and exit will be tested and compared with an option that employs rectangular tubing to make the bend at a radius consistent with and practical for the actual plant design. The current plant design, with circular tubing and a sudden contraction to rectangular just prior to target entrance, will also be tested. This requires some modification of the test piece, as described in the report.

  15. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET

    DEFF Research Database (Denmark)

    IIda, H.; Law, I.; Pakkenberg, B.

    2000-01-01

    a methodology to accurately quantify regional cerebral blood flow (CBF) corrected for PVE in cortical gray matter regions. Five monkeys were studied with PET after IV H2(15)O two times (n = 3) or three times (n = 2) in a row. Two ROIs were drawn on structural magnetic resonance imaging (MRI) scans and projected...... onto the PET images in which regional CBF values and the water perfusable tissue fraction for the cortical gray matter tissue (hence the volume of gray matter) were estimated. After the PET study, the animals were killed and stereologic analysis was performed to assess the gray matter mass...... that included two parallel tissue compartments demonstrated better results with regards to the agreement of tissue time-activity curve and the Akaike's Information Criteria. Error sensitivity analysis suggested the model that fits three parameters of the gray matter CBF, the gray matter fraction, and the white...

  16. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  17. UPTF-TRAM test A2. Formation of stratified flow in the hot leg

    International Nuclear Information System (INIS)

    Tenckhoff; Brand, B.; Weiss, P.

    1992-10-01

    The separate effect UPTF TRAM Test A2 consisting of six runs was designed to investigate flow regimes in the hot leg of a pressurized water reactor under two-phase natural circulation conditions. In particular, the following phenomena were investigated: - Formation of different flow regimes, e.g. stratified and slug flow in the hot leg under different boundary conditions; -Correlation between flow regime and boundary conditions of the system (mass flows, water level etc.); - Mechanism of the transport of water into the steam generator. The test runs are divided into two groups: a) Test Runs 01a, 01b and 02b with steam injection through the core simulator: In these test runs the steam injection through the core simulator was increased stepwise. In each step the steam injection was kept constant for about 100 s in order to observe steady water distribution in the hot leg and SG-simulator of broken loop. b) Test Runs 03c, 04c and 04d with steam and water injection through the core simulator: These test runs were performed at a constant steam injection rate and the water injection rate was increased stepwise. In order to verify the consistency of scaling with the pressure, the test runs were carried out at different pressures as: a) Runs 01a and 01b at 15 bar, and Run 02b at 3 bar b) Runs 03c, 04c and 04d at 15, 3 and 5 bar respectively. A preliminary evaluation of the test is presented in the Quick Look Report. (orig.) [de

  18. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    Science.gov (United States)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  19. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    Directory of Open Access Journals (Sweden)

    J. Moeys

    2012-07-01

    Full Text Available Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedotransfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved.

    Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42. Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = −0.26 due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72. Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is

  20. Comparison of low-volume, Draize and in vitro eye irritation test data. I. Hydroalcoholic formulations.

    Science.gov (United States)

    Gettings, S D; Lordo, R A; Demetrulias, J; Feder, P I; Hintze, K L

    1996-08-01

    The first phase in a series of investigations of the relationship between low-volume eye test (LVET) data, Draize eye irritation test data, and comparable data from 25 in vitro assay protocols is presented. These investigations utilize Draize eye test and in vitro assay data generated previously as part of the Cosmetic, Toiletry and Fragrance Association (CTFA) Evaluation of Alternatives Program. LVET data were generated de novo using the same 10 representative hydroalcoholic personal-care formulations. The linear correlation between maximum average score (MAS) as determined by the Draize test and the LVET (LVET-MAS) was 0.93. Comparison of in vitro assay performance with that of the LVET was determined by statistical analysis of the relationship between LVET-MAS and in vitro endpoint. As in the CTFA program, regression modelling is the primary means of enabling such a comparison. The objective is to predict LVET-MAS for a given test material (and to place upper and lower prediction interval bounds in the range in which the LVET-MAS is anticipated to fall with high probability) conditional on observing an in vitro assay score for that material. The degree of confidence in prediction is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curves. Four assays [EYTEX MPA (membrane partition assay), HET-CAM (hen's egg test-chorioallantoic membrane HET-CAM) I, neutral red release and HET-CAM II] were shown to have the greatest agreement with the LVET. These assays were also among those with low discordance rates relative to the Draize test. Prediction of LVET-MAS values from experimentally determined in vitro scores was more accurate for hydroalcoholic formulations with lower rather than higher irritancy potential.

  1. Blowdown mass flow measurements during the Power Burst Facility LOC-11C test

    International Nuclear Information System (INIS)

    Broughton, J.M.; MacDonald, P.E.

    1979-01-01

    An interpretation and evaluation of the two-phase coolant mass flow measurements obtained during Test LOC-11C performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL) are presented. Although a density gradient existed within the pipe between 1 and 6 s, the homogeneous flow model used to calculate the coolant mass flow from the measured mixture density, momentum flux, and volumetric flow was found to be generally satisfactory. A cross-sectional average density was determined by fitting a linear density gradient through the upper and lower chordal densities obtained from a three-beam gamma densitometer and then combining the result with the middle beam density. The integrated measured coolant mass flow was subsequently found to be within 5% if the initial mass inventory of the PBF loss-of-coolant accident (LOCA) system. The posttest calculations using the RELAP4/MOD6 computer code to determine coolant mass flow for Test LOC-11C also agreed well with the measured data

  2. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC's and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow

  3. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC`s and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow.

  4. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Gopala Krishna Alaparthi

    2016-01-01

    Full Text Available Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC, Forced Expiratory Volume in the first second (FEV1, Peak Expiratory Flow Rate (PEFR, and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p<0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p<0.001 but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p<0.05 as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of

  5. Air-deployable oil spill sampling devices review phase 2 testing. Volume 1

    International Nuclear Information System (INIS)

    Hawke, L.; Dumouchel, A.; Fingas, M.; Brown, C.E.

    2007-01-01

    SAIC Canada tested air deployable oil sampling devices for the Emergencies Science and Technology Division of Environment Canada in order to determine the applicability and status of these devices. The 3 devices tested were: Canada's SABER (sampling autonomous buoy for evidence recovery), the United States' POPEIE (probe for oil pollution evidence in the environment); and, Sweden's SAR Floatation 2000. They were tested for buoyancy properties, drift behaviour and sampler sorbent pickup ratios. The SAR and SABER both had lesser draft and greater freeboard, while the POPEIE had much greater draft than freeboard. All 3 devices could be used for oil sample collection in that their drift characteristics would allow for the SABER and SAR devices to be placed upwind of the slick while the POPEIE device could be placed downwind of an oil spill. The sorbent testing revealed that Sefar sorbent and Spectra sorbent used in the 3 devices had negative pickup ratios for diesel but performance improved as oil viscosity increased. Both sorbents are inert and capable of collecting oil in sufficient volumes for consistent fingerprinting analysis. 10 refs., 8 tabs., 8 figs

  6. The Test for Flow Characteristics of Tubular Fuel Assembly(II) - Experimental results and CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H

    2006-12-15

    A test facility had been established for the experiment of velocity distribution and pressure drop in a tubular fuel. A basic test had been conducted to examine the performance of the test loop and to verify the accuracy of measurement by pitot-tube. In this report, test results and CFD analysis for the hydraulic characteristics of a tubular fuel, following the previous tests, are described. Coolant velocities in all channels were measured using pitot-tube and the effect of flow rate change on the velocity distribution was also examined. The pressure drop through the tubular fuel was measured for various flow rates in range of 1 kg/s to 21 kg/s to obtain a correlation of pressure drop with variation of flow rate. In addition, a CFD(Computational Fluid Dynamics) analysis was also done to find out the hydraulic characteristics of tubular fuel such as velocity distribution and pressure drop. As the results of CFD analysis can give us a detail insight on coolant flow in the tubular fuel, the CFD method is a very useful tool to understand the flow structure and phenomena induced by fluid flow. The CFX-10, a commercial CFD code, was used in this study. The two results by the experiment and the CFD analysis were investigated and compared with each other. Overall trend of velocity distribution by CFD analysis was somewhat different from that of experiment, but it would be reasonable considering measurement uncertainties. The CFD prediction for pressure drop of a tubular fuel shows a tolerably good agreement with experiment within 8% difference.

  7. Model test research on effect of flow accelerating-board in a pumping station

    Science.gov (United States)

    Ding, Yuan; Li, TongChun; Liu, XiaoQing; Guo, Yun; Zhou, MinZhe

    2017-09-01

    Generally, the sedimentation in the forebay of pumping station may result in bad flow patterns, which will decrease efficiency of pump device and cause the vibration of pump house and units, or other safety problems. To research the improvement of this impact in an actual project, a physical model test was established for the original scheme of one pumping station. One part of results show that the flow velocity in the channel of regulating-pool is low under the high-water level condition, and it's easy to cause the sedimentation in the regulating-pool. According to this problem, we propose a flow accelerating-board scheme for the regulating-pool. The final results show that this scheme could effectively increase the flow velocity at the bottom and reduce the sedimentation in the regulating-pool. Although the hydraulic loss of regulating-pool increased, it could be able to satisfy the design requirements.

  8. Flow-dependence of extravascular thermal volume as an index of pulmonary edema.

    Science.gov (United States)

    Rice, D L; Miller, W C

    1981-01-01

    Using a double indicator (dye and heat) dilution technique of extravascular lung water measurement, we examined the effect of a reduction in cardiac output and positive pressures on the extravascular thermal volume (EVTV) in dogs. Following baseline EVTV measurements, cardiac output was lowered by inflation of balloons in the superior and inferior vena cavas, as well as by bleeding, and positive pressures were applied to the airways. There was good agreement between the baseline EVTV and post-mortem lung water; however, as the cardiac output was lowered there was a reduction in the measured EVTV. In other animals following application of positive airway pressure there was a decrease in the EVTV which appeared to be related to the reduction in cardiac output caused by positive airway pressure. At least in part, loss of thermal indicator appeared to explain the reduction in EVTV. Measurement of EVTV as an index of pulmonary edema may not be accurate in the face of a changing cardiac output.

  9. Acu-TENS and Postexercise Expiratory Flow Volume in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Shirley P. C. Ngai

    2011-01-01

    Full Text Available Transcutaneous Electrical Nerve Stimulation over acupoints (Acu-TENS facilitates recovery of resting heart rate after treadmill exercise in healthy subjects. Its effect on postexercise respiratory indices has not been reported. This study investigates the effect of Acu-TENS on forced expiratory volume in 1 second (FEV1 and forced vital capacity (FVC in healthy subjects after a submaximal exercise. Eleven male subjects were invited to the laboratory twice, two weeks apart, to receive in random order either Acu-TENS or Placebo-TENS (no electrical output from the TENS unit over bilateral Lieque (LU7 and Dingchuan (EX-B1 for 45 minutes, before undergoing exercise following the Bruce protocol. Exercise duration, rate of perceived exertion (RPE, and peak heart rate (PHR were recorded. Between-group FEV1 and FVC, before, immediately after, at 15, 30, and 45minutes postexercise, were compared. While no between-group differences in PHR, RPE, and FVC were found, Acu-TENS was associated with a longer exercise duration (0.9 min (P=.026 and a higher percentage increase in FEV1 at 15 and 45 minutes postexercise (3.3 ± 3.7% (P=.013 and 5.1 ± 7.5% (P=.047, resp. compared to Placebo-TENS. We concluded that Acu-TENS was associated with a higher postexercise FEV1 and a prolongation of submaximal exercise.

  10. A theoretical framework for quantifying blood volume flow rate from dynamic angiographic data and application to vessel-encoded arterial spin labeling MRI ☆

    OpenAIRE

    Okell, Thomas W.; Chappell, Michael A.; Jezzard, Peter

    2013-01-01

    Angiographic methods can provide valuable information on vessel morphology and hemodynamics, but are often qualitative in nature, somewhat limiting their ability for comparison across arteries and subjects. In this work we present a method for quantifying absolute blood volume flow rates within large vessels using dynamic angiographic data. First, a kinetic model incorporating relative blood volume, bolus dispersion and signal attenuation is fitted to the data. A self-calibration method is al...

  11. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    Science.gov (United States)

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  12. Gastroduodenal resistance and neural mechanisms involved in saline flow decrease elicited by acute blood volume expansion in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Graça J.R.V.

    1997-01-01

    Full Text Available We have previously demonstrated that blood volume (BV expansion decreases saline flow through the gastroduodenal (GD segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990 Gut, 31: 1006-1010. The present study attempts to identify the site(s of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O. Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min, expansion (10-15 min, and expanded (30 min. Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight significantly (P<0.05 reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min, pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min. Prazosin (1 mg/kg and yohimbine (3 mg/kg prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg, hexamethonium (10 mg/kg and propranolol (2 mg/kg were ineffective on both circuits. These results indicate that 1 BV expansion increases the GD resistance to liquid flow, 2 pylorus and duodenum are important sites of resistance, and 3 yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

  13. 2D and 3D transonic flow computation using finite volume method and model of Euler and Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Fialova, M.; Fuerst, J.; Horak, J.; Kozel, K. [Czech Technical Univ., Faculty of Mechanical Engineering, Dept. of Technical Mathematics, Prague (Czech Republic)

    1997-12-31

    The work deals with numerical solution of 2D and 3D transonic flows using mathematical models of Euler and Navier-Stokes equations. For inviscid flows with a shock wave we tested modern TVD upwind and central methods. For computations of 2D and 3D compressible viscous laminar flows multistage Runge-Kutta methods were used. (orig.)

  14. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad

    2013-09-01

    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  15. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. Matthew; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests

  16. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  17. System for measurement and automatic regulation of gas flow within an oil aging test device

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar

    2014-01-01

    Full Text Available This paper describes a system within an oil aging test device that serves for measurement and automatic regulation of gas flow. Following an already realized system that continuously monitors, logs, and regulates transformer oil temperature during the aging process and maintains temperature consistency within strict limits, a model of a flow meter and regulator of air or oxygen through transformer oil samples is developed. A special feature of the implemented system is the measurement of very small gas flows. A short technical description of the realized system is given with a functional block diagram. The basic technical characteristics of the system are specified, and the operating principles and application of the system are described. The paper also gives performance test results in a real exploitation environment.

  18. Effect of electrostatic charge, flow, delay and multiple actuations on the in vitro delivery of salbutamol from different small volume spacers for infants.

    OpenAIRE

    Wildhaber, J. H.; Devadason, S. G.; Eber, E.; Hayden, M. J.; Everard, M. L.; Summers, Q. A.; LeSouëf, P. N.

    1996-01-01

    BACKGROUND: A study was undertaken to determine the influences of electrostatic charge, flow, delay, and multiple actuations on the in vitro delivery of salbutamol generated by a pressurised metered dose inhaler (pMDI) from small volume spacers used in infants. METHODS: Ten actuations from a salbutamol pMDI were drawn at different flow rates after either single or multiple actuations, with or without delay, through either static or reduced static spacers. An ionic detergent was used to reduce...

  19. Development of a Test Facility to Simulate the Reactor Flow Distribution of APR+

    International Nuclear Information System (INIS)

    Euh, D. J.; Cho, S.; Youn, Y. J.; Kim, J. T.; Kang, H. S.; Kwon, T. S.

    2011-01-01

    Recently a design of new reactor, APR+, is being developed, as an advanced type of APR1400. In order to analyze the thermal margin and hydraulic characteristics of APR+, quantification tests for flow and pressure distribution with a conservation of flow geometry are necessary. Hetsroni (1967) proposed four principal parameters for a hydraulic model representing a nuclear reactor prototype: geometry, relative roughness, Reynolds number, and Euler number. He concluded that the Euler number should be similar in the prototype and model under the preservation of the aspect ratio on the flow path. The effect of the Reynolds number at its higher values on the Euler number is rather small, since the dependency of the form and frictional loss coefficients on the Reynolds number is seen to be small. ABB-CE has carried out several reactor flow model test programs, mostly for its prototype reactors. A series of tests were conducted using a 3/16 scale reactor model. (see Lee et al., 2001). Lee et al (1991) performed experimental studies using a 1/5.03 scale reactor flow model of Yonggwang nuclear units 3 and 4. They showed that the measured data met the acceptance criteria and were suitable for their intended use in terms of performance and safety analyses. The design of current test facility was based on the conservation of Euler number which is a ratio of pressure drop to dynamic pressure with a sufficiently turbulent region having a high Reynolds number. By referring to the previous study, the APR+ design is linearly reduced to 1/5 ratio with a 1/2 of the velocity scale, which yields a 1/39.7 of Reynolds number scaling ratio. In the present study, the design feature of the facilities, named 'ACOP', in order to investigate flow and pressure distribution are described

  20. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    Science.gov (United States)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  1. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    Science.gov (United States)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements

  2. Detection of alloreactive T cells by flow cytometry : A new test compared with limiting dilution assay

    NARCIS (Netherlands)

    de Haan, A; van der Gun, [No Value; van der Bij, W; de Leij, LFMH; Prop, J

    2002-01-01

    Background. Frequencies of alloreactive T cells determined by limiting dilution assays (LDA) may not adequately reflect the donor-reactive immune status in transplant recipients. To reevaluate LDA frequencies, we developed a flow cytometry test for direct determination of alloreactive T-cell

  3. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. Methods: In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by ...

  4. Continuous Flow Aquatic Toxicity Testing Using Dilution Water by Reverse Osmosis

    Science.gov (United States)

    1979-04-01

    AMRL-TR-79-25 CONTINUOUS FLOW AQUATIC TOXICOLOGY TESTING USING DILUTION WATER BY REVERSE OSMOSIS J. W. FISHtER R. C INMAN M. A. HAGERMAN C. B. HARRAH...showing construction design. 8 DISCUSSION This system was designed for limited xise in an aquatic toxicology laboratory. The floor space and water quality

  5. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by the...

  6. Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests.

    Science.gov (United States)

    Canova, D; Roatta, S; Bosone, D; Micieli, G

    2011-06-01

    The attractive possibility of near infrared spectroscopy (NIRS) to noninvasively assess cerebral blood volume and oxygenation is challenged by the possible interference from extracranial tissues. However, to what extent this may affect cerebral NIRS monitoring during standard clinical tests is ignored. To address this issue, 29 healthy subjects underwent a randomized sequence of three maneuvers that differently affect intra- and extracranial circulation: Valsalva maneuver (VM), hyperventilation (HV), and head-up tilt (HUT). Putative intracranial ("i") and extracranial ("e") NIRS signals were collected from the forehead and from the cheek, respectively, and acquired together with cutaneous plethysmography at the forehead (PPG), cerebral blood velocity from the middle cerebral artery, and arterial blood pressure. Extracranial contribution to cerebral NIRS monitoring was investigated by comparing Beer-Lambert (BL) and spatially resolved spectroscopy (SRS) blood volume indicators [the total hemoglobin concentration (tHb) and the total hemoglobin index, (THI)] and by correlating their changes with changes in extracranial circulation. While THIe and tHbe generally provided concordant indications, tHbi and THIi exhibited opposite-sign changes in a high percentage of cases (VM: 46%; HV: 31%; HUT: 40%). Moreover, tHbi was correlated with THIi only during HV (P < 0.05), not during VM and HUT, while it correlated with PPG in all three maneuvers (P < 0.01). These results evidence that extracranial circulation may markedly affect BL parameters in a high percentage of cases, even during standard clinical tests. Surface plethysmography at the forehead is suggested as complementary monitoring helpful in the interpretation of cerebral NIRS parameters.

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 55) COLLECTIVE FLOW AND QGP PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    BASS,S.ESUMI,S.HEINZ,U.KOLB,P.SHURYAK,E.XU,N.

    2003-11-17

    The first three years of RHIC physics, with Au/Au collisions induced at 65, 130 and 200 GeV per nucleon pair, produced dramatic results, particularly with respect to collective observables such as transverse flow and anisotropies in transverse momentum spectra. It has become clear that the data show very strong rescattering at very early times of the reaction, strong enough in fact to be described by the hydrodynamic limit. Therefore, with today's experiments, we are able to investigate the equation of state of hot quark gluon matter, discuss its thermodynamic properties and relate them to experimental observables. At this workshop we came together to discuss our latest efforts both in the theoretical description of heavy ion collisions as well as most recent experimental results that ultimately allow us to extract information on the properties of RHIC matter. About 50 participants registered for the workshop, but many more dropped in from the offices at BNL. The workshop lasted for three days, of which each day was assigned a special topic on which the talks focused. On the first day we dealt with the more general question what the strong collective phenomena observed in RHIC collisions tell us about the properties and the dynamics of RHIC matter. The second day covered all different aspects of momentum anisotropies, and interesting new experimental results were presented for the first time. On the third day, we focused on the late fireball dynamics and the breakdown of the assumption of thermalization. New experimental observables were discussed, which will deliver more information of how the expanding fireball breaks up, once the frequent interaction ceases.

  8. Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

  9. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    Science.gov (United States)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  10. Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    Science.gov (United States)

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-01-01

    Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739

  11. Validation of MATRA-S Low Flow Predictions Using PNL 2x6 Mixed Convection Test

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyong-Won; Kwon, Hyuk; Kim, Seong-Jin; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The MATRA-S, a subchannel analysis code has been used to thermal-hydraulic design of SMART core. As the safety enhancement is getting important more and more, some features of the MATRA-S code are required to be validated in order to be applied to nonnominal operating conditions in addition to its applicability to reactor design under normal operating conditions. The MATRA-S code has two numerical schemes, SCHEME for implicit application and XSCHEM for explicit one. The implicit scheme had been developed under assumptions that the axial flow is larger enough than the crossflow. Under certain conditions, especially low flow and low pressure operating conditions, this implicit SCHEME oscillates or becomes unstable numerically and then MATRA-S fails to obtain good solution. These demerits were known as common in implicit schemes of many COBRA families. Efforts have been exerted to resolve these limitations in SCHEME of the MATRA-S such as a once through marching scheme against the multi-pass marching scheme and an adaptive multi-grid method. These remedies can reduce the numerically unstable range for SCHEME but some unstable regions still remain. The XSCHEM, an explicit scheme of MATRA-S was validated using the PNL 2x6 rod bundle flow transient test. The explicit scheme agreed with implicit scheme for steady state calculations. And it showed its capability to predict low flow conditions such as negative flow and recirculation flow.

  12. [Digital blood flow measurement by venous occlusion plethysmography in Raynaud's phenomenon. Value of the rewarming test].

    Science.gov (United States)

    Cristol, R; Debray, J

    1986-01-01

    The fingertip blood flow measured by mercury strain gauge plethysmography with venous occlusion, at 22 degrees C room temperature, had significantly lower mean values in 190 patients with Raynaud's phenomenon (55 men aged 49 yrs +/- 16, 135 women aged 48 yrs +/- 16) than in 40 age and sex matched controls: 18 ml/100 ml/minute +/- 14.6 versus 35 ml/100 ml/minute +/- 15 at level p less than 0.01. The mean fingertip blood flow was significantly lower (p less than 0.01) in 31 cases of scleroderma and 32 cases of pulpar necrosis (respectively 13 ml +/- 13 and 11 ml +/- 8) than in 55 cases of primary Raynaud's disease (no detectable etiology and normal capillaroscopy 5 years after onset) or in 34 cases of mild Raynaud's phenomenon (respectively 21.6 +/- 16 and 24.4 +/- 18). A warming test (both hands in water at 45 degrees C during 3 minutes) was performed in 50 cases with low basal fingertip blood flow. It induced a "normalized" flow in 22 cases (mostly primary or mild Raynaud), a partly improved flow in 20 cases (mostly secondary Raynaud) and no improvement in 8 cases (scleroderma). The warming test appears to be clinically useful to assess the vasospasm and the vasodilating capabilities.

  13. Flow test for the full scale core mock-up to the KUHFR, (2)

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Araki, Yasusuke; Ishikawa, Yoshiaki

    1981-01-01

    The Research Reactor Institute, Kyoto University, has carried out a variety of research and development in support of the high flux reactor (KUHFR) project. As for the thermal-hydraulic design of the reactor core, the flow test with a full scale mock-up of the core was performed in order to verify the design calculation. This report shows the result of measurement of the vibration of the core vessel and core itself obtained during the flow test. The flow rate through the core mock-up reached up to 1920 m 3 /h, which is approximately 1.3 times as much as the normal flow rate. Non-contact displacement sensors and piezoelectric accelerometers were used to measure the vibration of the core vessel, core components and outer fuel elements. The traces of the vibration were reproduced on charts to read the maximum amplitude. The data were analyzed by FFT method to find the characteristics of the vibration. The observations of the corrosion and deformation of the components were made. The results obtained are as follows. The vibration of the core vessel was excited by coolant flow. The predominant frequency was about 7 Hz, which is nearly equal to that of the free vibration of the core vessel. The maximum displacement was 300 mu m, and the maximum acceleration was 1.8 g. (Kako, I.)

  14. Testing a new surfactant in a widely-used blood mimic for ultrasound flow imaging.

    Science.gov (United States)

    Zhou, Xiaowei; Hoskins, Peter R

    2017-11-01

    A blood-mimicking fluid developed by Ramnarine et al. has been widely used in flow phantoms for ultrasound flow imaging research, and it has also been cited by IEC 61685 as a reference for making blood-mimicking fluid.However, the surfactant material Synperonic N in this blood-mimicking fluid recipe is phased out from the European market due to environmental issues. The aim of this study is to test whether Synperonic N can be substituted by biodegradable Synperonic A7 in making blood-mimicking fluid for ultrasound flow imaging research. A flow phantom was fabricated to test the blood-mimicking fluid with Synperonic N and Synperonic A7 as surfactants separately. Doppler images and velocity data were collected using a clinical ultrasound scanner under constant and pulsatile flows; and images and measured velocities were compared. It was found that both blood mimics can provide exactly the same images under spectral Doppler ultrasound and colour Doppler ultrasound in terms of their image qualities. The maximum velocities under constant flow were measured by the spectral Doppler ultrasound as 0.4714 ± 0.001 m.s -1 and 0.4644 ± 0.001 m.s -1 for blood-mimicking fluid with Synperonic N and blood-mimicking fluid with Synperonic A7, respectively. Measured velocities using the two different blood-mimicking fluids were statistically different ( p  material in making the blood-mimicking fluid for ultrasound flow imaging research.

  15. The Sympathetic Release Test: A Test Used to Assess Thermoregulation and Autonomic Control of Blood Flow

    Science.gov (United States)

    Tansey, E. A.; Roe, S. M.; Johnson, C. J.

    2014-01-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…

  16. Generalized radial flow interpretation of well tests for the SITE-94 project

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E.; Benabderrahman, A.; Haessler, L. [Golder Associates AB, Uppsala (Sweden); Doe, T.W. [Golder Associates, Inc., Redmond, WA (United States)

    1996-12-01

    Transient flow data from constant-head injection tests at the Aespoe site, in the boreholes KAS 02-08, were analyzed using a generalized radial flow (GRF) model for interpretation. The analyses yielded estimates of flow dimensionality, conductivity, and transmissivity which may be used in the development and validation of conceptual models, and to assess the quality of the existing Aespoe conductivity database, for use in the SITE-94 project. Half of the tests in 3 m packer section, and one third of the tests in 30 m sections were not interpretable in terms of the GRF model, due to very low flows, indicating tight sections. A discussion is given of the contrasting pattern of dimensionality and transmissivity among the main structural units, and of the implications of these patterns for the problem of choosing appropriate conceptual models. Smaaland granite and the fracture zone EW-X, in particular, contain highly transmissive, low-dimension conduits, which suggest the likelihood of channel-like conduits that could provide fast transport paths, with relatively low buffering capacity, for radionuclides in the far field. Other rock units and fracture zones show behaviour that may be reproducible by less strongly heterogeneous conceptual models, such as an effective porous medium with embedded, transmissive, planar features. The conductance arising from the low-dimension conduits is probably underestimated in the existing Aespoe conductivity dataset, because of the use of interpretation methods based on cylindrical flow. The Moye`s formula estimates in the database are also affected by problems of low resolution for the flow measurements. 42 refs.

  17. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  18. 77 FR 28281 - Withdrawal of Revocation of TSCA Section 4 Testing Requirements for One High Production Volume...

    Science.gov (United States)

    2012-05-14

    ... Withdrawal of Revocation of TSCA Section 4 Testing Requirements for One High Production Volume Chemical...]amino]- (CAS No. 1324-76-1), also known as C.I. Pigment Blue 61. EPA received an adverse comment regarding C.I. Pigment Blue 61. This document withdraws the revocation of testing requirements for C.I...

  19. 77 FR 28340 - Revocation of TSCA Section 4 Testing Requirements for One High Production Volume Chemical Substance

    Science.gov (United States)

    2012-05-14

    ... Revocation of TSCA Section 4 Testing Requirements for One High Production Volume Chemical Substance AGENCY...]- (CAS No. 1324-76-1), also known as C.I. Pigment Blue 61. EPA is basing its decision to take this action... is proposing to amend the TSCA section 4(a) chemical testing requirements for one high production...

  20. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  1. Preliminary thermal and thermomechanical modeling for the near surface test facility heater experiments at Hanford. Volume II: Appendix D

    International Nuclear Information System (INIS)

    Chan, T.; Remer, J.S.

    1978-12-01

    Appendix D is a complete set of figures illustrating the detailed calculations necessary for designing the heater experiments at the Near Surface Test Facility (NSTF) at Hanford, Washington. The discussion of the thermal and thermomechanical modeling that yielded these calculations is presented in Volume 1. A summary of the figures and the models they illustrate is given in table D1. The most important figures have also been included in the discussion in Volume 1, and Table D2 lists the figure numbers in this volume that correspond to figure numbers used there

  2. Assessment of plastic flow and fracture properties with small specimens test techniques for IFMIF-designed specimens

    International Nuclear Information System (INIS)

    Spaetig, P.; Campitelli, E.N.; Bonade, R.; Baluc, N.

    2005-01-01

    The primary mission of the International Fusion Material Irradiation Facility (IFMIF) is to generate a material database to be used for the design of various components, for the licensing and for the assessment of the safe operation of a demonstration fusion reactor. IFMIF is an accelerator-based high-energy neutron source whose irradiation volume is quite limited (0.5 l for the high fluence volume). This requires the use of small specimens to measure the irradiation-induced changes on the physical and mechanical properties of materials. In this paper, we developed finite element models to better analyze the results obtained with two different small specimen test techniques applied to the tempered martensitic steel F82H-mod. First, one model was used to reconstruct the load-deflection curves of small ball punch tests, which are usually used to extract standard tensile parameters. It was shown that a reasonable assessment of the overall plastic flow can be done with small ball punch tests. Second, we investigated the stress field sensitivity at a crack tip to the constitutive behavior, for a crack modeled in plane strain, small-scale yielding and fracture mode I conditions. Based upon a local criterion for cleavage, that appears to be the basis to account for the size and geometry effects on fracture toughness, we showed that the details of the constitutive properties play a key role in modeling the irradiation-induced fracture toughness changes. Consequently, we suggest that much more attention and efforts have to be paid in investigating the post-yield behavior of the irradiated specimens and, in order to reach this goal, we recommend the use of not only tensile specimens but also that of compression ones in the IFMIF irradiation matrices. (author)

  3. Analysis and testing the performance of a centrifugal two phase flow separator

    Energy Technology Data Exchange (ETDEWEB)

    Mirza-Moghadam, A V

    1979-01-01

    Analysis and testing the performance of an 8 in., 1.72 ft high centrifugal cyclone separator for flows up to 4.0 lbs/s and pressures ranging from 10 to 60 psig. Conclusions drawn are based on inlet steam qualities of 23 to 27 percent (x% = m/sub s//m /sub t/) .99% and better steam quality is achieved up to 3 lbs/s under 50 and 60 psig. Breakdown flow rate is found to be a linear function of separator pressure.

  4. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  5. Results of sludge slurry pipeline pluggage tests. [Simulation of Radioactive Slurry Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, J.M.

    1987-02-06

    Test results of sludge slurry transport through the Interarea Transfer Line (IAL) Mock-up Facility showed little risk of plugging the interarea pipelines with sludge slurry. Plug-free operation of the pipeline was successfully demonstrated by worst case IAL operating scenarios. Pipeline pressure gradients were measured vs. flow rate for comparison with a computer model over a range of sludge slurry rheological properties. A mathematical computer model developed by L. M. Lee is included in this report which will predict pressure drop for Bingham plastic fluid flow in a pipeline. IAL pluggage situations and pumping requirements may be realized from this model. 4 refs., 11 figs., 2 tabs.

  6. High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test

    International Nuclear Information System (INIS)

    Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon

    2014-01-01

    In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes

  7. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate...... (type A) and constant load (type B). Fifty-four uniaxial-compression test specimens from 1327-2922 m were selected. Each test specimen (25 mm × 25 mm × 90 mm) was prepared with its uniaxial stress axis inclined 45° from the core axis in order to examine the flow behavior of strong single-maximum ice......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  8. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    Science.gov (United States)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  9. Volume magnetization for system-level testing of magnetic materials within small satellites

    Science.gov (United States)

    Gerhardt, David T.; Palo, Scott E.

    2016-10-01

    Passive Magnetic Attitude Control (PMAC) is a popular among small satellites due to its low resource cost and simplicity of installation. However, predicting the performance of these systems can be a challenge, chiefly due to the difficulty of measurement and simulation of hysteresis materials. We present a low-cost method of magnetic measurement allowing for characterization of both hard and soft magnetic materials. A Helmholtz cage uniformly magnetizes a 30 cm×30 cm×30 cm test volume. The addition of a thin sense coil allows this system to characterize individual hysteresis rod performance when in close proximity to other hard and/or soft magnetic materials. This test setup is applied to hard and soft magnetic materials used aboard the Colorado Student Space Weather Experiment (CSSWE), a 3U CubeSat for space weather investigation which used a PMAC system. The measured hard magnet dipole of 0.80±0.017 A m2 is in good agreement with the dynamics-based satellite dipole moment fits. Five hysteresis rods from the same set as the CSSWE flight rods are tested; significant differences in dampening abilities are found. In addition, a limitation of the widely-used Flatley model is described. The interaction of two hysteresis rods in a variety of relative geometries are tested; perpendicular rods are found to have no significant interaction while parallel rods could have their dampening ability reduced by half, depending on the rod separation distance. Finally, the performance of the hysteresis rods are measured in their flight configuration, with hard and soft magnetic material dispersed as it is on CSSWE itself. For the CSSWE PMAC system design, interactions between rods have a greater affect than the magnetic flux density offset due to the onboard bar magnet.

  10. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  11. TestSmart-high production volume chemicals: an approach to implementing alternatives into regulatory toxicology.

    Science.gov (United States)

    Green, S; Goldberg, A; Zurlo, J

    2001-09-01

    This article examines the status and application of alternatives defined as replacements, refinements, and reduction for screening high production volume (HPV) chemicals. It specifically focuses on the Screening Information Data Set (SIDS), a series of toxicological tests recommended by the Organization for Economic Cooperation and Development to screen such chemicals. Alternative tests associated with acute, repeat-dose, genetic, and reproductive and developmental toxicity were examined at 2 meetings of academic, industry, and regulatory scientists and their status determined. Tests were placed in 1 of 3 categories: ready for immediate use, in need of or currently undergoing validation, or needing research/developmental work. With respect to traditional acute toxicity testing, the basal cytotoxicity approach was placed in the category of research with the up-and-down, fixed-dose, limit test, and the acute toxic class categorized as available for immediate use and the neutral red assay under validation. Cell culture methods that could provide information on acute target organ toxicity were all categorized in the research stage. Studies of the Ah receptor were placed under validation. All alternative tests for repeat-dose toxicity were placed in the category of research. With regard to genetic toxicity, the Ames, mouse lymphoma, and Chinese hamster ovary methods were considered ready for immediate use, while the in vitro micronucleus and Syrian hamster ovary assays were placed in the validation category. All alternatives for developmental toxicity, with the exception of gene chip technology, were placed in the category of validation. Gene chip technology is considered to be in the research stage. For reproductive toxicity, sperm motility and morphology were considered as ready for immediate use, with the other assays categorized as needing validation or in the research stage. Follow-up to these results is obvious. Work needs to be conducted to move those tests from

  12. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  13. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  14. Focusing on a complete blood cell parameter: mean platelet volume levels may be a predictor of coronary slow flow

    Directory of Open Access Journals (Sweden)

    Yılmaz M

    2017-07-01

    Full Text Available Mücahid Yılmaz,1 Mustafa Necati Dağlı,2 Ökkeş Uku,1 Mehmet Nail Bilen,1 Hasan Korkmaz,2 Kenan Erdem,3 Ertuğrul Kurtoğlu1 1Department of Cardiology, Elazığ Education and Research Hospital, 2Department of Cardiology, FIRAT University School of Medicine, Elazığ, 3Department of Cardiology, Sivas Hospital State, Sivas, Turkey Background: The relationship between increased mean platelet volume (MPV and atherosclerosis is well known. In the present study, MPV in patients with coronary slow flow (CSF and in cases with normal coronary anatomy (NCA was investigated and compared with the aim of identifying the relationship between CSF and MPV. Patients and methods: We studied 40 patients previously determined via coronary angiography as having NCA and 40 patients with CSF in the coronary blood stream, as identified by thrombolysis in myocardial infarction square. Thus, a total of 80 patients from the Elaziğ Education and Research Hospital (Elaziğ, Turkey were included in the present study retrospectively and laboratory and anamnesis information was scanned into their files. The relationship between MPV and CSF was studied. Results: MPV levels were observed to be significantly higher in the CSF group compared to the NCA group (10.05±1.3 and 8.6±0.6, p<0.001. In receiver operating characteristics analyses, it was determined that an MPV >9.05 measured in CSF patients at application had a predictive specificity of 77.5% and sensitivity of 77.5% for CSF (area under the curve: 0.825, 95% confidence interval [CI]: 0.726–0.924, p<0.0001. It was found that MPV level was an independent predictor of CSF (β=−600, p<0.001, 95% CI: −0.383 to −0.176. Conclusion: MPV is increased in patients with CSF when compared to patients with NCA. This finding supports the fact that MPV could be a predictor of CSF. Keywords: coronary slow flow, mean platelet volume, atherosclerosis

  15. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  16. Wind-Tunnel Survey of an Oscillating Flow Field for Application to Model Helicopter Rotor Testing

    Science.gov (United States)

    Mirick, Paul H.; Hamouda, M-Nabil H.; Yeager, William T., Jr.

    1990-01-01

    A survey was conducted of the flow field produced by the Airstream Oscillator System (AOS) in the Langley Transonic Dynamics Tunnel (TDT). The magnitude of a simulated gust field was measured at 15 locations in the plane of a typical model helicopter rotor when tested in the TDT using the Aeroelastic Rotor Experimental System (ARES) model. These measurements were made over a range of tunnel dynamic pressures typical of those used for an ARES test. The data indicate that the gust field produced by the AOS is non-uniform across the tunnel test section, but should be sufficient to excite a model rotor.

  17. A comparison of measured and predicted test flow in an expansion tube with air and oxygen test gases

    Science.gov (United States)

    Aaggard, K. V.; Goad, W. K.

    1975-01-01

    Simultaneous time-resolved measurements of temperature, density, pitot pressure, and wall pressure in both air and O2 test gases were obtained in the Langley pilot model expansion tube. These tests show nonequilibrium chemical and vibrational relaxation significantly affect the test-flow condition. The use of an electromagnetic device to preopen the secondary diaphragm before the arrival of the primary shock wave resulted in an improvement in the agreement between the measured pitot pressure and the value inferred from measured density and interface velocity. Boundary-layer splitter plates used to reduce the wall boundary layer show that this disagreement in the measured and inferred pitot pressures is not a result of boundary-layer effects.

  18. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  19. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation

    DEFF Research Database (Denmark)

    Law, I; Iida, H; Holm, S

    2000-01-01

    One of the most limiting factors for the accurate quantification of physiologic parameters with positron emission tomography (PET) is the partial volume effect (PVE). To assess the magnitude of this contribution to the measurement of regional cerebral blood flow (rCBF), the authors have formulate...

  20. Clinical usefulness of multiplex PCR lateral flow in MRSA detection: a novel, rapid genetic testing method.

    Science.gov (United States)

    Nihonyanagi, Shin; Kanoh, Yuhsaku; Okada, Kiyomi; Uozumi, Toshiki; Kazuyama, Yukumasa; Yamaguchi, Tokiko; Nakazaki, Nobuhiko; Sakurai, Keizou; Hirata, Yasuyoshi; Munekata, Shinichi; Ohtani, Shinichi; Takemoto, Tsuyoshi; Bandoh, Yuki; Akahoshi, Tohru

    2012-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) with exogenous cassette DNA containing the methicillin-resistant gene mecA (SCCmec) poses a problem as a drug-resistant bacterium responsible for hospital- and community-acquired infections. The frequency of MRSA detection has recently been increasing rapidly in Japan, and SCCmec has also been classified more diversely into types I-V. A rapid test is essential for early diagnosis and treatment of MRSA infections, but detection by conventional methods requires at least two days. The newly developed multiplex PCR lateral flow method allows specific amplification of femA to detect S. aureus, mecA to detect SCCmec, and kdpC to detect SCCmec type II; moreover, PCR products can be evaluated visually in about 3 h. In the present study, we developed a PCR lateral flow method for MRSA using this method and investigated its clinical usefulness in the detection of MRSA. The results showed a diagnostic concordance rate of 91.7% for MRSA and methicillin-susceptible S. aureus between bacteriological examination and PCR lateral flow, and a high level of specificity in PCR lateral flow. In addition, a higher detection rate for S. aureus using the same sample was observed for PCR lateral flow (70.2%) than for bacteriological tests (48.6%). The above results show that PCR lateral flow for MRSA detection has high sensitivity, specificity, and speed, and its clinical application as a method for early diagnosis of MRSA infections appears to be feasible.

  1. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  2. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  3. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

  4. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    Science.gov (United States)

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  5. Velocimetry modalities for secondary flows in a curved artery test section

    Science.gov (United States)

    Bulusu, Kartik V.; Elkins, Christopher J.; Banko, Andrew J.; Plesniak, Michael W.; Eaton, John K.

    2014-11-01

    Secondary flow structures arise due to curvature-related centrifugal forces and pressure imbalances. These flow structures influence wall shear stress and alter blood particle residence times. Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) techniques were implemented independently, under the same physiological inflow conditions (Womersley number = 4.2). A 180-degree curved artery test section with curvature ratio (1/7) was used as an idealized geometry for curved arteries. Newtonian blood analog fluids were used for both MRV and PIV experiments. The MRV-technique offers the advantage of three-dimensional velocity field acquisition without requiring optical access or flow markers. Phase-averaged, two-dimensional, PIV-data at certain cross-sectional planes and inflow phases were compared to phase-averaged MRV-data to facilitate the characterization of large-scale, Dean-type vortices. Coherent structures detection methods that included a novel wavelet decomposition-based approach to characterize these flow structures was applied to both PIV- and MRV-data. The overarching goal of this study is the detection of motific, three-dimensional shapes of secondary flow structures using MRV techniques with guidance obtained from high fidelity, 2D-PIV measurements. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. Scoping erosion flow loop test results in support of Hanford WTP

    International Nuclear Information System (INIS)

    Duignan, M.; Imrich, K.; Fowley, M.; Restivo, M.; Reigel, M.

    2015-01-01

    The Waste Treatment and Immobilization Plant (WTP) will process Hanford Site tank waste by converting the waste into a stable glass form. Before the tank waste can be vitrified, the baseline plan is to process the waste through the Pretreatment (PT) Facility where it will be mixed in various process vessels using Pulse Jet Mixers (PJM) and transferred to the High Level Waste (HLW) or Low Activity Waste (LAW) vitrification facilities. The Department of Energy (DOE) and Defense Nuclear Facility Safety Board (DNFSB), as well as independent review groups, have raised concerns regarding the design basis for piping erosion in the PT Facility. Due to the complex nature of slurry erosion/corrosion wear and the unique conditions that exist within the PT Facility, additional testing has been recommended by these entities. Pipe loop testing is necessary to analyze the potential for localized wear at elbows and bends, close the outstanding PT and HLW erosion/corrosion technical issues, and underpin BNI's design basis for a 40-year operational life for black cell piping and vessels. SRNL is consulting with the DOE Office of River Protection (ORP) to resolve technical concerns related to piping erosion/corrosion (wear) design basis for PT. SRNL was tasked by ORP to start designing, building, and testing a flow loop to obtain long-term total-wear rate data using bounding simulant chemistry, operating conditions, and prototypical materials. The initial test involved a scoping paint loop to locate experimentally the potential high-wear locations. This information will provide a basis for the placement of the many sensitive wear measurement instruments in the appropriate locations so that the principal flow-loop test has the best chance to estimate long-term erosion and corrosion. It is important to note that the scoping paint loop test only utilized a bounding erosion simulant for this test. A full chemical simulant needs to be added for the complete test flow loop. The

  7. Relationship between flow volume curve and CT findings in non-smoking patients with long histories of bronchial asthma

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Hitoshi; Kambe, Masayuki; Yamagata, Mitsunori; Nakajima, Hidekatsu [Hiroshima Univ. (Japan). School of Medicine; Yamane, Kousuke; Kuraoka, Toshihiko; Miyamura, Isao

    2001-08-01

    This study was conducted to verify whether bronchial asthma (BA) alone causes pulmonary emphysema (PE), and to examine the computed tomography (CT) findings in non-smokers with BA demonstrating the flow volume curve (FV curve) characteristic of PE. Non-smoking patients with a history of BA for more than 20 years were divided into 2 groups: the dogleg pattern group (n=5), with an FV curve characteristic of PE, and the concave pattern group (n=16) with an FV curve characteristic of BA. CT scans was performed using CT values (level, 900 H.U.; width, 400 H.U.) that facilitate detection of a low attenuation area (LAA), and using conventional CT values (level, 700 H.U.; width, 1,300 H.U.). LAA (including air trapping), thickness of the bronchial wall, and partial atelectasis were compared between the 2 groups. PE was not detected, although air trapping was found in all subjects. The thickness of the airway was greater in the dogleg pattern than in the concave pattern. The incidences of air trapping and partial atelectasis were higher in the former than in the latter. BA alone may not cause PE. Some BA patients without PE show the FV curve characteristic of PE, reflecting an increase in the thickness of the airway wall and a decrease in the pulmonary ventilation probably due to the air trapping and the partial atelectasis. (author)

  8. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  9. Development and testing of highway storm-sewer flow measurement and recording system

    Science.gov (United States)

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  10. Brief Communication: A new testing field for debris flow warning systems

    Science.gov (United States)

    Arattano, M.; Coviello, V.; Cavalli, M.; Comiti, F.; Macconi, P.; Theule, J.; Crema, S.

    2015-07-01

    A permanent field installation for the systematic test of debris flow warning systems and algorithms has been equipped on the eastern Italian Alps. The installation was also designed to produce didactic videos and it may host informative visits. The populace education is essential and should be envisaged in planning any research on hazard mitigation interventions: this new installation responds to this requirement and offers an example of integration between technical and informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results obtained.

  11. Flow-assisted basophil activation tests in immediate drug hypersensitivity: two decades of Antwerp experience.

    Science.gov (United States)

    Mangodt, E A; Van Gasse, A L; Bastiaensen, A; Decuyper, I I; Uyttebroek, A; Faber, M; Sabato, V; Bridts, C H; Hagendorens, M M; De Clerck, L S; Ebo, D G

    2016-02-01

    The last two decades have witnessed that flow-assisted analysis of in vitro-activated basophils can constitute a valuable adjunct in the in vitro diagnostic approach of immediate drug hypersensitivity reactions (IDHR). This article summarises the current experience with the basophil activation test in the diagnosis of IDHR, with particular focus on allergy to curarising neuromuscular blocking agents, antibiotics (β-lactams and fluoroquinolones), iodinated radiocontrast media and opiates.

  12. Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  13. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered