WorldWideScience

Sample records for flow sensitivity analysis

  1. Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows

    CERN Document Server

    Blonigan, Patrick; Wang, Qiqi

    2014-01-01

    Computational methods for sensitivity analysis are invaluable tools for aerodynamics research and engineering design. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in turbulent fluid flow fields, specifically those obtained using high-fidelity turbulence simulations. This is because of a number of dynamical properties of turbulent and chaotic fluid flows, most importantly high sensitivity of the initial value problem, popularly known as the "butterfly effect". The recently developed least squares shadowing (LSS) method avoids the issues encountered by traditional sensitivity analysis methods by approximating the "shadow trajectory" in phase space, avoiding the high sensitivity of the initial value problem. The following paper discusses how the least squares problem associated with LSS is solved. Two methods are presented and are demonstrated on a simulation of homogeneous isotropic turbulence and the Kuramoto-Sivashinsky (KS) equation, a 4th order c...

  2. A Flow-Sensitive Analysis of Privacy Properties

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2007-01-01

    that information I send to some service never is leaked to another service? - unless I give my permission? We shall develop a static program analysis for the pi- calculus and show how it can be used to give privacy guarantees like the ones requested above. The analysis records the explicit information flow...

  3. Sensitivity analysis, approximate analysis, and design optimization for internal and external viscous flows

    Science.gov (United States)

    Taylor, Arthur C., III; Hou, Gene W.; Korivi, Vamshi M.

    1991-01-01

    A gradient-based design optimization strategy for practical aerodynamic design applications is presented, which uses the 2D thin-layer Navier-Stokes equations. The strategy is based on the classic idea of constructing different modules for performing the major tasks such as function evaluation, function approximation and sensitivity analysis, mesh regeneration, and grid sensitivity analysis, all driven and controlled by a general-purpose design optimization program. The accuracy of aerodynamic shape sensitivity derivatives is validated on two viscous test problems: internal flow through a double-throat nozzle and external flow over a NACA 4-digit airfoil. A significant improvement in aerodynamic performance has been achieved in both cases. Particular attention is given to a consistent treatment of the boundary conditions in the calculation of the aerodynamic sensitivity derivatives for the classic problems of external flow over an isolated lifting airfoil on 'C' or 'O' meshes.

  4. Global in Time Analysis and Sensitivity Analysis for the Reduced NS- α Model of Incompressible Flow

    Science.gov (United States)

    Rebholz, Leo; Zerfas, Camille; Zhao, Kun

    2017-09-01

    We provide a detailed global in time analysis, and sensitivity analysis and testing, for the recently proposed (by the authors) reduced NS- α model. We extend the known analysis of the model to the global in time case by proving it is globally well-posed, and also prove some new results for its long time treatment of energy. We also derive PDE system that describes the sensitivity of the model with respect to the filtering radius parameter, and prove it is well-posed. An efficient numerical scheme for the sensitivity system is then proposed and analyzed, and proven to be stable and optimally accurate. Finally, two physically meaningful test problems are simulated: channel flow past a cylinder (including lift and drag calculations) and turbulent channel flow with {Re_{τ}=590}. The numerical results reveal that sensitivity is created near boundaries, and thus this is where the choice of the filtering radius is most critical.

  5. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  6. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Song, Xuehang [Pacific Northwest National Laboratory, Richland Washington USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-05-01

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level of the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.

  7. Sensitivity analysis of permeability parameters for flows on Barcelona networks

    Science.gov (United States)

    Rarità, Luigi; D'Apice, Ciro; Piccoli, Benedetto; Helbing, Dirk

    We consider the problem of optimizing vehicular traffic flows on an urban network of Barcelona type, i.e. square network with streets of not equal length. In particular, we describe the effects of variation of permeability parameters, that indicate the amount of flow allowed to enter a junction from incoming roads. On each road, a model suggested by Helbing et al. (2007) [11] is considered: free and congested regimes are distinguished, characterized by an arrival flow and a departure flow, the latter depending on a permeability parameter. Moreover we provide a rigorous derivation of the model from fluid dynamic ones, using recent results of Bretti et al. (2006) [3]. For solving the dynamics at nodes of the network, a Riemann solver maximizing the through flux is used, see Coclite et al. (2005) [4] and Helbing et al. (2007) [11]. The network dynamics gives rise to complicate equations, where the evolution of fluxes at a single node may involve time-delayed terms from all other nodes. Thus we propose an alternative hybrid approach, introducing additional logic variables. Finally we compute the effects of variations on permeability parameters over the hybrid dynamics and test the obtained results via simulations.

  8. Sensitive flow-injection spectrophotometric analysis of bromopride

    Science.gov (United States)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  9. Sensitivity Analysis of Unsteady Flow Fields and Impact of Measurement Strategy

    Directory of Open Access Journals (Sweden)

    Takashi Misaka

    2014-01-01

    Full Text Available Difficulty of data assimilation arises from a large difference between the sizes of a state vector to be determined, that is, the number of spatiotemporal mesh points of a discretized numerical model and a measurement vector, that is, the amount of measurement data. Flow variables on a large number of mesh points are hardly defined by spatiotemporally limited measurements, which poses an underdetermined problem. In this study we conduct the sensitivity analysis of two- and three-dimensional vortical flow fields within a framework of data assimilation. The impact of measurement strategy, which is evaluated by the sensitivity of the 4D-Var cost function with respect to measurements, is investigated to effectively determine a flow field by limited measurements. The assimilation experiment shows that the error defined by the difference between the reference and assimilated flow fields is reduced by using the sensitivity information to locate the limited number of measurement points. To conduct data assimilation for a long time period, the 4D-Var data assimilation and the sensitivity analysis are repeated with a short assimilation window.

  10. Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis

    Science.gov (United States)

    Mockler, Eva M.; O'Loughlin, Fiachra E.; Bruen, Michael

    2016-05-01

    Increasing pressures on water quality due to intensification of agriculture have raised demands for environmental modeling to accurately simulate the movement of diffuse (nonpoint) nutrients in catchments. As hydrological flows drive the movement and attenuation of nutrients, individual hydrological processes in models should be adequately represented for water quality simulations to be meaningful. In particular, the relative contribution of groundwater and surface runoff to rivers is of interest, as increasing nitrate concentrations are linked to higher groundwater discharges. These requirements for hydrological modeling of groundwater contribution to rivers initiated this assessment of internal flow path partitioning in conceptual hydrological models. In this study, a variance based sensitivity analysis method was used to investigate parameter sensitivities and flow partitioning of three conceptual hydrological models simulating 31 Irish catchments. We compared two established conceptual hydrological models (NAM and SMARG) and a new model (SMART), produced especially for water quality modeling. In addition to the criteria that assess streamflow simulations, a ratio of average groundwater contribution to total streamflow was calculated for all simulations over the 16 year study period. As observations time-series of groundwater contributions to streamflow are not available at catchment scale, the groundwater ratios were evaluated against average annual indices of base flow and deep groundwater flow for each catchment. The exploration of sensitivities of internal flow path partitioning was a specific focus to assist in evaluating model performances. Results highlight that model structure has a strong impact on simulated groundwater flow paths. Sensitivity to the internal pathways in the models are not reflected in the performance criteria results. This demonstrates that simulated groundwater contribution should be constrained by independent data to ensure results

  11. Flow Injection Analysis of Acid and Base using Thermo-Sensitive Resistance Coils

    OpenAIRE

    1995-01-01

    A flow injection analysis of acid-base by detecting neutralization heat is proposed. A injected sample (acid or base), combined with a carrier (deionized water), was mixed with a reagent (base or acid) stream. A change in the solution temperature was detected by passing the solution, immediately after mixing, through a stainless steel capillary tube around which a thermo-sensitive resistance was coiled. The temperature of carrier was used as a reference Hydrochloric acid solutions of 0.003 to...

  12. Sensitivity analysis

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003741.htm Sensitivity analysis To use the sharing features on this page, please enable JavaScript. Sensitivity analysis determines the effectiveness of antibiotics against microorganisms (germs) ...

  13. Exploring Hydrological Flow Paths in Conceptual Catchment Models using Variance-based Sensitivity Analysis

    Science.gov (United States)

    Mockler, E. M.; O'Loughlin, F.; Bruen, M. P.

    2013-12-01

    Conceptual rainfall runoff (CRR) models aim to capture the dominant hydrological processes in a catchment in order to predict the flows in a river. Most flood forecasting models focus on predicting total outflows from a catchment and often perform well without the correct distribution between individual pathways. However, modelling of water flow paths within a catchment, rather than its overall response, is specifically needed to investigate the physical and chemical transport of matter through the various elements of the hydrological cycle. Focus is increasingly turning to accurately quantifying the internal movement of water within these models to investigate if the simulated processes contributing to the total flows are realistic in the expectation of generating more robust models. Parameter regionalisation is required if such models are to be widely used, particularly in ungauged catchments. However, most regionalisation studies to date have typically consisted of calibrations and correlations of parameters with catchment characteristics, or some variations of this. In order for a priori parameter estimation in this manner to be possible, a model must be parametrically parsimonious while still capturing the dominant processes of the catchment. The presence of parameter interactions within most CRR model structures can make parameter prediction in ungauged basins very difficult, as the functional role of the parameter within the model may not be uniquely identifiable. We use a variance based sensitivity analysis method to investigate parameter sensitivities and interactions in the global parameter space of three CRR models, simulating a set of 30 Irish catchments within a variety of hydrological settings over a 16 year period. The exploration of sensitivities of internal flow path partitioning was a specific focus and correlations between catchment characteristics and parameter sensitivities were also investigated to assist in evaluating model performances

  14. Sensitivity Analysis and Variational Data Assimilation for ice flow - Application to the Mertz ice-tongue

    Science.gov (United States)

    Martin, N.; Monnier, J.

    2012-12-01

    To be confident in the accuracy of the modelling of ice flows requires to con- front numerical experiments to actual observations. This type of flow is strongly sensitive to its input parameters such as rheological parameters and boundary conditions like the friction on the bedrock. Using optimal control theory, we build a global 4D-Var algorithm using direct and adjoint model of the variational problem thus providing local sensitivity analysis and data assimilation (see [1]). In order to compute approximation of these flows, one consider the non newtonian velocity- pressure Stokes system described using mixed finite element method. The treat- ment of the free surface is performed using an Arbitrary Lagrangian Eulerian de- scription with robus elastic deformation and the adjoint method is constructed by algorithmic differentiation of the direct code using Tapenade software (INRIA). We lean on prior developments of the software DassFlow (see [2]). One of the major question for inverse methods in glaciology is to infer the fric- tion coefficient at bottom through data assimilation because it cannot be measured. In other respect, our first results based on real data shows that the rheological expo- nent and/or the thermal coefficient of the constitutive law (distributed parameter) has the same type of influence (see Figure 1) and can be inferred as well. Another modeling issue lies in the dynamic of the grounding line when con- sidering the floating part of the ice domain. Then, sensitivity analysis of the model response with respect to this grounding line dynamic leads to a better understand- ing of this unstable process and its empirical modelling. We present a real data application on the Mertz ice-shelf (Antarctica). Topography and surface velocities data are being provided by B. Legrésy (see [3]). References [1] Martin, N. and Monnier, J. : A three fields finite elements solver for viscoplas- tic free surface flows and variational data assimilation. In

  15. Visualization and evaluation of flow during water filtration: Parameterization and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Bílek Petr

    2016-01-01

    Full Text Available This paper deals with visualization and evaluation of flow during filtration of water seeded by artificial microscopic particles. Planar laser induced fluorescence (PLIF is a wide spread method for visualization and non-invasive characterization of flow. However the method uses fluorescent dyes or fluorescent particles in special cases. In this article the flow is seeded by non-fluorescent monodisperse polystyrene particles with the diameter smaller than one micrometer. The monodisperse sub-micron particles are very suitable for testing of textile filtration materials. Nevertheless non-fluorescent particles are not useful for PLIF method. A water filtration setup with an optical access to the place, were a tested filter is mounted, was built and used for the experiments. Concentration of particles in front of and behind the tested filter in a laser light sheet measured is and the local filtration efficiency expressed is. The article describes further progress in the measurement. It was carried out sensitivity analysis, parameterization and performance of the method during several simulations and experiments.

  16. Flow analysis with WaSiM-ETH – model parameter sensitivity at different scales

    Directory of Open Access Journals (Sweden)

    J. Cullmann

    2006-01-01

    Full Text Available WaSiM-ETH (Gurtz et al., 2001, a widely used water balance simulation model, is tested for its suitability to serve for flow analysis in the context of rainfall runoff modelling and flood forecasting. In this paper, special focus is on the resolution of the process domain in space as well as in time. We try to couple model runs with different calculation time steps in order to reduce the effort arising from calculating the whole flow hydrograph at the hourly time step. We aim at modelling on the daily time step for water balance purposes, switching to the hourly time step whenever high-resolution information is necessary (flood forecasting. WaSiM-ETH is used at different grid resolutions, thus we try to become clear about being able to transfer the model in spatial resolution. We further use two different approaches for the overland flow time calculation within the sub-basins of the test watershed to gain insights about the process dynamics portrayed by the model. Our findings indicate that the model is very sensitive to time and space resolution and cannot be transferred across scales without recalibration.

  17. Sensitivity Analysis of Entropy Generation in Nanofluid Flow inside a Channel by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bijan Darbari

    2016-02-01

    Full Text Available Nanofluids can afford excellent thermal performance and have a major role in energy conservation aspect. In this paper, a sensitivity analysis has been performed by using response surface methodology to calculate the effects of nanoparticles on the entropy generation. For this purpose, the laminar forced convection of Al2O3-water nanofluid flow inside a channel is considered. The total entropy generation rates consist of the entropy generation rates due to heat transfer and friction loss are calculated by using velocity and temperature gradients. The continuity, momentum and energy equations have been solved numerically using a finite volume method. The sensitivity of the entropy generation rate to different parameters such as the solid volume fraction, the particle diameter, and the Reynolds number is studied in detail. Series of simulations were performed for a range of solid volume fraction 0 ≤ ϕ ≤ 0.05 , particle diameter 30  nm ≤ d p ≤ 90 ​ nm , and the Reynolds number 200 ≤ Re ≤ 800. The results showed that the total entropy generation is more sensitive to the Reynolds number rather than the nanoparticles diameter or solid volume fraction. Also, the magnitude of total entropy generation, which increases with increase in the Reynolds number, is much higher for the pure fluid rather than the nanofluid.

  18. Ultra-sensitive Flow Injection Analysis (FIA) determination of calcium in ice cores at ppt level.

    Science.gov (United States)

    Traversi, R; Becagli, S; Castellano, E; Maggi, V; Morganti, A; Severi, M; Udisti, R

    2007-07-02

    A Flow Injection Analysis (FIA) spectrofluorimetric method for calcium determination in ice cores was optimised in order to achieve better analytical performances which would make it suitable for reliable calcium measurements at ppt level. The method here optimised is based on the formation of a fluorescent compound between Ca and Quin-2 in buffered environment. A careful evaluation of operative parameters (reagent concentration, buffer composition and concentration, pH), influence of interfering species possibly present in real samples and potential favourable effect of surfactant addition was carried out. The obtained detection limit is around 15 ppt, which is one order of magnitude lower than the most sensitive Flow Analysis method for Ca determination currently available in literature and reproducibility is better than 4% for Ca concentrations of 0.2 ppb. The method was validated through measurements performed in parallel with Ion Chromatography on 200 samples from an alpine ice core (Lys Glacier) revealing an excellent fit between the two chemical series. Calcium stratigraphy in Lys ice core was discussed in terms of seasonal pattern and occurrence of Saharan dust events.

  19. Sensitivity analysis of DSMC parameters for an 11-species air hypersonic flow

    Science.gov (United States)

    Higdon, Kyle J.; Goldstein, David B.; Varghese, Philip L.

    2016-11-01

    This research investigates the influence of input parameters in the direct simulation Monte Carlo (DSMC) method for the simulation of a hypersonic flow scenario. Simulations are performed using the Computation of Hypersonic Ionizing Particles in Shocks (CHIPS) code to reproduce NASA Ames Electric Arc Shock Tube (EAST) experimental results for a 10.26 km/s, 0.2 Torr scenario. Since the chosen nominal simulation involves an energetic flow, an electronic excitation model is introduced into CHIPS to complement the pre-existing 11-species air models. A global Monte Carlo sensitivity analysis was completed for this chosen scenario and three quantities of interest (QoIs) were investigated: translational temperature, electronic temperature, and electron number density. The electron impact ionization reaction, N + e- ⇌ N+ + e- + e-, was determined to have the greatest effect on all three QoIs as it defines the electron cascade that occurs post-shock. In addition, molecular nitrogen dissociation, associative ionization, and the N + NO+ ⇌ N+ + NO charge exchange reaction were all found to be important for these QoIs.

  20. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  1. Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis.

    Science.gov (United States)

    Lima, Renato S; Piazzetta, Maria H O; Gobbi, Angelo L; Segato, Thiago P; Cabral, Murilo F; Machado, Sergio A S; Carrilho, Emanuel

    2013-12-18

    In this communication, we describe for the first time the integration of concentric electrodes (wrapping around the microchannel) in microchips. The use of such electrodes has been shown to be effective towards improvement of the sensitivity and detectability in pressure-driven flow platforms incorporating C(4)D.

  2. Sensitivity and uncertainty analysis

    CERN Document Server

    Cacuci, Dan G; Navon, Ionel Michael

    2005-01-01

    As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable scientific tools. Sensitivity and Uncertainty Analysis. Volume I: Theory focused on the mathematical underpinnings of two important methods for such analyses: the Adjoint Sensitivity Analysis Procedure and the Global Adjoint Sensitivity Analysis Procedure. This volume concentrates on the practical aspects of performing these analyses for large-scale systems. The applications addressed include two-phase flow problems, a radiative c

  3. A short-term in vitro test for tumour sensitivity to adriamycin based on flow cytometric DNA analysis

    DEFF Research Database (Denmark)

    Engelholm, S A; Spang-Thomsen, M; Vindeløv, L L

    1983-01-01

    A new method to test the sensitivity of tumour cells to chemotherapy is presented. Tumour cells were incubated in vitro on agar, and drug-induced cell cycle perturbation was monitored by flow cytometric DNA analysis. In the present study the method was applied to monitor the effect of adriamycin...

  4. A Highly Sensitive Multicommuted Flow Analysis Procedure for Photometric Determination of Molybdenum in Plant Materials without a Solvent Extraction Step

    OpenAIRE

    Felisberto G. Santos; Boaventura F. Reis

    2017-01-01

    A highly sensitive analytical procedure for photometric determination of molybdenum in plant materials was developed and validated. This procedure is based on the reaction of Mo(V) with thiocyanate ions (SCN−) in acidic medium to form a compound that can be monitored at 474 nm and was implemented employing a multicommuted flow analysis setup. Photometric detection was performed using an LED-based photometer coupled to a flow cell with a long optical path length (200 mm) to achieve high sensit...

  5. Grid Sensitivity Analysis of Simulations of a Flow around a Single Rotating Wind Turbine Blade

    Science.gov (United States)

    Kaiser, Bryan E.; Snider, Michael A.; Poroseva, Svetlana V.; Hovsapian, Rob O.

    2012-11-01

    Design of a wind farm layout with the purpose of optimizing the power outcome requires accurate and reliable simulations of a flow around and behind wind turbines. Such computations are expensive even for a single turbine. To find an optimal set of simulation parameters that satisfies both requirements in simulation accuracy and cost in an acceptable degree, a sensitivity study on how the parameters' variation influences results of simulations should be conducted at the early stage of computations. In the current study, the impact of a grid refinement, grid stretching, and cell shape on simulation results is analyzed in a flow around a single rotating blade utilized in a mid-sized Rim Driven Wind Turbine design (U.S. Patent #7399162) developed by Keuka Energy LLC, and in its near wake. Simulation results obtained with structured and unstructured grids are compared. Industry relies on commercial software for conducting fluid flow simulations. Therefore, STAR-CCM+ software was used in our study. A choice of a turbulence model was made based on our previous sensitivity study of flow simulations over a rotating disk (see M. A. Snider, S. V. Poroseva, AIAA-2012-3146). Center for Advanced Power Systems, Florida State University.

  6. Sensitivity Analysis of Hydrological Parameters in Modeling Flow and Transport in the Unsaturated Zone of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    K. Zhang; Y.S. Wu; J.E. Houseworth

    2006-03-21

    The unsaturated fractured volcanic deposits at Yucca Mountain have been intensively investigated as a possible repository site for storing high-level radioactive waste. Field studies at the site have revealed that there exist large variabilities in hydrological parameters over the spatial domain of the mountain. This paper reports on a systematic analysis of hydrological parameters using the site-scale 3-D unsaturated zone (UZ) flow model. The objectives of the sensitivity analyses are to evaluate the effects of uncertainties in hydrologic parameters on modeled UZ flow and contaminant transport results. Sensitivity analyses are carried out relative to fracture and matrix permeability and capillary strength (van Genuchten a), through variation of these parameter values by one standard deviation from the base-case values. The parameter variation results in eight parameter sets. Modeling results for the eight UZ flow sensitivity cases have been compared with field observed data and simulation results from the base-case model. The effects of parameter uncertainties on the flow fields are discussed and evaluated through comparison of results for flow and transport. In general, this study shows that uncertainties in matrix parameters cause larger uncertainty in simulated moisture flux than corresponding uncertainties in fracture properties for unsaturated flow through heterogeneous fractured rock.

  7. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways.

    Science.gov (United States)

    Govey, Peter M; Jacobs, Jon M; Tilton, Susan C; Loiselle, Alayna E; Zhang, Yue; Freeman, Willard M; Waters, Katrina M; Karin, Norman J; Donahue, Henry J

    2014-06-03

    Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.

  8. Sensitivity analysis of Immersed Boundary Method simulations of fluid flow in dense polydisperse random grain packings

    Directory of Open Access Journals (Sweden)

    Knight Chris

    2017-01-01

    Full Text Available Polydisperse granular materials are ubiquitous in nature and industry. Despite this, knowledge of the momentum coupling between the fluid and solid phases in dense saturated grain packings comes almost exclusively from empirical correlations [2–4, 8] with monosized media. The Immersed Boundary Method (IBM is a Computational Fluid Dynamics (CFD modelling technique capable of resolving pore scale fluid flow and fluid-particle interaction forces in polydisperse media at the grain scale. Validation of the IBM in the low Reynolds number, high concentration limit was performed by comparing simulations of flow through ordered arrays of spheres with the boundary integral results of Zick and Homsy [10]. Random grain packings were studied with linearly graded particle size distributions with a range of coefficient of uniformity values (Cu = 1.01, 1.50, and 2.00 at a range of concentrations (ϕ ∈ [0.396; 0.681] in order to investigate the influence of polydispersity on drag and permeability. The sensitivity of the IBM results to the choice of radius retraction parameter [1] was investigated and a comparison was made between the predicted forces and the widely used Ergun correlation [3].

  9. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Verma, Surendra P. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, Apartado Postal 34, Temixco 62580 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico D.F. 03020 (Mexico)

    2010-05-15

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  10. Multiparameter Symbolic Sensitivity Analysis Enhanced by Nullor Model and Modified Coates Flow Graph

    Directory of Open Access Journals (Sweden)

    Irina Asenova

    2013-01-01

    Full Text Available In symbolic sensitivity analysis very important role plays the number of additionally generated expressions and in consequence additional number of arithmetical operations. The main drawback of some methods based on the adjoint graph or on the two-graph technique, i.e. the necessity to multiply analyze the corresponding graph, is avoided. Advantages of the method suggested are that, the matrix inversion is not required and the Coates graph is significantly simplified. Simplifications of the method introduced in this paper lead to the significant reduction of the final symbolic expressions without violation of accuracy. This simplification method can be considered as SBG-type and has an important impact on symbolic analysis. A special software tool called "HoneySen" has been developed to implement the suggested method. In the paper, it was shown that the presented method is more effective than the transimpedance method taking the number of arithmetical operations and the circuit insight into consideration. Comparison results for the multiparameter sensitivity calculations of the voltage the transfer function for a fourth-order low pass filter and a second-order high-pass filter are presented.

  11. Flows of dioxins and furans in coastal food webs: inverse modeling, sensitivity analysis, and applications of linear system theory.

    Science.gov (United States)

    Saloranta, Tuomo M; Andersen, Tom; Naes, Kristoffer

    2006-01-01

    Rate constant bioaccumulation models are applied to simulate the flow of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the coastal marine food web of Frierfjorden, a contaminated fjord in southern Norway. We apply two different ways to parameterize the rate constants in the model, global sensitivity analysis of the models using Extended Fourier Amplitude Sensitivity Test (Extended FAST) method, as well as results from general linear system theory, in order to obtain a more thorough insight to the system's behavior and to the flow pathways of the PCDD/Fs. We calibrate our models against observed body concentrations of PCDD/Fs in the food web of Frierfjorden. Differences between the predictions from the two models (using the same forcing and parameter values) are of the same magnitude as their individual deviations from observations, and the models can be said to perform about equally well in our case. Sensitivity analysis indicates that the success or failure of the models in predicting the PCDD/F concentrations in the food web organisms highly depends on the adequate estimation of the truly dissolved concentrations in water and sediment pore water. We discuss the pros and cons of such models in understanding and estimating the present and future concentrations and bioaccumulation of persistent organic pollutants in aquatic food webs.

  12. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    Science.gov (United States)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  13. Reliability Analysis of Phased Mission Systems by the Considering the Sensitivity Analysis, Uncertainty and Common Cause Failure Analysis using the GO-FLOW Methodology

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2013-04-01

    Full Text Available The reliability is the probability that a device will perform its required function under stated conditions for a specified period of time. The Common Cause Failure (CCFs is the multiple failures and has long been recognized (U.S. NRC, 1975 as an important issue in the Probabilistic Safety Assessment (PSA and uncertainty and sensitivity analysis has the important information for the evaluation of system reliability. In this study, two cases has been considered, in the first case, author have made the analysis of reliability of PWR safety system by GO-FLOW methodology alternatively to Fault Tree Analysis and Even Tree because it is success-oriented system analysis technique and comparatively easy to conduct the reliability analysis of the complex system. In the second case, sensitivity analysis has been made in order to prioritize the important parameters which have largest contribution to system reliability and also for common cause failure analysis and uncertainty analysis. For an example of phased mission system, PWR containment spray system has been considered.

  14. A Highly Sensitive Multicommuted Flow Analysis Procedure for Photometric Determination of Molybdenum in Plant Materials without a Solvent Extraction Step.

    Science.gov (United States)

    Santos, Felisberto G; Reis, Boaventura F

    2017-01-01

    A highly sensitive analytical procedure for photometric determination of molybdenum in plant materials was developed and validated. This procedure is based on the reaction of Mo(V) with thiocyanate ions (SCN(-)) in acidic medium to form a compound that can be monitored at 474 nm and was implemented employing a multicommuted flow analysis setup. Photometric detection was performed using an LED-based photometer coupled to a flow cell with a long optical path length (200 mm) to achieve high sensitivity, allowing Mo(V) determination at a level of μg L(-1) without the use of an organic solvent extraction step. After optimization of operational conditions, samples of digested plant materials were analyzed employing the proposed procedure. The accuracy was assessed by comparing the obtained results with those of a reference method, with an agreement observed at 95% confidence level. In addition, a detection limit of 9.1 μg L(-1), a linear response (r = 0.9969) over the concentration range of 50-500 μg L(-1), generation of only 3.75 mL of waste per determination, and a sampling rate of 51 determinations per hour were achieved.

  15. A Highly Sensitive Multicommuted Flow Analysis Procedure for Photometric Determination of Molybdenum in Plant Materials without a Solvent Extraction Step

    Directory of Open Access Journals (Sweden)

    Felisberto G. Santos

    2017-01-01

    Full Text Available A highly sensitive analytical procedure for photometric determination of molybdenum in plant materials was developed and validated. This procedure is based on the reaction of Mo(V with thiocyanate ions (SCN− in acidic medium to form a compound that can be monitored at 474 nm and was implemented employing a multicommuted flow analysis setup. Photometric detection was performed using an LED-based photometer coupled to a flow cell with a long optical path length (200 mm to achieve high sensitivity, allowing Mo(V determination at a level of μg L−1 without the use of an organic solvent extraction step. After optimization of operational conditions, samples of digested plant materials were analyzed employing the proposed procedure. The accuracy was assessed by comparing the obtained results with those of a reference method, with an agreement observed at 95% confidence level. In addition, a detection limit of 9.1 μg L−1, a linear response (r=0.9969 over the concentration range of 50–500 μg L−1, generation of only 3.75 mL of waste per determination, and a sampling rate of 51 determinations per hour were achieved.

  16. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  17. Continuum modelling of pedestrian flows - Part 2: Sensitivity analysis featuring crowd movement phenomena

    Science.gov (United States)

    Duives, Dorine C.; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-04-01

    In recent years numerous pedestrian simulation tools have been developed that can support crowd managers and government officials in their tasks. New technologies to monitor pedestrian flows are in dire need of models that allow for rapid state-estimation. Many contemporary pedestrian simulation tools model the movements of pedestrians at a microscopic level, which does not provide an exact solution. Macroscopic models capture the fundamental characteristics of the traffic state at a more aggregate level, and generally have a closed form solution which is necessary for rapid state estimation for traffic management purposes. This contribution presents a next step in the calibration and validation of the macroscopic continuum model detailed in Hoogendoorn et al. (2014). The influence of global and local route choice on the development of crowd movement phenomena, such as dissipation, lane-formation and stripe-formation, is studied. This study shows that most self-organization phenomena and behavioural trends only develop under very specific conditions, and as such can only be simulated using specific parameter sets. Moreover, all crowd movement phenomena can be reproduced by means of the continuum model using one parameter set. This study concludes that the incorporation of local route choice behaviour and the balancing of the aptitude of pedestrians with respect to their own class and other classes are both essential in the correct prediction of crowd movement dynamics.

  18. Sensitivity Analysis Of Hydrological Parameters In Modeling FlowAnd Transport In The Unsaturated Zone Of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

    2006-02-01

    The unsaturated fractured volcanic deposits at Yucca Mountain in Nevada, USA, have been intensively investigated as a possible repository site for storing high-level radioactive waste. Field studies at the site have revealed that there exist large variabilities in hydrological parameters over the spatial domain of the mountain. Systematic analyses of hydrological parameters using a site-scale three-dimensional unsaturated zone (UZ) flow model have been undertaken. The main objective of the sensitivity analyses was to evaluate the effects of uncertainties in hydrologic parameters on modeled UZ flow and contaminant transport results. Sensitivity analyses were carried out relative to fracture and matrix permeability and capillary strength (van Genuchten {alpha}) through variation of these parameter values by one standard deviation from the base-case values. The parameter variation resulted in eight parameter sets. Modeling results for the eight UZ flow sensitivity cases have been compared with field observed data and simulation results from the base-case model. The effects of parameter uncertainties on the flow fields were evaluated through comparison of results for flow and transport. In general, this study shows that uncertainties in matrix parameters cause larger uncertainty in simulated moisture flux than corresponding uncertainties in fracture properties for unsaturated flow through heterogeneous fractured rock.

  19. A United Method for Sensitivity Analysis of the Locational Marginal Price Based on the Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Locational marginal prices (LMPs are influenced by various factors in the electricity market; knowing the sensitivity information of LMPs is very important for both the purchase and the consumer. This paper presents a united method to compute the sensitivities of LMPs based on the optimal power flow (OPF. The Karush-Kuhn-Tucher (KKT system to solve LMPs can be transferred into an equation system by using an NCP function, and then by using the properties of the derivative of the semismooth NCP function, this paper provides a simultaneous obtention of the sensitivities of LMPs with respect to power demands, the cost of production, voltage boundary, and so forth. Numerical examples illustrate the concepts presented and the proposed methodology by a 6-bus electric energy system. Some relevant conclusions are drawn in the end.

  20. Sensitive analysis of low-flow parameters using the hourly hydrological model for two mountainous basins in Japan

    Science.gov (United States)

    Fujimura, Kazumasa; Iseri, Yoshihiko; Kanae, Shinjiro; Murakami, Masahiro

    2014-05-01

    Accurate estimation of low flow can contribute to better water resources management and also lead to more reliable evaluation of climate change impacts on water resources. In the early study, the nonlinearity of low flow related to the storage in the basin was suggested by Horton (1937) as the exponential function of Q=KSN, where Q is the discharge, S is the storage, K is a constant and N is the exponent value. In the recent study by Ding (2011) showed the general storage-discharge equation of Q = KNSN. Since the constant K is defined as the fractional recession constant and symbolized as Au by Ando et al. (1983), in this study, we rewrite this equation as Qg=AuNSgN, where Qg is the groundwater runoff and Sg is the groundwater storage. Although this equation was applied to a short-term runoff event of less than 14 hours using the unit hydrograph method by Ding, it was not yet applied for a long-term runoff event including low flow more than 10 years. This study performed a sensitive analysis of two parameters of the constant Au and exponent value N by using the hourly hydrological model for two mountainous basins in Japan. The hourly hydrological model used in this study was presented by Fujimura et al. (2012), which comprise the Diskin-Nazimov infiltration model, groundwater recharge and groundwater runoff calculations, and a direct runoff component. The study basins are the Sameura Dam basin (SAME basin) (472 km2) located in the western Japan which has variability of rainfall, and the Shirakawa Dam basin (SIRA basin) (205km2) located in a region of heavy snowfall in the eastern Japan, that are different conditions of climate and geology. The period of available hourly data for the SAME basin is 20 years from 1 January 1991 to 31 December 2010, and for the SIRA basin is 10 years from 1 October 2003 to 30 September 2013. In the sensitive analysis, we prepared 19900 sets of the two parameters of Au and N, the Au value ranges from 0.0001 to 0.0100 in steps of 0

  1. Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hasebe; Yue Wang; Kazuya Fukuoka

    2011-01-01

    Poly(pheniothiazine) films were prepared on a porous carbon felt (CF) electrode surface by an electrooxidative polymerization of three phenothiazine derivatives (i.e.,Tthionine (TN), Toluidine Blue (TB) and Methylene Blue (MB)) from 0.1 mol/L phosphate buffer solution (pH 7.0).Among the three phenothiazies, the poly(TB) film-modified CF exhibited an excellent electrocatalytic activity for the oxidation of nicotinamide adenine dinucleotide reduced form (NADH) at +0.2 V vs.Ag/AgCl.The poly(TB) film-modified CF was successfully used as working electrode unit of highly sensitive amperometric flow-through detector for NADH.The peak currents (peak heights) were almost unchanged, irrespective of a carrier flow rate ranging from 2.0 to 4.1 mL/min, resulting in the measurement of NADH (ca.30 samples/hr) at 4.1 mL/min.The peak current responses of NADH showed linear relationship over the concentration range from 1 to 30 μmol/L (sensitivity: 0.318 μA/(μmol/L); correlation coefficient: 0.997).The lower detection limit was found to be 0.3 μmol/L (S/N = 3).

  2. The Neopuff's PEEP valve is flow sensitive.

    LENUS (Irish Health Repository)

    Hawkes, Colin Patrick

    2011-03-01

    The current recommendation in setting up the Neopuff is to use a gas flow of 5-15 L\\/min. We investigated if the sensitivity of the positive end expiratory pressure (PEEP) valve varies at different flow rates within this range.

  3. Integrated Sensitivity Analysis Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Friedman-Hill, Ernest J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Edward L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Marcus J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clay, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.

  4. Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus self-consistent analysis

    Science.gov (United States)

    Meliga, Philippe

    2017-07-01

    We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to

  5. A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages.

    Science.gov (United States)

    de Oliveira, Fabio Santos; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2007-09-30

    A sensitive FIA method was developed for the selective determination of formaldehyde in alcoholic beverages. This method is based on the reaction of Fluoral-P (4-amine-3-pentene-2-one) with formaldehyde, leading to the formation of 3,5-diacetyl-1,4-dihydrolutidine (DDL), which fluoresces at lambda(ex)=410nm and lambda(em)=510nm. The analytical parameters were optimized by the response surface method using the Box-Behnken design. The proposed flow injection system allowed for the determination of up to 3.33x10(-5)molL(-1) of formaldehyde with R.S.D.<2.5% and a detection limit of 3.1ngmL(-1). The method was successfully applied to determine formaldehyde in alcoholic beverages, without requiring any sample pretreatment, and the results agreed with the reference at a 95% confidence level by paired t-test. In the optimized condition, the FIA system proved able to analyze up to 60 samples/h.

  6. Sensitivity analysis of SPURR

    Energy Technology Data Exchange (ETDEWEB)

    Witholder, R.E.

    1980-04-01

    The Solar Energy Research Institute has conducted a limited sensitivity analysis on a System for Projecting the Utilization of Renewable Resources (SPURR). The study utilized the Domestic Policy Review scenario for SPURR agricultural and industrial process heat and utility market sectors. This sensitivity analysis determines whether variations in solar system capital cost, operation and maintenance cost, and fuel cost (biomass only) correlate with intuitive expectations. The results of this effort contribute to a much larger issue: validation of SPURR. Such a study has practical applications for engineering improvements in solar technologies and is useful as a planning tool in the R and D allocation process.

  7. High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Huang, Tianxun; Zhu, Shaobin; Zhou, Yingxing; Jiang, Yunbin; Wang, Shuo; Chen, Yuqing; Wu, Lina; Yan, Xiaomei

    2013-10-15

    Single-cell analysis is vital in providing insights into the heterogeneity in molecular content and phenotypic characteristics of complex or clonal cell populations. As many essential proteins and most transcription factors are produced at a low copy number, analytical tools with superior sensitivity to enable the analysis of low abundance proteins in single cells are in high demand. β-galactosidase (β-gal) has been the standard cellular reporter for gene expression in both prokaryotic and eukaryotic cells. Here we report the development of a high-throughput method for the single-cell analysis of low copy number β-gal proteins using a laboratory-built high-sensitivity flow cytometer (HSFCM). Upon fluorescence staining with a fluorogenic substrate, quantitative measurements of the basal and near-basal expression of β-gal in single Escherichia coli BL21(DE3) cells were demonstrated. Statistical distribution can be determined quickly by analyzing thousands of individual cells in 1-2min, which reveals the heterogeneous expression pattern that is otherwise masked by the ensemble analysis. Combined with the quantitative fluorometric assay and the rapid bacterial enumeration by HSFCM, the β-gal expression distribution profile could be converted from arbitrary fluorescence units to protein copy numbers per cell. The sensitivity and speed of the HSFCM offers great capability in quantitative analysis of low abundance proteins in single cells, which would help gaining a deeper insight into the heterogeneity and fundamental biological processes in microbial populations.

  8. Atomistic Galois insertions for flow sensitive integrity

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    Several program verification techniques assist in showing that software adheres to the required security policies. Such policies may be sensitive to the flow of execution and the verification may be supported by combinations of type systems and Hoare logics. However, this requires user assistance...

  9. Sensitivity analysis of non-point sources in a water quality model applied to a dammed low-flow-reach river.

    Science.gov (United States)

    Silva, Nayana G M; von Sperling, Marcos

    2008-01-01

    Downstream of Capim Branco I hydroelectric dam (Minas Gerais state, Brazil), there is the need of keeping a minimum flow of 7 m3/s. This low flow reach (LFR) has a length of 9 km. In order to raise the water level in the low flow reach, the construction of intermediate dikes along the river bed was decided. The LFR has a tributary that receives the discharge of treated wastewater. As part of this study, water quality of the low-flow reach was modelled, in order to gain insight into its possible behaviour under different scenarios (without and with intermediate dikes). QUAL2E equations were implemented in FORTRAN code. The model takes into account point-source pollution and diffuse pollution. Uncertainty analysis was performed, presenting probabilistic results and allowing identification of the more important coefficients in the LFR water-quality model. The simulated results indicate, in general, very good conditions for most of the water quality parameters The variables of more influence found in the sensitivity analysis were the conversion coefficients (without and with dikes), the initial conditions in the reach (without dikes), the non-point incremental contributions (without dikes) and the hydraulic characteristics of the reach (with dikes).

  10. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3).

  11. The Neopuff's PEEP valve is flow sensitive.

    LENUS (Irish Health Repository)

    Hawkes, Colin Patrick

    2012-01-31

    AIM: The current recommendation in setting up the Neopuff is to use a gas flow of 5-15 L\\/min. We investigated if the sensitivity of the positive end expiratory pressure (PEEP) valve varies at different flow rates within this range. METHODS: Five Neopuffs were set up to provide a PEEP of 5 cm H(2) O. The number of clockwise revolutions to complete occlusion of the PEEP valve and the mean and range of pressures at each quarter clockwise revolution were recorded at gas flow rates between 5 and 15 L\\/min. Results: At 5, 10 and 15 L\\/min, 0.5, 1.7 and 3.4 full clockwise rotations were required to completely occlude the PEEP valve, and pressures rose from 5 to 11.4, 18.4 and 21.5 cm H(2) O, respectively. At a flow rate of 5 L\\/min, half a rotation of the PEEP dial resulted in a rise in PEEP from 5 to 11.4cm H(2) O. At 10 L\\/min, half a rotation resulted in a rise from 5 to 7.7cm H(2) O, and at 15 L\\/min PEEP rose from 5 to 6.8cm H(2) O. CONCLUSION: Users of the Neopuff should be aware that the PEEP valve is more sensitive at lower flow rates and that half a rotation of the dial at 5 L\\/min gas flow can more than double the PEEP.

  12. CASH-FLOW SENSITIVITY TO PAYMENTS FOR MATERIAL RESSOURCES

    Directory of Open Access Journals (Sweden)

    Lavinia Elena BRÎNDESCU OLARIU

    2014-12-01

    Full Text Available The financing decision is taken based on the expectations concerning the future cash-flows generated in the operating activity, which should provide coverage for the debt service and allow for an increase of the shareholders’ wealth. Still, the future cash-flows are affected by risk, which makes the sensitivity analysis a very important part of the decision process. The current research sets to evaluate the sensitivity of the payment capacity to variations of the payments for raw materials and consumables. The study employs 391 forecasted yearly cash-flow statements collected from 50 companies together with detailed information concerning the hypotheses of the forecasts. The results of the study allow for the establishment of benchmarks for the payment capacity’s sensitivity, the determination of the mechanisms through which the variation of payments for raw materials and consumables impacts the payment capacity, as well as the identification of the possible causes of such a variation.

  13. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  14. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V.

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  15. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    Science.gov (United States)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  16. Sensitivity Analysis of Pulsatile Hydromagnetic Biofluid Flow and Heat Transfer with Non Linear Darcy-Forchheimer Drag

    Directory of Open Access Journals (Sweden)

    S. Rawat

    2016-01-01

    Full Text Available In the present paper we examine the pulsatile hydromagnetic flow and heat transfer of a non-Newtonian biofluid through a saturated non-Darcian porous medium channel. The upper plate of the channel is heated and the lower plate is cooled. The Nakamura-Sawada rheological model is employed which provides a higher yield stress than the Casson model. A Darcy-Forchheimer porous medium drag force model is incorporated to simulate blood vessel blockage with deposits in the cardiovascular system. Viscous heating is also included in the energy equation. The governing conservation equations for mass, momentum and energy equation are transformed into a system of nonlinear, coupled ordinary differential equations and these are solved numerically using finite element method. The effect of other important parameters such as magnetohydrodynamic parameter (Nm, Reynolds number (Re, Eckert number (Ec, Darcian parameter (, Forchheimer parameter (NF and Prandtl number on velocity and temperature profiles are studied graphically. Spatial-temporal velocity and temperature profile visualizations are also presented. Numerical results shows that normalized fluid velocity (U increases throughout the channel (-1 < Y < 1 with an increase in Reynolds number, Darcian parameter, steady pressure gradient parameter and rheological parameter; conversely velocity is decreased with the increase in magnetic parameter and Forchheimer quadratic drag parameter. Higher Eckert number (Ec = 3 is also found to have a considerable effect on temperature ( profile. Finite difference numerical computations are also compared with the finite element solutions to verify efficiency and accuracy.

  17. Modular Control Flow Analysis for Libraries

    DEFF Research Database (Denmark)

    Probst, Christian W.

    2002-01-01

    One problem in analyzing object oriented languages is that the exact control flow graph is not known statically due to dynamic dispatching. However, this is needed in order to apply the large class of known interprocedural analysis. Control Flow Analysis in the object oriented setting aims at det...... at determining run-time types of variables, thus allowing to possibly targeted method implementations. We present a flow sensitive analysis that allows separate handling of libraries and thereby efficient analysis of whole programs....

  18. Financial Development and Investment-Cash Flow Sensitivity

    Directory of Open Access Journals (Sweden)

    Jungwon Suh

    2007-06-01

    Full Text Available Using firm-level data from thirty-five countries around the world, this paper empirically examines whether investment-cash flow sensitivity reflects financial constraints. Recent US studies have raised questions on the prediction that investment-cash flow sensitivity is a measure of financial constraints. Looking at thirty-five countries with varying degrees of financial development, this study tests whether investment-cash flow sensitivity is in fact related to financial constraints. In most countries, the evidence supporting the argument that firms likely facing financially constraints display high investment-cash flow sensitivity is weak. Moreover, the evidence that firms in the absence of developed financial markets display high investment-cash flow sensitivity is also weak. Overall, the results from this international investigation do not support the prediction that investment-cash flow sensitivity reflects financial constraints.

  19. Detection of P-glycoprotein with a rapid flow cytometric functional assay using Fluo-3: evaluation of sensitivity, specificity and feasibility in multiparametric analysis.

    Science.gov (United States)

    Van Acker, K L; De Greef, C; Eggermont, J; Zhang, P; Vandenberghe, P; Boogaerts, M A

    1995-08-01

    The specificity and sensitivity of a flow cytometric assay simultaneously measuring expression and transport function of the multidrug resistance associated P-glycoprotein (Pgp) was evaluated. The monoclonal antibody (mAb), MRK16 was used to detect phenotypic Pgp expression while Fluo-3-AM was used as a fluorescent substrate in a Pgp functional transport assay. The specificity of the functional assay was examined in two vinblastine selected human leukemic cell lines (K562/VLB2.5 and CCRF-CEM/VLB50) with acquired Pgp overexpression. Downmodulation of Pgp function in these cell lines could be demonstrated with different substances (verapamil, vinblastine, trifluoperazine, cyclosporin A, progesterone and quinidine) and was proven to be consistently higher in the vinblastine selected cells than in their non-selected drug sensitive counterparts. Unexpectedly, modulator activity was also observed in drug sensitive K562 and CCRF-CEM cell lines despite the inability to detect Pgp in those cells by MRK16 flow cytometrically. Low level expression of the MDR1 gene encoding Pgp in sensitive K562 cells was however demonstrated with a sensitive RT-PCR procedure. The small effect of Pgp modulators in non-drug selected cells could therefore be attributed to low level basal expression of Pgp and illustrates the sensitivity of the functional assay. Also, the effect of various Pgp modulators on Pgp function was more pronounced in a subpopulation of Pgp expressing lymphocytes than in lymphocytes which did not express Pgp. Finally, a correlation was found between discrete variations in Pgp expression and Pgp function of CD4+ lymphocytes, underscoring the feasibility of the functional assay in a triple parametric procedure. The triple parametric assay holds promise to detect Pgp expression and function in clinical samples containing mixtures of malignant and non-malignant cells.

  20. Analysis of the cavitating flow induced by an ultrasonic horn – Numerical 3D simulation for the analysis of vapour structures and the assessment of erosion-sensitive areas

    Directory of Open Access Journals (Sweden)

    Mottyll Stephan

    2014-03-01

    Full Text Available This paper reports the outcome of a numerical study of ultrasonic cavitation using a CFD flow algorithm based on a compressible density-based finite volume method with a low-Machnumber consistent flux function and an explicit time integration [15; 18] in combination with an erosion-detecting flow analysis procedure. The model is validated against erosion data of an ultrasonic horn for different gap widths between the horn tip and a counter sample which has been intensively investigated in previous material studies at the Ruhr University Bochum [23] as well as on first optical in-house flow measurement data which is presented in a companion paper [13]. Flow features such as subharmonic cavitation oscillation frequencies as well as constricted vapour cloud structures can also be observed by the vapour regions predicted in our simulation as well as by the detected collapse event field (collapse detector [12]. With a statistical analysis of transient wall loads we can determine the erosion sensitive areas qualitatively. Our simulation method can reproduce the influence of the gap width on vapour structure and on location of cavitation erosion.

  1. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct fe

  2. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    2004-01-01

    This chapter provides an introduction to automated chemical analysis, which essentially can be divided into two groups: batch assays, where the solution is stationary while the container is moved through a number of stations where various unit operations performed; and continuous-flow procedures,......, but it permits thr execution of novel and unique analytical procedures which are difficult or even impossible by conventional means. The performance and applicability of FIA, SI and LOV are illustrated by a series of practical examples.......This chapter provides an introduction to automated chemical analysis, which essentially can be divided into two groups: batch assays, where the solution is stationary while the container is moved through a number of stations where various unit operations performed; and continuous-flow procedures......, where the system is stationary while the solution moves through a set of conduits in which all required manipulations are performed. Emphasis is placed on flow injection analysis (FIA) and its further developments, that is, sequential injection analysis (SIA) and the Lab-on-Valve (LOV) approach. Since...

  3. Projectile Base Flow Analysis

    Science.gov (United States)

    2007-11-02

    S) AND ADDRESS(ES) DCW Industries, Inc. 5354 Palm Drive La Canada, CA 91011 8. PERFORMING ORGANIZATION...REPORT NUMBER DCW -38-R-05 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office...Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada, CA. Wilcox, D. C. (2001), “Projectile Base Flow Analysis,” DCW

  4. Sensitive Diagnostics for Chemically Reacting Flows

    KAUST Repository

    Farooq, Aamir

    2015-11-02

    This talk will feature latest diagnostic developments for sensitive detection of gas temperature and important combustion species. Advanced optical strategies, such as intrapulse chirping, wavelength modulation, and cavity ringdown are employed.

  5. Flow-sensitive type recovery in linear-log time

    DEFF Research Database (Denmark)

    Adams, Michael D.; Keep, Andrew W.; Midtgaard, Jan

    2011-01-01

    The flexibility of dynamically typed languages such as JavaScript, Python, Ruby, and Scheme comes at the cost of run-time type checks. Some of these checks can be eliminated via control-flow analysis. However, traditional control-flow analysis (CFA) is not ideal for this task as it ignores flow...... a novel combination of data structures and algorithms....

  6. Phantom pain : A sensitivity analysis

    NARCIS (Netherlands)

    Borsje, Susanne; Bosmans, JC; Van der Schans, CP; Geertzen, JHB; Dijkstra, PU

    2004-01-01

    Purpose : To analyse how decisions to dichotomise the frequency and impediment of phantom pain into absent and present influence the outcome of studies by performing a sensitivity analysis on an existing database. Method : Five hundred and thirty-six subjects were recruited from the database of an o

  7. Sensitivity Analysis of Fire Dynamics Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.

    2007-01-01

    equations require solution of the issues of combustion and gas radiation to mention a few. This paper performs a sensitivity analysis of a fire dynamics simulation on a benchmark case where measurement results are available for comparison. The analysis is performed using the method of Elementary Effects......In case of fire dynamics simulation requirements to reliable results are most often very high due to the severe consequences of erroneous results. At the same time it is a well known fact that fire dynamics simulation constitutes rather complex physical phenomena which apart from flow and energy...

  8. Laminar Flow Analysis

    Science.gov (United States)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  9. An analysis of sensitivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Neyer, B.T.

    1992-03-06

    A new method of analyzing sensitivity tests is proposed. It uses the Likelihood Ratio Test to compute regions of arbitrary confidence. It can calculate confidence regions for the parameters of the distribution (e.g., the mean, {mu}, and the standard deviation, {sigma}) as well as various percentiles. Unlike presently used methods, such as those based on asymptotic analysis, it can analyze the results of all sensitivity tests, and it does not significantly underestimate the size of the confidence regions. The main disadvantage of this method is that it requires much more computation to calculate the confidence regions. However, these calculations can be easily and quickly performed on most computers.

  10. Flow Analysis: A Novel Approach For Classification.

    Science.gov (United States)

    Vakh, Christina; Falkova, Marina; Timofeeva, Irina; Moskvin, Alexey; Moskvin, Leonid; Bulatov, Andrey

    2016-09-01

    We suggest a novel approach for classification of flow analysis methods according to the conditions under which the mass transfer processes and chemical reactions take place in the flow mode: dispersion-convection flow methods and forced-convection flow methods. The first group includes continuous flow analysis, flow injection analysis, all injection analysis, sequential injection analysis, sequential injection chromatography, cross injection analysis, multi-commutated flow analysis, multi-syringe flow injection analysis, multi-pumping flow systems, loop flow analysis, and simultaneous injection effective mixing flow analysis. The second group includes segmented flow analysis, zone fluidics, flow batch analysis, sequential injection analysis with a mixing chamber, stepwise injection analysis, and multi-commutated stepwise injection analysis. The offered classification allows systematizing a large number of flow analysis methods. Recent developments and applications of dispersion-convection flow methods and forced-convection flow methods are presented.

  11. Sensitivity Analysis of Flow and Temperature Distributions of Density Currents in a River-Reservoir System under Upstream Releases with Different Durations

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-11-01

    Full Text Available A calibrated three-dimensional Environmental Fluid Dynamics Code model was applied to simulate unsteady flow patterns and temperature distributions in the Bankhead river-reservoir system in Alabama, USA. A series of sensitivity model runs were performed under daily repeated large releases (DRLRs with different durations (2, 4 and 6 h from Smith Dam Tailrace (SDT when other model input variables were kept unchanged. The density currents in the river-reservoir system form at different reaches, are destroyed at upstream locations due to the flow momentum of the releases, and form again due to solar heating. DRLRs (140 m3/s with longer durations push the bottom cold water further downstream and maintain a cooler bottom water temperature. For the 6-h DRLR, the momentum effect definitely reaches Cordova (~43.7 km from SDT. Positive bottom velocity (density currents moving downstream is achieved 48.4%, 69.0% and 91.1% of the time with an average velocity of 0.017, 0.042 and 0.053 m/s at Cordova for the 2-h, 4-h and 6-h DRLR, respectively. Results show that DRLRs lasting for at least 4 h maintain lower water temperatures at Cordova. When the 4-h and 6-h DRLRs repeat for more than 6 and 10 days, respectively, bottom temperatures at Cordova become lower than those for the constant small release (2.83 m3/s. These large releases overwhelm the mixing effects due to inflow momentum and maintain temperature stratification at Cordova.

  12. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  13. Smart licensing and environmental flows: Modeling framework and sensitivity testing

    Science.gov (United States)

    Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.

    2011-12-01

    Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.

  14. Subcubic Control Flow Analysis Algorithms

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Van Horn, David

    We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...

  15. Quantitative analysis of uncertainty from pebble flow in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hao, E-mail: haochen.heu@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin (China); Institute of Nuclear and New Energy Technology (INET), Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing (China); Fu, Li; Jiong, Guo; Ximing, Sun; Lidong, Wang [Institute of Nuclear and New Energy Technology (INET), Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing (China)

    2015-12-15

    Highlights: • An uncertainty and sensitivity analysis model for pebble flow has been built. • Experiment and random walk theory are used to identify uncertainty of pebble flow. • Effects of pebble flow to the core parameters are identified by sensitivity analysis. • Uncertainty of core parameters due to pebble flow is quantified for the first time. - Abstract: In pebble bed HTR, along the deterministic average flow lines, randomness exists in the flow of pebbles, which is not possible to simulate with the current reactor design codes for HTR, such as VSOP, due to the limitation of current computer capability. In order to study how the randomness of pebble flow will affect the key parameters in HTR, a new pebble flow model was set up, which has been successfully transplanted into the VSOP code. In the new pebble flow model, mixing coefficients were introduced into the fixed flow line to simulate the randomness of pebble flow. Numerical simulation and pebble flow experiments were facilitated to determine the mixing coefficients. Sensitivity analysis was conducted to achieve the conclusion that the key parameters of pebble bed HTR are not sensitive to the randomness in pebble flow. The uncertainty of maximum power density and power distribution caused by the randomness in pebble flow is very small, especially for the “multi-pass” scheme of fuel circulation adopted in the pebble bed HTR.

  16. Economic modeling and sensitivity analysis.

    Science.gov (United States)

    Hay, J W

    1998-09-01

    The field of pharmacoeconomics (PE) faces serious concerns of research credibility and bias. The failure of researchers to reproduce similar results in similar settings, the inappropriate use of clinical data in economic models, the lack of transparency, and the inability of readers to make meaningful comparisons across published studies have greatly contributed to skepticism about the validity, reliability, and relevance of these studies to healthcare decision-makers. Using a case study in the field of lipid PE, two suggestions are presented for generally applicable reporting standards that will improve the credibility of PE. Health economists and researchers should be expected to provide either the software used to create their PE model or a multivariate sensitivity analysis of their PE model. Software distribution would allow other users to validate the assumptions and calculations of a particular model and apply it to their own circumstances. Multivariate sensitivity analysis can also be used to present results in a consistent and meaningful way that will facilitate comparisons across the PE literature. Using these methods, broader acceptance and application of PE results by policy-makers would become possible. To reduce the uncertainty about what is being accomplished with PE studies, it is recommended that these guidelines become requirements of both scientific journals and healthcare plan decision-makers. The standardization of economic modeling in this manner will increase the acceptability of pharmacoeconomics as a practical, real-world science.

  17. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    NARCIS (Netherlands)

    Steinmann, T.; Casas, J.; Krijnen, Gijsbertus J.M.; Dangles, O.

    2006-01-01

    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long

  18. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    NARCIS (Netherlands)

    Steinmann, T.; Casas, J.; Krijnen, G.J.M.; Dangles, O.

    2006-01-01

    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long append

  19. Information Flow Analysis for VHDL

    DEFF Research Database (Denmark)

    Tolstrup, Terkel Kristian; Nielson, Flemming; Nielson, Hanne Riis

    2005-01-01

    We describe a fragment of the hardware description language VHDL that is suitable for implementing the Advanced Encryption Standard algorithm. We then define an Information Flow analysis as required by the international standard Common Criteria. The goal of the analysis is to identify the entire...... information flow through the VHDL program. The result of the analysis is presented as a non-transitive directed graph that connects those nodes (representing either variables or signals) where an information flow might occur. We compare our approach to that of Kemmerer and conclude that our approach yields...

  20. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1998-01-01

    Learning objectives:* To provide an introduction to automated assays* To describe the basic principles of FIA * To demonstrate the capabilities of FIA in relation to batch assays and conventional continuous flow systems* To show that FIA allows one to augment existing analytical techniques* To sh...

  1. Evidence on the dynamics of investment-cash flow sensitivity

    OpenAIRE

    Gautam, Vikash

    2011-01-01

    An important debate in the literature relates to the use of investment-cash flow sensitivity (ICFS) to measure finance constraint faced by firms. This debate is grounded on four prominent issues: a priori sorting of firms, treatment of distressed firms, use of cash flow to represent only internal liquidity of firms and restricting firms to a single regime. In this paper we investigate these issues using a sample of 2676 Indian manufacturing firms over the period 1994 to 2009. We use firm leve...

  2. Sensitivity analysis of small circular cylinders as wake control

    Science.gov (United States)

    Meneghini, Julio; Patino, Gustavo; Gioria, Rafael

    2016-11-01

    We apply a sensitivity analysis to a steady external force regarding control vortex shedding from a circular cylinder using active and passive small control cylinders. We evaluate the changes on the flow produced by the device on the flow near the primary instability, transition to wake. We numerically predict by means of sensitivity analysis the effective regions to place the control devices. The quantitative effect of the hydrodynamic forces produced by the control devices is also obtained by a sensitivity analysis supporting the prediction of minimum rotation rate. These results are extrapolated for higher Reynolds. Also, the analysis provided the positions of combined passive control cylinders that suppress the wake. The latter shows that these particular positions for the devices are adequate to suppress the wake unsteadiness. In both cases the results agree very well with experimental cases of control devices previously published.

  3. Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation

    CERN Document Server

    Boujo, Edouard

    2014-01-01

    A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full non-linear Navier-Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. In contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respec...

  4. Sensitivity Analysis of Component Reliability

    Institute of Scientific and Technical Information of China (English)

    ZhenhuaGe

    2004-01-01

    In a system, Every component has its unique position within system and its unique failure characteristics. When a component's reliability is changed, its effect on system reliability is not equal. Component reliability sensitivity is a measure of effect on system reliability while a component's reliability is changed. In this paper, the definition and relative matrix of component reliability sensitivity is proposed, and some of their characteristics are analyzed. All these will help us to analyse or improve the system reliability.

  5. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  6. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal.

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  7. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone.

    Science.gov (United States)

    El-Maghrabey, Mahmoud H; Kishikawa, Naoya; Ohyama, Kaname; Imazato, Takahiro; Ueki, Yukitaka; Kuroda, Naotaka

    2015-06-30

    A fast, simple, and sensitive flow injection analysis method was developed for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human serum. Benzaldehyde, generated by the action of SSAO after incubation of serum with benzylamine, was derivatized with a novel aromatic aldehyde-specific reagent (1,2-diaminoanthraquinone) and the fluorescent product was measured by fluorescence detection at excitation and emission wavelengths of 390 and 570nm, respectively. Serum SSAO activity was defined as benzaldehyde (nmol) formed per milliliter serum per hour. The method was linear over SSAO activity of 0.2-150.0nmolmL(-1)h(-1) with a detection limit of 0.06nmolmL(-1)h(-1). The %RSD of intra-day and inter-day precision did not exceed 9.4% and the accuracy ranged from -6.5 to -0.6%. The method was applied for the determination of the serum SSAO activity in healthy controls (C, n=24) and diabetes mellitus patients (DM, n=18). It was demonstrated that the activity (mean±SE) of SSAO in diabetics sera was significantly higher than that in healthy subjects' ones (DM; 73.3±1.8nmolmL(-1)h(-1)vs C; 58.9±2.2nmolmL(-1)h(-1), P<0.01).

  8. Shape design sensitivity analysis using domain information

    Science.gov (United States)

    Seong, Hwal-Gyeong; Choi, Kyung K.

    1985-01-01

    A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.

  9. Sensitivity Analysis for Multidisciplinary Systems (SAMS)

    Science.gov (United States)

    2016-12-01

    AFRL-RQ-WP-TM-2017-0017 SENSITIVITY ANALYSIS FOR MULTIDISCIPLINARY SYSTEMS (SAMS) Richard D. Snyder Design & Analysis Branch Aerospace Vehicles...for public release. Distribution is unlimited. 1 AFRL-NASA Collaboration Provide economical, accurate sensitivities for multidisciplinary design and... Concept Refinement Technology Development System Development & Demonstration Production & Deployment Operation & Support • Knowledge is most limited

  10. Object-sensitive Type Analysis of PHP

    NARCIS (Netherlands)

    Van der Hoek, Henk Erik; Hage, J

    2015-01-01

    In this paper we develop an object-sensitive type analysis for PHP, based on an extension of the notion of monotone frameworks to deal with the dynamic aspects of PHP, and following the framework of Smaragdakis et al. for object-sensitive analysis. We consider a number of instantiations of the frame

  11. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities

    Science.gov (United States)

    Li, Zhipeng; Xu, Xun; Xu, Shangzhi; Qian, Yeqing

    2017-01-01

    A heterogeneous car following model is constructed for traffic flow consisting of low- and high-sensitivity vehicles. The stability criterion of new model is obtained by using the linear stability theory. We derive the neutral stability diagram for the proposed model with five distinct regions. We conclude the effect of the percentage of low-sensitivity vehicle on the traffic stability in each region. In addition, we further consider a special case that the number of the low-sensitivity vehicles is equal to that of the high-sensitivity ones. We explore the dependence of traffic stability on the average value and the standard deviation of two sensitivities characterizing two vehicle types. The direct numerical simulation results verify the conclusion of theoretical analysis.

  12. PCCF flow analysis -- DR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1961-04-26

    This report contains an analysis of PCCF tube flow and Panellit pressure relations at DR reactor. Supply curves are presented at front header pressures from 480 to 600 psig using cold water and the standard 0.236 inch orifice with taper down stream and the pigtail valve (plug or ball) open. Demand curves are presented for slug column lengths of 200 inches to 400 inches using 1.44 inch O.D. solid poison pieces (either Al or Pb-Cd) and cold water with a rear header pressure of 50 psig. Figure 1 is a graph of Panellit pressure vs. flow with the above supply and demand curves and clearly shows the effect of front header pressure and charge length on flow.

  13. Sensitivity of helioseismic measurements of normal-mode coupling to flows and sound-speed perturbations

    Science.gov (United States)

    Hanasoge, Shravan M.; Woodard, Martin; Antia, H. M.; Gizon, Laurent; Sreenivasan, Katepalli R.

    2017-09-01

    In this article, we derive and compute the sensitivity of measurements of coupling between normal modes of oscillation in the Sun to underlying flows. The theory is based on first-born perturbation theory, and the analysis is carried out using the formalism described by Lavely & Ritzwoller (1992). Albeit tedious, we detail the derivation and compute the sensitivity of specific pairs of coupled normal modes to anomalies in the interior. Indeed, these kernels are critical for the accurate inference of convective flow amplitudes and large-scale circulations in the solar interior. We resolve some inconsistencies in the derivation of Lavely & Ritzwoller (1992) and reformulate the fluid-continuity condition. We also derive and compute sound-speed kernels, paving the way for inverting for thermal anomalies alongside flows.

  14. Numerical Analysis for the Air Flow of Cross Flow Fan

    Science.gov (United States)

    Sakai, Hirokazu; Tokushge, Satoshi; Ishikawa, Masatoshi; Ishihara, Takuya

    There are many factors for designing the cross flow fan. Therefore, the performance of cross flow fan is not clear yet. We can analyze the transient flow of a cross flow fan using sliding mesh approach. One of the tasks using Computational Fluid Dynamics (CFD) is a way of modeling for analysis heat exchangers with cross flow fan. These tasks are very important for design. The paper has a modeling of heat exchangers and meshing the fan blades. The next tasks, we focus the ability of cross flow fan when we change the geometry of fan blades.

  15. Extended Forward Sensitivity Analysis for Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Vincent A. Mousseau

    2008-09-01

    This report presents the forward sensitivity analysis method as a means for quantification of uncertainty in system analysis. The traditional approach to uncertainty quantification is based on a “black box” approach. The simulation tool is treated as an unknown signal generator, a distribution of inputs according to assumed probability density functions is sent in and the distribution of the outputs is measured and correlated back to the original input distribution. This approach requires large number of simulation runs and therefore has high computational cost. Contrary to the “black box” method, a more efficient sensitivity approach can take advantage of intimate knowledge of the simulation code. In this approach equations for the propagation of uncertainty are constructed and the sensitivity is solved for as variables in the same simulation. This “glass box” method can generate similar sensitivity information as the above “black box” approach with couples of runs to cover a large uncertainty region. Because only small numbers of runs are required, those runs can be done with a high accuracy in space and time ensuring that the uncertainty of the physical model is being measured and not simply the numerical error caused by the coarse discretization. In the forward sensitivity method, the model is differentiated with respect to each parameter to yield an additional system of the same size as the original one, the result of which is the solution sensitivity. The sensitivity of any output variable can then be directly obtained from these sensitivities by applying the chain rule of differentiation. We extend the forward sensitivity method to include time and spatial steps as special parameters so that the numerical errors can be quantified against other physical parameters. This extension makes the forward sensitivity method a much more powerful tool to help uncertainty analysis. By knowing the relative sensitivity of time and space steps with other

  16. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  17. An ESDIRK Method with Sensitivity Analysis Capabilities

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Jørgensen, John Bagterp; Thomsen, Per Grove

    2004-01-01

    A new algorithm for numerical sensitivity analysis of ordinary differential equations (ODEs) is presented. The underlying ODE solver belongs to the Runge-Kutta family. The algorithm calculates sensitivities with respect to problem parameters and initial conditions, exploiting the special structure...

  18. Extended Forward Sensitivity Analysis for Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Vincent A. Mousseau

    2011-09-01

    Verification and validation (V&V) are playing more important roles to quantify uncertainties and realize high fidelity simulations in engineering system analyses, such as transients happened in a complex nuclear reactor system. Traditional V&V in the reactor system analysis focused more on the validation part or did not differentiate verification and validation. The traditional approach to uncertainty quantification is based on a 'black box' approach. The simulation tool is treated as an unknown signal generator, a distribution of inputs according to assumed probability density functions is sent in and the distribution of the outputs is measured and correlated back to the original input distribution. The 'black box' method mixes numerical errors with all other uncertainties. It is also not efficient to perform sensitivity analysis. Contrary to the 'black box' method, a more efficient sensitivity approach can take advantage of intimate knowledge of the simulation code. In these types of approaches equations for the propagation of uncertainty are constructed and the sensitivities are directly solved for as variables in the simulation. This paper presents the forward sensitivity analysis as a method to help uncertainty qualification. By including time step and potentially spatial step as special sensitivity parameters, the forward sensitivity method is extended as one method to quantify numerical errors. Note that by integrating local truncation errors over the whole system through the forward sensitivity analysis process, the generated time step and spatial step sensitivity information reflect global numerical errors. The discretization errors can be systematically compared against uncertainties due to other physical parameters. This extension makes the forward sensitivity method a much more powerful tool to help uncertainty qualification. By knowing the relative sensitivity of time and space steps with other interested physical

  19. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    Science.gov (United States)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  20. Analysis of MEMS Accelerometer for Optimized Sensitivity

    National Research Council Canada - National Science Library

    Khairun Nisa Khamil; Kok Swee Leong; Norizan Bin Mohamad; Norhayati Soin; Norshahida Saba

    2014-01-01

    .... The geometrical of the accelerometer, mass width, beam (length and width) of the device and its sensitivity are analyzed theoretically and also using finite element analysis software, COMSOL Multiphysics...

  1. Sensitivity Analysis Using Simple Additive Weighting Method

    Directory of Open Access Journals (Sweden)

    Wayne S. Goodridge

    2016-05-01

    Full Text Available The output of a multiple criteria decision method often has to be analyzed using some sensitivity analysis technique. The SAW MCDM method is commonly used in management sciences and there is a critical need for a robust approach to sensitivity analysis in the context that uncertain data is often present in decision models. Most of the sensitivity analysis techniques for the SAW method involve Monte Carlo simulation methods on the initial data. These methods are computationally intensive and often require complex software. In this paper, the SAW method is extended to include an objective function which makes it easy to analyze the influence of specific changes in certain criteria values thus making easy to perform sensitivity analysis.

  2. Multiple predictor smoothing methods for sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  3. Advancing sensitivity analysis to precisely characterize temporal parameter dominance

    Science.gov (United States)

    Guse, Björn; Pfannerstill, Matthias; Strauch, Michael; Reusser, Dominik; Lüdtke, Stefan; Volk, Martin; Gupta, Hoshin; Fohrer, Nicola

    2016-04-01

    Parameter sensitivity analysis is a strategy for detecting dominant model parameters. A temporal sensitivity analysis calculates daily sensitivities of model parameters. This allows a precise characterization of temporal patterns of parameter dominance and an identification of the related discharge conditions. To achieve this goal, the diagnostic information as derived from the temporal parameter sensitivity is advanced by including discharge information in three steps. In a first step, the temporal dynamics are analyzed by means of daily time series of parameter sensitivities. As sensitivity analysis method, we used the Fourier Amplitude Sensitivity Test (FAST) applied directly onto the modelled discharge. Next, the daily sensitivities are analyzed in combination with the flow duration curve (FDC). Through this step, we determine whether high sensitivities of model parameters are related to specific discharges. Finally, parameter sensitivities are separately analyzed for five segments of the FDC and presented as monthly averaged sensitivities. In this way, seasonal patterns of dominant model parameter are provided for each FDC segment. For this methodical approach, we used two contrasting catchments (upland and lowland catchment) to illustrate how parameter dominances change seasonally in different catchments. For all of the FDC segments, the groundwater parameters are dominant in the lowland catchment, while in the upland catchment the controlling parameters change seasonally between parameters from different runoff components. The three methodical steps lead to clear temporal patterns, which represent the typical characteristics of the study catchments. Our methodical approach thus provides a clear idea of how the hydrological dynamics are controlled by model parameters for certain discharge magnitudes during the year. Overall, these three methodical steps precisely characterize model parameters and improve the understanding of process dynamics in hydrological

  4. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    Science.gov (United States)

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/.

  5. Ultra-sensitive flow measurement in individual nanopores through pressure--driven particle translocation.

    Science.gov (United States)

    Gadaleta, Alessandro; Biance, Anne-Laure; Siria, Alessandro; Bocquet, Lyderic

    2015-05-07

    A challenge for the development of nanofluidics is to develop new instrumentation tools, able to probe the extremely small mass transport across individual nanochannels. Such tools are a prerequisite for the fundamental exploration of the breakdown of continuum transport in nanometric confinement. In this letter, we propose a novel method for the measurement of the hydrodynamic permeability of nanometric pores, by diverting the classical technique of Coulter counting to characterize a pressure-driven flow across an individual nanopore. Both the analysis of the translocation rate, as well as the detailed statistics of the dwell time of nanoparticles flowing across a single nanopore, allow us to evaluate the permeability of the system. We reach a sensitivity for the water flow down to a few femtoliters per second, which is more than two orders of magnitude better than state-of-the-art alternative methods.

  6. Eigenfrequency sensitivity analysis of flexible rotors

    Directory of Open Access Journals (Sweden)

    Šašek J.

    2007-10-01

    Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.

  7. Sensitivity analysis and application in exploration geophysics

    Science.gov (United States)

    Tang, R.

    2013-12-01

    In exploration geophysics, the usual way of dealing with geophysical data is to form an Earth model describing underground structure in the area of investigation. The resolved model, however, is based on the inversion of survey data which is unavoidable contaminated by various noises and is sampled in a limited number of observation sites. Furthermore, due to the inherent non-unique weakness of inverse geophysical problem, the result is ambiguous. And it is not clear that which part of model features is well-resolved by the data. Therefore the interpretation of the result is intractable. We applied a sensitivity analysis to address this problem in magnetotelluric(MT). The sensitivity, also named Jacobian matrix or the sensitivity matrix, is comprised of the partial derivatives of the data with respect to the model parameters. In practical inversion, the matrix can be calculated by direct modeling of the theoretical response for the given model perturbation, or by the application of perturbation approach and reciprocity theory. We now acquired visualized sensitivity plot by calculating the sensitivity matrix and the solution is therefore under investigation that the less-resolved part is indicated and should not be considered in interpretation, while the well-resolved parameters can relatively be convincing. The sensitivity analysis is hereby a necessary and helpful tool for increasing the reliability of inverse models. Another main problem of exploration geophysics is about the design strategies of joint geophysical survey, i.e. gravity, magnetic & electromagnetic method. Since geophysical methods are based on the linear or nonlinear relationship between observed data and subsurface parameters, an appropriate design scheme which provides maximum information content within a restricted budget is quite difficult. Here we firstly studied sensitivity of different geophysical methods by mapping the spatial distribution of different survey sensitivity with respect to the

  8. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  9. Sensitivity analysis of surface runoff generation in urban flood forecasting.

    Science.gov (United States)

    Simões, N E; Leitão, J P; Maksimović, C; Sá Marques, A; Pina, R

    2010-01-01

    Reliable flood forecasting requires hydraulic models capable to estimate pluvial flooding fast enough in order to enable successful operational responses. Increased computational speed can be achieved by using a 1D/1D model, since 2D models are too computationally demanding. Further changes can be made by simplifying 1D network models, removing and by changing some secondary elements. The Urban Water Research Group (UWRG) of Imperial College London developed a tool that automatically analyses, quantifies and generates 1D overland flow network. The overland flow network features (ponds and flow pathways) generated by this methodology are dependent on the number of sewer network manholes and sewer inlets, as some of the overland flow pathways start at manholes (or sewer inlets) locations. Thus, if a simplified version of the sewer network has less manholes (or sewer inlets) than the original one, the overland flow network will be consequently different. This paper compares different overland flow networks generated with different levels of sewer network skeletonisation. Sensitivity analysis is carried out in one catchment area in Coimbra, Portugal, in order to evaluate overland flow network characteristics.

  10. A numerical comparison of sensitivity analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hamby, D.M.

    1993-12-31

    Engineering and scientific phenomena are often studied with the aid of mathematical models designed to simulate complex physical processes. In the nuclear industry, modeling the movement and consequence of radioactive pollutants is extremely important for environmental protection and facility control. One of the steps in model development is the determination of the parameters most influential on model results. A {open_quotes}sensitivity analysis{close_quotes} of these parameters is not only critical to model validation but also serves to guide future research. A previous manuscript (Hamby) detailed many of the available methods for conducting sensitivity analyses. The current paper is a comparative assessment of several methods for estimating relative parameter sensitivity. Method practicality is based on calculational ease and usefulness of the results. It is the intent of this report to demonstrate calculational rigor and to compare parameter sensitivity rankings resulting from various sensitivity analysis techniques. An atmospheric tritium dosimetry model (Hamby) is used here as an example, but the techniques described can be applied to many different modeling problems. Other investigators (Rose; Dalrymple and Broyd) present comparisons of sensitivity analyses methodologies, but none as comprehensive as the current work.

  11. 四川省都江堰市龙池地区群发性泥石流物源敏感性分析%Sensitivity Analysis on Mass of Debris Flows on the Longchi Region,Dujiangyan, Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    刘洋; 唐川; 李为乐; 钟华介; 黄伟; 陈海龙; 王金亮; 唐宏旭

    2013-01-01

    Wenchuan earthquake changed the geological environment of the southwest mountainous, effect of geological disasters produced and under the extreme weather on August 13, 2010 and August 19 led to many outbreaks of mountain flood and debris flow, including Dujiangyan Longchi area of mass outbreak of debris flow. By u-sing AHP-Information method, Longchi area is selected as the research object to analyze the source material sensitivity of debris flow three conditions. Eight factors including roads in affected zone, elevation, slope, slope, vegetation coverage, the river impact are selected and subdivided into 37 levels. A sensitivity weight is set for each grade and ARCGIS platform is used to generate high, medium and low sensitive zoning maps. The results of the e-valuation supplied basis for the possibility of debris flow in the future, and debris flow channels needed to be monitored and constructed are pointed out.%汶川地震改变了西南山区的地质环境,所产生的地质灾害效应在2010年8月13日及8月19日的极端天气下导致多地爆发山洪泥石流,其中都江堰龙池地区爆发大规模群发性泥石流.选取龙池区域作为研究对象,利用层次分析-信息量法针对形成泥石流的物源条件进行敏感性分析.选取了8类影响物源分布的因子:公路影响带、海拔、坡度、坡高、植被覆盖率、河流影响带、断裂影响带及岩土体类型,并细分为37个级别,为每个分级评定敏感性权重,利用ARCGIS平台最终生成高、中、低三级敏感性区划图.根据敏感性区划从物源条件上划分了龙池地区泥石流危险性等级,从而确定需要重点进行监测防治的泥石流沟道.

  12. SENSITIVITY ANALYSIS FOR PARAMETERIZED VARIATIONAL INEQUALITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Li Fei

    2004-01-01

    This paper presents sensitivity analysis for parameterized variational inequality problems (VIP). Under appropriate assumption, it is shown that the perturbed solution to parameterized VIP is existent, unique, continuous and differentiable with respect to perturbation parameter. In the case of differentiability, we derive the equations forcalculating the derivative of solution variables with respect to the perturbation parameters.

  13. Sensitivity and open-loop control of stochastic response in a noise amplifier flow: the backward-facing step

    CERN Document Server

    Boujo, Edouard

    2014-01-01

    The two-dimensional backward-facing step flow is a canonical example of noise amplifier flow: global linear stability analysis predicts that it is stable, but perturbations can undergo large amplification in space and time as a result of non-normal effects. This amplification potential is best captured by optimal transient growth analysis, optimal harmonic forcing, or the response to sustained noise. In view of reducing disturbance amplification in these globally stable open flows, a variational technique is proposed to evaluate the sensitivity of stochastic amplification to steady control. Existing sensitivity methods are extended in two ways to achieve a realistic representation of incoming noise: (i) perturbations are time-stochastic rather than time-harmonic, (ii) perturbations are localised at the inlet rather than distributed in space. This allows for the identification of regions where small-amplitude control is the most effective, without actually computing any controlled flows. In particular, passive...

  14. Multifractal Analysis for the Teichmueller Flow

    Energy Technology Data Exchange (ETDEWEB)

    Meson, Alejandro M., E-mail: meson@iflysib.unlp.edu.ar; Vericat, Fernando, E-mail: vericat@iflysib.unlp.edu.ar [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB) CCT-CONICET, La Plata-UNLP and Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI) UNLP (Argentina)

    2012-03-15

    We present a multifractal description for Teichmueller flows. A key ingredient to do this is the Rauzy-Veech-Zorich reduction theory, which allows to treat the problem in the setting of suspension flows over subshifts. To perform the multifractal analysis we implement a thermodynamic formalism for suspension flows over countable alphabet subshifts a bit different from that developed by Barreira and Iommi.

  15. Cerebral aneurysm blood flow simulations are sensitive to basic solver settings.

    Science.gov (United States)

    Dennis, Kendall D; Kallmes, David F; Dragomir-Daescu, Dan

    2017-05-24

    Computational modeling of peri-aneurysmal hemodynamics is typically carried out with commercial software without knowledge of the sensitivity of the model to variation in input values. For three aneurysm models, we carried out a formal sensitivity analysis and optimization strategy focused on variation in timestep duration and model residual error values and their impact on hemodynamic outputs. We examined the solution sensitivity to timestep sizes of 10(-3)s, 10(-4)s, and 10(-5)s while using model residual error values of 10(-4), 10(-5), and 10(-6) using ANSYS Fluent to observe compounding errors and to optimize solver settings for computational efficiency while preserving solution accuracy. Simulations were compared qualitatively and quantitatively against the most rigorous combination of timestep and residual parameters, 10(-5)s and 10(-6), respectively. A case using 10(-4)s timesteps, with 10(-5) residual errors proved to be a converged solution for all three models with mean velocity and WSS difference RMS errors less than complex flow simulation. The worst case of our analysis, using 10(-3)s timesteps and 10(-4) residual errors, was still able to predict the dominant vortex in the aneurysm, but its velocity and WSS RMS errors reached 20%. Even with an appealing simulation time of 11h per cycle for the model with the most complex flow, the worst case analysis solution exhibited compounding errors from large timesteps and residual errors. To resolve time-dependent flow characteristics, CFD simulations of cerebral aneurysms require sufficiently small timestep size and residual error. Simulations with both insufficient timestep and residual resolution are vulnerable to compounding errors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investment - Cash Flow Sensitivity and Financing Constraints: New Evidence from Indian Business Group Firms

    NARCIS (Netherlands)

    Pallathitta, Rejie; Kabir, Rezaul; Qian, Jing

    2010-01-01

    A controversy exists on the use of the investment – cash flow sensitivity as a measure of financing constraints of firms. We re-examine this controversy by analyzing firms affiliated to Indian business groups. We find a strong investment – cash flow sensitivity for both group-affiliated and independ

  17. Investment–cash flow sensitivity and financing constraints: new evidence from Indian business group firms

    NARCIS (Netherlands)

    George, R.; Kabir, M.R.; Qian, J.

    2011-01-01

    A controversy exists on the use of the investment–cash flow sensitivity as a measure of financing constraints of firms.Were-examine this controversy by analyzing firms affiliated to Indian business groups. We find a strong investment–cash flow sensitivity for both group-affiliated and independent fi

  18. A study of grout flow pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Savannah River National Lab., Aiken, SC (United States); Hyun, S. [Mercer Univ., Macon, GA (United States)

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  19. A study of grout flow pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Savannah River National Lab., Aiken, SC (United States); Hyun, S. [Mercer Univ., Macon, GA (United States)

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  20. Sensitivity analysis and related analysis : A survey of statistical techniques

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This paper reviews the state of the art in five related types of analysis, namely (i) sensitivity or what-if analysis, (ii) uncertainty or risk analysis, (iii) screening, (iv) validation, and (v) optimization. The main question is: when should which type of analysis be applied; which statistical

  1. NIR sensitivity analysis with the VANE

    Science.gov (United States)

    Carrillo, Justin T.; Goodin, Christopher T.; Baylot, Alex E.

    2016-05-01

    Near infrared (NIR) cameras, with peak sensitivity around 905-nm wavelengths, are increasingly used in object detection applications such as pedestrian detection, occupant detection in vehicles, and vehicle detection. In this work, we present the results of simulated sensitivity analysis for object detection with NIR cameras. The analysis was conducted using high performance computing (HPC) to determine the environmental effects on object detection in different terrains and environmental conditions. The Virtual Autonomous Navigation Environment (VANE) was used to simulate highresolution models for environment, terrain, vehicles, and sensors. In the experiment, an active fiducial marker was attached to the rear bumper of a vehicle. The camera was mounted on a following vehicle that trailed at varying standoff distances. Three different terrain conditions (rural, urban, and forest), two environmental conditions (clear and hazy), three different times of day (morning, noon, and evening), and six different standoff distances were used to perform the sensor sensitivity analysis. The NIR camera that was used for the simulation is the DMK firewire monochrome on a pan-tilt motor. Standoff distance was varied along with environment and environmental conditions to determine the critical failure points for the sensor. Feature matching was used to detect the markers in each frame of the simulation, and the percentage of frames in which one of the markers was detected was recorded. The standoff distance produced the biggest impact on the performance of the camera system, while the camera system was not sensitive to environment conditions.

  2. Subchannel analysis with flow blockages

    Science.gov (United States)

    Sabotinov, L.

    1985-05-01

    The steady state single-phase three-dimensional flow in the rod bundle geometry of a nuclear pressurized water reactor was calculated with the PHOENICS 84 program. Flow blockages, which may occur under accident conditions, are simulated. Results show that PHOENICS-84 can be applied to calculation of the three-dimensional fields of velocities in fuel rod bundles containing complete flow blockages in cells. The code can treat recirculation zones.

  3. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  4. ANALYSIS AND ACCOUNTING OF TOTAL CASH FLOW

    Directory of Open Access Journals (Sweden)

    MELANIA ELENA MICULEAC

    2012-01-01

    Full Text Available In order to reach the objective of supplying some relevant information regarding the liquidity inflows and outflows during a financial exercise, the total cash flow analysis must include the analysis of result cashable from operation, of payments and receipts related to the investment and of financing decisions of the last exercise, as well as the analysis of treasury variation (of cash items. The management of total cash flows ensures the correlation of current liquidness flows as consequence of receipts with the payments ’flows, in order to provide payment continuity of mature obligations.

  5. Introducing Fractal Dimension to Estimation of Soil Sensitivity to Preferential Flow

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.

  6. ANALYSIS AND ACCOUNTING OF TOTAL CASH FLOW

    National Research Council Canada - National Science Library

    MELANIA ELENA MICULEAC

    2012-01-01

    In order to reach the objective of supplying some relevant information regarding the liquidity inflows and outflows during a financial exercise, the total cash flow analysis must include the analysis...

  7. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  8. Reliability Sensitivity Analysis for Location Scale Family

    Institute of Scientific and Technical Information of China (English)

    洪东跑; 张海瑞

    2011-01-01

    Many products always operate under various complex environment conditions. To describe the dynamic influence of environment factors on their reliability, a method of reliability sensitivity analysis is proposed. In this method, the location parameter is assumed as a function of relevant environment variables while the scale parameter is assumed as an un- known positive constant. Then, the location parameter function is constructed by using the method of radial basis function. Using the varied environment test data, the log-likelihood function is transformed to a generalized linear expression by de- scribing the indicator as Poisson variable. With the generalized linear model, the maximum likelihood estimations of the model coefficients are obtained. With the reliability model, the reliability sensitivity is obtained. An instance analysis shows that the method is feasible to analyze the dynamic variety characters of reliability along with environment factors and is straightforward for engineering application.

  9. The antimycin A-sensitive pathway of cyclic electron flow

    DEFF Research Database (Denmark)

    Labs, Mathias; Rühle, Thilo; Leister, Dario Michael

    2016-01-01

    severe effects on plant growth. One of the two pathways mediating cyclic electron flow can be inhibited by antimycin A, a chemical that has also widely been used to characterize the mitochondrial respiratory chain. For the characterization of cyclic electron flow, antimycin A has been used since 1963......Cyclic electron flow has puzzled and divided the field of photosynthesis researchers for decades. This mainly concerns the proportion of its overall contribution to photosynthesis, as well as its components and molecular mechanism. Yet, it is irrefutable that the absence of cyclic electron flow has......, when ferredoxin was found to be the electron donor of the pathway. In 2013, antimycin A was used to identify the PGRL1/PGR5 complex as the ferredoxin:plastoquinone reductase completing the last puzzle piece of this pathway. The controversy has not ended, and here, we review the history of research...

  10. Demonstration sensitivity analysis for RADTRAN III

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K S; Reardon, P C

    1986-10-01

    A demonstration sensitivity analysis was performed to: quantify the relative importance of 37 variables to the total incident free dose; assess the elasticity of seven dose subgroups to those same variables; develop density distributions for accident dose to combinations of accident data under wide-ranging variations; show the relationship between accident consequences and probabilities of occurrence; and develop limits for the variability of probability consequence curves.

  11. Sensitivity and Uncertainty Analysis of Regional Marine Ecosystem Services Value

    Institute of Scientific and Technical Information of China (English)

    SHI Honghua; ZHENG Wei; WANG Zongling; DING Dewen

    2009-01-01

    Marine ecosystem services are the benefits which people obtain from the marine ecosystem, including provisioning ser-vices, regulating services, cultural services and supporting services. The human species, while buffered against environmental changes by culture and technology, is fundamentally dependent on the flow of ecosystem services. Marine ecosystem services be-come increasingly valuable as the terrestrial resources become scarce. The value of marine ecosystem services is the monetary flow of ecosystem services on specific temporal and spatial scales, which often changes due to the variation of the goods prices, yields and the status of marine exploitation. Sensitivity analysis is to study the relationship between the value of marine ecosystem services and the main factors which affect it. Uncertainty analysis based on varying prices, yields and status of marine exploitation was carried out. Through uncertainty analysis, a more credible value range instead of a fixed value of marine ecosystem services was obtained in this study. Moreover, sensitivity analysis of the marine ecosystem services value revealed the relative importance of different factors.

  12. Content analysis in information flows

    Energy Technology Data Exchange (ETDEWEB)

    Grusho, Alexander A. [Institute of Informatics Problems of Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation); Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Grusho, Nick A.; Timonina, Elena E. [Institute of Informatics Problems of Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation)

    2016-06-08

    The paper deals with architecture of content recognition system. To analyze the problem the stochastic model of content recognition in information flows was built. We proved that under certain conditions it is possible to solve correctly a part of the problem with probability 1, viewing a finite section of the information flow. That means that good architecture consists of two steps. The first step determines correctly certain subsets of contents, while the second step may demand much more time for true decision.

  13. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  14. Analysis of hydrogeological flow responses in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, H.; Rouhiainen, P.; Komulainen, J.; Poellaenen, J. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    As part of the programme for the final disposal of spent nuclear fuel, an analysis of the flow responses caused by ONKALO leakages or other activities on the site has been compiled. Leakages into ONKALO or other activities, such as pumping in connection with groundwater sampling, cause changes in flow conditions in adjacent drillholes. Flows in open drillholes have been measured with the PFL-tool (PFL-DIFF), several times in some holes, as part of Olkiluoto Monitoring Programme (OMO) or in conjunction of interference test campaigns carried out in Olkiluoto. The main objective of the study is to analyse differences detected between flow measurements without pumping. PFL-measurements were started in 1997 and all the holes have been measured. In total, measurements have been repeated in 32 holes, which enables a study of possible changes. The development of interpretation methods to detect and quantify flow changes was an important part of this work. The determination of the exact flow response is a challenging task. Changes are caused in flow also by seasonal effects, which complicate an unambiguous analysis of the observed parameters. Overlapping activities (sinks) behind flow changes make the analysis difficult. In addition, the role of other open holes close to the observation hole can be significant. They may cause flow responses, which would not have been detected without their existence. Nevertheless, unambiguous flow responses caused by the pumping of a drillhole or leaking tunnels have been detected in scales from ca. 10 m to over 1 km. (orig.)

  15. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  16. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    Science.gov (United States)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  17. Sensitivity Analysis of Automated Ice Edge Detection

    Science.gov (United States)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien

    2016-08-01

    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  18. The sensitivity analysis of population projections

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2015-10-01

    Full Text Available Background: Population projections using the cohort component method can be written as time-varyingmatrix population models. The matrices are parameterized by schedules of mortality, fertility,immigration, and emigration over the duration of the projection. A variety of dependentvariables are routinely calculated (the population vector, various weighted population sizes, dependency ratios, etc. from such projections. Objective: Our goal is to derive and apply theory to compute the sensitivity and the elasticity (proportional sensitivity of any projection outcome to changes in any of the parameters, where those changes are applied at any time during the projection interval. Methods: We use matrix calculus to derive a set of equations for the sensitivity and elasticity of any vector valued outcome ξ(t at time t to any perturbation of a parameter vector Ɵ(s at anytime s. Results: The results appear in the form of a set of dynamic equations for the derivatives that areintegrated in parallel with the dynamic equations for the projection itself. We show resultsfor single-sex projections and for the more detailed case of projections including age distributions for both sexes. We apply the results to a projection of the population of Spain, from 2012 to 2052, prepared by the Instituto Nacional de Estadística, and determine the sensitivity and elasticity of (1 total population, (2 the school-age population, (3 the population subject to dementia, (4 the total dependency ratio, and (5 the economicsupport ratio. Conclusions: Writing population projections in matrix form makes sensitivity analysis possible. Such analyses are a powerful tool for the exploration of how detailed aspects of the projectionoutput are determined by the mortality, fertility, and migration schedules that underlie theprojection.

  19. Measuring Road Network Vulnerability with Sensitivity Analysis

    Science.gov (United States)

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  20. Flow Analysis for the Falkner–Skan Wedge Flow

    DEFF Research Database (Denmark)

    Bararnia, H; Haghparast, N; Miansari, M

    2012-01-01

    the constant coefficients in the approximated solution. The effects of the polynomial terms of HAM are considered and the accuracy of the results is shown, which increases with the increasing polynomial terms of HAM. Analytical results for the dimensionless velocity and temperature profiles of the wedge flow......In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtain...

  1. Analysis of Cortical Flow Models In Vivo

    Science.gov (United States)

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  2. Flow Injection Analysis in Industrial Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2009-01-01

    Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...

  3. LCA data quality: sensitivity and uncertainty analysis.

    Science.gov (United States)

    Guo, M; Murphy, R J

    2012-10-01

    Life cycle assessment (LCA) data quality issues were investigated by using case studies on products from starch-polyvinyl alcohol based biopolymers and petrochemical alternatives. The time horizon chosen for the characterization models was shown to be an important sensitive parameter for the environmental profiles of all the polymers. In the global warming potential and the toxicity potential categories the comparison between biopolymers and petrochemical counterparts altered as the time horizon extended from 20 years to infinite time. These case studies demonstrated that the use of a single time horizon provide only one perspective on the LCA outcomes which could introduce an inadvertent bias into LCA outcomes especially in toxicity impact categories and thus dynamic LCA characterization models with varying time horizons are recommended as a measure of the robustness for LCAs especially comparative assessments. This study also presents an approach to integrate statistical methods into LCA models for analyzing uncertainty in industrial and computer-simulated datasets. We calibrated probabilities for the LCA outcomes for biopolymer products arising from uncertainty in the inventory and from data variation characteristics this has enabled assigning confidence to the LCIA outcomes in specific impact categories for the biopolymer vs. petrochemical polymer comparisons undertaken. Uncertainty combined with the sensitivity analysis carried out in this study has led to a transparent increase in confidence in the LCA findings. We conclude that LCAs lacking explicit interpretation of the degree of uncertainty and sensitivities are of limited value as robust evidence for decision making or comparative assertions.

  4. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    Science.gov (United States)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity

  5. Sensitivity Kernels for Flows in Time-Distance Helioseismology: Extension to Spherical Geometry

    CERN Document Server

    Böning, Vincent G A; Zima, Wolfgang; Birch, Aaron C; Gizon, Laurent

    2016-01-01

    We extend an existing Born approximation method for calculating the linear sensitivity of helioseismic travel times to flows from Cartesian to spherical geometry. This development is necessary for using the Born approximation for inferring large-scale flows in the deep solar interior. In a first sanity check, we compare two $f-$mode kernels from our spherical method and from an existing Cartesian method. The horizontal and total integrals agree to within 0.3 %. As a second consistency test, we consider a uniformly rotating Sun and a travel distance of 42 degrees. The analytical travel-time difference agrees with the forward-modelled travel-time difference to within 2 %. In addition, we evaluate the impact of different choices of filter functions on the kernels for a meridional travel distance of 42 degrees. For all filters, the sensitivity is found to be distributed over a large fraction of the convection zone. We show that the kernels depend on the filter function employed in the data analysis process. If mo...

  6. Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2011-08-01

    Full Text Available This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then demonstrate how the model is implemented to study the sensing and actuating behavior of hydrogels for different microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based flow controller is slow. Therefore, two strategies to improve the response rate of the hydrogels are proposed and demonstrated. Finally, we highlight that the model can be extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and glucose-sensitive hydrogels.

  7. Analysis of Interregional Commodity Flows

    Directory of Open Access Journals (Sweden)

    Wirach Hirun

    2010-01-01

    Full Text Available Problem statement: Commodity Flow Survey (CFS was launched to collect comprehensive freight flow data throughout the kingdom of Thailand. The survey’s database is the most complete collection of commodity flow data in Thailand. The need to reveal interregional freight characteristics using available data from the CFS led to the objectives of this research. Approach: An origin destination matrix based on province was calibrated using a flexible Box-Cox function form. It used maximum likelihood and the backward method for calibration and Root Mean Square Error (RMSE and Mean Relative Error (MRE to verify the model’s performance. Independent variables were classified into three groups: origin variable, destination variable and geographic variable. The origin variable represented the behavior of the trip as generated at the place of origin. Some consumption occurred at the origin. The employment and the average plant size variables were selected for potential productivity while personal income per capita and total populations were included to explain consumption behavior at the origin. Personal income per capita and total populations were selected for destination variables which act as proxy for final demand at the destination. The third category, distance, was the most conventional friction variable for geographical variables. Results: The calibrated model revealed that origin income, origin average plant size and origin population performed poorly. Therefore these variables were eliminated. The best developed model included four strongly significant variables at a 5% level: origin employment, destination population, destination income per capita and distance. Conclusion: The results showed that the selected variables and the Box-Cox functional form were successful in explaining behavior of interregional freight transportation in Thailand. The developed model was the first interregional freight transportation model to be

  8. Dynamic Resonance Sensitivity Analysis in Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2017-01-01

    Unlike conventional power systems, where resonance frequencies are mainly determined by passive impedances, wind farms present a more complex situation, where the control systems of the power electronic converters introduce also active impedances. This paper presents an approach to find the reson......Unlike conventional power systems, where resonance frequencies are mainly determined by passive impedances, wind farms present a more complex situation, where the control systems of the power electronic converters introduce also active impedances. This paper presents an approach to find...... (PFs) are calculated by critical eigenvalue sensitivity analysis versus the entries of the MIMO matrix. The PF analysis locates the most exciting bus of the resonances, where can be the best location to install the passive or active filters to reduce the harmonic resonance problems. Time...

  9. A novel flow cytometric hemozoin detection assay for real-time sensitivity testing of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Maria Rebelo

    Full Text Available Resistance of Plasmodium falciparum to almost all antimalarial drugs, including the first-line treatment with artemisinins, has been described, representing an obvious threat to malaria control. In vitro antimalarial sensitivity testing is crucial to detect and monitor drug resistance. Current assays have been successfully used to detect drug effects on parasites. However, they have some limitations, such as the use of radioactive or expensive reagents or long incubation times. Here we describe a novel assay to detect antimalarial drug effects, based on flow cytometric detection of hemozoin (Hz, which is rapid and does not require any additional reagents. Hz is an optimal parasite maturation indicator since its amount increases as the parasite matures. Due to its physical property of birefringence, Hz depolarizes light, hence it can be detected using optical methods such as flow cytometry. A common flow cytometer was adapted to detect light depolarization caused by Hz. Synchronized in vitro cultures of P. falciparum were incubated for 48 hours with several antimalarial drugs. Analysis of depolarizing events, corresponding to parasitized red blood cells containing Hz, allowed the detection of parasite maturation. Moreover, chloroquine resistance and the inhibitory effect of all antimalarial drugs tested, except for pyrimethamine, could be determined as early as 18 to 24 hours of incubation. At 24 hours incubation, 50% inhibitory concentrations (IC50 were comparable to previously reported values. These results indicate that the reagent-free, real-time Hz detection assay could become a novel assay for the detection of drug effects on Plasmodium falciparum.

  10. Sensitivity of the gradient oscillatory number to flow input waveform shapes.

    Science.gov (United States)

    Shimogonya, Yuji; Kumamaru, Hiroshige; Itoh, Kazuhiro

    2012-04-05

    The sensitivity of the gradient oscillatory number (GON), which is a potential hemodynamic indicator for cerebral aneurysm initiation, to flow input waveform shapes was examined by performing computational fluid dynamics (CFD) simulations of an anatomical model of a human internal carotid artery under three different waveform shape conditions. The local absolute variation (standard deviation) and relative variation (coefficient of variation) of the GON calculations for three waveform shapes were computed to quantify the variation in GON due to waveform shape changes. For all waveform shapes, an elevated GON was evident at a known aneurysm site, albeit occurring at additional sites. No significant differences were observed among the qualitative GON distributions derived using the three different waveform shapes. These results suggest that the GON is largely insensitive to the variability in flow input waveform shapes. The quantitative analysis revealed that GON displays an improved relative variation over a relatively high GON range. We therefore conclude that it is reasonable to use assumed flow input waveform shapes as a substitute for individual real waveform shapes for the detection of possible GON elevations of individual clinical cases in large-scale studies, where the higher values of GON are of primary interest.

  11. High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2010-05-01

    Full Text Available A new type of hot-wire flow-rate sensor (HWFS with a sensing element made of a macro-sized carbon nanotube (CNT strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate.

  12. A novel capacitive detection principle for Coriolis mass flow sensors enabling range/sensitivity tuning

    NARCIS (Netherlands)

    Alveringh, Dennis; Groenesteijn, Jarno; Ma, Kechun; Wiegerink, Remco J.; Lötters, Joost Conrad

    2015-01-01

    We report on a novel capacitive detection principle for Coriolis mass flow sensors which allows for one order of magnitude increased sensitivity. The detection principle consists of two pairs of comb-structures: one pair produces two signals with a phase shift directly dependent on the mass flow,

  13. Modeling flow in a pressure-sensitive, heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Donald W.; Minkoff, Susan E.

    2009-06-01

    Using an asymptotic methodology, including an expansion in inverse powers of {radical}{omega}, where {omega} is the frequency, we derive a solution for flow in a medium with pressure dependent properties. The solution is valid for a heterogeneous medium with smoothly varying properties. That is, the scale length of the heterogeneity must be significantly larger then the scale length over which the pressure increases from it initial value to its peak value. The resulting asymptotic expression is similar in form to the solution for pressure in a medium in which the flow properties are not functions of pressure. Both the expression for pseudo-phase, which is related to the 'travel time' of the transient pressure disturbance, and the expression for pressure amplitude contain modifications due to the pressure dependence of the medium. We apply the method to synthetic and observed pressure variations in a deforming medium. In the synthetic test we model one-dimensional propagation in a pressure-dependent medium. Comparisons with both an analytic self-similar solution and the results of a numerical simulation indicate general agreement. Furthermore, we are able to match pressure variations observed during a pulse test at the Coaraze Laboratory site in France.

  14. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hirtler, Daniel [University Hospital Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology (Heart Center, University of Freiburg), Freiburg (Germany); Garcia, Julio; Barker, Alex J. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Geiger, Julia [University Childrens' Hospital Zurich, Department of Radiology, Zurich (Switzerland)

    2016-10-15

    To comprehensively and quantitatively analyse flow and vorticity in the right heart of patients after repair of tetralogy of Fallot (rTOF) compared with healthy volunteers. Time-resolved flow-sensitive 4D MRI was acquired in 24 rTOF patients and 12 volunteers. Qualitative flow evaluation was based on consensus reading of two observers. Quantitative analysis included segmentation of the right atrium (RA) and ventricle (RV) in a four-chamber view to extract volumes and regional haemodynamic information for computation of regional mean and peak vorticity. Right heart intra-atrial, intraventricular and outflow tract flow patterns differed considerably between rTOF patients and volunteers. Peak RA and mean RV vorticity was significantly higher in patients (p = 0.02/0.05). Significant negative correlations were found between patients' maximum and mean RV and RA vorticity and ventricular volumes (p < 0.05). The main pulmonary artery (MPA) regurgitant flow was associated with higher RA and RV vorticity, which was significant for RA maximum and RV mean vorticity (p = 0.01/0.03). The calculation of vorticity based on 4D flow data is an alternative approach to assess intracardiac flow changes in rTOF patients compared with qualitative flow visualization. Alterations in intracardiac vorticity could be relevant with regard to the development of RV dilation and impaired function. (orig.)

  15. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    Science.gov (United States)

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  16. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  17. The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China

    Science.gov (United States)

    Zhou, Feifan

    2017-04-01

    By studying three heavy rainfall events that were accompanied by debris flows in southwestern China, we find that 24-h accumulated rainfall is most sensitive to the initial temperature. The sensitivities to wind, surface pressure, and specific humidity are generally smaller. Moreover, the upper levels of the atmosphere are identified as the sensitive levels, and the sensitive areas are the areas with heavy rainfall. These results suggest that local temperature perturbations in the upper levels are a signal of short-term heavy rainfall in southwestern China. A validation experiment is carried out to justify the sensitivity results. The possible reasons are discussed and analyzed.

  18. Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: Application to open-loop control

    CERN Document Server

    Mettot, Clément; Sipp, Denis

    2014-01-01

    A fully discrete formalism is introduced to perform stability analysis of a turbulent compressible flow whom dynamics is modeled with the Reynolds-Averaged Navier-Stokes (RANS) equations. The discrete equations are linearized using finite differences and the Jacobian is computed using repeated evaluation of the residuals. Stability of the flow is assessed solving an eigenvalue problem. The sensitivity gradients which indicate regions of the flow where a passive control device could stabilize the unstable eigenvalues are defined within this fully discrete framework. Second order finite differences are applied to the discrete residual to compute the gradients. In particular, the sensitivity gradients are shown to be linked to the Hessian of the RANS equations. The introduced formalism and linearization method are generic: the code used to evaluate the residual of the RANS equations can be used in a black box manner, and the complex linearization of the Hessian is avoided. The method is tested on a two dimension...

  19. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  20. A Sensitivity Analysis of SOLPS Plasma Detachment

    Science.gov (United States)

    Green, D. L.; Canik, J. M.; Eldon, D.; Meneghini, O.; AToM SciDAC Collaboration

    2016-10-01

    Predicting the scrape off layer plasma conditions required for the ITER plasma to achieve detachment is an important issue when considering divertor heat load management options that are compatible with desired core plasma operational scenarios. Given the complexity of the scrape off layer, such predictions often rely on an integrated model of plasma transport with many free parameters. However, the sensitivity of any given prediction to the choices made by the modeler is often overlooked due to the logistical difficulties in completing such a study. Here we utilize an OMFIT workflow to enable a sensitivity analysis of the midplane density at which detachment occurs within the SOLPS model. The workflow leverages the TaskFarmer technology developed at NERSC to launch many instances of the SOLPS integrated model in parallel to probe the high dimensional parameter space of SOLPS inputs. We examine both predictive and interpretive models where the plasma diffusion coefficients are chosen to match an empirical scaling for divertor heat flux width or experimental profiles respectively. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility, and is supported under Contracts DE-AC02-05CH11231, DE-AC05-00OR22725 and DE-SC0012656.

  1. Sensitivity analysis of stochastically forced quasiperiodic self-oscillations

    Directory of Open Access Journals (Sweden)

    Irina Bashkirtseva

    2016-08-01

    Full Text Available We study a problem of stochastically forced quasi-periodic self-oscillations of nonlinear dynamic systems, which are modelled by an invariant torus in the phase space. For weak noise, an asymptotic of the stationary distribution of random trajectories is studied using the quasipotential. For the constructive analysis of a probabilistic distribution near a torus, we use a quadratic approximation of the quasipotential. A parametric description of this approximation is based on the stochastic sensitivity functions (SSF technique. Using this technique, we create a new mathematical method for the probabilistic analysis of stochastic flows near the torus. The construction of SSF is reduced to a boundary value problem for a linear differential matrix equation. For the case of the two-torus in the three-dimensional space, a constructive solution of this problem is given. Our theoretical results are illustrated with an example.

  2. Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN)

    Science.gov (United States)

    2015-04-01

    ARL-TR-7250 ● APR 2015 US Army Research Laboratory Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) by William M Sherrill Weapons and Materials Research Directorate...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  3. LFSTAT - Low-Flow Analysis in R

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor

    2013-04-01

    The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This

  4. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    Science.gov (United States)

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  5. Investment cash flow sensitivity under managerial optimism: new evidence from NYSE panel data firms

    Directory of Open Access Journals (Sweden)

    Ezzeddine Ben Mohamed

    2014-06-01

    Full Text Available Investment cash flow sensitivity constitutes one important block of the corporate financial literature. While it is well documented in standard corporate finance, it is still young under behavioral corporate finance. In this paper, we test the investment cash flow sensitivity among panel data of American industrial firms during 1999-2010. Using Q-model of investment (Tobin, 1969, we construct and introduce a proxy of managerial optimism following Malmendier and Tate (2005a to show the impact of CEOs’ optimism in the relationship between investment and internal cash flow. Our results report a positive and significant coefficient of investment to cash flow for the full sample. While, on estimations of our model using sub-sample of more and less constrained firms, we find that the sensitivity exists stronger only for totally constrained group. We find also that board characteristics can reduce investment policy’s distortions.

  6. Scalable analysis tools for sensitivity analysis and UQ (3160) results.

    Energy Technology Data Exchange (ETDEWEB)

    Karelitz, David B.; Ice, Lisa G.; Thompson, David C.; Bennett, Janine C.; Fabian, Nathan; Scott, W. Alan; Moreland, Kenneth D.

    2009-09-01

    The 9/30/2009 ASC Level 2 Scalable Analysis Tools for Sensitivity Analysis and UQ (Milestone 3160) contains feature recognition capability required by the user community for certain verification and validation tasks focused around sensitivity analysis and uncertainty quantification (UQ). These feature recognition capabilities include crater detection, characterization, and analysis from CTH simulation data; the ability to call fragment and crater identification code from within a CTH simulation; and the ability to output fragments in a geometric format that includes data values over the fragments. The feature recognition capabilities were tested extensively on sample and actual simulations. In addition, a number of stretch criteria were met including the ability to visualize CTH tracer particles and the ability to visualize output from within an S3D simulation.

  7. Sensitivity analysis of periodic matrix population models.

    Science.gov (United States)

    Caswell, Hal; Shyu, Esther

    2012-12-01

    Periodic matrix models are frequently used to describe cyclic temporal variation (seasonal or interannual) and to account for the operation of multiple processes (e.g., demography and dispersal) within a single projection interval. In either case, the models take the form of periodic matrix products. The perturbation analysis of periodic models must trace the effects of parameter changes, at each phase of the cycle, on output variables that are calculated over the entire cycle. Here, we apply matrix calculus to obtain the sensitivity and elasticity of scalar-, vector-, or matrix-valued output variables. We apply the method to linear models for periodic environments (including seasonal harvest models), to vec-permutation models in which individuals are classified by multiple criteria, and to nonlinear models including both immediate and delayed density dependence. The results can be used to evaluate management strategies and to study selection gradients in periodic environments.

  8. Sensitivity analysis of distributed volcanic source inversion

    Science.gov (United States)

    Cannavo', Flavio; Camacho, Antonio G.; González, Pablo J.; Puglisi, Giuseppe; Fernández, José

    2016-04-01

    A recently proposed algorithm (Camacho et al., 2011) claims to rapidly estimate magmatic sources from surface geodetic data without any a priori assumption about source geometry. The algorithm takes the advantages of fast calculation from the analytical models and adds the capability to model free-shape distributed sources. Assuming homogenous elastic conditions, the approach can determine general geometrical configurations of pressured and/or density source and/or sliding structures corresponding to prescribed values of anomalous density, pressure and slip. These source bodies are described as aggregation of elemental point sources for pressure, density and slip, and they fit the whole data (keeping some 3D regularity conditions). Although some examples and applications have been already presented to demonstrate the ability of the algorithm in reconstructing a magma pressure source (e.g. Camacho et al., 2011,Cannavò et al., 2015), a systematic analysis of sensitivity and reliability of the algorithm is still lacking. In this explorative work we present results from a large statistical test designed to evaluate the advantages and limitations of the methodology by assessing its sensitivity to the free and constrained parameters involved in inversions. In particular, besides the source parameters, we focused on the ground deformation network topology, and noise in measurements. The proposed analysis can be used for a better interpretation of the algorithm results in real-case applications. Camacho, A. G., González, P. J., Fernández, J. & Berrino, G. (2011) Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: Application to deforming calderas. J. Geophys. Res. 116. Cannavò F., Camacho A.G., González P.J., Mattia M., Puglisi G., Fernández J. (2015) Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises, Scientific Reports, 5 (10970) doi:10.1038/srep

  9. Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design

    Science.gov (United States)

    Moss, J. N.; O'Byrne, S.; Gai, S. L.

    2014-01-01

    This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.

  10. [Local sensitivity and its stationarity analysis for urban rainfall runoff modelling].

    Science.gov (United States)

    Lin, Jie; Huang, Jin-Liang; Du, Peng-Fei; Tu, Zhen-Shun; Li, Qing-Sheng

    2010-09-01

    Sensitivity analysis of urban-runoff simulation is a crucial procedure for parameter identification and uncertainty analysis. Local sensitivity analysis using Morris screening method was carried out for urban rainfall runoff modelling based on Storm Water Management Model (SWMM). The results showed that Area, % Imperv and Dstore-Imperv are the most sensitive parameters for both total runoff volume and peak flow. Concerning total runoff volume, the sensitive indices of Area, % Imperv and Dstore-Imperv were 0.46-1.0, 0.61-1.0, -0.050(-) - 5.9, respectively; while with respect to peak runoff, they were 0.48-0.89, 0.59-0.83, 0(-) -9.6, respectively. In comparison, the most sensitive indices (Morris) for all parameters with regard to total runoff volume and peak flow appeared in the rainfall event with least rainfall; and less sensitive indices happened in the rainfall events with heavier rainfall. Furthermore, there is considerable variability in sensitive indices for each rainfall event. % Zero-Imperv's coefficient variations have the largest values among all parameters for total runoff volume and peak flow, namely 221.24% and 228.10%. On the contrary, the coefficient variations of conductivity among all parameters for both total runoff volume and peak flow are the smallest, namely 0.

  11. Control Flow Analysis for BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Priami, C.

    2007-01-01

    This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...

  12. The Three Generations of Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2004-01-01

    The characteristics of the three generations of flow injection analysis, that is, FIA, sequential injection analysis (SIA), and bead injection-lab-on-valve (BI-LOV), are briefly outlined, their individual advantages and shortcomings are discussed, and selected practical applications are presented....

  13. Imaging flow cytometry for phytoplankton analysis.

    Science.gov (United States)

    Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S

    2017-01-01

    This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments.

  14. Quantification of cerebral blood flow by flow-sensitive alternating inversion recovery exempting separate T1 measurement in healthy volunteers

    Institute of Scientific and Technical Information of China (English)

    XIAO Jiang-xi; ZHANG Xue-hui; XIE Sheng; ZOU Run-lei

    2006-01-01

    Background The feasibility of the mapping of quantitative cerebral blood flow (CBF) named flow-sensitive alternating inversion recovery exempting separate T1 measurement (FAIREST) is still controversial. This study aimed to evaluate the reliability of FAIREST in the measurement of regional CBF (rCBF) in healthy volunteers.Methods Eighteen healthy volunteers underwent magnetic resonance (MR) scanning with the sequence of FAIREST. While they were at rest, rCBF values were obtained in various brain regions of interest (ROIs). The same scheme was repeated on every subject after two weeks. Statistical analysis was made to determine the effect of location, scan and side on the measurement of rCBF.Results The mean CBF values were (122 ± 28) ml · (100 g)-1 · min-1 and (43 ±10) ml · (100 g)-1 · min-1 in the gray and white matter respectively. There was significant main effect of location (t=-12.5, P<0.01), but no significant effect of side. Paired t-test of ROIs in the same slice showed no significant difference in most sites between two scans, except in the gray matter of the bilateral frontal lobes (t=2.18-2.34, P <0.05). However, the rCBF values of the same structure obtained from different slices showed a significant difference (t=-3.49,P<0.01).Conclusion FAIREST is a reliable technique in the measurement of rCBF, but different imaging slice may affect the agreement of rCBF across the scans.

  15. Recent advances in flow injection analysis.

    Science.gov (United States)

    Trojanowicz, Marek; Kołacińska, Kamila

    2016-04-07

    A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis. With the number of published scientific papers exceeding 20,000, and advanced instrumentation available for environmental, food, and pharmaceutical analysis, flow analysis is well established as an extremely vital field of modern flow chemistry, which is developed simultaneously with methods of chemical synthesis carried out under flow conditions. This review work is based on almost 300 original papers published mostly in the last decade, with special emphasis put on presenting novel achievements from the most recent 2-3 years in order to indicate current development trends of this methodology. Besides the evolution of the design of whole measuring systems, and including especially new applications of various detections methods, several aspects of implications of progress in nanotechnology, and miniaturization of measuring systems for application in different field of modern chemical analysis are also discussed.

  16. Longitudinal Genetic Analysis of Anxiety Sensitivity

    Science.gov (United States)

    Zavos, Helena M. S.; Gregory, Alice M.; Eley, Thalia C.

    2012-01-01

    Anxiety sensitivity is associated with both anxiety and depression and has been shown to be heritable. Little, however, is known about the role of genetic influence on continuity and change of symptoms over time. The authors' aim was to examine the stability of anxiety sensitivity during adolescence. By using a genetically sensitive design, the…

  17. SENSITIVE ERROR ANALYSIS OF CHAOS SYNCHRONIZATION

    Institute of Scientific and Technical Information of China (English)

    HUANG XIAN-GAO; XU JIAN-XUE; HUANG WEI; L(U) ZE-JUN

    2001-01-01

    We study the synchronizing sensitive errors of chaotic systems for adding other signals to the synchronizing signal.Based on the model of the Henon map masking, we examine the cause of the sensitive errors of chaos synchronization.The modulation ratio and the mean square error are defined to measure the synchronizing sensitive errors by quality.Numerical simulation results of the synchronizing sensitive errors are given for masking direct current, sinusoidal and speech signals, separately. Finally, we give the mean square error curves of chaos synchronizing sensitivity and threedimensional phase plots of the drive system and the response system for masking the three kinds of signals.

  18. SENSITIVITY COEFFICIENTS OF SINGLE-PHASE FLOW IN LOW-PERMEABILITY HETEROGENEOUS RESERVOIRS

    Institute of Scientific and Technical Information of China (English)

    程时清; 张盛宗; 黄延章; 朱维耀

    2002-01-01

    Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well.Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient.

  19. Sensitivity analysis of fine sediment models using heterogeneous data

    Science.gov (United States)

    Kamel, A. M. Yousif; Bhattacharya, B.; El Serafy, G. Y.; van Kessel, T.; Solomatine, D. P.

    2012-04-01

    Sediments play an important role in many aquatic systems. Their transportation and deposition has significant implication on morphology, navigability and water quality. Understanding the dynamics of sediment transportation in time and space is therefore important in drawing interventions and making management decisions. This research is related to the fine sediment dynamics in the Dutch coastal zone, which is subject to human interference through constructions, fishing, navigation, sand mining, etc. These activities do affect the natural flow of sediments and sometimes lead to environmental concerns or affect the siltation rates in harbours and fairways. Numerical models are widely used in studying fine sediment processes. Accuracy of numerical models depends upon the estimation of model parameters through calibration. Studying the model uncertainty related to these parameters is important in improving the spatio-temporal prediction of suspended particulate matter (SPM) concentrations, and determining the limits of their accuracy. This research deals with the analysis of a 3D numerical model of North Sea covering the Dutch coast using the Delft3D modelling tool (developed at Deltares, The Netherlands). The methodology in this research was divided into three main phases. The first phase focused on analysing the performance of the numerical model in simulating SPM concentrations near the Dutch coast by comparing the model predictions with SPM concentrations estimated from NASA's MODIS sensors at different time scales. The second phase focused on carrying out a sensitivity analysis of model parameters. Four model parameters were identified for the uncertainty and sensitivity analysis: the sedimentation velocity, the critical shear stress above which re-suspension occurs, the shields shear stress for re-suspension pick-up, and the re-suspension pick-up factor. By adopting different values of these parameters the numerical model was run and a comparison between the

  20. Data flow analysis theory and practice

    CERN Document Server

    Khedker, Uday; Sathe, Bageshri

    2009-01-01

    Data flow analysis is used to discover information for a wide variety of useful applications, ranging from compiler optimizations to software engineering and verification. Modern compilers apply it to produce performance-maximizing code, and software engineers use it to re-engineer or reverse engineer programs and verify the integrity of their programs.  Supplementary Online Materials to Strengthen Understanding Unlike most comparable books, many of which are limited to bit vector frameworks and classical constant propagation, Data Flow Analysis: Theory and Practice offers comprehensive covera

  1. Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes

    Science.gov (United States)

    Cremers, Eline M.P.; Westers, Theresia M.; Alhan, Canan; Cali, Claudia; Visser-Wisselaar, Heleen A.; Chitu, Dana A.; van der Velden, Vincent H.J.; te Marvelde, Jeroen G.; Klein, Saskia K.; Muus, Petra; Vellenga, Edo; de Greef, Georgina E.; Legdeur, Marie-Cecile C.J.C.; Wijermans, Pierre W.; Stevens-Kroef, Marian J.P.L.; da Silva-Coelho, Pedro; Jansen, Joop H.; Ossenkoppele, Gert J.; van de Loosdrecht, Arjan A.

    2017-01-01

    Flow cytometric analysis is a recommended tool in the diagnosis of myelodysplastic syndromes. Current flow cytometric approaches evaluate the (im)mature myelo-/monocytic lineage with a median sensitivity and specificity of ~71% and ~93%, respectively. We hypothesized that the addition of erythroid lineage analysis could increase the sensitivity of flow cytometry. Hereto, we validated the analysis of erythroid lineage parameters recommended by the International/European LeukemiaNet Working Group for Flow Cytometry in Myelodysplastic Syndromes, and incorporated this evaluation in currently applied flow cytometric models. One hundred and sixty-seven bone marrow aspirates were analyzed; 106 patients with myelodysplastic syndromes, and 61 cytopenic controls. There was a strong correlation between presence of erythroid aberrancies assessed by flow cytometry and the diagnosis of myelodysplastic syndromes when validating the previously described erythroid evaluation. Furthermore, addition of erythroid aberrancies to two different flow cytometric models led to an increased sensitivity in detecting myelodysplastic syndromes: from 74% to 86% for the addition to the diagnostic score designed by Ogata and colleagues, and from 69% to 80% for the addition to the integrated flow cytometric score for myelodysplastic syndromes, designed by our group. In both models the specificity was unaffected. The high sensitivity and specificity of flow cytometry in the detection of myelodysplastic syndromes illustrates the important value of flow cytometry in a standardized diagnostic approach. The trial is registered at www.trialregister.nl as NTR1825; EudraCT n.: 2008-002195-10 PMID:27658438

  2. Topology Optimization of Turbulent Fluid Flow with a Sensitive Porosity Adjoint Method (SPAM)

    CERN Document Server

    Philippi, B

    2015-01-01

    A sensitive porosity adjoint method (SPAM) for optimizing the topology of fluid machines has been proposed. A sensitivity function with respect to the porosity has been developed. In the first step of the optimization process, porous media are introduced into the flow regime according to the sensitivity function. Then the optimized porous media are transformed to solid walls. The turbulent flow in porous media is accounted for by a modified eddy-viscosity based turbulence model. Its influence on the adjoint equations is nevertheless neglected, which refers to the so called frozen turbulence assumption. A test case of application in terms of the turbulent rough wall channel flow shows that a considerable reduction of the objective function can be obtained by this method. The transformation from porous media to solid walls may have important effect on the optimization results.

  3. Sensitivity analysis of retrovirus HTLV-1 transactivation.

    Science.gov (United States)

    Corradin, Alberto; Di Camillo, Barbara; Ciminale, Vincenzo; Toffolo, Gianna; Cobelli, Claudio

    2011-02-01

    Human T-cell leukemia virus type 1 is a human retrovirus endemic in many areas of the world. Although many studies indicated a key role of the viral protein Tax in the control of viral transcription, the mechanisms controlling HTLV-1 expression and its persistence in vivo are still poorly understood. To assess Tax effects on viral kinetics, we developed a HTLV-1 model. Two parameters that capture both its deterministic and stochastic behavior were quantified: Tax signal-to-noise ratio (SNR), which measures the effect of stochastic phenomena on Tax expression as the ratio between the protein steady-state level and the variance of the noise causing fluctuations around this value; t(1/2), a parameter representative of the duration of Tax transient expression pulses, that is, of Tax bursts due to stochastic phenomena. Sensitivity analysis indicates that the major determinant of Tax SNR is the transactivation constant, the system parameter weighting the enhancement of retrovirus transcription due to transactivation. In contrast, t(1/2) is strongly influenced by the degradation rate of the mRNA. In addition to shedding light into the mechanism of Tax transactivation, the obtained results are of potential interest for novel drug development strategies since the two parameters most affecting Tax transactivation can be experimentally tuned, e.g. by perturbing protein phosphorylation and by RNA interference.

  4. Supercritical extraction of oleaginous: parametric sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Santos M.M.

    2000-01-01

    Full Text Available The economy has become universal and competitive, thus the industries of vegetable oil extraction must advance in the sense of minimising production costs and, at the same time, generating products that obey more rigorous patterns of quality, including solutions that do not damage the environment. The conventional oilseed processing uses hexane as solvent. However, this solvent is toxic and highly flammable. Thus the search of substitutes for hexane in oleaginous extraction process has increased in the last years. The supercritical carbon dioxide is a potential substitute for hexane, but it is necessary more detailed studies to understand the phenomena taking place in such process. Thus, in this work a diffusive model for semi-continuous (batch for the solids and continuous for the solvent isothermal and isobaric extraction process using supercritical carbon dioxide is presented and submitted to a parametric sensitivity analysis by means of a factorial design in two levels. The model parameters were disturbed and their main effects analysed, so that it is possible to propose strategies for high performance operation.

  5. Contrast sensitivity, ocular blood flow and their potential role in assessing ischaemic retinal disease.

    Science.gov (United States)

    Shoshani, Yochai Z; Harris, Alon; Rusia, Deepam; Spaeth, George L; Siesky, Brent; Pollack, Ayala; Wirostko, Barbara

    2011-08-01

    To examine the definition, evaluation methodology, association to ocular blood flow and potential clinical value of contrast sensitivity (CS) testing in clinical and research settings, focusing in patients with ischemic retinal disease. A review of the medical literature focusing on CS and ocular blood flow in ischemic retinal disease. CS may be more sensitive than other methods at detecting subtle defects or improvements in primarily central retinal ganglion cell function early on in a disease process. CS testing attempts to provide spatial detection differences which are not directly assessed with standard visual acuity chart testing. Analyzing all studies that have assessed both CS change and ocular blood flow, it is apparent that both choroidal circulation and retinal circulation may have an important role in influencing CS. The concept that CS is directly influenced by ocular blood flow is supported by reviewing the studies involving both. Although the studies in the literature have not established a direct cause and effect relationship per se, the literature review makes it logical to assume that changes in retinal and choroidal blood flow influence CS. This raises the possibility that a subjective visual characteristic, specifically CS, may be able to be evaluated more objectively by studying blood flow. It appears appropriate to study the relationship between blood flow and CS more extensively to develop improved ways of measuring various aspects of blood flow to the eye and to best quantify early changes in visual function. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  6. Chemiluminometric hydrogen peroxide sensor for flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Preuschoff, F. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Spohn, U. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Blankenstein, G. (Inst. fuer Enzymtechnologie am Forschungszentrum Juelich GmbH, Duesseldorf Univ., Juelich (Germany)); Mohr, K.H. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Kula, M.R. (Inst. fuer Enzymtechnologie am Forschungszentrum Juelich GmbH, Duesseldorf Univ., Juelich (Germany))

    1993-08-01

    A chemiluminometric hydrogen peroxide sensor was developed for fast flow injection analysis. Different peroxidases were covalently immobilized on affinity membranes and compared with respect to the catalytic luminol oxidation. A photomultiplier tube is connected with a fibre bundle to the flow cell. The small cell volume of 5-10 [mu]l allows sampling rates between 90 and 200/h, depending on the flow rate. The highest sensitivity and the best longterm stability can be achieved with microbial peroxidase. Hydrogen peroxide can be determined in the range between 10[sup -3] and 10[sup -8] mol/l with a precision of < 3% (n=6, [alpha] = 0.05). The operational stability of the sensor is longer than 10 weeks. (orig.)

  7. Air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  8. An addendum on sensitivity analysis of the optimal assignment

    NARCIS (Netherlands)

    Volgenant, A.

    2006-01-01

    We point out that sensitivity results for the linear assignment problem can be produced by a shortest path based approach in a straightforward manner and as efficient as finding an optimal solution. Keywords: Assignment; Sensitivity analysis

  9. Sensitivity Analysis of a Riparian Vegetation Growth Model

    Directory of Open Access Journals (Sweden)

    Michael Nones

    2016-11-01

    Full Text Available The paper presents a sensitivity analysis of two main parameters used in a mathematic model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width. Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

  10. A continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay

    OpenAIRE

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-01-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear...

  11. Through flow analysis within axial flow turbomachinery blade rows

    Science.gov (United States)

    Girigoswami, H.

    1986-09-01

    Using Katsanis' Through Flow Code, inviscid flow through an axial flow compressor rotor blade as well as flow through inlet guide vanes are analyzed and the computed parameters such as meridional velocity distribution, axial velocity distribution along radial lines, and velocity distribution over blade surfaces are presented.

  12. Chromosome analysis and sorting using flow cytometry.

    Science.gov (United States)

    Doležel, Jaroslav; Kubaláková, Marie; Cíhalíková, Jarmila; Suchánková, Pavla; Simková, Hana

    2011-01-01

    Chromosome analysis and sorting using flow cytometry (flow cytogenetics) is an attractive tool for fractionating plant genomes to small parts. The reduction of complexity greatly simplifies genetics and genomics in plant species with large genomes. However, as flow cytometry requires liquid suspensions of particles, the lack of suitable protocols for preparation of solutions of intact chromosomes delayed the application of flow cytogenetics in plants. This chapter outlines a high-yielding procedure for preparation of solutions of intact mitotic chromosomes from root tips of young seedlings and for their analysis using flow cytometry and sorting. Root tips accumulated at metaphase are mildly fixed with formaldehyde, and solutions of intact chromosomes are prepared by mechanical homogenization. The advantages of the present approach include the use of seedlings, which are easy to handle, and the karyological stability of root meristems, which can be induced to high degree of metaphase synchrony. Chromosomes isolated according to this protocol have well-preserved morphology, withstand shearing forces during sorting, and their DNA is intact and suitable for a range of applications.

  13. Enhanced sensitivity of laterl flow strip biosensors based on enyzmatic reaction and nanomaterials

    Science.gov (United States)

    Xu, Hui

    Ultrasensitive detection for trace amount of proteins plays pivotal role in the diagnosis of specific diseases in clinical application, basic discovery research and the improvement of proteomics. Recently, lateral flow strip biosensor (LFSB) has gained considerable attention for protein analysis. Compared with the traditional immunoassays, LFSB has several advantages: user-friendly format, short assay time (generally several minutes), less interference due to chromatographic separation, a relatively low cost, and no requirements for skilled technicians. This ideal technique is suitable for on-site testing by people who are untrained. Traditional gold nanoparticles (GNPs) based LFSB have been used for qualitative and semiquantitative analysis, the application of GNP-based LFSB is limited by its low sensitivity. In this dissertation, different nanomaterials and advanced detection technologies have been used to enhance the LFSB sensitivities. An ultrasensitive LFSB based on horseradish peroxidase (HRP)/GNP dual labels was developed for qualitative (Yes/No) and quantitative detection of protein. The LFSB signal was enhanced dramatically by introducing the second tracer (enzyme) on the GNP surface. The detection limit of LFSB was 100 times lower than that of GNP-based LFSB. A fluorescent LFSB based on enzyme tracers was developed for sensitive detection of proteins. Alkaline Phosphatase (ALP) was selected as a label to prepare the LFSB. The signal was from the fluorescent emission of the ELF-97 alcohol precipitate which was the product of ALP catalyzed dephosphorylation of ELF-97 phosphate. ALP-conjugated antibody (ALP-Ab) functionalized gold nanoparticles (GNPs) were used as labels for the development of a chemiluminescence-based quantitative LFSB. The use of chemiluminescence detection and GNPs as enzyme carriers allowed accurate and sensitive analyte detection. GNP-decorated silica nanorods (GNP-SiNRs) were synthesized and employed as the labels for ultrasensitive

  14. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  15. Variational Methods in Design Optimization and Sensitivity Analysis for Two-Dimensional Euler Equations

    Science.gov (United States)

    Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.

    1997-01-01

    Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.

  16. Sensitivity Analysis and Insights into Hydrological Processes and Uncertainty at Different Scales

    Science.gov (United States)

    Haghnegahdar, A.; Razavi, S.; Wheater, H. S.; Gupta, H. V.

    2015-12-01

    Sensitivity analysis (SA) is an essential tool for providing insight into model behavior, and conducting model calibration and uncertainty assessment. Numerous techniques have been used in environmental modelling studies for sensitivity analysis. However, it is often overlooked that the scale of modelling study, and the metric choice can significantly change the assessment of model sensitivity and uncertainty. In order to identify important hydrological processes across various scales, we conducted a multi-criteria sensitivity analysis using a novel and efficient technique, Variogram Analysis of Response Surfaces (VARS). The analysis was conducted using three different hydrological models, HydroGeoSphere (HGS), Soil and Water Assessment Tool (SWAT), and Modélisation Environmentale-Surface et Hydrologie (MESH). Models were applied at various scales ranging from small (hillslope) to large (watershed) scales. In each case, the sensitivity of simulated streamflow to model processes (represented through parameters) were measured using different metrics selected based on various hydrograph characteristics such as high flows, low flows, and volume. We demonstrate how the scale of the case study and the choice of sensitivity metric(s) can change our assessment of sensitivity and uncertainty. We present some guidelines to better align the metric choice with the objective and scale of a modelling study.

  17. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements.

  18. Data-flow Analysis of Programs with Associative Arrays

    Directory of Open Access Journals (Sweden)

    David Hauzar

    2014-05-01

    Full Text Available Dynamic programming languages, such as PHP, JavaScript, and Python, provide built-in data structures including associative arrays and objects with similar semantics—object properties can be created at run-time and accessed via arbitrary expressions. While a high level of security and safety of applications written in these languages can be of a particular importance (consider a web application storing sensitive data and providing its functionality worldwide, dynamic data structures pose significant challenges for data-flow analysis making traditional static verification methods both unsound and imprecise. In this paper, we propose a sound and precise approach for value and points-to analysis of programs with associative arrays-like data structures, upon which data-flow analyses can be built. We implemented our approach in a web-application domain—in an analyzer of PHP code.

  19. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    Science.gov (United States)

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will allow both better dissemination of this technology and better

  20. Debris flow sensitivity to glacial-interglacial climate change - supply vs transport

    Science.gov (United States)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.

    2016-04-01

    Numerical models suggest that small mountain catchment-alluvial fan systems might be sensitive to climate changes over glacial-interglacial cycles, and record these palaeoclimate signals in the sedimentology of their deposits. However, these models are still largely untested, and the propagation of climate signals through simple sediment routing systems remains contentious. Here, we present detailed sedimentological records from 8 debris flow fan systems in Owens Valley, California, that capture the past ~ 120 ka of deposition. We identify a strong and sustained relationship between deposit grain size and palaeoclimate records over a full glacial-interglacial cycle, with significantly coarser-grained deposits found in warm and dry periods. Our data show that these systems are highly sensitive to climate with a rapid response timescale of debris flows are triggered by surface runoff during intense storms, we interpret that enhanced runoff rates in warm and stormy conditions are responsible for entraining larger clasts during debris flow initiation. This implies that debris flow fans might record signals of past storm intensity. Our study utilises field sedimentology and focuses on short transport distances (~ 10 km) and climate changes over ~ 1-100 ka timespans, but could additionally have important implications for how eroding landscapes might respond to future warming scenarios. We address the importance of extreme events (such as storms and debris flows) for determining how sensitive landscapes are to climate variability.

  1. Load flow analysis using decoupled fuzzy load flow under critical ...

    African Journals Online (AJOL)

    user

    of power system, reliable fuzzy load flow is developed to overcome the limitations of the ... of power mismatches are taken as two inputs for fuzzy logic controller. ..... Programming Based Load Flow Algorithm For Systems Containing Unified ...

  2. OpenFlow Deployment and Concept Analysis

    Directory of Open Access Journals (Sweden)

    Tomas Hegr

    2013-01-01

    Full Text Available Terms such as SDN and OpenFlow (OF are often used in the research and development of data networks. This paper deals with the analysis of the current state of OpenFlow protocol deployment options as it is the only real representative protocol that enables the implementation of Software Defined Networking outside an academic world. There is introduced an insight into the current state of the OpenFlow specification development at various levels is introduced. The possible limitations associated with this concept in conjunction with the latest version (1.3 of the specification published by ONF are also presented. In the conclusion there presented a demonstrative security application addressing the lack of IPv6 support in real network devices since most of today's switches and controllers support only OF v1.0.

  3. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  4. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, J.; Markl, M.; Jung, B.; Langer, M. [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Grohmann, J.; Stiller, B.; Arnold, R. [University Hospital Freiburg, Department of Congenital Heart Disease and Pediatric Cardiology, Freiburg (Germany)

    2011-08-15

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution {proportional_to} 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 {+-} 2.5 vs. 1.1 {+-} 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s {+-} 0.7 m/s) than controls (0.9 m/s {+-} 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  5. A discourse on sensitivity analysis for discretely-modeled structures

    Science.gov (United States)

    Adelman, Howard M.; Haftka, Raphael T.

    1991-01-01

    A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.

  6. Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks

    Science.gov (United States)

    Lepicovsky, Jan; Bencic, Timothy J.

    2001-01-01

    The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.

  7. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  8. Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air Vehicles

    Science.gov (United States)

    2015-05-18

    surface would take the form of a three dimensional surface similar to those in undergraduate courses in multivariable calculus . Sensitivity Analysis...York, 2012, pp.844-850. [9] J. J. Bertin and R. M. Cummings, “Newtonian Flow Model,” Aerodynamics for Engineers, 6th ed., Pearson Education, Saddle

  9. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    Science.gov (United States)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  10. Flow-sensitive in-vivo 4D MR imaging at 3T for the analysis of aortic hemodynamics and derived vessel wall parameters; Die Analyse aortaler Haemodynamik und Gefaesswandparameter mittels fluss-sensitiver in-vivo 4D-MRT bei 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Frydrychowicz, A.; Markl, M.; Stalder, A.F.; Bock, J.; Bley, T.A.; Berger, A.; Russe, M.F.; Hennig, J.; Langer, M. [Freiburg Univ. (Germany). Abt. Roentgendiagnostik; Harloff, A. [Freiburg Univ. (Germany). Abt. Klinische Neurologie und Neurophysiologie; Schlensak, C. [Freiburg Univ. (Germany). Abt. Herz- und Gefaesschirurgie

    2007-05-15

    Modern phase contrast MR imaging at 3 Tesla allows the depiction of 3D morphology as well as the acquisition of time-resolved blood flow velocities in 3 directions. In combination with state-of-the-art visualization and data processing software, the qualitative and quantitative analysis of hemodynamic changes associated with vascular pathologies is possible. The 4D nature of the acquired data permits free orientation within the vascular system of interest and offers the opportunity to quantify blood flow and derived vessel wall parameters at any desired location within the data volume without being dependent on predefined 2D slices. The technique has the potential of overcoming the limitations of current diagnostic strategies and of implementing new diagnostic parameters. In light of the recent discussions regarding the influence of the wall shear stress and the oscillatory shear index on the genesis of arteriosclerosis and dilatative vascular processes, flow-sensitive 4D MRI may provide the missing diagnostic link. Instead of relying on experience-based parameters such as aneurysm size, new hemodynamic considerations can deepen our understanding of vascular pathologies. This overview reviews the underlying methodology at 3T, the literature on time-resolved 3D MR velocity mapping, and presents case examples. By presenting the pre- and postoperative assessment of hemodynamics in a thoracic aortic aneurysm and the detailed analysis of blood flow in a patient with coarctation we underline the potential of time-resolved 3D phase contrast MR at 3T for hemodynamic assessment of vascular pathologies, especially in the thoracic aorta. (orig.)

  11. Implementation of efficient sensitivity analysis for optimization of large structures

    Science.gov (United States)

    Umaretiya, J. R.; Kamil, H.

    1990-01-01

    The paper presents the theoretical bases and implementation techniques of sensitivity analyses for efficient structural optimization of large structures, based on finite element static and dynamic analysis methods. The sensitivity analyses have been implemented in conjunction with two methods for optimization, namely, the Mathematical Programming and Optimality Criteria methods. The paper discusses the implementation of the sensitivity analysis method into our in-house software package, AutoDesign.

  12. Self-organized Natural Roads for Predicting Traffic Flow: A Sensitivity Study

    CERN Document Server

    Jiang, Bin; Yin, Junjun

    2008-01-01

    In this paper, we extended road-based topological analysis into both nationwide and urban road networks, and concentrated on a sensitivity study with respect to the formation of self-organized natural roads based on Gestalt principle of good continuity. Both Annual Average Daily Traffic (AADT) and Global Positioning System (GPS) data were used to correlate with a series of ranking metrics including five centrality-based metrics and two PageRank metrics. It was found that there exists a tipping point from segment- to road-based network topology in terms of correlation between ranking metrics and their traffic. To our big surprise, (1) this correlation is significantly improved if a selfish rather than utopian strategy is adopted in forming the self-organized natural roads, and (2) point-based metrics assigned by summation into individual roads tend to have a much better correlation with traffic flow than line-based metrics. These counter-intuitive surprising findings constitute emergent properties of self-orga...

  13. A new sensitive flow-injection chemiluminescence method for the determination of H(2)-receptor antagonists.

    Science.gov (United States)

    Tang, Yu-Hai; Wang, Nan-Nan; Xiong, Xun-Yu; Xiong, Feng-Mei; Sun, Si-Juan

    2007-01-01

    Based on the chemiluminescence (CL) intensity generated from the potassium ferricyanide [K(3)Fe(CN)(6)]-rhodamine 6G system in sodium hydroxide (NaOH) medium, a new sensitive flow-injection chemiluminescence (FI-CL) method has been developed, validated and applied for the determination of three kinds of H(2)-receptor antagonists: cimetidine (CIMT), ranitidine (RANT) hydrochloride and famotidine (FAMT). Under the optimum conditions, the linear range for the determination was 1.0 x 10(-9)-7.0 x 10(-5) g/ml for CIMT, 1.0 x 10(-9)-5.0 x 10(-5) g/mL for RANT hydrochloride and 5.0 x 10(-9)-7.0 x 10(-5) g/mL for FAMT. During 11 repeated measurements of 1.0 x 10(-6) g/mL sample solutions, the relative standard deviations (RSDs) were all <5%. The detection limit was 8.56 x 10(-10) g/mL for CIMT, 8.69 x 10(-10) g/mL for RANT hydrochloride and 2.35 x 10(-9) g/mL for FAMT (S:N = 3). This method has been successfully implemented for the analysis of H(2)-receptor antagonists in pharmaceuticals.

  14. Selective and Sensitive Chemiluminescence Determination of MCPB: Flow Injection and Liquid Chromatography.

    Science.gov (United States)

    Meseguer-Lloret, Susana; Torres-Cartas, Sagrario; Catalá-Icardo, Mónica; Gómez-Benito, Carmen

    2016-02-01

    Two new chemiluminescence (CL) methods are described for the determination of the herbicide 4-(4-chloro-o-tolyloxy) butyric acid (MCPB). First, a flow injection chemiluminescence (FI-CL) method is proposed. In this method, MCPB is photodegraded with an ultraviolet (UV) lamp and the photoproducts formed provide a great CL signal when they react with ferricyanide in basic medium. Second, a high-performance liquid chromatography chemiluminescence (HPLC-CL) method is proposed. In this method, before the photodegradation and CL reaction, the MCPB and other phenoxyacid herbicides are separated in a C18 column. The experimental conditions for the FI-CL and HPLC-CL methods are optimized. Both methods present good sensitivity, the detection limits being 0.12 µg L(-1) and 0.1 µg L(-1) (for FI-CL and HPLC-CL, respectively) when solid phase extraction (SPE) is applied. Intra- and interday relative standard deviations are below 9.9%. The methods have been satisfactorily applied to the analysis of natural water samples. FI-CL method can be employed for the determination of MCPB in simple water samples and for the screening of complex water samples in a fast, economic, and simple way. The HPLC-CL method is more selective, and allows samples that have not been resolved with the FI-CL method to be solved.

  15. Mathematical model for analysis of recirculating vertical flow constructed wetlands.

    Science.gov (United States)

    Sklarz, Menachem Y; Gross, Amit; Soares, M Ines M; Yakirevich, Alexander

    2010-03-01

    The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Sensitivity Analysis of Situational Awareness Measures

    Science.gov (United States)

    Shively, R. J.; Davison, H. J.; Burdick, M. D.; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    A great deal of effort has been invested in attempts to define situational awareness, and subsequently to measure this construct. However, relatively less work has focused on the sensitivity of these measures to manipulations that affect the SA of the pilot. This investigation was designed to manipulate SA and examine the sensitivity of commonly used measures of SA. In this experiment, we tested the most commonly accepted measures of SA: SAGAT, objective performance measures, and SART, against different levels of SA manipulation to determine the sensitivity of such measures in the rotorcraft flight environment. SAGAT is a measure in which the simulation blanks in the middle of a trial and the pilot is asked specific, situation-relevant questions about the state of the aircraft or the objective of a particular maneuver. In this experiment, after the pilot responded verbally to several questions, the trial continued from the point frozen. SART is a post-trial questionnaire that asked for subjective SA ratings from the pilot at certain points in the previous flight. The objective performance measures included: contacts with hazards (power lines and towers) that impeded the flight path, lateral and vertical anticipation of these hazards, response time to detection of other air traffic, and response time until an aberrant fuel gauge was detected. An SA manipulation of the flight environment was chosen that undisputedly affects a pilot's SA-- visibility. Four variations of weather conditions (clear, light rain, haze, and fog) resulted in a different level of visibility for each trial. Pilot SA was measured by either SAGAT or the objective performance measures within each level of visibility. This enabled us to not only determine the sensitivity within a measure, but also between the measures. The SART questionnaire and the NASA-TLX, a measure of workload, were distributed after every trial. Using the newly developed rotorcraft part-task laboratory (RPTL) at NASA Ames

  17. Sensitivity analysis of soil parameters based on interval

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interval analysis is a new uncertainty analysis method for engineering struc-tures. In this paper, a new sensitivity analysis method is presented by introducing interval analysis which can expand applications of the interval analysis method. The interval anal-ysis process of sensitivity factor matrix of soil parameters is given. A method of parameter intervals and decision-making target intervals is given according to the interval analysis method. With FEM, secondary developments are done for Marc and the Duncan-Chang nonlinear elastic model. Mutual transfer between FORTRAN and Marc is implemented. With practial examples, rationality and feasibility are validated. Comparison is made with some published results.

  18. Towards More Efficient and Effective Global Sensitivity Analysis

    Science.gov (United States)

    Razavi, Saman; Gupta, Hoshin

    2014-05-01

    Sensitivity analysis (SA) is an important paradigm in the context of model development and application. There are a variety of approaches towards sensitivity analysis that formally describe different "intuitive" understandings of the sensitivity of a single or multiple model responses to different factors such as model parameters or forcings. These approaches are based on different philosophies and theoretical definitions of sensitivity and range from simple local derivatives to rigorous Sobol-type analysis-of-variance approaches. In general, different SA methods focus and identify different properties of the model response and may lead to different, sometimes even conflicting conclusions about the underlying sensitivities. This presentation revisits the theoretical basis for sensitivity analysis, critically evaluates the existing approaches in the literature, and demonstrates their shortcomings through simple examples. Important properties of response surfaces that are associated with the understanding and interpretation of sensitivities are outlined. A new approach towards global sensitivity analysis is developed that attempts to encompass the important, sensitivity-related properties of response surfaces. Preliminary results show that the new approach is superior to the standard approaches in the literature in terms of effectiveness and efficiency.

  19. Numerical flow analysis of hydro power stations

    Science.gov (United States)

    Ostermann, Lars; Seidel, Christian

    2017-07-01

    For the hydraulic engineering and design of hydro power stations and their hydraulic optimisation, mainly experimental studies of the physical submodel or of the full model at the hydraulics laboratory are carried out. Partially, the flow analysis is done by means of computational fluid dynamics based on 2D and 3D methods and is a useful supplement to experimental studies. For the optimisation of hydro power stations, fast numerical methods would be appropriate to study the influence of a wide field of optimisation parameters and flow states. Among the 2D methods, especially the methods based on the shallow water equations are suitable for this field of application, since a lot of experience verified by in-situ measurements exists because of the widely used application of this method for the problems in hydraulic engineering. As necessary, a 3D model may supplement subsequently the optimisation of the hydro power station. The quality of the results of the 2D method for the optimisation of hydro power plants is investigated by means of the results of the optimisation of the hydraulic dividing pier compared to the results of the 3D flow analysis.

  20. Is Investment-Cash Flow Sensitivity Caused by the Agency Costs or Asymmetric Information? Evidence from the UK

    NARCIS (Netherlands)

    Pawlina, G.; Renneboog, L.D.R.

    2005-01-01

    We investigate the investment-cash flow sensitivity of a large sample of the UK listed firms and confirm that investment is strongly cash flow-sensitive.Is this suboptimal investment policy the result of agency problems when managers with high discretion overinvest, or of asymmetric information when

  1. Flow cytometry-based DNA hybridization and polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  2. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    Science.gov (United States)

    Bittker, D. A.

    1994-01-01

    which provides the relationships between the predictions of a kinetics model and the input parameters of the problem. LSENS provides for efficient and accurate chemical kinetics computations and includes sensitivity analysis for a variety of problems, including nonisothermal conditions. LSENS replaces the previous NASA general chemical kinetics codes GCKP and GCKP84. LSENS is designed for flexibility, convenience and computational efficiency. A variety of chemical reaction models can be considered. The models include static system, steady one-dimensional inviscid flow, reaction behind an incident shock wave including boundary layer correction, and the perfectly stirred (highly backmixed) reactor. In addition, computations of equilibrium properties can be performed for the following assigned states, enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static problems LSENS computes sensitivity coefficients with respect to the initial values of the dependent variables and/or the three rates coefficient parameters of each chemical reaction. To integrate the ODEs describing chemical kinetics problems, LSENS uses the packaged code LSODE, the Livermore Solver for Ordinary Differential Equations, because it has been shown to be the most efficient and accurate code for solving such problems. The sensitivity analysis computations use the decoupled direct method, as implemented by Dunker and modified by Radhakrishnan. This method has shown greater efficiency and stability with equal or better accuracy than other methods of sensitivity analysis. LSENS is written in FORTRAN 77 with the exception of the NAMELIST extensions used for input. While this makes the code fairly machine independent, execution times on IBM PC compatibles would be unacceptable to most users. LSENS has been successfully implemented on a Sun4 running SunOS and a DEC VAX running VMS. With minor modifications, it should also be easily implemented on other

  3. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  4. Chemistry in Protoplanetary Disks: A Sensitivity Analysis

    CERN Document Server

    Vasyunin, A I; Henning, T; Wakelam, V; Herbst, E; Sobolev, A M

    2007-01-01

    We study how uncertainties in the rate coefficients of chemical reactions in the RATE06 database affect abundances and column densities of key molecules in protoplanetary disks. We randomly varied the gas-phase reaction rates within their uncertainty limits and calculated the time-dependent abundances and column densities using a gas-grain chemical model and a flaring steady-state disk model. We find that key species can be separated into two distinct groups according to the sensitivity of their column densities to the rate uncertainties. The first group includes CO, C$^+$, H$_3^+$, H$_2$O, NH$_3$, N$_2$H$^+$, and HCNH$^+$. For these species, the column densities are not very sensitive to the rate uncertainties but the abundances in specific regions are. The second group includes CS, CO$_2$, HCO$^+$, H$_2$CO, C$_2$H, CN, HCN, HNC and other, more complex species, for which high abundances and abundance uncertainties co-exist in the same disk region, leading to larger scatters in the column densities. However, ...

  5. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  6. Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks

    Science.gov (United States)

    Lepicovsky, J.; Bencic, T. J.

    2002-07-01

    The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.

  7. Lyapunov exponents, covariant vectors and shadowing sensitivity analysis of 3D wakes: from laminar to chaotic regimes

    Science.gov (United States)

    Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick

    2016-11-01

    Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.

  8. Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry

    Science.gov (United States)

    West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat

    2016-01-01

    The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.

  9. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S.; Triantafyllou, Michael

    2016-01-01

    We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young’s modulus of the artificial cupula closely matches the biological cupula (10–100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5–5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices.

  10. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S; Triantafyllou, Michael

    2016-01-14

    We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young's modulus of the artificial cupula closely matches the biological cupula (10-100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5-5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices.

  11. Stability and sensitivity analysis of experimental data for passive control of a turbulent wake

    Science.gov (United States)

    Siconolfi, Lorenzo; Camarri, Simone; Trip, Renzo; Fransson, Jens H. M.

    2016-11-01

    When the linear stability analysis is applied to the mean flow field past a bluff body, a quasi-marginally stable mode is identified, with a frequency very close to the real vortex shedding one. A formally consistent approach to justify this kind of analysis is based on a triple decomposition of the flow variables. With this formalism, the adjoint-based sensitivity analysis can be extended to investigate passive controls of high-Reynolds-number wakes (e.g.). The objective of the present work is to predict the effect of a small control cylinder on the vortex shedding frequency in a turbulent wake with an analysis which solely relies on PIV measurements available for the considered flow. The key ingredient of the numerical analysis is an ad-hoc tuned model for the mean flow field, built using an original procedure which includes all the experimental information available on the flow. This analysis is here applied to the wake flow past a thick porous plate at Reynolds numbers in the range between Re = 6 . 7 ×103 and Re= 5 . 3 ×104 . It is shown that the derived control map agrees reasonably well with the equivalent map obtained experimentally.

  12. Analysis of liposomes using asymmetrical flow field-flow fractionation

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-01-01

    Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid......), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction...... of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted...

  13. Analysis of Secondary Flows in Centrifugal Impellers

    Directory of Open Access Journals (Sweden)

    Brun Klaus

    2005-01-01

    Full Text Available Secondary flows are undesirable in centrifugal compressors as they are a direct cause for flow (head losses, create nonuniform meridional flow profiles, potentially induce flow separation/stall, and contribute to impeller flow slip; that is, secondary flows negatively affect the compressor performance. A model based on the vorticity equation for a rotating system was developed to determine the streamwise vorticity from the normal and binormal vorticity components (which are known from the meridional flow profile. Using the streamwise vorticity results and the small shear-large disturbance flow method, the onset, direction, and magnitude of circulatory secondary flows in a shrouded centrifugal impeller can be predicted. This model is also used to estimate head losses due to secondary flows in a centrifugal flow impeller. The described method can be employed early in the design process to develop impeller flow shapes that intrinsically reduce secondary flows rather than using disruptive elements such as splitter vanes to accomplish this task.

  14. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    Science.gov (United States)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as

  15. Heterogeneity in the Cyclical Sensitivity of Job-to-Job Flows

    OpenAIRE

    Schaffner, Sandra

    2009-01-01

    Although the cyclical aspects of worker reallocation are investigated in numerous studies, only scarce empirical evidence exists for Germany. Kluve, Schaffner, and Schmidt (2009) emphasize the heterogeneity of cyclical influences for different subgroups of workers, defined by age, gender and skills. This paper contributes to this literature by extending this analysis to job-to-job flows. In fact, job-to-job transitions are found to be the largest flows in the German labor market. The fi...

  16. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow

  17. Field-Flow Fractionation Analysis of Complex Biological Samples

    Directory of Open Access Journals (Sweden)

    Mijić, I.

    2014-03-01

    Full Text Available Normal analytical methods have difficulties when analysing complex samples containing particles of different size. In the 1960s, a new analytical technique was developed, which was able to overcome those difficulties. This new, Field-Flow Fractionation (FFF technique has been primarily used in the separation of large particles such as macromolecules and colloids. The development and improvement of the FFF technique led to the coupling of the technique with other specific and sensitive analytical methods which resulted in the FFF technique becoming very useful in isolation, separation and analysis of various complex samples, such as powders, emulsions, colloids, geological sediments, biopolymers, complex proteins, polysaccharides, synthetic polymers, and many others. The separation field in the FFF technique is a thin, empty flow chamber called a channel. The structure of the ribbonlike channel with view of the parabolic flow can be seen in Fig. 1. Separation is achieved by the interaction of sample components with an externally generated field, which is applied perpendicularly to the direction of the mobile flow inside the channel. Sample components, which differ in molar mass, size or other properties are pushed by the applied perpendicular field into different velocity regions within the parabolic flow profile of the mobile phase across the channel. The flow has different velocity depending on the position within the channel; the velocity at the walls is zero and it increases towards the centre of the channel. Samples are carried downstream through the channel at different velocities and exit the channel after different retention times. The relative distribution of samples in the parabolic flow determines the separation characteristics. Different operating modes have different types of distributions. The most frequently used mechanisms of FFF separation are listed in Fig. 2. Based on the characteristics of analysed particles and applied outer

  18. Sensitivity Analysis of the Critical Speed in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; True, Hans; Engsig-Karup, Allan Peter

    2014-01-01

    We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without compromising the results. The method is based on sampling methods, cubature rules, High-Dimensional Model Representation and Total Sensitivity Indices. The approach has a general applic...

  19. Sensitivity Analysis of the Critical Speed in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; True, Hans; Engsig-Karup, Allan Peter

    2013-01-01

    We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without compromising the results. The method is based on sampling methods, cubature rules, High-Dimensional Model Representation and Total Sensitivity Indices. The approach has a general applic...

  20. Global and local sensitivity analysis methods for a physical system

    Energy Technology Data Exchange (ETDEWEB)

    Morio, Jerome, E-mail: jerome.morio@onera.fr [Onera-The French Aerospace Lab, F-91761, Palaiseau Cedex (France)

    2011-11-15

    Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.

  1. Electromagnetic and seismoelectric sensitivity analysis using resolution functions

    NARCIS (Netherlands)

    Maas, P.J.; Grobbe, N.; Slob, E.C.; Mulder, W.A.

    2015-01-01

    For multi-parameter problems, such as the seismoelectric system, sensitivity analysis through resolution functions is a low-cost, fast method of determining whether measured fields are sensitive to certain subsurface parameters. We define a seismoelectric resolution function for the inversion of a

  2. Global and Local Sensitivity Analysis Methods for a Physical System

    Science.gov (United States)

    Morio, Jerome

    2011-01-01

    Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…

  3. Adjoint sensitivity analysis of high frequency structures with Matlab

    CERN Document Server

    Bakr, Mohamed; Demir, Veysel

    2017-01-01

    This book covers the theory of adjoint sensitivity analysis and uses the popular FDTD (finite-difference time-domain) method to show how wideband sensitivities can be efficiently estimated for different types of materials and structures. It includes a variety of MATLAB® examples to help readers absorb the content more easily.

  4. Analysis of Secondary Flows in Centrifugal Impellers

    OpenAIRE

    2005-01-01

    Secondary flows are undesirable in centrifugal compressors as they are a direct cause for flow (head) losses, create nonuniform meridional flow profiles, potentially induce flow separation/stall, and contribute to impeller flow slip; that is, secondary flows negatively affect the compressor performance. A model based on the vorticity equation for a rotating system was developed to determine the streamwise vorticity from the normal and binormal vorticity components (which are known from the me...

  5. Cluster analysis of multiple planetary flow regimes

    Science.gov (United States)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  6. Quantitative visualization of asymmetric gas flow in constricted microchannels by using pressure-sensitive paint

    Science.gov (United States)

    Huang, Chih-Yung; Chen, Ying-Hsuan; Wan, Shaw-An; Wang, Yu-Chuan

    2016-10-01

    Asymmetric flow in constricted microchannel devices was quantitatively investigated using a pressure-sensitive paint (PSP) technique. For microchannel devices with constriction ratios of 2 : 1 and 5 : 1, detailed pressure maps for the region around the constriction structure were obtained and enabled visualization of the flow field. Symmetric flow was observed in the microchannel device with a constriction ratio of 2 : 1 at the Reynolds number range 2-165. In the microchannel with a constriction ratio of 5 : 1, a deflected flow pattern was clearly identified from PSP measurements at Reynolds numbers exceeding 107. Furthermore, PSP measurements showed a pressure difference of up to 2.5 kPa between the two lateral locations corresponding to y  =  ±0.15 W (W is the microchannel width) downstream of the constriction at a Reynolds number of 279. The pressure difference resulted from asymmetric bifurcation of the flow.

  7. A qualitative model structure sensitivity analysis method to support model selection

    Science.gov (United States)

    Van Hoey, S.; Seuntjens, P.; van der Kwast, J.; Nopens, I.

    2014-11-01

    The selection and identification of a suitable hydrological model structure is a more challenging task than fitting parameters of a fixed model structure to reproduce a measured hydrograph. The suitable model structure is highly dependent on various criteria, i.e. the modeling objective, the characteristics and the scale of the system under investigation and the available data. Flexible environments for model building are available, but need to be assisted by proper diagnostic tools for model structure selection. This paper introduces a qualitative method for model component sensitivity analysis. Traditionally, model sensitivity is evaluated for model parameters. In this paper, the concept is translated into an evaluation of model structure sensitivity. Similarly to the one-factor-at-a-time (OAT) methods for parameter sensitivity, this method varies the model structure components one at a time and evaluates the change in sensitivity towards the output variables. As such, the effect of model component variations can be evaluated towards different objective functions or output variables. The methodology is presented for a simple lumped hydrological model environment, introducing different possible model building variations. By comparing the effect of changes in model structure for different model objectives, model selection can be better evaluated. Based on the presented component sensitivity analysis of a case study, some suggestions with regard to model selection are formulated for the system under study: (1) a non-linear storage component is recommended, since it ensures more sensitive (identifiable) parameters for this component and less parameter interaction; (2) interflow is mainly important for the low flow criteria; (3) excess infiltration process is most influencing when focussing on the lower flows; (4) a more simple routing component is advisable; and (5) baseflow parameters have in general low sensitivity values, except for the low flow criteria.

  8. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  9. Fractal Analysis of Stress Sensitivity of Permeability in Porous Media

    Science.gov (United States)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Cai, Jianchao

    2015-12-01

    A permeability model for porous media considering the stress sensitivity is derived based on mechanics of materials and the fractal characteristics of solid cluster size distribution. The permeability of porous media considering the stress sensitivity is related to solid cluster fractal dimension, solid cluster fractal tortuosity dimension, solid cluster minimum diameter and solid cluster maximum diameter, Young's modulus, Poisson's ratio, as well as power index. Every parameter has clear physical meaning without the use of empirical constants. The model predictions of permeability show good agreement with those obtained by the available experimental expression. The proposed model may be conducible to a better understanding of the mechanism for flow in elastic porous media.

  10. Sensitivity analysis on fuel scenario associated magnitudes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martinez, M.; Alvarez-Velarde, F.

    2014-07-01

    Nuclear fuel cycle scenario analyses are needed as a support for policy makers in terms of sustainability, fuel diversity, security of supply, and social and environmental effects. These analyses are usually aimed to the study of the impact of certain hypotheses on some fuel cycle indicators, without considering the uncertainties on those hypotheses. The expert group of the NEA/OECD on Advanced Fuel Cycle Scenarios, where this work is framed, is devoted to fill this gap, laying the foundations for deep analysis of the sensibilities on fuel cycle indicators. (Author)

  11. Dispersion sensitivity analysis & consistency improvement of APFSDS

    Directory of Open Access Journals (Sweden)

    Sangeeta Sharma Panda

    2017-08-01

    In Bore Balloting Motion simulation shows that reduction in residual spin by about 5% results in drastic 56% reduction in first maximum yaw. A correlation between first maximum yaw and residual spin is observed. Results of data analysis are used in design modification for existing ammunition. Number of designs are evaluated numerically before freezing five designs for further soundings. These designs are critically assessed in terms of their comparative performance during In-bore travel & external ballistics phase. Results are validated by free flight trials for the finalised design.

  12. Fixed point sensitivity analysis of interacting structured populations.

    Science.gov (United States)

    Barabás, György; Meszéna, Géza; Ostling, Annette

    2014-03-01

    Sensitivity analysis of structured populations is a useful tool in population ecology. Historically, methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear matrix models, and on single populations. More recently there have been extensions to the sensitivity of nonlinear models, and to communities of interacting populations. Here we derive a fully general mathematical expression for the sensitivity of equilibrium abundances in communities of interacting structured populations. Our method yields the response of an arbitrary function of the stage class abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity analysis to a two-species model of ontogenetic niche shift where each species has two stage classes, juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to violating two of its technical assumptions: the assumption that the community is at a point equilibrium and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a community are also interpreted in a niche theoretical context: we determine how the niche of a structured population is composed of the niches of the individual states, and how the sensitivity of the community depends on niche segregation.

  13. An inexpensive, fast and sensitive quantitative lateral flow magneto-immunoassay for total prostate specific antigen.

    Science.gov (United States)

    Barnett, Jacqueline M; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard

    2014-09-01

    We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format.

  14. Stochastic sensitivity analysis using HDMR and score function

    Indian Academy of Sciences (India)

    Rajib Chowdhury; B N Rao; A Meher Prasad

    2009-12-01

    Probabilistic sensitivities provide an important insight in reliability analysis and often crucial towards understanding the physical behaviour underlying failure and modifying the design to mitigate and manage risk. This article presents a new computational approach for calculating stochastic sensitivities of mechanical systems with respect to distribution parameters of random variables. The method involves high dimensional model representation and score functions associated with probability distribution of a random input. The proposed approach facilitates first-and second-order approximation of stochastic sensitivity measures and statistical simulation. The formulation is general such that any simulation method can be used for the computation such as Monte Carlo, importance sampling, Latin hypercube, etc. Both the probabilistic response and its sensitivities can be estimated from a single probabilistic analysis, without requiring gradients of performance function. Numerical results indicate that the proposed method provides accurate and computationally efficient estimates of sensitivities of statistical moments or reliability of structural system.

  15. Simultaneous Determination of Gold and Platinum by Double Artificial Neural Network Analysis with Flow-injection Chemiluminescence

    Institute of Scientific and Technical Information of China (English)

    Ming Yang LIU; Hai Tao ZHANG; Jun Feng LI; Shu Gui CHEN; Hong Yan WANG

    2006-01-01

    A highly sensitive double artificial neural network (DANN) analysis with flow-injection chemiluminescence (FI-CL) has been developed to simultaneously determine the trace amounts of the gold and platinum in simulated mixed samples, without the boring process.

  16. Application of Stochastic Sensitivity Analysis to Integrated Force Method

    Directory of Open Access Journals (Sweden)

    X. F. Wei

    2012-01-01

    Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.

  17. Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology

    Directory of Open Access Journals (Sweden)

    M. Ratto

    2006-09-01

    Full Text Available In this paper, we discuss the problem of calibration and uncertainty estimation for hydrologic systems from two points of view: a bottom-up, reductionist approach; and a top-down, data-based mechanistic (DBM approach. The two approaches are applied to the modelling of the River Hodder catchment in North-West England. The bottom-up approach is developed using the TOPMODEL, whose structure is evaluated by global sensitivity analysis (GSA in order to specify the most sensitive and important parameters; and the subsequent exercises in calibration and validation are carried out in the light of this sensitivity analysis. GSA helps to improve the calibration of hydrological models, making their properties more transparent and highlighting mis-specification problems. The DBM model provides a quick and efficient analysis of the rainfall-flow data, revealing important characteristics of the catchment-scale response, such as the nature of the effective rainfall nonlinearity and the partitioning of the effective rainfall into different flow pathways. TOPMODEL calibration takes more time and it explains the flow data a little less well than the DBM model. The main differences in the modelling results are in the nature of the models and the flow decomposition they suggest. The "quick'' (63% and "slow'' (37% components of the decomposed flow identified in the DBM model show a clear partitioning of the flow, with the quick component apparently accounting for the effects of surface and near surface processes; and the slow component arising from the displacement of groundwater into the river channel (base flow. On the other hand, the two output flow components in TOPMODEL have a different physical interpretation, with a single flow component (95% accounting for both slow (subsurface and fast (surface dynamics, while the other, very small component (5% is interpreted as an instantaneous surface runoff generated by rainfall falling on areas of

  18. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    Science.gov (United States)

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-01

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  19. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    KAUST Repository

    Navarro Jimenez, M.

    2016-12-26

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  20. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

    Science.gov (United States)

    Navarro Jimenez, M; Le Maître, O P; Knio, O M

    2016-12-28

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  1. Computational analysis of the flow field downstream of flow conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, Asbjoern

    1997-12-31

    Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.

  2. A Sensitivity Analysis of a Pipe Break Accident in a Preliminary Specific Design of the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Jeong, Jae Ho; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is a pool type sodium cooled fast reactor with a thermal power of 392.1 MW which has been developed in accord with an enhanced safety, an efficient utilization of uranium resources and a reduction of a high level waste volume in the Korea Atomic Energy Research Institute (KAERI) since 2012 under a National Nuclear R and D Program. The PGSFR has an inherent safety characteristic owing to the design to have a negative power reactivity coefficient during all operation modes and it has a passive safety characteristic due to the design of a passive decay heat removal circuit. In order to assess the inherent safety features of the PGSFR, a safety analysis was performed for a pipe break accident with MARS-LMR. And, the sensitivity studies were also performed to find the most conservative condition. As a result, the PGSFR was appropriately tripped by a high power to PHTS flow ratio using the method of extracting the PHTS flow rate from the pressure drop. The air flow rate was the most sensitive variable in the sensitivity analysis. Therefore, it is important to know the accurate uncertainty of the air flow rate in the AHX.

  3. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    Science.gov (United States)

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  4. Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Kyu; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2010-04-15

    Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

  5. A Novel Multiobjective Optimization Method Based on Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Tiane Li

    2016-01-01

    Full Text Available For multiobjective optimization problems, different optimization variables have different influences on objectives, which implies that attention should be paid to the variables according to their sensitivity. However, previous optimization studies have not considered the variables sensitivity or conducted sensitivity analysis independent of optimization. In this paper, an integrated algorithm is proposed, which combines the optimization method SPEA (Strength Pareto Evolutionary Algorithm with the sensitivity analysis method SRCC (Spearman Rank Correlation Coefficient. In the proposed algorithm, the optimization variables are worked as samples of sensitivity analysis, and the consequent sensitivity result is used to guide the optimization process by changing the evolutionary parameters. Three cases including a mathematical problem, an airship envelope optimization, and a truss topology optimization are used to demonstrate the computational efficiency of the integrated algorithm. The results showed that this algorithm is able to simultaneously achieve parameter sensitivity and a well-distributed Pareto optimal set, without increasing the computational time greatly in comparison with the SPEA method.

  6. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  7. Quantitative transverse flow assessment using OCT speckle decorrelation analysis

    Science.gov (United States)

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Kang, Jin U.

    2013-03-01

    In this study, we demonstrate the use of inter-Ascan speckle decorrelation analysis of optical coherence tomography (OCT) to assess fluid flow. This method allows quantitative measurement of fluid flow in a plane normal to the scanning beam. To validate this method, OCT images were obtained from a micro fluid channel with bovine milk flowing at different speeds. We also imaged a blood vessel from in vivo animal models and performed speckle analysis to asses blood flow.

  8. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  9. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  10. Uncertainty Quantification and Sensitivity Analysis of Transonic Aerodynamics with Geometric Uncertainty

    Directory of Open Access Journals (Sweden)

    Xiaojing Wu

    2017-01-01

    Full Text Available Airfoil geometric uncertainty can generate aerodynamic characteristics fluctuations. Uncertainty quantification is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty variable to aerodynamic characteristics should be computed by the uncertainty sensitivity analysis. In the paper, Sobol’s analysis is used for uncertainty sensitivity analysis and a nonintrusive polynomial chaos method is used for uncertainty quantification and Sobol’s analysis. It is difficult to describe geometric uncertainty because it needs a lot of input parameters. In order to alleviate the contradiction between the variable dimension and computational cost, a principal component analysis is introduced to describe geometric uncertainty of airfoil. Through this technique, the number of input uncertainty variables can be reduced and typical global deformation modes can be obtained. By uncertainty quantification, we can learn that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region, which is the main reason that transonic drag is sensitive to the geometric uncertainty. The sensitivity analysis shows that the model can be simplified by eliminating unimportant geometric modes. Moreover, which are the most important geometric modes to transonic aerodynamics can be learnt. This is very helpful for airfoil design.

  11. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed.

  12. Acoustic design sensitivity analysis of structural sound radiation

    Institute of Scientific and Technical Information of China (English)

    许智生

    2009-01-01

    This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...

  13. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification...... is carried out by comparing the calculation results with detailed time domain simulation results. With the droop parameters as variables in the power flow analysis, their effects on power sharing and secondary voltage regulation can now be analytically studied, and specialized optimization in the upper level...... control can also be made accordingly. Case studies on power sharing and secondary voltage regulation are carried out using proposed power flow analysis....

  14. Green chemistry and the evolution of flow analysis. A review.

    Science.gov (United States)

    Melchert, Wanessa R; Reis, Boaventura F; Rocha, Fábio R P

    2012-02-10

    Flow analysis has achieved its majority as a well-established tool to solve analytical problems. Evolution of flow-based approaches has been analyzed by diverse points of view, including historical aspects, the commutation concept and the impact on analytical methodologies. In this overview, the evolution of flow analysis towards green analytical chemistry is demonstrated by comparing classical procedures implemented with different flow approaches. The potential to minimize reagent consumption and waste generation and the ability to implement processes unreliable in batch to replace toxic chemicals are also emphasized. Successful applications of greener approaches in flow analysis are also discussed, focusing on the last 10 years.

  15. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  16. Theoretical and numerical approaches to the forward problem and sensitivity calculation of a novel contactless inductive flow tomography (CIFT)

    Science.gov (United States)

    Yin, W.; Peyton, A. J.; Stefani, F.; Gerbeth, G.

    2009-10-01

    A completely contactless flow measurement technique based on the principle of EM induction measurements—contactless inductive flow tomography (CIFT)—has been previously reported by a team based at Forschungszentrum Dresden-Rossendorf (FZD). This technique is suited to the measurement of velocity fields in high conductivity liquids, and the possible applications range from monitoring metal casting and silicon crystal growth in industry to gaining insights into the working of the geodynamo. The forward problem, i.e. calculating the induced magnetic field from a known velocity profile, can be described as a linear relationship when the magnetic Reynolds number is small. Previously, an integral equation method was used to formulate the forward problem; however, although the sensitivity matrices were calculated, they were not explicitly expressed and computation involved the solution of an ill-conditioned system of equations using a so-called deflation method. In this paper, we present the derivation of the sensitivity matrix directly from electromagnetic field theory and the results are expressed very concisely as the cross product of two field vectors. A numerical method based on a finite difference method has also been developed to verify the formulation. It is believed that this approach provides a simple yet fast route to the forward solution of CIFT. Furthermore, a method for sensor design selection based on eigenvalue analysis is presented.

  17. Technical discussions II - Flow cytometric analysis

    NARCIS (Netherlands)

    Cunningham, A; Cid, A; Buma, AGJ

    1996-01-01

    In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been sp

  18. Technical discussions II - Flow cytometric analysis

    NARCIS (Netherlands)

    Cunningham, A; Cid, A; Buma, AGJ

    1996-01-01

    In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been sp

  19. Sensitivity Analysis of a Dynamical System Using C++

    Directory of Open Access Journals (Sweden)

    Donna Calhoun

    1993-01-01

    Full Text Available This article introduces basic principles of first order sensitivity analysis and presents an algorithm that can be used to compute the sensitivity of a dynamical system to a selected parameter. This analysis is performed by extending with sensitivity equations the set of differential equations describing the dynamical system. These additional equations require the evaluation of partial derivatives, and so a technique known as the table algorithm, which can be used to exactly and automatically compute these derivatives, is described. A C++ class which can be used to implement the table algorithm is presented along with a driver routine for evaluating the output of a model and its sensitivity to a single parameter. The use of this driver routine is illustrated with a specific application from environmental hazards modeling.

  20. Theoretical analysis of tsunami generation by pyroclastic flows

    Science.gov (United States)

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  1. A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Mosser David M

    2005-05-01

    Full Text Available Abstract Background The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. Methods To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 106 cells/mL. Leishmania (Leishmania chagasi parasites (stationary-phase were adjusted to 5 × 107 cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18 antibodies and analyzed by flow citometry. Results Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1 β2 integrin. Conclusion Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes.

  2. Analysis of implicit and explicit lattice sensitivities using DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M.R., E-mail: ballmr@mcmaster.ca; Novog, D.R., E-mail: novog@mcmaster.ca; Luxat, J.C., E-mail: luxatj@mcmaster.ca

    2013-12-15

    Highlights: • We developed a way to propagate point-wise perturbations using only WIMS-D4 multigroup data. • The method inherently includes treatment of multi-group implicit sensitivities. • We compared our calculated sensitivities to an industry standard tool (TSUNAMI-1D). • In general, our results agreed well with TSUNAMI-1D. - Abstract: Deterministic lattice physics transport calculations are used extensively within the context of operational and safety analysis of nuclear power plants. As such the sensitivity and uncertainty in the evaluated nuclear data used to predict neutronic interactions and other key transport phenomena are critical topics for research. Sensitivity analysis of nuclear systems with respect to fundamental nuclear data using multi-energy-group discretization is complicated by the dilution dependency of multi-group macroscopic cross-sections as a result of resonance self-shielding. It has become common to group sensitivities into implicit and explicit effects to aid in the understanding of the nature of the sensitivities involved in the calculations, however the overall sensitivity is an integral of these effects. Explicit effects stem from perturbations performed for a specific nuclear data for a given isotope and at a specific energy, and their direct impact on the end figure of merit. Implicit effects stem from resonance self-shielding effects and can change the nature of their own sensitivities at other energies, or that for other reactions or even other isotopes. Quantification of the implicit sensitivity component involves some manner of treatment of resonance parameters in a way that is self-consistent with perturbations occurring in associated multi-group cross-sections. A procedure for assessing these implicit effects is described in the context of the Bondarenko method of self-shielding and implemented using a WIMS-D4 multi-group nuclear library and the lattice solver DRAGON. The resulting sensitivity results were compared

  3. Uncertainty Analysis of the Grazing Flow Impedance Tube

    Science.gov (United States)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  4. Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms

    Science.gov (United States)

    Younes, A.; Delay, F.; Fajraoui, N.; Fahs, M.; Mara, T. A.

    2016-08-01

    The concept of dual flowing continuum is a promising approach for modeling solute transport in porous media that includes biofilm phases. The highly dispersed transit time distributions often generated by these media are taken into consideration by simply stipulating that advection-dispersion transport occurs through both the porous and the biofilm phases. Both phases are coupled but assigned with contrasting hydrodynamic properties. However, the dual flowing continuum suffers from intrinsic equifinality in the sense that the outlet solute concentration can be the result of several parameter sets of the two flowing phases. To assess the applicability of the dual flowing continuum, we investigate how the model behaves with respect to its parameters. For the purpose of this study, a Global Sensitivity Analysis (GSA) and a Statistical Calibration (SC) of model parameters are performed for two transport scenarios that differ by the strength of interaction between the flowing phases. The GSA is shown to be a valuable tool to understand how the complex system behaves. The results indicate that the rate of mass transfer between the two phases is a key parameter of the model behavior and influences the identifiability of the other parameters. For weak mass exchanges, the output concentration is mainly controlled by the velocity in the porous medium and by the porosity of both flowing phases. In the case of large mass exchanges, the kinetics of this exchange also controls the output concentration. The SC results show that transport with large mass exchange between the flowing phases is more likely affected by equifinality than transport with weak exchange. The SC also indicates that weakly sensitive parameters, such as the dispersion in each phase, can be accurately identified. Removing them from calibration procedures is not recommended because it might result in biased estimations of the highly sensitive parameters.

  5. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  6. A Calculus for Control Flow Analysis of Security Protocols

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Nielson, Hanne Riis; Nielson, Flemming

    2004-01-01

    analysis methodology. We pursue an analysis methodology based on control flow analysis in flow logic style and we have previously shown its ability to analyse a variety of security protocols. This paper develops a calculus, LysaNS that allows for much greater control and clarity in the description...

  7. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    Science.gov (United States)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  8. Noise analysis for sensitivity-based structural damage detection

    Institute of Scientific and Technical Information of China (English)

    YIN Tao; ZHU Hong-ping; YU Ling

    2007-01-01

    As vibration-based structural damage detection methods are easily affected by environmental noise, a new statistic-based noise analysis method is proposed together with the Monte Carlo technique to investigate the influence of experimental noise of modal data on sensitivity-based damage detection methods. Different from the commonly used random perturbation technique, the proposed technique is deduced directly by Moore-Penrose generalized inverse of the sensitivity matrix, which does not only make the analysis process more efficient but also can analyze the influence of noise on both frequencies and mode shapes for three commonly used sensitivity-based damage detection methods in a similar way. A one-story portal frame is adopted to evaluate the efficiency of the proposed noise analysis technique.

  9. Abnormal traffic flow data detection based on wavelet analysis

    Directory of Open Access Journals (Sweden)

    Xiao Qian

    2016-01-01

    Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.

  10. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    Science.gov (United States)

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  11. Sensitivity analysis for missing data in regulatory submissions.

    Science.gov (United States)

    Permutt, Thomas

    2016-07-30

    The National Research Council Panel on Handling Missing Data in Clinical Trials recommended that sensitivity analyses have to be part of the primary reporting of findings from clinical trials. Their specific recommendations, however, seem not to have been taken up rapidly by sponsors of regulatory submissions. The NRC report's detailed suggestions are along rather different lines than what has been called sensitivity analysis in the regulatory setting up to now. Furthermore, the role of sensitivity analysis in regulatory decision-making, although discussed briefly in the NRC report, remains unclear. This paper will examine previous ideas of sensitivity analysis with a view to explaining how the NRC panel's recommendations are different and possibly better suited to coping with present problems of missing data in the regulatory setting. It will also discuss, in more detail than the NRC report, the relevance of sensitivity analysis to decision-making, both for applicants and for regulators. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. Sensitivity analysis of a sound absorption model with correlated inputs

    Science.gov (United States)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  13. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-12-31

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  14. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  15. Adjoint based sensitivity analysis of a reacting jet in crossflow

    Science.gov (United States)

    Sashittal, Palash; Sayadi, Taraneh; Schmid, Peter

    2016-11-01

    With current advances in computational resources, high fidelity simulations of reactive flows are increasingly being used as predictive tools in various industrial applications. In order to capture the combustion process accurately, detailed/reduced chemical mechanisms are employed, which in turn rely on various model parameters. Therefore, it would be of great interest to quantify the sensitivities of the predictions with respect to the introduced models. Due to the high dimensionality of the parameter space, methods such as finite differences which rely on multiple forward simulations prove to be very costly and adjoint based techniques are a suitable alternative. The complex nature of the governing equations, however, renders an efficient strategy in finding the adjoint equations a challenging task. In this study, we employ the modular approach of Fosas de Pando et al. (2012), to build a discrete adjoint framework applied to a reacting jet in crossflow. The developed framework is then used to extract the sensitivity of the integrated heat release with respect to the existing combustion parameters. Analyzing the sensitivities in the three-dimensional domain provides insight towards the specific regions of the flow that are more susceptible to the choice of the model.

  16. Sensitivity analysis approach to multibody systems described by natural coordinates

    Science.gov (United States)

    Li, Xiufeng; Wang, Yabin

    2014-03-01

    The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.

  17. Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing

    Directory of Open Access Journals (Sweden)

    Grobusch Martin P

    2011-03-01

    . Conclusions A simple modification of a flow cytometer allows for rapid and reliable detection and quantification of Hz-containing leukocytes and the analysis of differential surface marker expression in the same sample of Hz-containing versus non-Hz-containing leukocytes. Importantly, it distinguishes different maturation stages of parasitized RBC and may be the basis of a rapid no-added-reagent drug sensitivity assay.

  18. Sensitivity analysis of dynamic biological systems with time-delays.

    Science.gov (United States)

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  19. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  20. Sensitivity analysis of the fission gas behavior model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard

    2013-05-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.

  1. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  2. Applying DEA sensitivity analysis to efficiency measurement of Vietnamese universities

    Directory of Open Access Journals (Sweden)

    Thi Thanh Huyen Nguyen

    2015-11-01

    Full Text Available The primary purpose of this study is to measure the technical efficiency of 30 doctorate-granting universities, the universities or the higher education institutes with PhD training programs, in Vietnam, applying the sensitivity analysis of data envelopment analysis (DEA. The study uses eight sets of input-output specifications using the replacement as well as aggregation/disaggregation of variables. The measurement results allow us to examine the sensitivity of the efficiency of these universities with the sets of variables. The findings also show the impact of variables on their efficiency and its “sustainability”.

  3. What Constitutes a "Good" Sensitivity Analysis? Elements and Tools for a Robust Sensitivity Analysis with Reduced Computational Cost

    Science.gov (United States)

    Razavi, Saman; Gupta, Hoshin; Haghnegahdar, Amin

    2016-04-01

    Global sensitivity analysis (GSA) is a systems theoretic approach to characterizing the overall (average) sensitivity of one or more model responses across the factor space, by attributing the variability of those responses to different controlling (but uncertain) factors (e.g., model parameters, forcings, and boundary and initial conditions). GSA can be very helpful to improve the credibility and utility of Earth and Environmental System Models (EESMs), as these models are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. However, conventional approaches to GSA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we identify several important sensitivity-related characteristics of response surfaces that must be considered when investigating and interpreting the ''global sensitivity'' of a model response (e.g., a metric of model performance) to its parameters/factors. Accordingly, we present a new and general sensitivity and uncertainty analysis framework, Variogram Analysis of Response Surfaces (VARS), based on an analogy to 'variogram analysis', that characterizes a comprehensive spectrum of information on sensitivity. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices are contained within the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  4. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Directory of Open Access Journals (Sweden)

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  5. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device.

    Science.gov (United States)

    Choi, Jane Ru; Hu, Jie; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-15

    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.

  6. Gradual Variation Analysis for Groundwater Flow

    CERN Document Server

    Chen, Li

    2010-01-01

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  7. Analysis od Ducted Propellers in Steady Flow

    Science.gov (United States)

    1986-02-01

    P - ..-- ~ - ....- . *.* .*-.... *% * . N 1-.- TABLE OF CONTENTS 1. BACKGROUND. 1 2. VISCOUS EFFECTS IN TIP GAP FLOWS . 4 3. LIFTING LINE...the development of PSF and BPSF, for which the reader is referred to the beforementioned publications. 6 *-3- 2. VISCOUS EFFECTS IN TIP GAP FLOWS One...these considerations still apply. The existance of such a boundary layer is certainly due to viscous effects, but the local gap flow will be primarily

  8. Numerical analysis of cavitation within slanted axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    张睿; 陈红勋

    2013-01-01

    In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated. Compared with the experimental hydraulic performance curves, the numerical results show that the filter-based model is better than the standard k-e model to predict the parameters of hydraulic performance. In cavitation simulation, compared with the experimental results, the proposed numerical method has good predicting ability. Under different cavitation conditions, the internal cavitating flow fields within slanted axial-flow pump are investigated. Compared with flow visualization results, the major internal flow features can be effectively grasped. In order to explore the origin of the cavitation performance breakdown, the Boundary Vorticity Flux (BVF) is introduced to diagnose the cavitating flow fields. The analysis results indicate that the cavitation performance drop is relevant to the instability of cavitating flow on the blade suction surface.

  9. Effects of momentum conservation on the analysis of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Borghini, N.; Dinh, P.M.; Ollitrault, J.-Y.; Poskanzer, A.M.; Voloshin, S.A.

    2002-02-05

    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.

  10. A Global Sensitivity Analysis Methodology for Multi-physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C H; Graziani, F R

    2007-02-02

    Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.

  11. Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow

    Science.gov (United States)

    del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.

    2009-10-01

    The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.

  12. Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor

    Institute of Scientific and Technical Information of China (English)

    Yang Gao; Qi Xia; Guanglan Liao; Tielin Shi

    2011-01-01

    It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.

  13. Structural Optimization of Slender Robot Arm Based on Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2012-01-01

    Full Text Available An effective structural optimization method based on a sensitivity analysis is proposed to optimize the variable section of a slender robot arm. The structure mechanism and the operating principle of a polishing robot are introduced firstly, and its stiffness model is established. Then, a design of sensitivity analysis method and a sequential linear programming (SLP strategy are developed. At the beginning of the optimization, the design sensitivity analysis method is applied to select the sensitive design variables which can make the optimized results more efficient and accurate. In addition, it can also be used to determine the scale of moving step which will improve the convergency during the optimization process. The design sensitivities are calculated using the finite difference method. The search for the final optimal structure is performed using the SLP method. Simulation results show that the proposed structure optimization method is effective in enhancing the stiffness of the robot arm regardless of the robot arm suffering either a constant force or variable forces.

  14. The source of investment cash flow sensitivity in manufacturing firms: Is it asymmetric information or agency costs?

    Directory of Open Access Journals (Sweden)

    Daniel Makina

    2016-09-01

    Full Text Available In the literature, positive investment cash flow sensitivity is attributed to either asymmetric information induced financing constraints or the agency costs of free cash flow. Using data from a sample of 68 manufacturing firms listed on the South African JSE, this paper contributes to the literature by investigating the source of investment cash flow sensitivity. We have found that asymmetric information explains the positive investment cash flow sensitivity better than agency costs. Furthermore, asymmetric information has been observed to be more pronounced in low-dividend-paying firms and small firms. Despite South Africa’s having a developed financial system by international standards, small firms are seen to be financially constrained. We attribute the absence of investment cash flow sensitivity due to agency costs to good corporate governance of South African listed firms. Thus the paper provides further evidence in support of the proposition in the literature that the source of investment cash flow sensitivity may depend on the institutional setting of a country, such as its corporate governance.

  15. Sensitivity Factor Analysis For Unit Commitment In Loaded Lines

    Directory of Open Access Journals (Sweden)

    Lata Chaudhary

    2016-05-01

    Full Text Available In today’s competitive electricity market, it is not possible to settle all contracted transactions of power because of congestion in transmission lines. Usually, the independent system operator seeks to eliminate congestion by rescheduling output power of the generators. But all generators may not have the same effect (sensitivity on the power flow of the congested lines, so this is not an economical way to reschedule output power of all generators for managing congestion. Therefore, in this paper, active power generator sensitivity factor of the generators to the congested lines have been utilized to ascertain the number of generators participating in congestion management. The effectiveness and feasibility of the proposed algorithm have been tested on IEEE 30 bus system

  16. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers.

    Science.gov (United States)

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Drenova, Natalia V; Kornev, Konstantin P; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-05-15

    Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965.

  17. Parametric and experimental analysis using a power flow approach

    Science.gov (United States)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  18. Shape sensitivity analysis in numerical modelling of solidification

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2007-12-01

    Full Text Available The methods of sensitivity analysis constitute a very effective tool on the stage of numerical modelling of casting solidification. It is possible, among others, to rebuilt the basic numerical solution on the solution concerning the others disturbed values of physical and geometrical parameters of the process. In this paper the problem of shape sensitivity analysis is discussed. The non-homogeneous casting-mould domain is considered and the perturbation of the solidification process due to the changes of geometrical dimensions is analyzed. From the mathematical point of view the sensitivity model is rather complex but its solution gives the interesting information concerning the mutual connections between the kinetics of casting solidification and its basic dimensions. In the final part of the paper the example of computations is shown. On the stage of numerical realization the finite difference method has been applied.

  19. Sensitivity analysis in a Lassa fever deterministic mathematical model

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman

    2015-05-01

    Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.

  20. Blurring the Inputs: A Natural Language Approach to Sensitivity Analysis

    Science.gov (United States)

    Kleb, William L.; Thompson, Richard A.; Johnston, Christopher O.

    2007-01-01

    To document model parameter uncertainties and to automate sensitivity analyses for numerical simulation codes, a natural-language-based method to specify tolerances has been developed. With this new method, uncertainties are expressed in a natural manner, i.e., as one would on an engineering drawing, namely, 5.25 +/- 0.01. This approach is robust and readily adapted to various application domains because it does not rely on parsing the particular structure of input file formats. Instead, tolerances of a standard format are added to existing fields within an input file. As a demonstration of the power of this simple, natural language approach, a Monte Carlo sensitivity analysis is performed for three disparate simulation codes: fluid dynamics (LAURA), radiation (HARA), and ablation (FIAT). Effort required to harness each code for sensitivity analysis was recorded to demonstrate the generality and flexibility of this new approach.

  1. Sensitivity analysis for reliable design verification of nuclear turbosets

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Irmela, E-mail: irmela.zentner@edf.f [Lamsid-Laboratory for Mechanics of Aging Industrial Structures, UMR CNRS/EDF, 1, avenue Du General de Gaulle, 92141 Clamart (France); EDF R and D-Structural Mechanics and Acoustics Department, 1, avenue Du General de Gaulle, 92141 Clamart (France); Tarantola, Stefano [Joint Research Centre of the European Commission-Institute for Protection and Security of the Citizen, T.P. 361, 21027 Ispra (Italy); Rocquigny, E. de [Ecole Centrale Paris-Applied Mathematics and Systems Department (MAS), Grande Voie des Vignes, 92 295 Chatenay-Malabry (France)

    2011-03-15

    In this paper, we present an application of sensitivity analysis for design verification of nuclear turbosets. Before the acquisition of a turbogenerator, energy power operators perform independent design assessment in order to assure safe operating conditions of the new machine in its environment. Variables of interest are related to the vibration behaviour of the machine: its eigenfrequencies and dynamic sensitivity to unbalance. In the framework of design verification, epistemic uncertainties are preponderant. This lack of knowledge is due to inexistent or imprecise information about the design as well as to interaction of the rotating machinery with supporting and sub-structures. Sensitivity analysis enables the analyst to rank sources of uncertainty with respect to their importance and, possibly, to screen out insignificant sources of uncertainty. Further studies, if necessary, can then focus on predominant parameters. In particular, the constructor can be asked for detailed information only about the most significant parameters.

  2. Sensitivity analysis of the critical speed in railway vehicle dynamics

    Science.gov (United States)

    Bigoni, D.; True, H.; Engsig-Karup, A. P.

    2014-05-01

    We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without compromising the results. The method is based on sampling methods, cubature rules, high-dimensional model representation and total sensitivity indices. It is applied to a half car with a two-axle Cooperrider bogie, in order to study the sensitivity of the critical speed with respect to the suspension parameters. The importance of a certain suspension component is expressed by the variance in critical speed that is ascribable to it. This proves to be useful in the identification of parameters for which the accuracy of their values is critically important. The approach has a general applicability in many engineering fields and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as part of the virtual homologation procedure and to help engineers during the design phase of complex systems.

  3. Empirical analysis of heterogeneous traffic flow

    NARCIS (Netherlands)

    Ambarwati, L.; Pel, A.J.; Verhaeghe, R.J.; Van Arem, B.

    2013-01-01

    Traffic flow in many developing countries is strongly mixed comprising vehicle types, such as motorcycles, cars, (mini) buses, and trucks; furthermore, traffic flow typically exhibits free inter-lane exchanges. This phenomenon causes a complex vehicle interaction, rendering most existing traffic flo

  4. ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS

    Directory of Open Access Journals (Sweden)

    Jiří Stodůlka

    2015-06-01

    Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.

  5. Effective methods for cash flow analysis.

    Science.gov (United States)

    Sylvestre, J; Urbancic, F R

    1994-07-01

    This article discusses techniques that healthcare financial managers can use to interpret and evaluate information from the statement of cash flows for more effective financial decision-making. The use of these techniques as a basis for systematically planning and controlling cash flows has the potential to benefit all healthcare organizations.

  6. Numerical Analysis of Turbulent Flows in Channels of Complex Geometry

    Science.gov (United States)

    Farbos De Luzan, Charles

    The current study proposes to follow a systematic validated approach to applied fluid mechanics problems in order to evaluate the ability of different computational fluid dynamics (CFD) to be a relevant design tool. This systematic approach involves different operations such as grid sensitivity analyses, turbulence models comparison and appropriate wall treatments, in order to define case-specific optimal parameters for industrial applications. A validation effort is performed on each study, with particle image velocimetry (PIV) experimental results as the validating metric. The first part of the dissertation lays down the principles of validation, and presents the details of a grid sensitivity analysis, as well as a turbulence models benchmark. The models are available in commercial solvers, and in most cases the default values of the equations constants are retained. The validation experimental data is taken with a hot wire, and has served as a reference to validate multiple turbulence models for turbulent flows in channels. In a second part, the study of a coaxial piping system will compare a set of different steady Reynolds-Averaged Navier Stokes (RANS) turbulence models, namely the one equation model Spalart-Almaras, and two-equation-models standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST. The geometry of interest involves a transition from an annulus into a larger one, where highly turbulent phenomena occur, such as recirculation and jet impingement. Based on a set of constraints that are defined in the analysis, a chosen model will be tested on new designs in order to evaluate their performance. The third part of this dissertation will address the steady-state flow patterns in a Viscosity-Sensitive Fluidic Diode (VSFD). This device is used in a fluidics application, and its originality lies in the fact that it does not require a control fluid in order to operate. This section will discuss the

  7. HistoFlex--a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations.

    Science.gov (United States)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David; Alberti, Massimo; Holmstrøm, Kim; Dufva, Martin

    2011-11-21

    A microfluidic device (the HistoFlex) designed to perform and monitor molecular biological assays under dynamic flow conditions on microscope slide-substrates, with special emphasis on analyzing histological tissue sections, is presented. Microscope slides were reversibly sealed onto a cast polydimethylsiloxane (PDMS) insert, patterned with distribution channels and reaction chambers. Topology optimization was used to design reaction chambers with uniform flow conditions. The HistoFlex provided uniform hybridization conditions, across the reaction chamber, as determined by hybridization to microscope slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay for performing in the HistoFlex. The hybridization step was significantly enhanced using flow based incubations due to improved hybridization efficiency. The HistoFlex device enabled a fast miRNA ISH assay (3 hours) which provided higher hybridization signal intensity compared to using conventional techniques (5 h 40 min). We further demonstrate that the improved hybridization efficiency using the HistoFlex permits more complex assays e.g. those comprising sequential hybridization and detection of two miRNAs to be performed with significantly increased sensitivity. The HistoFlex provides a new histological analysis platform that will allow multiple and sequential assays to be performed under their individual optimum assay conditions. Images can subsequently be recorded either in

  8. An Inexpensive, Fast and Sensitive Quantitative Lateral Flow Magneto-Immunoassay for Total Prostate Specific Antigen

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Barnett

    2014-07-01

    Full Text Available We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM to quantify paramagnetic particles (PMPs in immunochromatographic (lateral flow assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format.

  9. A Comparative Analysis of Thermal Flow Sensing in Biomedical Applications

    CERN Document Server

    Khan, Baseerat; Kakkar, Vipan

    2016-01-01

    Flow sensors have diverse applications in the field of biomedical engineering and also in industries. Micromachining of flow sensors has accomplished a new goal when it comes to miniaturization. Due to the scaling in dimensions, power consumption, mass cost, sensitivity and integration with other modules such as wireless telemetry has improvised to a great extent. Thermal flow sensors find wide applications in biomedical such as in hydrocephalus shunts and drug delivery systems. Infrared thermal sensing is used for preclinical diagnosis of breast cancer, for identifying various neurological disorders and for monitoring various muscular movements. In this paper, various modes of thermal flow sensing and transduction methods with respect to different biomedical applications are discussed. Thermal flow sensing is given prime focus because of the simplicity in the design. Finally, a comparison of flow sensing technologies is also presented.

  10. Automated Sensitivity Analysis of Interplanetary Trajectories for Optimal Mission Design

    Science.gov (United States)

    Knittel, Jeremy; Hughes, Kyle; Englander, Jacob; Sarli, Bruno

    2017-01-01

    This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis, and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and demonstrated on sample mission designs.

  11. Lower extremity angle measurement with accelerometers - error and sensitivity analysis

    NARCIS (Netherlands)

    Willemsen, Antoon Th.M.; Frigo, Carlo; Boom, Herman B.K.

    1991-01-01

    The use of accelerometers for angle assessment of the lower extremities is investigated. This method is evaluated by an error-and-sensitivity analysis using healthy subject data. Of three potential error sources (the reference system, the accelerometers, and the model assumptions) the last is found

  12. Omitted Variable Sensitivity Analysis with the Annotated Love Plot

    Science.gov (United States)

    Hansen, Ben B.; Fredrickson, Mark M.

    2014-01-01

    The goal of this research is to make sensitivity analysis accessible not only to empirical researchers but also to the various stakeholders for whom educational evaluations are conducted. To do this it derives anchors for the omitted variable (OV)-program participation association intrinsically, using the Love plot to present a wide range of…

  13. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  14. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  15. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    NARCIS (Netherlands)

    Picone, S.; Valstar, J.R.; Gaans, van P.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2012-01-01

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the v

  16. Detecting tipping points in ecological models with sensitivity analysis

    NARCIS (Netherlands)

    Broeke, G.A. ten; Voorn, van G.A.K.; Kooi, B.W.; Molenaar, J.

    2016-01-01

    Simulation models are commonly used to understand and predict the developmentof ecological systems, for instance to study the occurrence of tipping points and their possibleecological effects. Sensitivity analysis is a key tool in the study of model responses to change s in conditions. The applicabi

  17. Detecting Tipping points in Ecological Models with Sensitivity Analysis

    NARCIS (Netherlands)

    Broeke, ten G.A.; Voorn, van G.A.K.; Kooi, B.W.; Molenaar, Jaap

    2016-01-01

    Simulation models are commonly used to understand and predict the development of ecological systems, for instance to study the occurrence of tipping points and their possible ecological effects. Sensitivity analysis is a key tool in the study of model responses to changes in conditions. The appli

  18. Methods for global sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.

    2017-01-01

    Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to

  19. Design tradeoff studies and sensitivity analysis. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-25

    The results of the design trade-off studies and the sensitivity analysis of Phase I of the Near Term Hybrid Vehicle (NTHV) Program are presented. The effects of variations in the design of the vehicle body, propulsion systems, and other components on vehicle power, weight, cost, and fuel economy and an optimized hybrid vehicle design are discussed. (LCL)

  20. Numerical Investigation on Heat and Flow Characteristics of Temperature-Sensitive Ferrofluid in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2013-01-01

    Full Text Available The objective of this paper is numerically to study the heat and flow characteristics of temperature-sensitive ferrofluid in the square cavity with and without the magnetic intensity. The numerical model was developed to predict the behavior of the ferrofluid using finite element method (FEM and showed good agreement with the existing data within 5% at all Rayleigh number ranges from 103 to 106. Natural convection and heat transfer characteristics of the ferrofluids within the tested cavity were found to depend on both magnetic intensity and magnetic volume fractions of magnetite. In addition, the mean Nusselt numbers and mean velocity of the ferrofluid in a square cavity were increased with the rise of the magnetic intensities and increased by 23.2% and 143.7%, respectively, at both magnetic intensity of H = 10000 A/m and the elapsed time of t = 30000 seconds.

  1. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    Science.gov (United States)

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  2. Integrative "omic" analysis for tamoxifen sensitivity through cell based models.

    Directory of Open Access Journals (Sweden)

    Liming Weng

    Full Text Available It has long been observed that tamoxifen sensitivity varies among breast cancer patients. Further, ethnic differences of tamoxifen therapy between Caucasian and African American have also been reported. Since most studies have been focused on Caucasian people, we sought to comprehensively evaluate genetic variants related to tamoxifen therapy in African-derived samples. An integrative "omic" approach developed by our group was used to investigate relationships among endoxifen (an active metabolite of tamoxifen sensitivity, SNP genotype, mRNA and microRNA expressions in 58 HapMap YRI lymphoblastoid cell lines. We identified 50 SNPs that associate with cellular sensitivity to endoxifen through their effects on 34 genes and 30 microRNA expression. Some of these findings are shared in both Caucasian and African samples, while others are unique in the African samples. Among gene/microRNA that were identified in both ethnic groups, the expression of TRAF1 is also correlated with tamoxifen sensitivity in a collection of 44 breast cancer cell lines. Further, knock-down TRAF1 and over-expression of hsa-let-7i confirmed the roles of hsa-let-7i and TRAF1 in increasing tamoxifen sensitivity in the ZR-75-1 breast cancer cell line. Our integrative omic analysis facilitated the discovery of pharmacogenomic biomarkers that potentially affect tamoxifen sensitivity.

  3. Differentially Private Data Analysis of Social Networks via Restricted Sensitivity

    CERN Document Server

    Blocki, Jeremiah; Datta, Anupam; Sheffet, Or

    2012-01-01

    We introduce the notion of restricted sensitivity as an alternative to global and smooth sensitivity to improve accuracy in differentially private data analysis. The definition of restricted sensitivity is similar to that of global sensitivity except that instead of quantifying over all possible datasets, we take advantage of any beliefs about the dataset that a querier may have, to quantify over a restricted class of datasets. Specifically, given a query f and a hypothesis H about the structure of a dataset D, we show generically how to transform f into a new query f_H whose global sensitivity (over all datasets including those that do not satisfy H) matches the restricted sensitivity of the query f. Moreover, if the belief of the querier is correct (i.e., D is in H) then f_H(D) = f(D). If the belief is incorrect, then f_H(D) may be inaccurate. We demonstrate the usefulness of this notion by considering the task of answering queries regarding social-networks, which we model as a combination of a graph and a ...

  4. Fractal analysis of flow of the river Warta

    Science.gov (United States)

    Radziejewski, Maciej; Kundzewicz, Zbigniew W.

    1997-12-01

    A long time series (170 years) of daily flows of the river Warta (Poland) are subject to fractal analysis. A binary variable (renewal stream) illustrating excursions of the process of flow is examined. The raw series is subject to de-seasonalization and normalization. Fractal dimensions of crossings of Warta flows are determined using a novel variant of the box-counting method. Temporal variability of the flow process is studied by determination of fractal dimensions for shifted horizons of 10 or 30 years length. Spectral properties are compared between the time series of flows, and the fractional Brownian motion which describes both the fractal structure of the process and the Hurst phenomenon. The approach may be useful in further studies of non-stationary of the process of flow, analysis of extreme hydrological events and synthetic flow generation.

  5. Analysis of Stokes flow through periodic permeable tubules

    Directory of Open Access Journals (Sweden)

    A.M. Siddiqui

    2017-03-01

    Full Text Available This article reports the detailed analysis of the Stokes flow through permeable tubes. The objective of this investigation was to search for exact solutions to the Stokes flow and thereby observe the effects on radial flow component, provided the permeability on the tubular surface is an elementary trigonometric function. Mathematical expressions for the pressure distribution, velocity components, volume flux, average wall shear stress and leakage flux are presented explicitly. Graphical analysis of the fluid flow is presented for a set of parametric values. Important conclusions are drawn for Stokes flow through tubes with low as well as high permeability. The classical Poiseuille flow is presented as a limiting case of this immense study of Stokes flow.

  6. Mean flow stability analysis of oscillating jet experiments

    CERN Document Server

    Oberleithner, Kilian; Soria, Julio

    2014-01-01

    Linear stability analysis is applied to the mean flow of an oscillating round jet with the aim to investigate the robustness and accuracy of mean flow stability wave models. The jet's axisymmetric mode is excited at the nozzle lip through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1 % to 100 %. The instantaneous flow field is measured via particle image velocimetry and decomposed into a mean and periodic part utilizing proper orthogonal decomposition. Local linear stability analysis is applied to the measured mean flow adopting a weakly nonparallel flow approach. The resulting global perturbation field is carefully compared to the measurements in terms of spatial growth rate, phase velocity, and phase and amplitude distribution. It is shown that the stability wave model accurately predicts the excited flow oscillations during their entire growth phase and during a large part of their decay phase. The stability wave model applies over a wide range of forcing amplitudes, showing no pr...

  7. Multiobjective sensitivity analysis and optimization of a distributed hydrologic model MOBIDIC

    Directory of Open Access Journals (Sweden)

    J. Yang

    2014-03-01

    Full Text Available Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives which arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for a distributed hydrologic model MOBIDIC, which combines two sensitivity analysis techniques (Morris method and State Dependent Parameter method with a multiobjective optimization (MOO approach ϵ-NSGAII. This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina with three objective functions, i.e., standardized root mean square error of logarithmic transformed discharge, water balance index, and mean absolute error of logarithmic transformed flow duration curve, and its results were compared with those with a single objective optimization (SOO with the traditional Nelder–Mead Simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show: (1 the two sensitivity analysis techniques are effective and efficient to determine the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization; (2 both MOO and SOO lead to acceptable simulations, e.g., for MOO, average Nash–Sutcliffe is 0.75 in the calibration period and 0.70 in the validation period; (3 evaporation and surface runoff shows similar importance to watershed water balance while the contribution of baseflow can be ignored; (4 compared to SOO which was dependent of initial starting location, MOO provides more insight on parameter sensitivity and conflicting characteristics of these objective functions. Multiobjective sensitivity analysis and

  8. Progress toward the analysis of complex propulsion installation flow phenomenon

    Science.gov (United States)

    Kern, P. R. A.; Hopcroft, R. G.

    1983-01-01

    A trend toward replacement of parametric model testing with parametric analysis for the design of aircraft is driven by the rapidly escalating cost of wind tunnel testing, the increasing availability of large fast computers, and powerful numerical flow algorithms. In connection with the complex flow phenomena characteristic of propulsion installations, it is now necessary to employ both parametric analysis and testing for design procedures. Powerful flow analysis techniques are available to predict local flow phenomena. However, the employment of these techniques is very expensive. It is, therefore, necessary to link these analyses with less powerful and less expensive procedures for an accurate analysis of propulsion installation flowfields. However, the interfacing and coupling processes needed are not available. The present investigation is concerned with progress made regarding the development of suitable linking methods. Attention is given to methods of analysis for predicting the flow around a nacelle coupled to a highly swept wing.

  9. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    Energy Technology Data Exchange (ETDEWEB)

    Crissman, Harry A.; Cui, H. H. (H. Helen); Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  10. Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis.

    Science.gov (United States)

    Nestorov, I A; Aarons, L J; Rowland, M

    1997-08-01

    Sensitivity analysis studies the effects of the inherent variability and uncertainty in model parameters on the model outputs and may be a useful tool at all stages of the pharmacokinetic modeling process. The present study examined the sensitivity of a whole-body physiologically based pharmacokinetic (PBPK) model for the distribution kinetics of nine 5-n-alkyl-5-ethyl barbituric acids in arterial blood and 14 tissues (lung, liver, kidney, stomach, pancreas, spleen, gut, muscle, adipose, skin, bone, heart, brain, testes) after i.v. bolus administration to rats. The aims were to obtain new insights into the model used, to rank the model parameters involved according to their impact on the model outputs and to study the changes in the sensitivity induced by the increase in the lipophilicity of the homologues on ascending the series. Two approaches for sensitivity analysis have been implemented. The first, based on the Matrix Perturbation Theory, uses a sensitivity index defined as the normalized sensitivity of the 2-norm of the model compartmental matrix to perturbations in its entries. The second approach uses the traditional definition of the normalized sensitivity function as the relative change in a model state (a tissue concentration) corresponding to a relative change in a model parameter. Autosensitivity has been defined as sensitivity of a state to any of its parameters; cross-sensitivity as the sensitivity of a state to any other states' parameters. Using the two approaches, the sensitivity of representative tissue concentrations (lung, liver, kidney, stomach, gut, adipose, heart, and brain) to the following model parameters: tissue-to-unbound plasma partition coefficients, tissue blood flows, unbound renal and intrinsic hepatic clearance, permeability surface area product of the brain, have been analyzed. Both the tissues and the parameters were ranked according to their sensitivity and impact. The following general conclusions were drawn: (i) the overall

  11. In-office bleaching effects on the pulp flow and tooth sensitivity – case series

    Directory of Open Access Journals (Sweden)

    Andrés Felipe CARTAGENA

    2015-01-01

    Full Text Available Laser Doppler flowmetry (LDF is a noninvasive method capable of evaluating variations in pulp blood flow (PBF and pulp vitality. This method has thus far not been used to assess changes in blood flow after in-office bleaching. The aim of this case series report was to measure changes in PBF by LDF in the upper central incisor of three patients submitted to in-office bleaching. The buccal surfaces of the upper arch were bleached with a single session of 35% hydrogen peroxide gel with three 15-min applications. The color was recorded using a value-oriented Vita shade guide before in-office bleaching and one week after the procedure. The tooth sensitivity (TS in a verbal scale was reported, and PBF was assessed by LDF before, immediately, and one week after the bleaching session. The lower arch was submitted to dental bleaching but not used for data assessment. A whitening degree of 3 to 4 shade guide units was detected. All participants experienced moderate to considerable TS after the procedure. The PBF readings reduced 20% to 40% immediately after bleaching. One week post-bleaching, TS and PBF were shown to be equal to baseline values. A reversible decrease of PBF was detected immediately after bleaching, which recovered to the baseline values or showed a slight increase sooner than one week post-bleaching. The LDF method allows detection of pulp blood changes in teeth submitted to in-office bleaching, but further studies are still required.

  12. In-office bleaching effects on the pulp flow and tooth sensitivity - case series.

    Science.gov (United States)

    Cartagena, Andrés Felipe; Parreiras, Sibelli Olivieri; Loguercio, Alessandro Dourado; Reis, Alessandra; Campanha, Nara Hellen

    2015-01-01

    Laser Doppler flowmetry (LDF) is a noninvasive method capable of evaluating variations in pulp blood flow (PBF) and pulp vitality. This method has thus far not been used to assess changes in blood flow after in-office bleaching. The aim of this case series report was to measure changes in PBF by LDF in the upper central incisor of three patients submitted to in-office bleaching. The buccal surfaces of the upper arch were bleached with a single session of 35% hydrogen peroxide gel with three 15-min applications. The color was recorded using a value-oriented Vita shade guide before in-office bleaching and one week after the procedure. The tooth sensitivity (TS) in a verbal scale was reported, and PBF was assessed by LDF before, immediately, and one week after the bleaching session. The lower arch was submitted to dental bleaching but not used for data assessment. A whitening degree of 3 to 4 shade guide units was detected. All participants experienced moderate to considerable TS after the procedure. The PBF readings reduced 20% to 40% immediately after bleaching. One week post-bleaching, TS and PBF were shown to be equal to baseline values. A reversible decrease of PBF was detected immediately after bleaching, which recovered to the baseline values or showed a slight increase sooner than one week post-bleaching. The LDF method allows detection of pulp blood changes in teeth submitted to in-office bleaching, but further studies are still required.

  13. CLUSTERING ANALYSIS OF DEBRIS-FLOW STREAMS

    Institute of Scientific and Technical Information of China (English)

    Yuan-Fan TSAI; Huai-Kuang TSAI; Cheng-Yan KAO

    2004-01-01

    The Chi-Chi earthquake in 1999 caused disastrous landslides, which triggered numerous debris flows and killed hundreds of people. A critical rainfall intensity line for each debris-flow stream is studied to prevent such a disaster. However, setting rainfall lines from incomplete data is difficult, so this study considered eight critical factors to group streams, such that streams within a cluster have similar rainfall lines. A genetic algorithm is applied to group 377 debris-flow streams selected from the center of an area affected by the Chi-Chi earthquake. These streams are grouped into seven clusters with different characteristics. The results reveal that the proposed method effectively groups debris-flow streams.

  14. ECCS flow verification to support transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, C.; Jacobs, R.H.; Ballard, J.E. [Commonwealth Edison Co., Chicago, IL (United States). Nuclear Fuel Services Dept.

    1994-12-31

    The RETRAN code has been used to develop a model of the Emergency Core Cooling System (ECCS). The model was developed in order to provide conservative injection flow data to be used in various LOCA and non-LOCA analyses and evaluations and to ensure that ECCS pump runout does not occur. The analyses were also needed in order to address a number of ECCS performance issues identified by Westinghouse. These issues include how previous analyses modeled miniflow, RCP seal injection, ECCS branch line resistance, pump suction boost during recirculation, injection line flow imbalances, and, of particular importance, ECCS flow measurement inaccuracies. In turn, these issues directly impact pump runout concerns, Technical Specification verification, and ECCS injection flow during transient conditions. The RETRAN ECCS model has proven to be quite versatile, easy to use, and requires only minimal information about the physical construction and performance of the ECCS system.

  15. Sensitivity and Uncertainty Analysis of the GFR MOX Fuel Subassembly

    Science.gov (United States)

    Lüley, J.; Vrban, B.; Čerba, Š.; Haščík, J.; Nečas, V.; Pelloni, S.

    2014-04-01

    We performed sensitivity and uncertainty analysis as well as benchmark similarity assessment of the MOX fuel subassembly designed for the Gas-Cooled Fast Reactor (GFR) as a representative material of the core. Material composition was defined for each assembly ring separately allowing us to decompose the sensitivities not only for isotopes and reactions but also for spatial regions. This approach was confirmed by direct perturbation calculations for chosen materials and isotopes. Similarity assessment identified only ten partly comparable benchmark experiments that can be utilized in the field of GFR development. Based on the determined uncertainties, we also identified main contributors to the calculation bias.

  16. Application of Sensitivity Analysis in Design of Sustainable Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Hesselholt, Allan Tind

    2007-01-01

    satisfies the design requirements and objectives. In the design of sustainable Buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions. A sensitivity analysis makes it possible...... to identify the most important parameters in relation to building performance and to focus design and optimization of sustainable buildings on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage of the building design process, where...

  17. Rethinking Sensitivity Analysis of Nuclear Simulations with Topology

    Energy Technology Data Exchange (ETDEWEB)

    Dan Maljovec; Bei Wang; Paul Rosen; Andrea Alfonsi; Giovanni Pastore; Cristian Rabiti; Valerio Pascucci

    2016-01-01

    In nuclear engineering, understanding the safety margins of the nuclear reactor via simulations is arguably of paramount importance in predicting and preventing nuclear accidents. It is therefore crucial to perform sensitivity analysis to understand how changes in the model inputs affect the outputs. Modern nuclear simulation tools rely on numerical representations of the sensitivity information -- inherently lacking in visual encodings -- offering limited effectiveness in communicating and exploring the generated data. In this paper, we design a framework for sensitivity analysis and visualization of multidimensional nuclear simulation data using partition-based, topology-inspired regression models and report on its efficacy. We rely on the established Morse-Smale regression technique, which allows us to partition the domain into monotonic regions where easily interpretable linear models can be used to assess the influence of inputs on the output variability. The underlying computation is augmented with an intuitive and interactive visual design to effectively communicate sensitivity information to the nuclear scientists. Our framework is being deployed into the multi-purpose probabilistic risk assessment and uncertainty quantification framework RAVEN (Reactor Analysis and Virtual Control Environment). We evaluate our framework using an simulation dataset studying nuclear fuel performance.

  18. Sensitivity of numerical simulation models of debris flow to the rheological parameters and application in the engineering environment

    Science.gov (United States)

    Rosso, M.; Sesenna, R.; Magni, L.; Demurtas, L.; Uras, G.

    2009-04-01

    bidimensional and monodimensional commercial models for the simulation of debris flow, in particular because of the reconstruction of famous and expected events in the river basin of the Comboè torrent (Aosta Valley, Italy), it has been possible to reach careful consideration about the calibration of the rheological parameters and the sensitivity of simulation models, specifically about the variability of them. The geomechanical and volumetric characteristics of the sediment at the bottom of the debris could produce uncertainties in model implementation, above all in not exclusively cinematic models, mostly influenced by the rheological parameters. The parameter that mainly influences the final result of the applied numerical models is the volumetric solid concentration that is variable in space and time during the debris flow propagation. In fact rheological parameters are described by a power equation of volumetric concentration. The potentiality and the suitability of a numerical code in the engineering environmental application have to be consider not referring only to the quality and amount of results, but also to the sensibility regarding the parameters variability that are bases of the inner ruotines of the program. Therefore, a suitable model will have to be sensitive to the variability of parameters that the customer can calculate with greater precision. On the other side, it will have to be sufficiently stable to the variation of those parameters that the customer cannot define univocally, but only by range of variation. One of the models utilized for the simulation of debris flow on the Comboè Torrent has been demonstrated as an heavy influenced example by small variation of rheological parameters. Consequently, in spite of the possibility to lead accurate procedures of back-analysis about a recent intense event, it has been found a difficulty in the calibration of the concentration for new expected events. That involved an extreme variability of the final results

  19. Sensitivity Analysis of a Simplified Fire Dynamic Model

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2015-01-01

    This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity analysis can be used when individual parameters affecting fire safety are assessed...... are the most significant in each case. We apply the Sobol method, which is a quantitative method that gives the percentage of the total output variance that each parameter accounts for. The most important parameter is found to be the energy release rate that explains 92% of the uncertainty in the calculated...... results for the period before thermal penetration (tp) has occurred. The analysis is also done for all combinations of two parameters in order to find the combination with the largest effect. The Sobol total for pairs had the highest value for the combination of energy release rate and area of opening...

  20. Stereo Scene Flow for 3D Motion Analysis

    CERN Document Server

    Wedel, Andreas

    2011-01-01

    This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot

  1. Finite element analysis of inviscid subsonic boattail flow

    Science.gov (United States)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  2. Flow networks analysis and optimization of repairable flow networks, networks with disturbed flows, static flow networks and reliability networks

    CERN Document Server

    Todinov, Michael T

    2013-01-01

    Repairable flow networks are a new area of research, which analyzes the repair and flow disruption caused by failures of components in static flow networks. This book addresses a gap in current network research by developing the theory, algorithms and applications related to repairable flow networks and networks with disturbed flows. The theoretical results presented in the book lay the foundations of a new generation of ultra-fast algorithms for optimizing the flow in networks after failures or congestion, and the high computational speed creates the powerful possibility of optimal control

  3. Subsurface stormflow modeling with sensitivity analysis using a Latin-hypercube sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, J.P.; Toran, L.E.; Morris, M.D. [Oak Ridge National Lab., TN (United States); Wilson, G.V. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Plant and Soil Science

    1994-09-01

    Subsurface stormflow, because of its dynamic and nonlinear features, has been a very challenging process in both field experiments and modeling studies. The disposal of wastes in subsurface stormflow and vadose zones at Oak Ridge National Laboratory, however, demands more effort to characterize these flow zones and to study their dynamic flow processes. Field data and modeling studies for these flow zones are relatively scarce, and the effect of engineering designs on the flow processes is poorly understood. On the basis of a risk assessment framework and a conceptual model for the Oak Ridge Reservation area, numerical models of a proposed waste disposal site were built, and a Latin-hypercube simulation technique was used to study the uncertainty of model parameters. Four scenarios, with three engineering designs, were simulated, and the effectiveness of the engineering designs was evaluated. Sensitivity analysis of model parameters suggested that hydraulic conductivity was the most influential parameter. However, local heterogeneities may alter flow patterns and result in complex recharge and discharge patterns. Hydraulic conductivity, therefore, may not be used as the only reference for subsurface flow monitoring and engineering operations. Neither of the two engineering designs, capping and French drains, was found to be effective in hydrologically isolating downslope waste trenches. However, pressure head contours indicated that combinations of both designs may prove more effective than either one alone.

  4. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  5. A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja E. M.

    2015-11-21

    Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  6. High order sensitivity analysis of complex, coupled systems

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The Sobieszczanski-Sobieski (1988) algorithm is extended to include second- and higher-order derivatives while retaining the obviation of finite-differencing of the system analysis. This is accomplished by means of a recursive application of the same implicit function theorem as in the original algorithm. In optimization, the computational cost of the higher-order derivatives is relative to the aggregate cost of analysis together with a repetition of the first-order sensitivity analysis as often as is required to produce the equivalent information by successive linearizations within move limits.

  7. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Rong-Liang; Xu, Xu-Ping; Liu, Tian-Cai; Zhou, Jian-Wei; Wang, Xian-Guo; Ren, Zhi-Qi [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong (China); Hao, Fen [DaAn Gene Co. Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Guangzhou 510515 (China); Wu, Ying-Song, E-mail: wg@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong (China)

    2015-09-03

    Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (H{sub T}) and the control line (H{sub C}); the H{sub T}/H{sub C} ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0–1000 IU mL{sup −1}) for AFP with a low limit of detection (0.1 IU mL{sup −1}) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing. - Highlights: • Europium (III) chelate microparticles was used as a label for LIFA. • Quantitative detection by using H{sub T}/H{sub C} ratio was achieved. • LIFA for simple and rapid AFP detection in human serum. • The sensitivity and linearity was more excellent compared with QD-based ICTS. • This method could be developed for rapid point-of-care screening.

  8. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    Science.gov (United States)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  9. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis.

    Science.gov (United States)

    Boyajian, R A; Schwend, R B; Wolfe, M M; Bickerton, R E; Otis, S M

    1995-01-01

    Ultrasound-derived volumetric flow analysis may be useful in answering questions of basic physiological interest in the cerebrovascular circulation. Using this technique, the authors have sought to describe quantitatively the complete concurrent flow relations among all four arteries supplying the brain. The aim of this study of normal subjects was to determine the relative flow contributions of the anterior (internal carotid arteries) and posterior (vertebral arteries) cerebral circulation. Comparisons between the observed and theoretically expected anterior and posterior flow distribution would provide an opportunity to assess traditional rheological conceptions in vivo. Pulsed color Doppler ultrasonography was used to measure mean flow rates in the internal carotid and vertebral arteries in 21 normal adults. The anterior circulation (internal carotid arteries bilaterally) carried 82% of the brain's blood supply and comprised 67% of the total vascular cross-sectional area. These values demonstrate precise concordance between observations in vivo and the theoretically derived (Hagen-Poiseuille) expected flow distribution. These cerebrovascular findings support the traditional conception of macroscopic blood flow. Further studies using ultrasound-derived volumetric analysis of the brain's arterial flow relations may illuminate the vascular pathophysiology underlying aging, cerebral ischemia, and dementias.

  10. Efficient sensitivity analysis and optimization of a helicopter rotor

    Science.gov (United States)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  11. Analysis of chromosome damage for biodosimetry using imaging flow cytometry.

    Science.gov (United States)

    Beaton, L A; Ferrarotto, C; Kutzner, B C; McNamee, J P; Bellier, P V; Wilkins, R C

    2013-08-30

    The dicentric chromosome assay (DCA), which involves counting the frequency of dicentric chromosomes in mitotic lymphocytes and converting it to a dose-estimation for ionizing radiation exposure, is considered to be the gold standard for radiation biodosimetry. Furthermore, for emergency response, the DCA has been adapted for triage by simplifying the scoring method [1]. With the development of new technologies such as the imaging flow cytometer, it may now be possible to adapt this microscope-based method to an automated cytometry method. This technology allows the sensitivity of microscopy to be maintained while adding the increased throughput of flow cytometry. A new protocol is being developed to adapt the DCA to the imaging cytometer in order to further increase the rapid determination of a biological dose. Peripheral blood mononuclear cells (PBMC) were isolated from ex vivo irradiated whole blood samples using a density gradient separation method and cultured with PHA and Colcemid. After 48h incubation, the chromosomes were isolated, stained for DNA content with propidium iodide (PI) and labelled with a centromere marker. Stained chromosomes were then analyzed on the ImageStream(×) (EMD-Millipore, Billerica, MA). Preliminary results indicate that individual chromosomes can be identified and mono- and dicentric chromosomes can be differentiated by imaging cytometry. A dose response curve was generated using this technology. The details of the method and the dose response curve are presented and compared to traditional microscope scoring. Imaging cytometry is a new technology which enables the rapid, automated analysis of fluorescently labelled chromosomes. Adapting the dicentric assay to this technology has the potential for high throughput analysis for mass casualty events.

  12. Visualization, Selection, and Analysis of Traffic Flows.

    Science.gov (United States)

    Scheepens, Roeland; Hurter, Christophe; van de Wetering, Huub; van Wijk, Jarke J

    2016-01-01

    Visualization of the trajectories of moving objects leads to dense and cluttered images, which hinders exploration and understanding. It also hinders adding additional visual information, such as direction, and makes it difficult to interactively extract traffic flows, i.e., subsets of trajectories. In this paper we present our approach to visualize traffic flows and provide interaction tools to support their exploration. We show an overview of the traffic using a density map. The directions of traffic flows are visualized using a particle system on top of the density map. The user can extract traffic flows using a novel selection widget that allows for the intuitive selection of an area, and filtering on a range of directions and any additional attributes. Using simple, visual set expressions, the user can construct more complicated selections. The dynamic behaviors of selected flows may then be shown in annotation windows in which they can be interactively explored and compared. We validate our approach through use cases where we explore and analyze the temporal behavior of aircraft and vessel trajectories, e.g., landing and takeoff sequences, or the evolution of flight route density. The aircraft use cases have been developed and validated in collaboration with domain experts.

  13. Sensitivity analysis of influencing parameters in cavern stability

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Abdollahipour; Reza Rahmannejad

    2012-01-01

    In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and σc have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and σc affect the deformability; such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality (RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement.

  14. Linking ecological sensitivity to hydrological information in perspective of flow-ecology compliance status and water management

    Science.gov (United States)

    Lathouri, Maria; Klaar, Megan; Hannah, David; Dunbar, Mike; Futter, Alison; England, Judy; Warren, Mark

    2016-04-01

    Increasing pressures and climate change effects on water resources suggest that we may need to re-consider flow regulations in the context of river ecological sensitivity to abstraction, and how this can be better integrated into flow standards. An increasing number of ecosystems have been identified as vulnerable to hydrological change. Different flow pressures, especially very low flows, can be can be very destructive to aquatic biodiversity. However, although this vulnerability is recognized, knowledge is lacking regarding the most ecologically sensitive regimes to hydrology and associated water stress and habitat disturbance. In addition, any interaction between hydromorphology and river ecology is still generally poorly understood - particularly in quantitative terms. To further understand the relationships between hydrology and ecology and to help us protect the long term future of the water environment for water resources management, the present study is focused on underpinning different aspects of flow pressures on ecology and establishing quantitative relationships between physicochemical factors, hydrological pressures and biological indicators. This includes carrying-out a review of existing typology approaches to grouping water bodies on the basis of similar ecological sensitivity to flow and therefore to evaluate the ecological impacts of the flow regime alterations. Explicitly generalised additive models are applied to demonstrate a relationship between ecology (macroinvertebrate) scores and flow pressure data, including geographical, geological and physical habitat conditions. This evidence base will to be used to further recommend ecologically appropriate flow regimes in rivers to help provide efficient flow management practices and support the classification of the ecological status under the Water Framework Directive.

  15. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  16. An overview of the design and analysis of simulation experiments for sensitivity analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2005-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models. This review surveys 'classic' and 'modern' designs for experiments with simulation models. Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc. These designs

  17. Flow analysis of C. elegans swimming

    Science.gov (United States)

    Montenegro-Johnson, Thomas; Gagnon, David; Arratia, Paulo; Lauga, Eric

    2015-11-01

    Improved understanding of microscopic swimming has the potential to impact numerous biomedical and industrial processes. A crucial means of analyzing these systems is through experimental observation of flow fields, from which it is important to be able to accurately deduce swimmer physics such as power consumption, drag forces, and efficiency. We examine the swimming of the nematode worm C. elegans, a model system for undulatory micro-propulsion. Using experimental data of swimmer geometry and kinematics, we employ the regularized stokeslet boundary element method to simulate the swimming of this worm outside the regime of slender-body theory. Simulated flow fields are then compared with experimentally extracted values confined to the swimmer beat plane, demonstrating good agreement. We finally address the question of how to estimate three-dimensional flow information from two-dimensional measurements.

  18. Through flow analysis of pumps and fans

    Science.gov (United States)

    Neal, A. N.

    1980-08-01

    Incompressible through flow calculations in axial, mixed and centrifugal flow pumps and fans are described. An iterative scheme is used. A simple blade to blade model is applied on the surfaces of revolution defined by the meridional streamlines. This defines the fluid properties and the mean stream surface (S2 surface) for the next meridional solution. A computer program is available allowing the method to be applied for design purposes. APL is used for input and output and FORTRAN IV for computation. A typical calculation requires 30 sec of Univac 1100 time.

  19. The Methods of Sensitivity Analysis and Their Usage for Analysis of Multicriteria Decision

    Directory of Open Access Journals (Sweden)

    Rūta Simanavičienė

    2011-08-01

    Full Text Available In this paper we describe the application's fields of the sensitivity analysis methods. We pass in review the application of these methods in multiple criteria decision making, when the initial data are numbers. We formulate the problem, which of the sensitivity analysis methods is more effective for the usage in the decision making process.Article in Lithuanian

  20. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Maagaard, Steffen; Østergård, Torben

    2017-01-01

    Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring...... a multivariate design space. As case study, we consider building performance simulations of a 15.000 m² educational centre with respect to energy demand, thermal comfort, and daylight....

  1. An analytic method for sensitivity analysis of complex systems

    CERN Document Server

    Zhu, Yueying; Li, Wei; Cai, Xu

    2016-01-01

    Sensitivity analysis is concerned with understanding how the model output depends on uncertainties (variances) in inputs and then identifies which inputs are important in contributing to the prediction imprecision. Uncertainty determination in output is the most crucial step in sensitivity analysis. In the present paper, an analytic expression, which can exactly evaluate the uncertainty in output as a function of the output's derivatives and inputs' central moments, is firstly deduced for general multivariate models with given relationship between output and inputs in terms of Taylor series expansion. A $\\gamma$-order relative uncertainty for output, denoted by $\\mathrm{R^{\\gamma}_v}$, is introduced to quantify the contributions of input uncertainty of different orders. On this basis, it is shown that the widely used approximation considering the first order contribution from the variance of input variable can satisfactorily express the output uncertainty only when the input variance is very small or the inpu...

  2. Sensitivity analysis techniques for models of human behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Asmeret Brooke

    2010-09-01

    Human and social modeling has emerged as an important research area at Sandia National Laboratories due to its potential to improve national defense-related decision-making in the presence of uncertainty. To learn about which sensitivity analysis techniques are most suitable for models of human behavior, different promising methods were applied to an example model, tested, and compared. The example model simulates cognitive, behavioral, and social processes and interactions, and involves substantial nonlinearity, uncertainty, and variability. Results showed that some sensitivity analysis methods create similar results, and can thus be considered redundant. However, other methods, such as global methods that consider interactions between inputs, can generate insight not gained from traditional methods.

  3. The age-related advancement of arterial disease measured by Doppler ultrasound diastolic flow analysis.

    Science.gov (United States)

    Terenzi, T; Gallagher, D; DeMeersman, R; Beadle, E; Muller, D

    1993-10-01

    To quantify by A-mode Doppler sonography the age-related progression of arterial disease so that age dependent normal values may be established for the screening Doppler peripheral arterial exam. Arterial distensibility was assessed by A-mode Doppler diastolic flow analysis as a measure of atherogenesis. These values will increase the sensitivity and decrease the incidence of false-positive results when the Doppler exam is utilized to differentially diagnosis vascular and sciatic neurogenic claudication. The relationship between age and results from the standard ankle/arm index ultrasound pneumatic cuff examination was also analyzed. A two by three analysis of variance with orthogonal Helmert contrast codes and simple linear regression analysis was utilized for this cross-sectionally designed investigation. The dependent measures of diastolic flow analysis and ankle/arm pressure index were obtained within three nested successively increasing age groups. Chiropractic office. Studied were a total of 90 sedentary nonsmoking subjects, aged 23-79 yr, all of whom had normally accepted levels of serum glucose, cholesterol and blood pressure. Subjects were screened for evidence of aortic coarctation, myocardial infarction, tachyarrhythmia, aortic valve stenosis, mitral prolapse, hypertension, hypercholesterolemia, diabetes and peripheral occlusive arterial disease. Anthropometric measurements and percent body fat were obtained. A predictive oxygen consumption bike ergometer test was performed to obtain aerobic capacity. The commonly utilized standard ankle/arm index ultrasound pneumatic cuff examination and arterial diastolic flow analysis were performed with A-mode Doppler ultrasound on all subjects. These results demonstrate that a significant inverse linear relationship exists between aging and arterial compliance (p < .0001) in our population. Diastolic flow analysis had a greater sensitivity to arterial disease than the standard ankle/arm index ultrasound pneumatic

  4. Chromosomes in the flow to simplify genome analysis.

    Science.gov (United States)

    Doležel, Jaroslav; Vrána, Jan; Safář, Jan; Bartoš, Jan; Kubaláková, Marie; Simková, Hana

    2012-08-01

    Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.

  5. Objective analysis of the ARM IOP data: method and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Cedarwall, R; Lin, J L; Xie, S C; Yio, J J; Zhang, M H

    1999-04-01

    Motivated by the need of to obtain accurate objective analysis of field experimental data to force physical parameterizations in numerical models, this paper -first reviews the existing objective analysis methods and interpolation schemes that are used to derive atmospheric wind divergence, vertical velocity, and advective tendencies. Advantages and disadvantages of each method are discussed. It is shown that considerable uncertainties in the analyzed products can result from the use of different analysis schemes and even more from different implementations of a particular scheme. The paper then describes a hybrid approach to combine the strengths of the regular grid method and the line-integral method, together with a variational constraining procedure for the analysis of field experimental data. In addition to the use of upper air data, measurements at the surface and at the top-of-the-atmosphere are used to constrain the upper air analysis to conserve column-integrated mass, water, energy, and momentum. Analyses are shown for measurements taken in the Atmospheric Radiation Measurement Programs (ARM) July 1995 Intensive Observational Period (IOP). Sensitivity experiments are carried out to test the robustness of the analyzed data and to reveal the uncertainties in the analysis. It is shown that the variational constraining process significantly reduces the sensitivity of the final data products.

  6. Sensitivity studies of heat transfer: forced convection across a cylindrical pipe and duct flow

    CERN Document Server

    Ferrantelli, Andrea; Viljanen, Martti

    2013-01-01

    We consider two common heat transfer processes and perform a through sensitivity study of the variables involved. We derive and discuss analytical formulas for the heat transfer coefficient in function of film velocity, air temperature and pipe diameter. The according plots relate to a qualitative analysis of the multi-variable function $h$, according to functional optimization. For each process, we provide with graphs and tables of the parameters of interest, such as the Reynolds number. This method of study and the specific values can constitute a useful reference for didactic purposes.

  7. Speed-Flow Analysis for Interrupted Oversaturated Traffic Flow with Heterogeneous Structure for Urban Roads

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Sharma

    2012-06-01

    Full Text Available Speed–flow functions have been developed by several transportation experts to predict accurately the speed of urban road network. HCM Speed-Flow Curve, BPR Curve, MTC Speed-Flow Curve, Akçelik Speed-Flow Curve are some extraordinary efforts to define the shape of speed-flow curve. However, the complexity of driver’s behaviour, interactions among different type of vehicles, lateral clearance, co-relation of driver’s psychology with vehicular characteristics and interdependence of various variables of traffic has led to continuous development and refinement of speed-flow curves. The problem gets more tedious in case of urban roads with heterogeneous traffic, oversaturated flow and signalized network (which includes some unsignalized intersections as well. This paper presents speed-flow analysis for urban roads with interrupted flow comprising of heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls. The model developed in this paper shall predict speed, delay, average queue and maximum queue estimates for urban roads and quantify congestion for oversaturated condition. The investigation details oversaturated portion of flow in particular.

  8. Micro fibre optic flow checker for the medical analysis application.

    Science.gov (United States)

    Wang, Danping

    2007-01-01

    Two micro fibre optic flow checkers are presented in this paper. They are used for a medical analysis to control a solvent flow up to 1microl/min resolution. A fibre optic sensor as well as a hydraulic system are the principle components of these flow checkers. This paper describes the principle and the experiment setup. It gives the linearity, the repeatability and the stability results.

  9. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different m...... pumps connected to the microfluidic system. © 2013 by the authors; licensee MDPI, Basel, Switzerland....

  10. A Sensitivity Analysis on Component Reliability from Fatigue Life Computations

    Science.gov (United States)

    1992-02-01

    AD-A247 430 MTL TR 92-5 AD A SENSITIVITY ANALYSIS ON COMPONENT RELIABILITY FROM FATIGUE LIFE COMPUTATIONS DONALD M. NEAL, WILLIAM T. MATTHEWS, MARK G...HAGI OR GHANI NUMBI:H(s) Donald M. Neal, William T. Matthews, Mark G. Vangel, and Trevor Rudalevige 9. PERFORMING ORGANIZATION NAME AND ADDRESS lU...Technical Information Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, VA 22304-6145 2 ATTN: DTIC-FDAC I MIAC/ CINDAS , Purdue

  11. NOKIA PERFORMANCE AND CASH FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Moscviciov Andrei

    2011-12-01

    Full Text Available In this paper the author presents the ways to analyze the performance of the company Nokia. Thus based on a system of indicators are highlighted the key situations that emphasize performance, namely: operational activity, financial balance, cash flows.

  12. Migration Flows: Measurement, Analysis and Modeling

    NARCIS (Netherlands)

    Willekens, F.J.; White, Michael J.

    2016-01-01

    This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized. Insigh

  13. Analyzing highway flow patterns using cluster analysis

    NARCIS (Netherlands)

    Weijermars, Wendy; van Berkum, Eric C.; Pfliegl, R.

    2005-01-01

    Historical traffic patterns can be used for the prediction of traffic flows, as input for macroscopic traffic models, for the imputation of missing or erroneous data and as a basis for traffic management scenarios. This paper investigates the determination of historical traffic patterns by means of

  14. LTE uplink scheduling - Flow level analysis

    NARCIS (Netherlands)

    Dimitrova, D.C.; Berg, J.L. van den; Heijenk, G.; Litjens, R.

    2011-01-01

    Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and ti

  15. Migration Flows: Measurement, Analysis and Modeling

    NARCIS (Netherlands)

    Willekens, F.J.; White, Michael J.

    2016-01-01

    This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized.

  16. Migration Flows: Measurement, Analysis and Modeling

    NARCIS (Netherlands)

    Willekens, F.J.; White, Michael J.

    2016-01-01

    This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized. Insigh

  17. Improvement of reflood model in RELAP5 code based on sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Liu, Xiaojing; Yang, Yanhua, E-mail: yanhuay@sjtu.edu.cn

    2016-07-15

    Highlights: • Sensitivity analysis is performed on the reflood model of RELAP5. • The selected influential models are discussed and modified. • The modifications are assessed by FEBA experiment and better predictions are obtained. - Abstract: Reflooding is an important and complex process to the safety of nuclear reactor during loss of coolant accident (LOCA). Accurate prediction of the reflooding behavior is one of the challenge tasks for the current system code development. RELAP5 as a widely used system code has the capability to simulate this process but with limited accuracy, especially for low inlet flow rate reflooding conditions. Through the preliminary assessment with six FEBA (Flooding Experiments with Blocked Arrays) tests, it is observed that the peak cladding temperature (PCT) is generally underestimated and bundle quench is predicted too early compared to the experiment data. In this paper, the improvement of constitutive models related to reflooding is carried out based on single parametric sensitivity analysis. Film boiling heat transfer model and interfacial friction model of dispersed flow are selected as the most influential models to the results of interests. Then studies and discussions are specifically focused on these sensitive models and proper modifications are recommended. These proposed improvements are implemented in RELAP5 code and assessed against FEBA experiment. Better agreement between calculations and measured data for both cladding temperature and quench time is obtained.

  18. Sensitivity analysis in multiple imputation in effectiveness studies of psychotherapy

    Science.gov (United States)

    Crameri, Aureliano; von Wyl, Agnes; Koemeda, Margit; Schulthess, Peter; Tschuschke, Volker

    2015-01-01

    The importance of preventing and treating incomplete data in effectiveness studies is nowadays emphasized. However, most of the publications focus on randomized clinical trials (RCT). One flexible technique for statistical inference with missing data is multiple imputation (MI). Since methods such as MI rely on the assumption of missing data being at random (MAR), a sensitivity analysis for testing the robustness against departures from this assumption is required. In this paper we present a sensitivity analysis technique based on posterior predictive checking, which takes into consideration the concept of clinical significance used in the evaluation of intra-individual changes. We demonstrate the possibilities this technique can offer with the example of irregular longitudinal data collected with the Outcome Questionnaire-45 (OQ-45) and the Helping Alliance Questionnaire (HAQ) in a sample of 260 outpatients. The sensitivity analysis can be used to (1) quantify the degree of bias introduced by missing not at random data (MNAR) in a worst reasonable case scenario, (2) compare the performance of different analysis methods for dealing with missing data, or (3) detect the influence of possible violations to the model assumptions (e.g., lack of normality). Moreover, our analysis showed that ratings from the patient's and therapist's version of the HAQ could significantly improve the predictive value of the routine outcome monitoring based on the OQ-45. Since analysis dropouts always occur, repeated measurements with the OQ-45 and the HAQ analyzed with MI are useful to improve the accuracy of outcome estimates in quality assurance assessments and non-randomized effectiveness studies in the field of outpatient psychotherapy. PMID:26283989

  19. On the variational data assimilation problem solving and sensitivity analysis

    Science.gov (United States)

    Arcucci, Rossella; D'Amore, Luisa; Pistoia, Jenny; Toumi, Ralf; Murli, Almerico

    2017-04-01

    We consider the Variational Data Assimilation (VarDA) problem in an operational framework, namely, as it results when it is employed for the analysis of temperature and salinity variations of data collected in closed and semi closed seas. We present a computing approach to solve the main computational kernel at the heart of the VarDA problem, which outperforms the technique nowadays employed by the oceanographic operative software. The new approach is obtained by means of Tikhonov regularization. We provide the sensitivity analysis of this approach and we also study its performance in terms of the accuracy gain on the computed solution. We provide validations on two realistic oceanographic data sets.

  20. Probability and sensitivity analysis of machine foundation and soil interaction

    Directory of Open Access Journals (Sweden)

    Králik J., jr.

    2009-06-01

    Full Text Available This paper deals with the possibility of the sensitivity and probabilistic analysis of the reliability of the machine foundation depending on variability of the soil stiffness, structure geometry and compressor operation. The requirements to design of the foundation under rotating machines increased due to development of calculation method and computer tools. During the structural design process, an engineer has to consider problems of the soil-foundation and foundation-machine interaction from the safety, reliability and durability of structure point of view. The advantages and disadvantages of the deterministic and probabilistic analysis of the machine foundation resistance are discussed. The sensitivity of the machine foundation to the uncertainties of the soil properties due to longtime rotating movement of machine is not negligible for design engineers. On the example of compressor foundation and turbine fy. SIEMENS AG the affectivity of the probabilistic design methodology was presented. The Latin Hypercube Sampling (LHS simulation method for the analysis of the compressor foundation reliability was used on program ANSYS. The 200 simulations for five load cases were calculated in the real time on PC. The probabilistic analysis gives us more complex information about the soil-foundation-machine interaction as the deterministic analysis.

  1. Substance Flow Analysis of Mercury in China

    Science.gov (United States)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  2. Maternal Sensitivity in Parenting Preterm Children: A Meta-analysis.

    Science.gov (United States)

    Bilgin, Ayten; Wolke, Dieter

    2015-07-01

    Preterm birth is a significant stressor for parents and may adversely impact maternal parenting behavior. However, findings have been inconsistent. The objective of this meta-analysis was to determine whether mothers of preterm children behave differently (eg, less responsive or sensitive) in their interactions with their children after they are discharged from the hospital than mothers of term children. Medline, PsychInfo, ERIC, PubMed, and Web of Science were searched from January 1980 through May 2014 with the following keywords: "premature", "preterm", "low birth weight" in conjunction with "maternal behavio*r", "mother-infant interaction", "maternal sensitivity", and "parenting". Both longitudinal and cross-sectional studies that used an observational measure of maternal parenting behavior were eligible. Study results relating to parenting behaviors defined as sensitivity, facilitation, and responsivity were extracted, and mean estimates were combined with random-effects meta-analysis. Thirty-four studies were included in the meta-analysis. Mothers of preterm and full-term children did not differ significantly from each other in terms of their behavior toward their children (Hedges' g = -0.07; 95% confidence interval: -0.22 to 0.08; z = -0.94; P = .35). The heterogeneity between studies was significant and high (Q = 156.42; I(2) = 78.9, P = .001) and not explained by degree of prematurity, publication date, geographical area, infant age, or type of maternal behavior. Mothers of preterm children were not found to be less sensitive or responsive toward their children than mothers of full-term children. Copyright © 2015 by the American Academy of Pediatrics.

  3. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  4. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  5. Sensitivity Analysis for DHRS Heat Exchanger Performance Tests of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan; Eoh, Jaehyuk; Kim, Dehee; Lee, Taeho; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The STELLA-1 facility has been constructed and separate effect tests of heat exchangers for DHRS are going to be conducted. Two kinds of heat exchangers including DHX (shell-and-tube sodium-to-sodium heat exchanger) and AHX (helical-tube sodium-to-air heat exchanger) will be tested for design codes V and V. Main test points are a design point and a plant normal operation point of each heat exchanger. Additionally, some plant transient conditions are taken into account for establishing a test condition set. To choose the plant transient test conditions, a sensitivity analysis has been conducted using the design codes for each heat exchanger. The sensitivity of the PGSFR DHRS heat exchanger tests (the DHX and AHX in the STELLA-1 facility) has been analyzed through a parametric study using the design codes SHXSA and AHXSA at the design point and the plant normal operation point. The DHX heat transfer performance was sensitive to the change in the inlet temperature of the shell-side and the AHX heat transfer performance was sensitive to the change in the inlet temperature of the tube side. The results of this work will contribute to an improvement of the test matrix for the separate effect test of each heat exchanger.

  6. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    Directory of Open Access Journals (Sweden)

    J. Crossman

    2014-07-01

    Full Text Available Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE, derived from a series of Global Climate Model (GCM variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P, we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968–1997 to two future periods: 2020–2049 and 2060–2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity were highly varied. Sensitivity was governed by soil type (influencing flow pathways and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly

  7. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  8. Analysis and visualization of complex unsteady three-dimensional flows

    Science.gov (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  9. Analysis of the Mobilization of Debris Flows

    Science.gov (United States)

    1974-10-01

    as lateral ridges pestered along the canyon walls. The debris flow mobilized in a grass-covered swale surrounded by a moderately dense growth of...water apparently rushes out of the channels much as water from a firehose and strikes the talus. The erosive power of water issuing from a firehose...normal floods. The typical mudspate-track does not, however, readily associate itself with the ravine of a permanent or powerful mountain stream, for

  10. Sensitivity analysis of fluid-structure interaction problems

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, S.; Pelletier, D. [Ecole Polytechnique de Montreal, Montreal, Quebec (Canada)]. E-mail: stephane.etienne@polymtl.ca

    2004-07-01

    Interactions between solids and fluids (FSI) have been a topic of interest for engineers for many years. The behavior of vessels subject to wave loads, of planes in flight condition as well as submarine or transmission lines are but a few examples. In an attempt to address these problems, the present paper presents a formulation which allows to treat interactions between an incompressible flow and a structure undergoing large displacements. We assume existence and unicity of the solution. The interested reader is referred, for a mathematical discussion of existence and unicity. The approach to coupling can be addressed in two ways: weakly-coupled methods for which algorithms for structure and fluid are segregated, as is commonly done for simplicity and often because engineers have access to existing structural and fluid codes; and tightly-coupled or monolithic methods, for which the formulation guarantees satisfaction of equilibrium of the interface between the fluid and the solid. The latter has been chosen as it allows for quadratic convergence of Newton's method. The paper begins with the description of the steady state governing equations for laminar incompressible fluids, hyperelastic solid behaviour, pseudo-solid mapping and fluid-structure interfaces. The weak forms of the equations are then presented. We proceed with the description of the continuous sensitivity equations for fluid-structure interactions problems. The following sections detail the adaptive finite element procedure for the fluid-structure interaction and sensitivity problems. Results are presented and the paper ends with conclusions and discussions. (author)

  11. Interactive visualization and analysis of transitional flow.

    Science.gov (United States)

    Johnson, Gregory P; Calo, Victor M; Gaither, Kelly P

    2008-01-01

    A stand-alone visualization application has been developed by a multi-disciplinary, collaborative team with the sole purpose of creating an interactive exploration environment allowing turbulent flow researchers to experiment and validate hypotheses using visualization. This system has specific optimizations made in data management, caching computations, and visualization allowing for the interactive exploration of datasets on the order of 1TB in size. Using this application, the user (co-author Calo) is able to interactively visualize and analyze all regions of a transitional flow volume, including the laminar, transitional and fully turbulent regions. The underlying goal of the visualizations produced from these transitional flow simulations is to localize turbulent spots in the laminar region of the boundary layer, determine under which conditions they form, and follow their evolution. The initiation of turbulent spots, which ultimately lead to full turbulence, was located via a proposed feature detection condition and verified by experimental results. The conditions under which these turbulent spots form and coalesce are validated and presented.

  12. Nitrogen Flow Analysis in Huizhou, South China

    Science.gov (United States)

    Ma, Xiaobo; Wang, Zhaoyin; Yin, Zegao; Koenig, Albert

    2008-03-01

    Eutrophication due to uncontrolled discharges of nitrogen and phosphorus has become a serious pollution problem in many Chinese rivers. This article analyzes the nitrogen flow in Huizhou City in the East River watershed in south China. The material accounting method was applied to investigate the nitrogen flows related to human activities, which consist of the natural and anthropogenic systems. In Huizhou City, the nonpoint source pollution was quantified by the export coefficient method and the domestic discharge was estimated as the product of per capita nitrogen contribution and population. This research was conducted based on statistical information and field data from 1998 in the Huizhou City. The results indicated that the major nitrogen flows in this area were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal manure volatilization, and processes related to burning and other emissions. In 1998, about 40% of the nitrogen was retained in the system and could result in potential environmental problems. Nitrogen export was mainly by rivers, which account for about 57% of the total nitrogen exported. Comparisons made between the East River and the Danube and Yangtze Rivers show that the unit area nitrogen export was of the same magnitude and the per capita nitrogen export was comparable.

  13. Perspectives Gained in an Evaluation of Uncertainty, Sensitivity, and Decision Analysis Software

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.J.; Helton, J.C.

    1999-02-24

    The following software packages for uncertainty, sensitivity, and decision analysis were reviewed and also tested with several simple analysis problems: Crystal Ball, RiskQ, SUSA-PC, Analytica, PRISM, Ithink, Stella, LHS, STEPWISE, and JMP. Results from the review and test problems are presented. The study resulted in the recognition of the importance of four considerations in the selection of a software package: (1) the availability of an appropriate selection of distributions, (2) the ease with which data flows through the input sampling, model evaluation, and output analysis process, (3) the type of models that can be incorporated into the analysis process, and (4) the level of confidence in the software modeling and results.

  14. Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios.

    Science.gov (United States)

    Novak, E J; Rabinovitch, P S

    1994-10-01

    Measurement of changes in intracellular ionized calcium concentrations ([Ca2+]i) has proved to be of wide use in the study of cellular responses to activating stimuli. The fluorescent dye Indo-1 has successfully been used in flow cytometry for this purpose, and when used as a ratiometric indicator it provides optimum sensitivity and accuracy. Unfortunately, this dye requires ultraviolet (UV) excitation which is often not available. We show here that similar results can be obtained using a ratio of green to red fluorescence from the simultaneous loading of the dyes Fura Red and fluo-3. Both Fura Red and fluo-3 are excited using the commonly available blue 488 nm laser line. With appropriate concentrations of the two dyes, the magnitude of response with the fluo-3/Fura Red ratio is greater than that achieved with indo-1, while the intercellular variation in measurement is similar to that seen with indo-1. Analyses can be simultaneously combined with immunofluorescent detection of PE-labeled antibodies to enable [Ca2+]i measurement within cell subsets.

  15. Analysis of Frequency Characteristics and Sensitivity of Compliant Mechanisms

    Institute of Scientific and Technical Information of China (English)

    LIU Shanzeng; DAI Jiansheng; LI Aimin; SUN Zhaopeng; FENG Shizhe; CAO Guohua

    2016-01-01

    Based on a modified pseudo-rigid-body model, the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied. Firstly, the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism. Subsequently, based on the modified pseudo-rigid-body model, the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics. Finally, in combination with the finite element analysis software ANSYS, the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples. From the simulation results, the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size, section parameter, and characteristic parameter of material on mechanisms. The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms, the improvement of their dynamic properties and the expansion of their application range.

  16. An analytic method for sensitivity analysis of complex systems

    Science.gov (United States)

    Zhu, Yueying; Wang, Qiuping Alexandre; Li, Wei; Cai, Xu

    2017-03-01

    Sensitivity analysis is concerned with understanding how the model output depends on uncertainties (variances) in inputs and identifying which inputs are important in contributing to the prediction imprecision. Uncertainty determination in output is the most crucial step in sensitivity analysis. In the present paper, an analytic expression, which can exactly evaluate the uncertainty in output as a function of the output's derivatives and inputs' central moments, is firstly deduced for general multivariate models with given relationship between output and inputs in terms of Taylor series expansion. A γ-order relative uncertainty for output, denoted by Rvγ, is introduced to quantify the contributions of input uncertainty of different orders. On this basis, it is shown that the widely used approximation considering the first order contribution from the variance of input variable can satisfactorily express the output uncertainty only when the input variance is very small or the input-output function is almost linear. Two applications of the analytic formula are performed to the power grid and economic systems where the sensitivities of both actual power output and Economic Order Quantity models are analyzed. The importance of each input variable in response to the model output is quantified by the analytic formula.

  17. Analysis of frequency characteristics and sensitivity of compliant mechanisms

    Science.gov (United States)

    Liu, Shanzeng; Dai, Jiansheng; Li, Aimin; Sun, Zhaopeng; Feng, Shizhe; Cao, Guohua

    2016-07-01

    Based on a modified pseudo-rigid-body model, the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied. Firstly, the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism. Subsequently, based on the modified pseudo-rigid-body model, the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics. Finally, in combination with the finite element analysis software ANSYS, the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples. From the simulation results, the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size, section parameter, and characteristic parameter of material on mechanisms. The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms, the improvement of their dynamic properties and the expansion of their application range.

  18. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  19. Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures

    Science.gov (United States)

    Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen

    Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.

  20. Multi-criteria decision making: an example of sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Dragan S. Pamučar

    2017-05-01

    Full Text Available This study provides a model for result consistency evaluation of multicriterial decision making (MDM methods and selection of the optimal one. The model is based on the analysis of results of MDM methods, that is, the analysis of changes in rankings of MDM methods that occur as a result of alterations in input parameters. In the recommended model, we examine sensitivity analysis of MDM methods to changes in criteria weight and result consistency of methods to changes in measurement scale and the way in which we formulate criteria. In the final phase of the model, we select the most suitable method to solve the observed problem and the optimal alternative. The model is tested on an example, when the optimal MDM method selection was required in order to determine the location of the logistical center. During the selection process, TOPSIS, COPRAS, VIKOR and ELECTRE methods were considered. VIKOR method demonstrated the biggest stability of rankings and was selected as the most fit method for ranking the locations of the logistical center. Results of the demonstrated analysis indicate sensitivity of standard MDM methods to criteria considered in this work. Therefore, it is necessary, to take into account stability of the considered method during the selection process of the optimal method.

  1. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation

    Directory of Open Access Journals (Sweden)

    Stalder Aurelien F

    2008-06-01

    Full Text Available Abstract Aneurysm formation is a life-threatening complication after operative therapy in coarctation. The identification of patients at risk for the development of such secondary pathologies is of high interest and requires a detailed understanding of the link between vascular malformation and altered hemodynamics. The routine morphometric follow-up by magnetic resonance angiography is a well-established technique. However, the intrinsic sensitivity of magnetic resonance (MR towards motion offers the possibility to additionally investigate hemodynamic consequences of morphological changes of the aorta. We demonstrate two cases of aneurysm formation 13 and 35 years after coarctation surgery based on a Waldhausen repair with a subclavian patch and a Vosschulte repair with a Dacron patch, respectively. Comprehensive flow visualization by cardiovascular MR (CMR was performed using a flow-sensitive, 3-dimensional, and 3-directional time-resolved gradient echo sequence at 3T. Subsequent analysis included the calculation of a phase contrast MR angiography and color-coded streamline and particle trace 3D visualization. Additional quantitative evaluation provided regional physiological information on blood flow and derived vessel wall parameters such as wall shear stress and oscillatory shear index. The results highlight the individual 3D blood-flow patterns associated with the different vascular pathologies following repair of aortic coarctation. In addition to known factors predisposing for aneurysm formation after surgical repair of coarctation these findings indicate the importance of flow sensitive CMR to follow up hemodynamic changes with respect to the development of vascular disease.

  2. Numerical analysis of complex fluid-flow systems

    Science.gov (United States)

    Holland, R. L.

    1980-01-01

    Very flexible computer-assisted numerical analysis is used to solve dynamic fluid-flow equations characterizing computer-controlled heat dissipation system developed for Space lab. Losses caused by bends, ties, fittings, valves, and like are easily included, and analysis can solve both steady-state and transient cases. It can also interact with parallel thermal analysis.

  3. Sensitivity Analysis Applied in Design of Low Energy Office Building

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik

    2008-01-01

    Building performance can be expressed by different indicators as primary energy use, environmental load and/or the indoor environmental quality and a building performance simulation can provide the decision maker with a quantitative measure of the extent to which an integrated design solution...... satisfies the design requirements and objectives. In the design of sustainable Buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions. A sensitivity analysis makes it possible...... to identify the most important parameters in relation to building performance and to focus design and optimization of sustainable buildings on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage of the building design process, where...

  4. Sensitivity analysis of GSI based mechanical characterization of rock mass

    CERN Document Server

    Ván, P

    2012-01-01

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  5. Sensitivity Analysis of Hardwired Parameters in GALE Codes

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J.; Mitchell, Mark R.; Droppo, James G.

    2008-12-01

    The U.S. Nuclear Regulatory Commission asked Pacific Northwest National Laboratory to provide a data-gathering plan for updating the hardwired data tables and parameters of the Gaseous and Liquid Effluents (GALE) codes to reflect current nuclear reactor performance. This would enable the GALE codes to make more accurate predictions about the normal radioactive release source term applicable to currently operating reactors and to the cohort of reactors planned for construction in the next few years. A sensitivity analysis was conducted to define the importance of hardwired parameters in terms of each parameter’s effect on the emission rate of the nuclides that are most important in computing potential exposures. The results of this study were used to compile a list of parameters that should be updated based on the sensitivity of these parameters to outputs of interest.

  6. Stability and Sensitivity Analysis of Fuzzy Control Systems. Mechatronics Applications

    Directory of Open Access Journals (Sweden)

    Radu-Emil Precup

    2006-01-01

    Full Text Available The development of fuzzy control systems is usually performed by heuristicmeans, incorporating human skills, the drawback being in the lack of general-purposedevelopment methods. A major problem, which follows from this development, is theanalysis of the structural properties of the control system, such as stability, controllabilityand robustness. Here comes the first goal of the paper, to present a stability analysismethod dedicated to fuzzy control systems with mechatronics applications based on the useof Popov’s hyperstability theory. The second goal of this paper is to perform the sensitivityanalysis of fuzzy control systems with respect to the parametric variations of the controlledplant for a class of servo-systems used in mechatronics applications based on theconstruction of sensitivity models. The stability and sensitivity analysis methods provideuseful information to the development of fuzzy control systems. The case studies concerningfuzzy controlled servo-systems, accompanied by digital simulation results and real-timeexperimental results, validate the presented methods.

  7. Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation

    Directory of Open Access Journals (Sweden)

    Mohamed BEN MESSAOUD

    2007-09-01

    Full Text Available Motivation: This paper will discuss sensitivity issues in rotor speed estimation for induction machine (IM drives using only voltage and current measurements. A supervised estimation algorithm is proposed with the aim to achieve good performances in the large variations of the speed. After a brief presentation on discrete feedback structure of the estimator formulated from d-q axis equations, we will expose its performances for machine parameters variations.Method: Hyperstability concept was applied to the synthesis adaptation low. A heuristic term is added to the algorithm to maintain good speed estimation factor in high speeds.Results: In simulation, the estimation error is maintained relatively low in wide range of speeds, and the robustness of the estimation algorithm is shown for machine parametric variations.Conclusions: Sensitivity analysis to motor parameter changes of proposed sensorless IM is then performed.

  8. Is Investment-Cash flow Sensitivity a Good Measure of Financing Constraints? New Evidence from Indian Business Group Firms

    NARCIS (Netherlands)

    George, R.; Kabir, M.R.; Qian, J.

    2005-01-01

    Several studies use the investment - cash flow sensitivity as a measure of financing constraints while some others disagree.The source of this disparity lies mostly in differences in opinion regarding the segregation of severely financially constrained firms from less constrained ones.We examine thi

  9. A simple and sensitive flow cytometric assay for determination of the cytotoxic activity of human natural killer cells

    NARCIS (Netherlands)

    Radosevic, Katarina; Radosevic, K.; Garritsen, Henk S.P.; Garritsen, H.S.P.; van Graft, M.; van Graft, Marja; de Grooth, B.G.; Greve, Jan

    1990-01-01

    A new, simple and sensitive flow cytometric assay for the determination of the cytotoxic activity of human natural killer cells is described. The assay is based on the use of two fluorochromes. The target cell population is stained with one fluorochrome (octadecylamine-fluorescein isothiocyanate,

  10. Can water sensitive urban design systems help to preserve natural channel-forming flow regimes in an urbanised catchment?

    Science.gov (United States)

    Wella-Hewage, Chathurika Subhashini; Alankarage Hewa, Guna; Pezzaniti, David

    2016-01-01

    Increased stormwater runoff and pollutant loads due to catchment urbanisation bring inevitable impacts on the physical and ecological conditions of environmentally sensitive urban streams. Water sensitive urban design (WSUD) has been recognised as a possible means to minimise these negative impacts. This paper reports on a study that investigated the ability of infiltration-based WSUD systems to replicate the predevelopment channel-forming flow (CFF) regime in urban catchments. Catchment models were developed for the 'pre-urban', 'urban' and 'managed' conditions of a case study catchment and the hydrological effect on CFF regime was investigated using a number of flow indices. The results clearly show that changes to flow regime are apparent under urban catchment conditions and are even more severe under highly urbanised conditions. The use of WSUD systems was found to result in the replication of predevelopment flow regimes, particularly at low levels of urbanisation. Under highly urbanised conditions (of managed catchments) overcontrol of the CFF indices was observed as indicated by flow statistics below their pre-urban values. The overall results suggest that WSUD systems are highly effective in replicating the predevelopment CFF regime in urban streams and could be used as a means to protect environmentally sensitive urban streams.

  11. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    Directory of Open Access Journals (Sweden)

    Friedrich RP

    2015-06-01

    umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. Keywords: low cytometry, side scatter, intracellular superparamagnetic iron oxide nanoparticles, quantification, spectroscopy

  12. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  13. Safety Analysis of Flow Parameters in a Rotor-stator Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gong; DING Shuiting

    2012-01-01

    In order to ensure the safety of engine life limited parts (ELLP) according to airworthiness regulations,a numerical approach integrating one-way fluid structure interaction (FSI) and probabilistic risk assessment (PRA) is developed,by which the variation of flow parameters in a rotor-stator cavity on the safety of gas turbine disks is investigated.The results indicate that the flow parameters affect the probability of fracture of a gas turbine disk since they can change the distribution of stress and temperature of the disk.The failure probability of the disk rises with increasing rotation Reynolds number and Chebyshev number,but descends with increasing inlet Reynolds number.In addition,a sampling based sensitivity analysis with finite difference method is conducted to determine the sensitivities of the safety with respect to the flow parameters.The sensitivity estimates show that the rotation Reynolds number is the dominant variable in safety analysis ofa rotor-stator cavity among the flow parameters.

  14. Biosphere dose conversion Factor Importance and Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-10-15

    This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty.

  15. Reliability and Sensitivity Analysis of Transonic Flutter Using Improved Line Sampling Technique

    Institute of Scientific and Technical Information of China (English)

    Song Shufang; Lu Zhenzhou; Zhang Weiwei; Ye Zhengyin

    2009-01-01

    The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.

  16. Modal and nonmodal stability analysis of electrohydrodynamic flow with and without cross-flow

    CERN Document Server

    Zhang, Mengqi; Wu, Jian; Schmid, Peter J; Quadrio, Maurizio

    2015-01-01

    We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in EHD, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable low. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical a...

  17. Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    DEFF Research Database (Denmark)

    Nilsson, Karl; Breton, Simon-Philippe; Sørensen, Jens Nørkær;

    2014-01-01

    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine...... how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities...... and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics...

  18. Hidden flows and waste processing--an analysis of illustrative futures.

    Science.gov (United States)

    Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T

    2010-12-14

    An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.

  19. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    Science.gov (United States)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  20. LFSTAT - An R-Package for Low-Flow Analysis

    Science.gov (United States)

    Koffler, D.; Laaha, G.

    2012-04-01

    When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.

  1. Cell flow analysis with a two-photon fluorescence fiber probe

    Science.gov (United States)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  2. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis.

    Science.gov (United States)

    Nagul, Edward A; Fontàs, Clàudia; McKelvie, Ian D; Cattrall, Robert W; Kolev, Spas D

    2013-11-25

    A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L(-1)P, a sampling rate of 10h(-1), a limit of detection of 0.5 μgL(-1)P and RSDs of 3.2% (n = 10, 100 μg L(-1)) and 7.7% (n = 10, 10 μg L(-1)). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min(-1) the flow system offers a limit of detection of 0.04 μg L(-1)P, a sampling rate of 5h(-1) and an RSD of 3.4% (n=5, 2.0 μg L(-1)). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L(-1)P range, using the multipoint standard addition method.

  3. Gradient Flow Analysis on MILC HISQ Ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathan [Washington U., St. Louis; Bazavov, Alexei [Brookhaven; Bernard, Claude [Washington U., St. Louis; DeTar, Carleton [Utah U.; Foley, Justin [Utah U.; Gottlieb, Steven [Indiana U.; Heller, Urs M. [APS, New York; Hetrick, J. E. [U. Pacific, Stockton; Komijani, Javad [Washington U., St. Louis; Laiho, Jack [Syracuse U.; Levkova, Ludmila [Utah U.; Oktay, M. B. [Utah U.; Sugar, Robert [UC, Santa Barbara; Toussaint, Doug [Arizona U.; Van de Water, Ruth S. [Fermilab; Zhou, Ran [Fermilab

    2014-11-14

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  4. Gradient Flow Analysis on MILC HISQ Ensembles

    CERN Document Server

    Bazavov, A; Brown, N; DeTar, C; Foley, J; Gottlieb, Steven; Heller, U M; Hetrick, J E; Komijani, J; Laiho, J; Levkova, L; Oktay, M; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2014-01-01

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  5. Stochastic uncertainty analysis for unconfined flow systems

    Science.gov (United States)

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  6. Sensitivity Analysis of OECD Benchmark Tests in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmidt, Rodney C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining core boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.

  7. Sensitivity analysis of size effect on the performance of hydrostatic bearing

    Directory of Open Access Journals (Sweden)

    Dongju Chen

    2016-01-01

    Full Text Available For size effect on solid-liquid interface of hydrostatic bearing oil film gap flow in two-dimension, fluid dynamic method is applied to investigate the influence of size effect on bearing capacity, dynamic stiffness and other performances. With the consideration of size effect, Reynolds equation is modified by adopting velocity slip boundary condition into Reynolds equation. The sensitivity factors are used to make a quantitative and qualitative analysis. Numerical simulation results show that size effect will affect bearing performances to a certain degree and the effect curve of size effect on bearing performances are given. The four maximum oil film pressures reduce with the increase of slip length. The maximum sensitivity of bearing capacity is 81.94%.

  8. Sensitivity analysis of dimensionless parameters for physical simulation of water-flooding reservoir

    Institute of Scientific and Technical Information of China (English)

    BAI Yuhu; LI Jiachun; ZHOU Jifu

    2005-01-01

    A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force,the capillary force and the compressibility of water, oil and rock. By using this approach,we have estimated the influences of each dimensionless parameter on experimental results, and thus sorting out the dominant ones with larger sensitivity factors ranging from 10-4 to 100.

  9. Hybrid Information Flow Analysis for Programs with Arrays

    Directory of Open Access Journals (Sweden)

    Gergö Barany

    2016-07-01

    Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.

  10. Path-sensitive analysis for reducing rollback overheads

    Science.gov (United States)

    O'Brien, John K.P.; Wang, Kai-Ting Amy; Yamashita, Mark; Zhuang, Xiaotong

    2014-07-22

    A mechanism is provided for path-sensitive analysis for reducing rollback overheads. The mechanism receives, in a compiler, program code to be compiled to form compiled code. The mechanism divides the code into basic blocks. The mechanism then determines a restore register set for each of the one or more basic blocks to form one or more restore register sets. The mechanism then stores the one or more register sets such that responsive to a rollback during execution of the compiled code. A rollback routine identifies a restore register set from the one or more restore register sets and restores registers identified in the identified restore register set.

  11. Numerical Flow Analysis of a Hydraulic Gear Pump

    Science.gov (United States)

    Panta, Yogendra M.; Kim, Hyun W.; Pierson, Hazel M.

    2007-11-01

    The pressure that exists at the outlet port of a gear pump is a result of system load that was created by a resistance to the fluid flow. However, the flow pattern created inside an external gear pump by the motion of two oppositely rotating gears is deceptively complex, despite the simple geometry of the gear pump. The flow cannot be analyzed, based on a steady-state assumption that is usually employed to analyze turbo-machinery although the flow is essentially steady. Only the time-dependent, transient analysis with moving dynamic meshing technique can predict the motion of the fluid flow against the very high adverse pressure distribution. Although the complexity of analysis is inherent in all positive displacement pumps, gear pumps pose an exceptional challenge in modeling due to the fact that there are two rotating components that are housed within a stationary casing and the gears must be in contact with each other all the time. Fluent, commercially available computational fluid dynamics (CFD) software was used to analyze the flow of the gear pump. The investigation done by CFD produced significant information on flow patterns, velocity and pressure fields, and flow rates.

  12. Multivariate analysis of bistable flow; Analisis multivariable de flujo biestable

    Energy Technology Data Exchange (ETDEWEB)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Calleros M, G. [CFE, Alto LUcero, Veracruz (Mexico)]. e-mail: rcd@nuclear.inin.mx

    2007-07-01

    In this work a bistable flow analysis with an autoregressive multivariate analysis is presented. The bistable flow happens in the boiling water nuclear reactors with external recirculation pumps, and it is presented in the bolster of discharge of the recirculation knot toward the central jet pumps. The phenomenon has two flow patterns, one with greater hydraulic lost that the other one. To irregular time intervals, the flow changes pattern in a random way. The program NOISE that it is in development in the ININ was used and that it uses a autoregressive multivariate model to determine the autoregression coefficients that contain the dynamic information of the signals and that later on they are used to obtain the relative contribution of power, which allows to settle down the influence that exists among the different analyzed variables. It was analyzed an event of bistable flow happened in a BWR5 to operation conditions of 80% power and 69% of total flow through the core. The signal flow noise in each one of the 20 jet pumps, of the power of a monitor of power average, of the motive flows of recirculation, of the controllers and of the position of the control valves in the knots, of the signals of the instrumentation of the recirculation pumps (power, current, pressure drop and suction temperature), and of the buses of where they take the feeding voltage the motors of the pumps. Among the main results it was found that the phenomenon of bistable flow affects to the pressure drop in the recirculation pump of the knot in that occur, what affects to the motor flow in the knot by what the opening system of the flow control valve of recirculation of the knot responds. (Author)

  13. N170 sensitivity to facial expression: A meta-analysis.

    Science.gov (United States)

    Hinojosa, J A; Mercado, F; Carretié, L

    2015-08-01

    The N170 component is the most important electrophysiological index of face processing. Early studies concluded that it was insensitive to facial expression, thus supporting dual theories postulating separate mechanisms for identity and expression encoding. However, recent evidence contradicts this assumption. We conducted a meta-analysis to resolve inconsistencies and to derive theoretical implications. A systematic revision of 128 studies analyzing N170 in response to neutral and emotional expressions yielded 57 meta-analyzable experiments (involving 1645 healthy adults). First, the N170 was found to be sensitive to facial expressions, supporting proposals arguing for integrated rather than segregated mechanisms in the processing of identity and expression. Second, this sensitivity is heterogeneous, with anger, fear and happy faces eliciting the largest N170 amplitudes. Third, we explored some modulatory factors, including the focus of attention - N170 amplitude was found to be also sensitive to unattended expressions - or the reference electrode -common reference reinforcing the effects- . In sum, N170 is a valuable tool to study the neural processing of facial expressions in order to develop current theories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Computational Analysis of a Variable Ejector Flow

    Institute of Scientific and Technical Information of China (English)

    H.D. KIM; J.H. LEE; T.SETOGUCHI; S. MATSUO

    2006-01-01

    The present study addresses a variable ejector which can improve the ejector efficiency and control the re-circulation ratio under a fixed operating pressure ratio. The variable ejector is a facility to obtain specific recirculation ratio under a given operating pressure ratio by varying the ejector throat area ratio. The numerical simulations are carried out to provide an understanding of the flow characteristics inside the variable ejector. The sonic and supersonic nozzles are adopted as primary driving nozzles in the ejector system, and a movable cone cylinder, inserted into a conventional ejector-diffuser system, is used to change the ejector throat area ratio. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged Navier-Stokes equations. The results show that the variable ejector can control the recirculation ratio at a fixed operating pressure ratio.

  15. Flow analysis of the ophthalmic artery

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kuniaki; Hashimoto, Masato; Bandoh, Michio; Odawara, Yoshihiro; Kamagata, Masaki; Shirase, Ryuji [Sapporo Medical Univ. (Japan). Hospital

    2003-02-01

    The purpose of this study was to analyze the hemodynamics of ophthalmic artery flow using phase contrast MR angiography (PC-MRA). A total of 14 eyes from 10 normal volunteers and a patient with normal tension glaucoma (NTG) were analyzed. The optimal conditions were time repetition (TR)/echo time (TE)/flip angle (FA)/nex=40 ms/minimum/90 deg/2, field of view (FOV)=6 cm, matrix size=256 x 256. The resistive index (RI) and pulsatillity index (PI) values were significantly raised in the patient with NTG when compared to the control group. We therefore believe that PC-MRA may be a useful clinical tool for the assessment of the mechanism of NTG. (author)

  16. Modeling Earthen Dike Stability: Sensitivity Analysis and Automatic Calibration of Diffusivities Based on Live Sensor Data

    CERN Document Server

    Melnikova, N B; Sloot, P M A

    2012-01-01

    The paper describes concept and implementation details of integrating a finite element module for dike stability analysis Virtual Dike into an early warning system for flood protection. The module operates in real-time mode and includes fluid and structural sub-models for simulation of porous flow through the dike and for dike stability analysis. Real-time measurements obtained from pore pressure sensors are fed into the simulation module, to be compared with simulated pore pressure dynamics. Implementation of the module has been performed for a real-world test case - an earthen levee protecting a sea-port in Groningen, the Netherlands. Sensitivity analysis and calibration of diffusivities have been performed for tidal fluctuations. An algorithm for automatic diffusivities calibration for a heterogeneous dike is proposed and studied. Analytical solutions describing tidal propagation in one-dimensional saturated aquifer are employed in the algorithm to generate initial estimates of diffusivities.

  17. Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk.

    Science.gov (United States)

    Beloglazova, N V; Shmelin, P S; Eremin, S A

    2016-01-01

    Three kinds of immunoassays for the determination of gentamicin in milk samples were developed and validated. First, a fast and easily-performed fluorescence polarization immunoassay was used for characterization of the employed polyclonal antibody. The calculated Kaff were (1.9±0.4)×10(9)М(-1) and (6.0±0.2)×10(6)М(-1) for the high- and low-affinity fractions respectively. The assay was characterized with a good sensitivity, the limit of detection being 5μgkg(-1). Two different kinds of detection labels, i.e. colloidal gold (CG) and quantum dots (QDs), were evaluated for use in lateral-flow format with respect to rapid visual on-site testing. The cut-off levels for both qualitative formats were selected based on the maximum level for gentamicin in milk established by the European Commission, 100μgkg(-1), resulting in a 10μgkg(-1) cut-off considering sample dilution. The intra-laboratory validation was performed with sterilized milk samples artificially spiked with gentamicin at concentrations less than, equal to, and greater than the cut-off level. It was shown that milk products could be analyzed without any sample preparation, except for dilution with the buffer solution. The rates of false-positive and false-negative results were below 5% for both labels. The different developed immunoassays were tested towards gentamicin determination in artificially-spiked and naturally contaminated milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Behavioral analysis of network flow traffic

    OpenAIRE

    Heller, Mark D.

    2010-01-01

    Approved for public release, distribution unlimited Network Behavior Analysis (NBA) is a technique to enhance network security by passively monitoring aggregate traffic patterns and noting unusual action or departures from normal operations. The analysis is typically performed offline, due to the huge volume of input data, in contrast to conventional intrusion prevention solutions based on deep packet inspection, signature detection, and real-time blocking. After establishing a benchmar...

  19. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-10-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that assessed cerebral blood flow in small vessel disease patients, performed meta-analysis and sensitivity analysis of potential confounders. Thirty-eight studies (n = 4006) met the inclusion criteria, including four longitudinal and 34 cross-sectional studies. Most cerebral blood flow data were from grey matter. Twenty-four cross-sectional studies (n = 1161) were meta-analysed, showing that cerebral blood flow was lower in subjects with more white matter hyperintensity, globally and in most grey and white matter regions (e.g. mean global cerebral blood flow: standardised mean difference-0.71, 95% CI -1.12, -0.30). These cerebral blood flow differences were attenuated by excluding studies in dementia or that lacked age-matching. Four longitudinal studies (n = 1079) gave differing results, e.g., more baseline white matter hyperintensity predated falling cerebral blood flow (3.9 years, n = 575); cerebral blood flow was low in regions that developed white matter hyperintensity (1.5 years, n = 40). Cerebral blood flow is lower in subjects with more white matter hyperintensity cross-sectionally, but evidence for falling cerebral blood flow predating increasing white matter hyperintensity is conflicting. Future studies should be longitudinal, obtain more white matter data, use better age-correction and stratify by clinical diagnosis.

  20. Parametric sensitivity analysis for temperature control in outdoor photobioreactors.

    Science.gov (United States)

    Pereira, Darlan A; Rodrigues, Vinicius O; Gómez, Sonia V; Sales, Emerson A; Jorquera, Orlando

    2013-09-01

    In this study a critical analysis of input parameters on a model to describe the broth temperature in flat plate photobioreactors throughout the day is carried out in order to assess the effect of these parameters on the model. Using the design of experiment approach, variation of selected parameters was introduced and the influence of each parameter on the broth temperature was evaluated by a parametric sensitivity analysis. The results show that the major influence on the broth temperature is that from the reactor wall and the shading factor, both related to the direct and reflected solar irradiation. Other parameter which play an important role on the temperature is the distance between plates. This study provides information to improve the design and establish the most appropriate operating conditions for the cultivation of microalgae in outdoor systems.

  1. Improved environmental multimedia modeling and its sensitivity analysis.

    Science.gov (United States)

    Yuan, Jing; Elektorowicz, Maria; Chen, Zhi

    2011-01-01

    Modeling of multimedia environmental issues is extremely complex due to the intricacy of the systems with the consideration of many factors. In this study, an improved environmental multimedia modeling is developed and a number of testing problems related to it are examined and compared with each other with standard numerical and analytical methodologies. The results indicate the flux output of new model is lesser in the unsaturated zone and groundwater zone compared with the traditional environmental multimedia model. Furthermore, about 90% of the total benzene flux was distributed to the air zone from the landfill sources and only 10% of the total flux emitted into the unsaturated, groundwater zones in non-uniform conditions. This paper also includes functions of model sensitivity analysis to optimize model parameters such as Peclet number (Pe). The analyses results show that the Pe can be considered as deterministic input variables for transport output. The oscillatory behavior is eliminated with the Pe decreased. In addition, the numerical methods are more accurate than analytical methods with the Pe increased. In conclusion, the improved environmental multimedia model system and its sensitivity analysis can be used to address the complex fate and transport of the pollutants in multimedia environments and then help to manage the environmental impacts.

  2. A Workflow for Global Sensitivity Analysis of PBPK Models

    Directory of Open Access Journals (Sweden)

    Kevin eMcNally

    2011-06-01

    Full Text Available Physiologically based pharmacokinetic models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilised to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined a workflow for sensitivity analysis of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot, which we believe is intuitive and appropriate for toxicologists, risk assessors and regulators.

  3. Orbit uncertainty propagation and sensitivity analysis with separated representations

    Science.gov (United States)

    Balducci, Marc; Jones, Brandon; Doostan, Alireza

    2017-09-01

    Most approximations for stochastic differential equations with high-dimensional, non-Gaussian inputs suffer from a rapid (e.g., exponential) increase of computational cost, an issue known as the curse of dimensionality. In astrodynamics, this results in reduced accuracy when propagating an orbit-state probability density function. This paper considers the application of separated representations for orbit uncertainty propagation, where future states are expanded into a sum of products of univariate functions of initial states and other uncertain parameters. An accurate generation of separated representation requires a number of state samples that is linear in the dimension of input uncertainties. The computation cost of a separated representation scales linearly with respect to the sample count, thereby improving tractability when compared to methods that suffer from the curse of dimensionality. In addition to detailed discussions on their construction and use in sensitivity analysis, this paper presents results for three test cases of an Earth orbiting satellite. The first two cases demonstrate that approximation via separated representations produces a tractable solution for propagating the Cartesian orbit-state uncertainty with up to 20 uncertain inputs. The third case, which instead uses Equinoctial elements, reexamines a scenario presented in the literature and employs the proposed method for sensitivity analysis to more thoroughly characterize the relative effects of uncertain inputs on the propagated state.

  4. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  5. High sensitivity of flow cytometry improves detection of occult leptomeningeal disease in acute lymphoblastic leukemia and lymphoblastic lymphoma.

    Science.gov (United States)

    Del Principe, Maria Ilaria; Buccisano, Francesco; Cefalo, Mariagiovanna; Maurillo, Luca; Di Caprio, Luigi; Di Piazza, Fabio; Sarlo, Chiara; De Angelis, Gottardo; Irno Consalvo, Maria; Fraboni, Daniela; De Santis, Giovanna; Ditto, Concetta; Postorino, Massimiliano; Sconocchia, Giuseppe; Del Poeta, Giovanni; Amadori, Sergio; Venditti, Adriano

    2014-09-01

    Conventional cytology (CC) of cerebrospinal fluid (CSF) fails to demonstrate malignant cells in up to 45 % of patients with acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LL) in whom occult leptomeningeal disease is present. Flow cytometry (FCM) is considered more sensitive than CC, but clinical implications of CC negativity/CC positivity are not yet established. CSF samples from 38 adult patients with newly diagnosed ALL/LL were examined. Five (13 %) and nine (24 %) specimens were CC positive-FC positive (FCM(pos)/CC(pos)) and CC negative-FC positive (CC(neg)/FCM(pos)), respectively. The remaining 24 (63 %) samples were double negative (CC(neg)/FCM(neg)) (p = 0.001). CC(neg)/FCM(pos) patients showed a significantly shorter overall survival (OS) compared to CC(neg)/FCM(neg) ones. In multivariate analysis, the status of single FCM positivity was demonstrated to affect independently duration of OS (p = 0.005). In conclusion, FCM significantly improves detection of leptomeningeal occult localization in ALL/LL and appears to anticipate an adverse outcome. Further prospective studies on larger series are needed to confirm this preliminary observation.

  6. ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Goran Vujić

    2010-01-01

    Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.

  7. Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng

    2017-01-01

    Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.

  8. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  9. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  10. Run-Time Data-Flow Analysis

    Institute of Scientific and Technical Information of China (English)

    李剑慧; 臧斌宇; 吴蓉; 朱传琪

    2002-01-01

    Parallelizing compilers have made great progress in recent years. However, there still remains a gap between the current ability of parallelizing compilers and their final goals.In order to achieve the maximum parallelism, run-time techniques were used in parallelizing compilers during last few years. First, this paper presents a basic run-time privatization method.The definition of run-time dead code is given and its side effect is discussed. To eliminate the imprecision caused by the run-time dead code, backward data-flow information must be used.Proteus Test, which can use backward information in run-time, is then presented to exploit more dynamic parallelism. Also, a variation of Proteus Test, the Advanced Proteus Test, is offered to achieve partial parallelism. Proteus Test was implemented on the parallelizing compiler AFT.In the end of this paper the program fpppp.f of Spec95fp Benchmark is taken as an example, to show the effectiveness of Proteus Test.

  11. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow

    Institute of Scientific and Technical Information of China (English)

    Wei LU; Yan-yong XIANG

    2012-01-01

    Experiments of saturated water flow and heat transfer were conducted for a meter-scale model of regularly fractured granite.The fractured rock model (height 1502.5 mm,width 904 mm,and thickness 300 mm),embedded with two vertical and two horizontal fractures of pre-set apertures,was constructed using 18 pieces of intact granite.The granite was taken from a site currently being investigated for a high-level nuclear waste repository in China.The experiments involved different heat source temperatures and vertical water fluxes in the embedded fractures either open or filled with sand.A finite difference scheme and computer code for calculation of water flow and heat transfer in regularly fractured rocks was developed,verified against both the experimental data and calculations from the TOUGH2 code,and employed for parametric sensitivity analyses.The experiments revealed that,among other things,the temperature distribution was influenced by water flow in the fractures,especially the water flow in the vertical fracture adjacent to the heat source,and that the heat conduction between the neighboring rock blocks in the model with sand-filled fractures was enhanced by the sand,with larger range of influence of the heat source and longer time for approaching asymptotic steady-state than those of the model with open fractures.The temperatures from the experiments were in general slightly smaller than those from the numerical calculations,probably due to the fact that a certain amount of outward heat transfer at the model perimeter was unavoidable in the experiments.The parametric sensitivity analyses indicated that the temperature distribution was highly sensitive to water flow in the fractures,and the water temperature in the vertical fracture adjacent to the heat source was rather insensitive to water flow in other fractures.

  12. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor

    2017-06-01

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.

  13. Tre generationer af Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Chomchoei, Roongrat; Long, Xiangbao

    2004-01-01

    Siden introduktionen af FIA har en række videreudviklinger resulteret i Sequential Injection Analysis (SIA) og senest i Lab-on-Valve (LOV)-metodikken. Her beskrives disse, og der gives eksempler på, hvordan metoderne kan bruges til at bestemme sporstofkoncentrationer af metaller i komplekse...

  14. Flow Field Analysis of Submerged Horizontal Plate Type Breakwater

    Institute of Scientific and Technical Information of China (English)

    张志强; 栾茂田; 王科

    2013-01-01

    Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.

  15. AutoGate: automating analysis of flow cytometry data.

    Science.gov (United States)

    Meehan, Stephen; Walther, Guenther; Moore, Wayne; Orlova, Darya; Meehan, Connor; Parks, David; Ghosn, Eliver; Philips, Megan; Mitsunaga, Erin; Waters, Jeffrey; Kantor, Aaron; Okamura, Ross; Owumi, Solomon; Yang, Yang; Herzenberg, Leonard A; Herzenberg, Leonore A

    2014-05-01

    Nowadays, one can hardly imagine biology and medicine without flow cytometry to measure CD4 T cell counts in HIV, follow bone marrow transplant patients, characterize leukemias, etc. Similarly, without flow cytometry, there would be a bleak future for stem cell deployment, HIV drug development and full characterization of the cells and cell interactions in the immune system. But while flow instruments have improved markedly, the development of automated tools for processing and analyzing flow data has lagged sorely behind. To address this deficit, we have developed automated flow analysis software technology, provisionally named AutoComp and AutoGate. AutoComp acquires sample and reagent labels from users or flow data files, and uses this information to complete the flow data compensation task. AutoGate replaces the manual subsetting capabilities provided by current analysis packages with newly defined statistical algorithms that automatically and accurately detect, display and delineate subsets in well-labeled and well-recognized formats (histograms, contour and dot plots). Users guide analyses by successively specifying axes (flow parameters) for data subset displays and selecting statistically defined subsets to be used for the next analysis round. Ultimately, this process generates analysis "trees" that can be applied to automatically guide analyses for similar samples. The first AutoComp/AutoGate version is currently in the hands of a small group of users at Stanford, Emory and NIH. When this "early adopter" phase is complete, the authors expect to distribute the software free of charge to .edu, .org and .gov users.

  16. Automated High-Dimensional Flow Cytometric Data Analysis

    Science.gov (United States)

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill

    Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.

  17. Sensitivity study on critical flow models of SPACE for inadvertent opening of containment spray valve in Shin Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun; Kim, Minhee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SPACE (Safety and Performance Analysis Code for Nuclear Power Plants) has been developed by KHNP with the cooperation with KEPCO E and C and KAERI. SPACE code is expected to be applied to the safety analysis for LOCA (Loss of Coolant Accident) and Non-LOCA scenarios. SPACE code solves two-fluid, three-field governing equations and programmed with C++ computer language using object-oriented concepts. To evaluate the analysis capability for the transient phenomena in the actual nuclear power plant, an inadvertent opening of spray valve in startup test phase of Shin Kori unit 1 was simulated with SPACE. To assess the critical flow models of SPACE, the calculation with several critical flow models were carried out. The simulations of an inadvertent opening of spray valve of Shin Kori unit 1 with several critical flow models were carried out. The calculated transient behaviors of major reactor parameters with four critical flow models generally show good agreement with the measured.

  18. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide (Div. of Radiology, Dept. of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori Univ. Hospital, Yonago, Tottori (Japan)), email: eyamashi-ttr@umin.ac.jp; Tanaka, Takuro; Hirata, Yoshiharu (Div. of Clinical Radiology, Tottori Univ. Hospital, Yonago, Tottori (Japan))

    2011-10-15

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  19. GPU-based Integration with Application in Sensitivity Analysis

    Science.gov (United States)

    Atanassov, Emanouil; Ivanovska, Sofiya; Karaivanova, Aneta; Slavov, Dimitar

    2010-05-01

    The presented work is an important part of the grid application MCSAES (Monte Carlo Sensitivity Analysis for Environmental Studies) which aim is to develop an efficient Grid implementation of a Monte Carlo based approach for sensitivity studies in the domains of Environmental modelling and Environmental security. The goal is to study the damaging effects that can be caused by high pollution levels (especially effects on human health), when the main modeling tool is the Danish Eulerian Model (DEM). Generally speaking, sensitivity analysis (SA) is the study of how the variation in the output of a mathematical model can be apportioned to, qualitatively or quantitatively, different sources of variation in the input of a model. One of the important classes of methods for Sensitivity Analysis are Monte Carlo based, first proposed by Sobol, and then developed by Saltelli and his group. In MCSAES the general Saltelli procedure has been adapted for SA of the Danish Eulerian model. In our case we consider as factors the constants determining the speeds of the chemical reactions in the DEM and as output a certain aggregated measure of the pollution. Sensitivity simulations lead to huge computational tasks (systems with up to 4 × 109 equations at every time-step, and the number of time-steps can be more than a million) which motivates its grid implementation. MCSAES grid implementation scheme includes two main tasks: (i) Grid implementation of the DEM, (ii) Grid implementation of the Monte Carlo integration. In this work we present our new developments in the integration part of the application. We have developed an algorithm for GPU-based generation of scrambled quasirandom sequences which can be combined with the CPU-based computations related to the SA. Owen first proposed scrambling of Sobol sequence through permutation in a manner that improves the convergence rates. Scrambling is necessary not only for error analysis but for parallel implementations. Good scrambling is

  20. Low flow analysis of the lower Drava River

    Science.gov (United States)

    Mijuskovic-Svetinovic, T.; Maricic, S.

    2008-11-01

    Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.

  1. Sensitivity analysis of the threshold level approach on streamflow drought evaluation

    Science.gov (United States)

    Loukas, Athanasios; Vasiliades, Lampros; Sarailidis, George

    2016-04-01

    Nowadays, streamflow drought characteristics have been widely studied for the design of hydrotechnical projects and water resources planning and management. Furthermore, information on the magnitude and frequency of low flows is very important for streamflow drought analysis at operational level in public water supply systems. The objective of this study is to investigate the sensitivity of the threshold level approach in the derivation of low flow severity-duration-frequency (SDF) curves. Low flow severity is defined as the total water deficit volume to the target threshold for a given drought duration. Four (4) threshold level methods (fixed, seasonal, monthly and daily) were employed and compared to assess the sensitivity of the threshold level method (fixed or variable) in the estimation of derived streamflow deficits and durations at Yermasoyia watershed, Cyprus using a thirty year daily discharge dataset. The 50th and 70th percentile values of the flow duration curve are selected as the threshold choices for all study methods which are suitable for semiarid catchments where zero runoff occurs during summer months. Then, the four threshold approaches are applied and three pooling procedures are applied to derive independent sequences of low-flow events. Application of the three pooling algorithms showed that the inter-event time and volume criterion is the most unbiased pooling method and this method was selected to estimate the duration and the deficit volume or severity of the identified drought events. Finally, the SDF curves are developed based on annual maximum severities for fixed durations at 30, 60, 90, 180 and 360 days. Based on individual probabilistic analysis, the best theoretical probability distribution is selected for each threshold method and then the SDF curves for the four thresholds were developed to quantify the relationship among the severities, durations, and frequencies or return periods. These curves also integrate the return period

  2. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    Science.gov (United States)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  3. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  4. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  5. Robust and sensitive analysis of mouse knockout phenotypes.

    Directory of Open Access Journals (Sweden)

    Natasha A Karp

    Full Text Available A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student's t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene's function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.

  6. An analysis of microcirculatory flow heterogeneity using measurements of transit time.

    Science.gov (United States)

    Sarelius, I H

    1990-07-01

    Heterogeneity of blood flow distribution was measured in capillary networks in cremaster muscles of anesthetized Golden hamsters (nembutal, 70 mg/kg, ip). The relative dispersion of Q/PS, where Q is blood flow, P is permeability, and S is exchange surface area, was estimated; in microvascular terms (and assuming uniform permeability) this ratio reduces to vr/l, where v is plasma velocity, r is vessel radius, and l is vessel length, and where v/l = 1/T, where T is transit time. Distributions of 1/T across complete capillary networks significantly increased in relative dispersion from 68.2 to 97.8% during hyperemia, suggesting an increase in flow heterogeneity with increased inflow. In contrast, relative dispersion of 1/T did not change significantly from rest (72.0%) to hyperemia (66.1%) in capillary segments sampled randomly across the tissue. Other microvascular indices of flow (velocity, cell content) did not reflect the changes in relative flow dispersion shown by the changes in 1/T. The analysis demonstrates that estimates of flow heterogeneity are sensitive both to the selection of an appropriate flow variable and to the manner in which this variable is sampled in the capillary bed.

  7. MODELING AND ANALYSIS OF UNSTEADY FLOW BEHAVIOR IN DEEPWATER CONTROLLED MUD-CAP DRILLING

    Directory of Open Access Journals (Sweden)

    Jiwei Li

    Full Text Available Abstract A new mathematical model was developed in this study to simulate the unsteady flow in controlled mud-cap drilling systems. The model can predict the time-dependent flow inside the drill string and annulus after a circulation break. This model consists of the continuity and momentum equations solved using the explicit Euler method. The model considers both Newtonian and non-Newtonian fluids flowing inside the drill string and annular space. The model predicts the transient flow velocity of mud, the equilibrium time, and the change in the bottom hole pressure (BHP during the unsteady flow. The model was verified using data from U-tube flow experiments reported in the literature. The result shows that the model is accurate, with a maximum average error of 3.56% for the velocity prediction. Together with the measured data, the computed transient flow behavior can be used to better detect well kick and a loss of circulation after the mud pump is shut down. The model sensitivity analysis show that the water depth, mud density and drill string size are the three major factors affecting the fluctuation of the BHP after a circulation break. These factors should be carefully examined in well design and drilling operations to minimize BHP fluctuation and well kick. This study provides the fundamentals for designing a safe system in controlled mud-cap drilling operati.

  8. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    Science.gov (United States)

    Munday, Phillip M.

    definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the

  9. Sensitivity of inertial particle response on turbulent duct flows to mass loading ratio and Reynolds number

    Science.gov (United States)

    Villafane, Laura; Banko, Andrew; Elkins, Chris; Eaton, John

    2016-11-01

    The momentum coupled dynamics of particles and turbulence are experimentally investigated in a vertical fully developed turbulent square duct flow of air laden with Nickel particles. Significant preferential concentration is present for the Stokes numbers investigated, which vary from 3 to 30 based on the Kolmogorov time scale. Higher order measures of preferential concentration, such as the sizes and shapes of clusters and voids, are analyzed for increasing mass loading ratios. The mass loadings chosen span the one-way and two-way coupled regimes, while the volume loading is kept low. The effect of Stokes number and mass loading is also evaluated for particle velocity statistics and compared to the unladen gas statistics. Planar laser scattering is used to record instantaneous particle images in the center of the duct. Preferential concentration statistics are computed from box counting and Voronoi tessellation algorithms. PIV and PTV techniques are used to calculate particle velocity statistics. The analysis is extended to the near wall region in the logarithmic layer for the case of low mass loading. These results are compared to those from the duct center to assess the effects of strong carrier phase inhomogeneity on the particle distributions. This Material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002373-1.

  10. Control Flow Analysis for the Pi-calculus

    DEFF Research Database (Denmark)

    Bodei, C.; Degano, P.; Nielson, Flemming;

    1998-01-01

    Control Flow Analysis is a static technique for predicting safe and computable approximations to the set of values that the objects of a program may assume during its execution. We present an analysis for the pi-calculus that shows how names will be bound to actual channels at run time. The formu......Control Flow Analysis is a static technique for predicting safe and computable approximations to the set of values that the objects of a program may assume during its execution. We present an analysis for the pi-calculus that shows how names will be bound to actual channels at run time....... The formulation of the analysis requires no extensions to the pi-calculus, except for assigning ``channels'' to the occurrences of names within restrictions, and assigning ``binders'' to the occurrences of names within input prefixes. The result of our analysis establishes a super-set of the set of names to which...

  11. Dynamic global sensitivity analysis in bioreactor networks for bioethanol production.

    Science.gov (United States)

    Ochoa, M P; Estrada, V; Di Maggio, J; Hoch, P M

    2016-01-01

    Dynamic global sensitivity analysis (GSA) was performed for three different dynamic bioreactor models of increasing complexity: a fermenter for bioethanol production, a bioreactors network, where two types of bioreactors were considered: aerobic for biomass production and anaerobic for bioethanol production and a co-fermenter bioreactor, to identify the parameters that most contribute to uncertainty in model outputs. Sobol's method was used to calculate time profiles for sensitivity indices. Numerical results have shown the time-variant influence of uncertain parameters on model variables. Most influential model parameters have been determined. For the model of the bioethanol fermenter, μmax (maximum growth rate) and Ks (half-saturation constant) are the parameters with largest contribution to model variables uncertainty; in the bioreactors network, the most influential parameter is μmax,1 (maximum growth rate in bioreactor 1); whereas λ (glucose-to-total sugars concentration ratio in the feed) is the most influential parameter over all model variables in the co-fermentation bioreactor.

  12. A Sensitivity Analysis Approach to Identify Key Environmental Performance Factors

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2014-01-01

    Full Text Available Life cycle assessment (LCA is widely used in design phase to reduce the product’s environmental impacts through the whole product life cycle (PLC during the last two decades. The traditional LCA is restricted to assessing the environmental impacts of a product and the results cannot reflect the effects of changes within the life cycle. In order to improve the quality of ecodesign, it is a growing need to develop an approach which can reflect the changes between the design parameters and product’s environmental impacts. A sensitivity analysis approach based on LCA and ecodesign is proposed in this paper. The key environmental performance factors which have significant influence on the products’ environmental impacts can be identified by analyzing the relationship between environmental impacts and the design parameters. Users without much environmental knowledge can use this approach to determine which design parameter should be first considered when (redesigning a product. A printed circuit board (PCB case study is conducted; eight design parameters are chosen to be analyzed by our approach. The result shows that the carbon dioxide emission during the PCB manufacture is highly sensitive to the area of PCB panel.

  13. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  14. Sensitivity analysis on parameter changes in underground mine ventilation systems

    Institute of Scientific and Technical Information of China (English)

    LI Gary; KOCSIS Charles; HARDCASTLE Steve

    2011-01-01

    A more efficient mine ventilation system,the ventilation-on-demand (VOD) system,has been proposed and tested in Canadian mines recently.In order to supply the required air volumes to the production areas of a mine,operators need to know the cause and effect of any changes requested from the VOD system.The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system.This new utility,which was incorporated in the 3D-CANVENT mine ventilation simulator,is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed.For a primary ventilation system,the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally.An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively,while generating significant savings in energy consumption and operating cost.

  15. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  16. Sensitivity Analysis in a Complex Marine Ecological Model

    Directory of Open Access Journals (Sweden)

    Marcos D. Mateus

    2015-05-01

    Full Text Available Sensitivity analysis (SA has long been recognized as part of best practices to assess if any particular model can be suitable to inform decisions, despite its uncertainties. SA is a commonly used approach for identifying important parameters that dominate model behavior. As such, SA address two elementary questions in the modeling exercise, namely, how sensitive is the model to changes in individual parameter values, and which parameters or associated processes have more influence on the results. In this paper we report on a local SA performed on a complex marine biogeochemical model that simulates oxygen, organic matter and nutrient cycles (N, P and Si in the water column, and well as the dynamics of biological groups such as producers, consumers and decomposers. SA was performed using a “one at a time” parameter perturbation method, and a color-code matrix was developed for result visualization. The outcome of this study was the identification of key parameters influencing model performance, a particularly helpful insight for the subsequent calibration exercise. Also, the color-code matrix methodology proved to be effective for a clear identification of the parameters with most impact on selected variables of the model.

  17. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-10-02

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  18. Kinetic flow-injection-spectrofluorimetric determination of aluminium(III) using Eriochrome Red B, sensitized by traces of fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, F. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Analitica; Perez-Conde, C. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Analitica; Camara, C. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Analitica

    1996-01-01

    A flow injection-spectrofluorimetric method is reported for the determination of Al(III) based on the use of Eriochrome Red B and hexamethylenetetramine buffer, sensitized by the presence of fluoride at 80 C. Various chemical and physical variables affecting the reaction in the flow system were evaluated. The method is very sensitive with a detection limit of 0.1 {mu}g 1{sup -1} and a precision at the 5 {mu}g 1{sup -1} level of 2.6%. The calibration range is linear up to 1000 {mu}g 1{sup -1}. The method has been successfully applied to the determination of Al (III) in tap and mineral waters and urine samples. (orig.)

  19. Determination of the sensitivity behavior of an acoustic thermal flow sensor by electronic characterization

    NARCIS (Netherlands)

    Honschoten, van J.W.; Svetovoy, V.B.; Lammerink, T.S.J.; Krijnen, G.J.M.; Elwenspoek, M.C.

    2004-01-01

    The microflown is an acoustic, thermal flow sensor that measures sound particle velocity instead of sound pressure. It is a specific example of a wide range of two- and three-wire thermal flow sensors. For most applications the microflown should be calibrated, which is usually performed acoustically

  20. Sensitivity of the initiation of debris flow to initial soil moisture

    NARCIS (Netherlands)

    Hu, W.; Xu, Q.; Wang, G. H.; van Asch, T. W J; Hicher, P. Y.

    2015-01-01

    The initiation of debris flows is commonly attributed either to fluidization as a result of rainfall-induced landslides or to gully erosion induced by concentrated runoffs. A series of flume tests have been performed to show how the initial soil moisture influences the initiation of debris flows. At