WorldWideScience

Sample records for flow scaling laws

  1. Two-phase flow in porous media: power-law scaling of effective permeability

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  2. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Giovanni Francesco Santonastaso

    2018-01-01

    Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.

  3. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study

    Wong, Jerry T; Molloi, Sabee

    2008-01-01

    Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising

  4. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  5. Scaling laws of free dendritic growth in a forced Oseen flow

    Kurnatowski, M von; Kassner, K

    2014-01-01

    We use the method presented in M von Kurnatowski et al (2013 Phys. Rev. E 87 042405) to solve the nonlinear problem of free dendritic growth in an Oseen flow. The growth process is assumed to be limited by thermal transport via diffusion and convection. A singular perturbation expansion is treated to lowest nontrivial order in the framework of asymptotic decomposition. The resulting complex integro-differential equation is solved using an elaborate numerical method. The approximate scaling laws V∝U 2/3 and ρ∝U −1/3 for the growth velocity and the tip radius of curvature of the dendrite, respectively, are found as a function of the forced flow velocity. The results are compared to those by Pelcé and Bouissou, constituting the only other attempt so far to treat the problem analytically. (paper)

  6. Scaling laws for gas–liquid flow in swirl vane separators

    Liu, Li; Bai, Bofeng

    2016-01-01

    Highlights: • Model for swirl vane separator performance is established with similarity criteria. • Scaling laws are developed to correlate downscale test with prototype separator. • Effects of key similarity criteria on separation performance are studied. • The vital role of droplet size distribution on separation performance is discussed. - Abstract: Laboratory tests on gas–liquid flow in swirl vane separators are usually carried out to help establish an experimental database for separator design and performance improvement. Such model tests are generally performed in the reduced scale and not on the actual working conditions. Though great efficiency is often obtainable in the reduced model, the performance of the full-sized prototype usually cannot be well predicted. To design downscale model tests and apply the experimental results to predict the prototype, a general relationship to correlate them is required. In this paper, the relation of the similitude-criterion concerning the pressure loss is presented by using the dimensionless analysis, and mathematical models for critical droplet diameter, grade efficiency and overall separation efficiency are established by analyzing the features of the droplet trajectory in gas swirling flow field. The essential similarity criteria accounting for pressure loss and separation efficiency are obtained, respectively. On this basis, the scaling laws which enable a comparison between the reduced model and the full-sized prototype under similar conditions are also developed. It is found that the overall separation efficiency is significantly affected by the size distribution of the small droplets, especially when the mean diameter is smaller than the critical droplet diameter.

  7. Computational Study of Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    Mittal, Rajat

    2008-01-01

    The primary objective of the proposed research was to gain a fundamental understanding of strategies, mechanisms, and scaling laws for successful control of separation using zern-net mass-flux (ZNMF) actuators...

  8. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Giovanni Francesco Santonastaso; Armando Di Nardo; Michele Di Natale; Carlo Giudicianni; Roberto Greco

    2018-01-01

    Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, ma...

  9. Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow.

    Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo

    2012-02-01

    We present an experimental study of the transition to turbulence in a plane Poiseuille flow. Using a well-controlled perturbation, we analyze the flow by using extensive particle image velocimetry and flow visualization (using laser-induced fluorescence) measurements, and use the deformation of the mean velocity profile as a criterion to characterize the state of the flow. From a large parametric study, four different states are defined, depending on the values of the Reynolds number and the amplitude of the perturbation. We discuss the role of coherent structures, such as hairpin vortices, in the transition. We find that the minimal amplitude of the perturbation triggering transition scales asymptotically as Re(-1).

  10. Understanding scaling laws

    Lysenko, W.P.

    1986-01-01

    Accelerator scaling laws how they can be generated, and how they are used are discussed. A scaling law is a relation between machine parameters and beam parameters. An alternative point of view is that a scaling law is an imposed relation between the equations of motion and the initial conditions. The relation between the parameters is obtained by requiring the beam to be matched. (A beam is said to be matched if the phase-space distribution function is a function of single-particle invariants of the motion.) Because of this restriction, the number of independent parameters describing the system is reduced. Using simple models for bunched- and unbunched-beam situations. Scaling laws are shown to determine the general behavior of beams in accelerators. Such knowledge is useful in design studies for new machines such as high-brightness linacs. The simple model presented shows much of the same behavior as a more detailed RFQ model

  11. Energy loss as the origin of a universal scaling law of the elliptic flow

    Andres, Carlota; Pajares, Carlos [Universidade de Santiago de Compostela, Instituto Galego de Fisica de Altas Enerxias IGFAE, Santiago de Compostela, Galicia (Spain); Braun, Mikhail [Saint Petersburg State University, Department of High-Energy Physics, Saint Petersburg (Russian Federation)

    2017-03-15

    It is shown that the excellent scaling of the elliptic flow found for all centralities, species and energies from RHIC to the LHC for p{sub T} less than the saturation momentum is a consequence of the energy lost by a parton interacting with the color field produced in a nucleus-nucleus collision. In particular, the deduced shape of the scaling curve describes correctly all the data. We discuss the possible extensions to higher p{sub T}, proton-nucleus and proton-proton collisions as well as higher harmonics. (orig.)

  12. Scaling law systematics

    Pfirsch, D.; Duechs, D.F.

    1985-01-01

    A number of statistical implications of empirical scaling laws in form of power products obtained by linear regression are analysed. The sensitivity of the error against a change of exponents is described by a sensitivity factor and the uncertainty of predictions by a ''range of predictions factor''. Inner relations in the statistical material is discussed, as well as the consequences of discarding variables.A recipe is given for the computations to be done. The whole is exemplified by considering scaling laws for the electron energy confinement time of ohmically heated tokamak plasmas. (author)

  13. Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing

    Susie Wright

    2017-07-01

    Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

  14. Tokamak confinement scaling laws

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  15. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  16. Multitude scaling laws in axisymmetric turbulent wake

    Layek, G. C.; Sunita

    2018-03-01

    We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.

  17. On inertial range scaling laws

    Bowman, J.C.

    1994-12-01

    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed

  18. On scaling laws for modelling the steam/water flow in a 'Dodewaard' fuel-assembly using Freon-12

    Graaf, R. van de; Mudde, R.F.; Hagen, T.H.J.J. van der.

    1991-09-01

    To stimulate the steam/water flow behaviour in a fuel assembly as present in the boiling water reactor at Dodewaard, Freon-12 is used as a modelling fluid. Scaling criteria are elaborated using dimensional analysis as a fluid-to-fluid modelling technique. When scaling is emphasized on void-fraction distribution and flow-regime transitions it is found that an approximately half-scale geometry for the Freon-model should be used. Together with the low latent heat of vaporization of Freon-12 this reduces the total required heat input significantly to be only 2% of the required heat input in a 'Dodewaard' fuel-assembly. Finally, working pressure (and saturation temperature) can also be brought to a convenient level. (author). 16 refs., 11 figs., 1 tab

  19. The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws

    Gañán-Calvo, A M; Rebollo-Muñoz, N; Montanero, J M

    2013-01-01

    We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone–jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone–jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone–jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties. (paper)

  20. The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets: physical symmetries and scaling laws

    Gañán-Calvo, A. M.; Rebollo-Muñoz, N.; Montanero, J. M.

    2013-03-01

    We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone-jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone-jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone-jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties.

  1. Minimum scaling laws in tokamaks

    Zhang, Y.Z.; Mahajan, S.M.

    1986-10-01

    Scaling laws governing anomalous electron transport in tokamaks with ohmic and/or auxiliary heating are derived using renormalized Vlasov-Ampere equations for low frequency electromagnetic microturbulence. It is also shown that for pure auxiliary heating (or when auxiliary heating power far exceeds the ohmic power), the energy confinement time scales as tau/sub E/ ∼ P/sub inj//sup -1/3/, where P/sub inj/ is the injected power

  2. Scaling laws of Rydberg excitons

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to

  3. Scaling law in laboratory astrophysics

    Xia Jiangfan; Zhang Jie

    2001-01-01

    The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data

  4. Divertor scaling laws for tokamaks

    Catto, P.J.; Krasheninnikov, S.I.; Connor, J.W.

    1997-01-01

    The breakdown of two body scaling laws is illustrated by using the two dimensional plasma code UEDGE coupled to an advanced Navier-Stokes neutrals transport package to model attached and detached regimes in a simplified geometry. Two body similarity scalings are used as benchmarks for runs retaining non-two body modifications due to the effects of (i) multi-step processes altering ionization and radiation via the excited states of atomic hydrogen and (ii) three body recombination. Preliminary investigations indicate that two body scaling interpretations of experimental data fail due to (i) multi-step processes when a significant region of the plasma exceeds a plasma density of 10 19 m -3 , or (ii) three body recombination when there is a significant region in which the temperature is ≤1 eV while the plasma density is ≥10 20 m -3 . These studies demonstrate that two body scaling arguments are often inappropriate in the divertor and the first results for alternate scalings are presented. (orig.)

  5. Scaling laws for specialized hohlraums

    Rosen, M.D.

    1993-01-01

    The author presents scaling laws for the behavior of hohlraums that are somewhat more complex than a simple sphere or cylinder. In particular the author considers hohlraums that are in what has become known as a open-quotes primaryclose quotes open-quotes secondaryclose quotes configuration, namely geometries in which the laser is absorbed in a primary region of a hohlraum, and only radiation energy is transported to a secondary part of the hohlraum that is shielded from seeing the laser light directly. Such hohlraums have been in use of late for doing LTE opacity experiments on a sample in the secondary and in recently proposed open-quotes shimmedclose quotes hohlraums that use gold disks on axis to block a capsule's view of the cold laser entrance hole. The temperature/drive of the secondary, derived herein, scales somewhat differently than the drive in simple hohlraums

  6. Scaling laws for radial foil bearings

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  7. Law of nonlinear flow in saturated clays and radial consolidation

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  8. Scaling laws for coastal overwash morphology

    Lazarus, Eli D.

    2016-12-01

    Overwash is a physical process of coastal sediment transport driven by storm events and is essential to landscape resilience in low-lying barrier environments. This work establishes a comprehensive set of scaling laws for overwash morphology: unifying quantitative descriptions with which to compare overwash features by their morphological attributes across case examples. Such scaling laws also help relate overwash features to other morphodynamic phenomena. Here morphometric data from a physical experiment are compared with data from natural examples of overwash features. The resulting scaling relationships indicate scale invariance spanning several orders of magnitude. Furthermore, these new relationships for overwash morphology align with classic scaling laws for fluvial drainages and alluvial fans.

  9. Power law scaling for rotational energy transfer

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  10. Acoustofluidics 10: Scaling laws in acoustophoresis

    Bruus, Henrik

    2012-01-01

    In Part 10 of the thematic tutorial series “Acoustofluidics – exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation”, we present and analyze a number of scaling laws relevant for microsystem acoustophoresis. Such laws...

  11. RFQ scaling-law implications and examples

    Wadlinger, E.A.

    1986-01-01

    We demonstrate the utility of the RFQ scaling laws that have been previously derived. These laws are relations between accelerator parameters (electric field, fr frequency, etc.) and beam parameters (current, energy, emittance, etc.) that act as guides for designing radio-frequency quadrupoles (RFQs) by showing the various tradeoffs involved in making RFQ designs. These scaling laws give a unique family of curves, at any given synchronous particle phase, that relates the beam current, emittance, particle mass, and space-charge tune depression with the RFQ frequency and maximum vane-tip electric field when assuming equipartitioning and equal longitudinal and transverse tune depressions. These scaling curves are valid at any point in any given RFQ where there is a bunched and equipartitioned beam. We show several examples for designing RFQs, examine the performance characteristics of an existing device, and study various RFQ performance limitations required by the scaling laws

  12. Fluctuation scaling, Taylor's law, and crime.

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  13. Fluctuation scaling, Taylor's law, and crime.

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  14. Practical scaling law for photoelectron angular distributions

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-01-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested

  15. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  16. Temperature Scaling Law for Quantum Annealing Optimizers.

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  17. A crude scaling law for lasertrons

    Rees, J.

    1987-11-01

    The lasertron is under consideration in several laboratories as a promising new source of high-power microwaves that is competitive with conventional klystrons in its properties - particularly in efficiency. In this note, a crude scaling law for high-power lasertrons is derived based on the observation that the main limiting phenomenon, the phenomenon that curtails the tube's efficiency, is debunching due to longitudinal space-charge forces acting in the electron gun. The scaling law indicates that lasertrons are quite restricted in the power they can generate at high frequencies

  18. Power laws and fragility in flow networks.

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  19. Grenelle law 1 and financial flow

    Bacher, P.

    2009-01-01

    With the aid of three particularly significant examples on the subject of financial flow (photovoltaic electricity, wind power electricity, energy saving in existing housing), it can be shown that the practical details of implementing the decisions of the Grenelle Environment Round Table (conveyed in the Grenelle Law I) should be thoroughly reviewed in order to increase their efficiency and avoid unjustified financial transfers from tax payers as a whole and (or) electricity consumers to the promoters or suppliers of the systems. (author)

  20. Centrifugal fans: Similarity, scaling laws, and fan performance

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  1. Scaling Laws in Chennai Bus Network

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    In this paper, we study the structural properties of the complex bus network of Chennai. We formulate this extensive network structure by identifying each bus stop as a node, and a bus which stops at any two adjacent bus stops as an edge connecting the nodes. Rigorous statistical analysis of this data shows that the Chennai bus network displays small-world properties and a scale-free degree distribution with the power-law exponent, $\\gamma > 3$.

  2. Scaling laws for nonintercommuting cosmic string networks

    Martins, C.J.A.P.

    2004-01-01

    We study the evolution of noninteracting and entangled cosmic string networks in the context of the velocity-dependent one-scale model. Such networks may be formed in several contexts, including brane inflation. We show that the frozen network solution L∝a, although generic, is only a transient one, and that the asymptotic solution is still L∝t as in the case of ordinary (intercommuting) strings, although in the present context the universe will usually be string dominated. Thus the behavior of two strings when they cross does not seem to affect their scaling laws, but only their densities relative to the background

  3. Scaling laws in (e,3e) processes

    Gasaneo, G; Rodriguez, K V; Ancarani, L U; Cappello, C Dal; Charpentier, I

    2009-01-01

    We study the double ionization of helium-like ions by impact of electrons with high incident energy. Within the isoelectronic sequence, an approximate scaling law for (e,3e) differential cross sections is proposed and confirmed by calculations. The latter are performed using 14-parameters Hylleraas-like wave functions to represent the bound electrons in the initial channel, plane waves for the fast incoming and scattered electrons, and a continuum distorted wave approach for the two ejected electrons in the final channel.

  4. New Empirical Earthquake Source‐Scaling Laws

    Thingbaijam, Kiran Kumar S.

    2017-12-13

    We develop new empirical scaling laws for rupture width W, rupture length L, rupture area A, and average slip D, based on a large database of rupture models. The database incorporates recent earthquake source models in a wide magnitude range (M 5.4–9.2) and events of various faulting styles. We apply general orthogonal regression, instead of ordinary least-squares regression, to account for measurement errors of all variables and to obtain mutually self-consistent relationships. We observe that L grows more rapidly with M compared to W. The fault-aspect ratio (L/W) tends to increase with fault dip, which generally increases from reverse-faulting, to normal-faulting, to strike-slip events. At the same time, subduction-inter-face earthquakes have significantly higher W (hence a larger rupture area A) compared to other faulting regimes. For strike-slip events, the growth of W with M is strongly inhibited, whereas the scaling of L agrees with the L-model behavior (D correlated with L). However, at a regional scale for which seismogenic depth is essentially fixed, the scaling behavior corresponds to the W model (D not correlated with L). Self-similar scaling behavior with M − log A is observed to be consistent for all the cases, except for normal-faulting events. Interestingly, the ratio D/W (a proxy for average stress drop) tends to increase with M, except for shallow crustal reverse-faulting events, suggesting the possibility of scale-dependent stress drop. The observed variations in source-scaling properties for different faulting regimes can be interpreted in terms of geological and seismological factors. We find substantial differences between our new scaling relationships and those of previous studies. Therefore, our study provides critical updates on source-scaling relations needed in seismic–tsunami-hazard analysis and engineering applications.

  5. Scaling Laws for NanoFET Sensors

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  6. Scaling laws for spherical pinch experiments

    Singh, D.P.; Palleschi, V.; Vaselli, M.

    1991-01-01

    In spherical pinch (SP) experiments, the plasma heated at the center of a cell to reach ignition temperature is confined by imploding shock waves for a time long enough to satisfy the Lawson criterion for plasma fusion. In earlier theoretical studies, the expansion of the central plasma either is neglected or is assumed to be radially uniform. The energy is considered to be deposited instantaneously at the center of the cell and the nonlinear heat conduction equation is solved to study the temporal evolution of the central plasma. Incorporating the ignition condition for the average temperature of the expanding fireball, and its confinement by imploding convergent shock waves, which may be fired from the periphery of the cell with some time delay, the scaling laws for satisfying the Lawson criterion are investigated in detail. The relevant calculations indicate that the cumulative effects of the convergent shock waves in the vicinity of the center of the cell play an important role in these scaling laws. (author)

  7. Scaling Law of Urban Ride Sharing

    Tachet, R.; Sagarra, O.; Santi, P.; Resta, G.; Szell, M.; Strogatz, S. H.; Ratti, C.

    2017-03-01

    Sharing rides could drastically improve the efficiency of car and taxi transportation. Unleashing such potential, however, requires understanding how urban parameters affect the fraction of individual trips that can be shared, a quantity that we call shareability. Using data on millions of taxi trips in New York City, San Francisco, Singapore, and Vienna, we compute the shareability curves for each city, and find that a natural rescaling collapses them onto a single, universal curve. We explain this scaling law theoretically with a simple model that predicts the potential for ride sharing in any city, using a few basic urban quantities and no adjustable parameters. Accurate extrapolations of this type will help planners, transportation companies, and society at large to shape a sustainable path for urban growth.

  8. On generalized scaling laws with continuously varying exponents

    Sittler, Lionel; Hinrichsen, Haye

    2002-01-01

    Many physical systems share the property of scale invariance. Most of them show ordinary power-law scaling, where quantities can be expressed as a leading power law times a scaling function which depends on scaling-invariant ratios of the parameters. However, some systems do not obey power-law scaling, instead there is numerical evidence for a logarithmic scaling form, in which the scaling function depends on ratios of the logarithms of the parameters. Based on previous ideas by Tang we propose that this type of logarithmic scaling can be explained by a concept of local scaling invariance with continuously varying exponents. The functional dependence of the exponents is constrained by a homomorphism which can be expressed as a set of partial differential equations. Solving these equations we obtain logarithmic scaling as a special case. The other solutions lead to scaling forms where logarithmic and power-law scaling are mixed

  9. Scaling laws for nanoFET sensors

    Zhou Fushan; Wei Qihuo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width

  10. Scaling of wet granular flows in a rotating drum

    Jarray Ahmed

    2017-01-01

    Full Text Available In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.

  11. A Unified Scaling Law in Spiral Galaxies.

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  12. A scaling law beyond Zipf's law and its relation to Heaps' law

    Font-Clos, Francesc; Corral, Álvaro; Boleda, Gemma

    2013-01-01

    The dependence on text length of the statistical properties of word occurrences has long been considered a severe limitation on the usefulness of quantitative linguistics. We propose a simple scaling form for the distribution of absolute word frequencies that brings to light the robustness of this distribution as text grows. In this way, the shape of the distribution is always the same, and it is only a scale parameter that increases (linearly) with text length. By analyzing very long novels we show that this behavior holds both for raw, unlemmatized texts and for lemmatized texts. In the latter case, the distribution of frequencies is well approximated by a double power law, maintaining the Zipf's exponent value γ ≃ 2 for large frequencies but yielding a smaller exponent in the low-frequency regime. The growth of the distribution with text length allows us to estimate the size of the vocabulary at each step and to propose a generic alternative to Heaps' law, which turns out to be intimately connected to the distribution of frequencies, thanks to its scaling behavior. (paper)

  13. Intermittency and scaling laws for wall bounded turbulence

    Benzi, R.; Amati, G.; Casciola, C.M.; Toschi, F.; Piva, R.

    1999-01-01

    Well defined scaling laws clearly appear in wall bounded turbulence, very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in

  14. A constitutive law for dense granular flows.

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  15. Origin of Noncubic Scaling Law in Disordered Granular Packing

    Xia, Chengjie; Li, Jindong; Kou, Binquan; Cao, Yixin; Li, Zhifeng; Xiao, Xianghui; Fu, Yanan; Xiao, Tiqiao; Hong, Liang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-06-01

    Recent diffraction experiments on metallic glasses have unveiled an unexpected non-cubic scaling law between density and average interatomic distance, which lead to the speculations on the presence of fractal glass order. Using X-ray tomography we identify here a similar non-cubic scaling law in disordered granular packing of spherical particles. We find that the scaling law is directly related to the contact neighbors within first nearest neighbor shell, and therefore is closely connected to the phenomenon of jamming. The seemingly universal scaling exponent around 2.5 arises due to the isostatic condition with contact number around 6, and we argue that the exponent should not be universal.

  16. Global scale groundwater flow model

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  17. Scaling laws for fractional Brownian motion with power-law clock

    O'Malley, Daniel; Cushman, John H; Johnson, Graham

    2011-01-01

    We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)

  18. Scaling laws for modeling nuclear reactor systems

    Nahavandi, A.N.; Castellana, F.S.; Moradkhanian, E.N.

    1979-01-01

    Scale models are used to predict the behavior of nuclear reactor systems during normal and abnormal operation as well as under accident conditions. Three types of scaling procedures are considered: time-reducing, time-preserving volumetric, and time-preserving idealized model/prototype. The necessary relations between the model and the full-scale unit are developed for each scaling type. Based on these relationships, it is shown that scaling procedures can lead to distortion in certain areas that are discussed. It is advised that, depending on the specific unit to be scaled, a suitable procedure be chosen to minimize model-prototype distortion

  19. Strain scaling law for flux pinning in practical superconductors

    Ekin, J.W.

    1980-01-01

    Detailed experimental data are reported on the critical current and pinning force density of a number of different Nb 3 Sn conductors measured over an extensive range of magnetic fields and strain. Strain scaling in terms of the upper-critical field as scaling parameter is tested and a strain scaling relation formulated. This is compared with the data and its application to practical conductors described. The relation between this strain scaling law and the usual temperature scaling law is discussed and an empirical expression is obtained unifying the two. (U.K.)

  20. Modified Beer-Lambert law for blood flow.

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  1. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS

    WEI, J.; PAPAPHILIPPOU, Y.; TALMAN, R.

    2000-01-01

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry

  2. Intermittency and scaling laws for wall bounded turbulence

    Benzi, R.; Amati, G.; Casciola, C. M.; Toschi, F.; Piva, R.

    1998-01-01

    Well defined scaling laws clearly appear in wall bounded turbulence, even very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in terms of the structure functions of order two which, in physical terms, confirms the prevailing role of the momentum transfer towards the wall in the near wall dynamics.

  3. Chiral battery, scaling laws and magnetic fields

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  4. Aeroelastic scaling laws for gust load alleviation control system

    Tang Bo

    2016-02-01

    Full Text Available Gust load alleviation (GLA tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and verified. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compensating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude saturations in actuator have been studied and examined by a numerical simulation.

  5. Scaling laws between population and facility densities.

    Um, Jaegon; Son, Seung-Woo; Lee, Sung-Ik; Jeong, Hawoong; Kim, Beom Jun

    2009-08-25

    When a new facility like a grocery store, a school, or a fire station is planned, its location should ideally be determined by the necessities of people who live nearby. Empirically, it has been found that there exists a positive correlation between facility and population densities. In the present work, we investigate the ideal relation between the population and the facility densities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, it was shown that the density of facility D and that of population rho should follow a simple power law D approximately rho(2/3). In our empirical analysis, on the other hand, the power-law exponent alpha in D approximately rho(alpha) is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy in alpha, we propose a model based on economic mechanisms that mimic the competitive balance between the profit of the facilities and the social opportunity cost for populations. Through our simple, microscopically driven model, we show that commercial facilities driven by the profit of the facilities have alpha = 1, whereas public facilities driven by the social opportunity cost have alpha = 2/3. We simulate this model to find the optimal positions of facilities on a real U.S. map and show that the results are consistent with the empirical data.

  6. Scaling laws for a compliant biomimetic swimmer

    Gibouin, Florence; Raufaste, Christophe; Bouret, Yann; Argentina, Mederic

    2017-11-01

    Motivated by the seminal work of Lord Lighthill in the sixties, we study the motion of inertial aquatic swimmers that propels with undulatory gaits. In 2014, Gazzola et al. have uncovered the law linking the swimming velocity to the kinematics of the swimmer and the fluid properties. At high Reynolds numbers, the velocity appears to be equal to 0.4 Af /(2 π) , where A and f are respectively the amplitude and the frequency of the oscillating fin. We have constructed a compliant biomimetic swimmer, whose muscles have been modeled through a torque distribution thanks to a servomotor. A soft polymeric material mimics the flesh and provides the flexibility. By immersing our robot into a water tunnel, we find and characterize the operating point for which the propulsive force balances the drag. We bring the first experimental proof of the former law and probe large amplitude undulations which exhibits nonlinear effects. All data collapse perfectly onto a single master curve. We investigate the role of the fin flexibility by varying its length and its thickness and we figured out the existence of an efficient swimming regime. We thank the support of CNRS and Université Côte d'Azur.

  7. Scaling laws for TEXT plasma profiles

    McCool, S.C.; Bravenec, R.V.; Chen, J.Y.; Foster, M.S.; Li, W.L.; Ouroura, A.; Phillips, P.E.; Richards, B.; Wenzel, K.W.; Zhang, Z.M.

    1994-01-01

    Regression analysis has been performed on a number of measured profiles including temperature and density vs. nominal macroscopic operating parameters for TEXT tokamak (pre-upgrade) ohmic plasmas. The resulting simple empirical model has enabled the authors to quickly approximate profiles of electron temperature and density, ion temperature, and soft x-ray brightness, as well as the scalar quantities: total radiated power, q=1 radius, sawtooth period and amplitude, and energy confinement time as a power law of toroidal field, plasma current, chord average density, and fueling gas atomic weight. The model profiles are only applicable to the plasma interior, i.e. within the limiter radius. In most cases the predicted model profiles are within the experimental error bars of measured profiles and are more accurate at predicting profile variation for small operating parameter changes than the measured profiles

  8. Newton's Third Law on a Scale Balance

    Nopparatjamjomras, Suchai; Panijpan, Bhinyo; Huntula, Jiradawan

    2009-01-01

    We propose a series of experiments involving balance readings of an object naturally floating or forced to be partially or fully immersed in water contained in a beaker sitting on an electronic scale balance. Students were asked to predict, observe and explain each case. The teacher facilitated the learning by asking probing questions, giving…

  9. Anomalous scaling of passive scalars in rotating flows.

    Rodriguez Imazio, P; Mininni, P D

    2011-06-01

    We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.

  10. Scaling laws for mode lockings in circle maps

    Cvitanovic, P.; Shraiman, B.; Soederberg, B.

    1985-06-01

    The self-similar structure of mode lockings for circle maps is studied by means of the associated Farey trees. We investigate numerically several classes of scaling relations implicit in the Farey organization of mode lockings and discuss the extent to which they lead to universal scaling laws. (orig.)

  11. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l ~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  12. Human learning: Power laws or multiple characteristic time scales?

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  13. Scaling laws of design parameters for plasma wakefield accelerators

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  14. Numerical assessment of the ion turbulent thermal transport scaling laws

    Ottaviani, M.; Manfredi, G.

    2001-01-01

    Numerical simulations of ion temperature gradient (ITG) driven turbulence were carried out to investigate the parametric dependence of the ion thermal transport on the reduced gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented as a simple power law like the one exhibited by the empirical scaling laws. (author)

  15. Scaling laws for HTGR core block seismic response

    Dove, R.C.

    1977-01-01

    This paper discusses the development of scaling laws, physical modeling, and seismic testing of a model designed to represent a High Temperature Gas-Cooled Reactor (HTGR) core consisting of graphite blocks. The establishment of the proper scale relationships for length, time, force, and other parameters is emphasized. Tests to select model materials and the appropriate scales are described. Preliminary results obtained from both model and prototype systems tested under simulated seismic vibration are presented

  16. Scaling laws and properties of compositional data

    Buccianti, Antonella; Albanese, Stefano; Lima, AnnaMaria; Minolfi, Giulia; De Vivo, Benedetto

    2016-04-01

    Many random processes occur in geochemistry. Accurate predictions of the manner in which elements or chemical species interact each other are needed to construct models able to treat presence of random components. Geochemical variables actually observed are the consequence of several events, some of which may be poorly defined or imperfectly understood. Variables tend to change with time/space but, despite their complexity, may share specific common traits and it is possible to model them stochastically. Description of the frequency distribution of the geochemical abundances has been an important target of research, attracting attention for at least 100 years, starting with CLARKE (1889) and continued by GOLDSCHMIDT (1933) and WEDEPOHL (1955). However, it was AHRENS (1954a,b) who focussed on the effect of skewness distributions, for example the log-normal distribution, regarded by him as a fundamental law of geochemistry. Although modeling of frequency distributions with some probabilistic models (for example Gaussian, log-normal, Pareto) has been well discussed in several fields of application, little attention has been devoted to the features of compositional data. When compositional nature of data is taken into account, the most typical distribution models for compositions are the Dirichlet and the additive logistic normal (or normal on the simplex) (AITCHISON et al. 2003; MATEU-FIGUERAS et al. 2005; MATEU-FIGUERAS and PAWLOWSKY-GLAHN 2008; MATEU-FIGUERAS et al. 2013). As an alternative, because compositional data have to be transformed from simplex space to real space, coordinates obtained by the ilr transformation or by application of the concept of balance can be analyzed by classical methods (EGOZCUE et al. 2003). In this contribution an approach coherent with the properties of compositional information is proposed and used to investigate the shape of the frequency distribution of compositional data. The purpose is to understand data-generation processes

  17. Theoretical scaling law for ohmically heated tokamaks

    Minardi, E.

    1981-06-01

    The electrostatic drift instability arising from the reduction of shear damping, due to toroidal effects, is assumed to be the basic source of the anomalous electron transport in tokamaks. The Maxwellian population of electrons constitutes a medium whose adiabatic nonlinear reaction to the instability (described in terms of an effective dielectric constant of the medium) determines the stationary electrostatic fluctuation level in marginally unstable situations. The existence of a random electrostatic potenial implies a fluctuating current of the Maxwellian electrons which creates a random magnetic field and a stocasticization of a magnetic configuration. The application of recent results allows the calculation of the realted radial electron transport. It is found that the confinement time under stationary ohmic conditions scales as n Tsub(i)sup( - 1/2) and is proportional roughly to the cube of the geometric dimenisions. Moreover, it is deduced that the loop voltage is approximateley the same for all tokamaks, irrespective of temperature and density and to a large extent, also of geometrical conditions. Thes results are characteristic of the ohmic stationary regime and can hardly be extrapolated to order heating regimes. (orig.)

  18. Scaling laws and fluctuations in the statistics of word frequencies

    Gerlach, Martin; Altmann, Eduardo G.

    2014-11-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths.

  19. Scaling laws and fluctuations in the statistics of word frequencies

    Gerlach, Martin; Altmann, Eduardo G

    2014-01-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths. (paper)

  20. Triadic closure dynamics drives scaling laws in social multiplex networks

    Klimek, Peter; Thurner, Stefan

    2013-01-01

    Social networks exhibit scaling laws for several structural characteristics, such as degree distribution, scaling of the attachment kernel and clustering coefficients as a function of node degree. A detailed understanding if and how these scaling laws are inter-related is missing so far, let alone whether they can be understood through a common, dynamical principle. We propose a simple model for stationary network formation and show that the three mentioned scaling relations follow as natural consequences of triadic closure. The validity of the model is tested on multiplex data from a well-studied massive multiplayer online game. We find that the three scaling exponents observed in the multiplex data for the friendship, communication and trading networks can simultaneously be explained by the model. These results suggest that triadic closure could be identified as one of the fundamental dynamical principles in social multiplex network formation. (paper)

  1. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  2. Data adaptive control parameter estimation for scaling laws

    Dinklage, Andreas [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Dose, Volker [Max-Planck- Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-07-01

    Bayesian experimental design quantifies the utility of data expressed by the information gain. Data adaptive exploration determines the expected utility of a single new measurement using existing data and a data descriptive model. In other words, the method can be used for experimental planning. As an example for a multivariate linear case, we apply this method for constituting scaling laws of fusion devices. In detail, the scaling of the stellarator W7-AS is examined for a subset of {iota}=1/3 data. The impact of the existing data on the scaling exponents is presented. Furthermore, in control parameter space regions of high utility are identified which improve the accuracy of the scaling law. This approach is not restricted to the presented example only, but can also be extended to non-linear models.

  3. Scaling laws in high energy electron-nuclear processes

    Chemtob, M.

    1980-11-01

    We survey the parton model description of high momentum transfer electron scattering processes with nuclei. We discuss both nucleon and quark parton models and confront the patterns of scaling laws violations, induced by binding effects, in the former, and perturbative QCD effects, in the latter

  4. The Origin of Scales and Scaling Laws in Star Formation

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  5. Unified scaling law for earthquakes in Crimea and Northern Caucasus

    Nekrasova, A. K.; Kossobokov, V. G.

    2016-10-01

    This study continues detailed investigations on the construction of regional charts of the parameters of the generalized Guttenberg-Richter Law, which takes into account the properties of the spatiotemporal seismic energy scaling. We analyzed the parameters of the law in the vicinity of the intersections of morphostructural lineaments in Crimea and Greater Caucasus. It was shown that ignoring the fractal character of the spatial distribution of earthquakes in the southern part of the Russian Federation can lead to significant underestimation of the seismic hazard in the largest cities of the region.

  6. Scaling laws for trace impurity confinement: a variational approach

    Thyagaraja, A.; Haas, F.A.

    1990-01-01

    A variational approach is outlined for the deduction of impurity confinement scaling laws. Given the forms of the diffusive and convective components to the impurity particle flux, we present a variational principle for the impurity confinement time in terms of the diffusion time scale and the convection parameter, which is a non-dimensional measure of the size of the convective flux relative to the diffusive flux. These results are very general and apply irrespective of whether the transport fluxes are of theoretical or empirical origin. The impurity confinement time scales exponentially with the convection parameter in cases of practical interest. (orig.)

  7. Water flow at all scales

    Sand-Jensen, K.

    2006-01-01

    Continuous water fl ow is a unique feature of streams and distinguishes them from all other ecosystems. The main fl ow is always downstream but it varies in time and space and can be diffi cult to measure and describe. The interest of hydrologists, geologists, biologists and farmers in water fl ow......, and its physical impact, depends on whether the main focus is on the entire stream system, the adjacent fi elds, the individual reaches or the habitats of different species. It is important to learn how to manage fl ow at all scales, in order to understand the ecology of streams and the biology...

  8. Site-Scale Saturated Zone Flow Model

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  9. Preferential flow from pore to landscape scales

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  10. Power Laws, Scale-Free Networks and Genome Biology

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  11. Scaling Laws for Dynamic Aperture due to Chromatic Sextupoles

    Scandale, Walter

    1997-01-01

    Scaling laws for the dynamic aperture due to chromatic sextupoles are investigated. The problem is addressed in a simplified lattice model containing 4 N identical cells and one linear betatron phase shifter to break the overall cell-lattice symmetry. Two families of chromatic sextupoles are used to compensate the natural chromaticity. Analytical formulae for the dynamic apertur as a function of the number of cells and of the cell length are found and confirmed through computer tracking.

  12. Scaling laws for steady-state fusion plasmas

    Husseiny, A A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-12-01

    Experimental and semi-theoretical scaling laws are extrapolated to include the effect of fusion burn on the lifetime of plasma ions. Fractional burnups are also reconsidered on the same basis. The actual lifetime of fusion plasma ions and the estimated time necessary for feasible reactors, provide a correlation between the laboratory data and the hypothesis of reactor feasibility conditions. Based on these correlations criteria for the realization of self-heated plasmas are established.

  13. On global H-mode scaling laws for JET

    Kardaun, O.; Lackner, K.; Thomsen, K.; Christiansen, J.; Cordey, J.; Gottardi, N.; Keilhacker, M.; Smeulders, P.

    1989-01-01

    Investigation of the scaling of the energy confinement time τ E with various plasma parameters has since long been an interesting, albeit not uncontroversial topic in plasma physics. Various global scaling laws have been derived for ohmic as well as (NBI and/or RF heated) L-mode discharges. Due to the scarce availability of computerised, extensive and validated H-mode datasets, systematic statistical analysis of H-mode scaling behaviour has hitherto been limited. A common approach is to fit the available H-mode data by an L-mode scaling law (e.g., Kaye-Goldston, Rebut-Lallia) with one or two adjustable constant terms. In this contribution we will consider the alternative approach of fitting all free parameters of various simple scaling models to two recently compiled datasets consisting of about 140 ELM-free and 40 ELMy H-mode discharges, measured at JET in the period 1986-1988. From this period, approximately all known H-mode shots have been included that satisfy the following criteria: D-injected D + discharges with no RF heating, a sufficiently long (≥300 ms) and regular P NBI flat-top, and validated main diagnostics. (author) 13 refs., 1 tab

  14. Scaled Experimental Modeling of VHTR Plenum Flows

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  15. Deviations from uniform power law scaling in nonstationary time series

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  16. Power-law citation distributions are not scale-free.

    Golosovsky, Michael

    2017-09-01

    We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.

  17. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  18. Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids

    Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea

    2014-05-01

    Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The

  19. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  20. Asymptotic scalings of developing curved pipe flow

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  1. Empirical scaling law connecting persistence and severity of global terrorism

    Gao, Jianbo; Fang, Peng; Liu, Feiyan

    2017-09-01

    Terrorism and counterterrorism have both been evolving rapidly. From time to time, there have been debates on whether the new terrorism is evolutionary or revolutionary. Such debate often becomes more heated after major terrorist activities, such as the terrorist attacks on September 11, 2001 and the November 13, 2015 coordinated Paris terror attack. Using country-wide terrorism data since 1970, we show that there exist scaling laws governing the continuity and persistence of world-wide terrorism, with the long-term scaling parameter for each country closely related to its yearly global terrorism index. This suggests that the new terrorism is more accurately considered evolutionary. It is further shown that the imbalance in the seesaw of terrorism and counterterrorism is not only responsible for the scaling behavior found here, but also provides new means of quantifying the severity of the global terrorism.

  2. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  3. Scaling Law for Irreversible Entropy Production in Critical Systems.

    Hoang, Danh-Tai; Prasanna Venkatesh, B; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-06-09

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism.

  4. Scaling Law between Urban Electrical Consumption and Population in China

    Zhu, Xiaowu; Xiong, Aimin; Li, Liangsheng; Liu, Maoxin; Chen, X. S.

    The relation between the household electrical consumption Y and population N for Chinese cities in 2006 has been investigated with the power law scaling form Y = A_0 N^{β}. It is found that the Chinese cities should be divided into three categories characterized by different scaling exponent β. The first category, which includes the biggest and coastal cities of China, has the scaling exponent β> 1. The second category, which includes mostly the cities in central China, has the scaling exponent β ≈ 1. The third category, which consists of the cities in northwestern China, has the scaling exponent β 1, there is also a fixed point population N f . If the initial population N(0) > N f , the population increases very fast with time and diverges within a finite time. If the initial population N(0) < N f , the population decreases with time and collapse finally. The pattern of population evolution in a city is determined by its scaling exponent and initial population.

  5. Similitude observations and scaling laws for the plasma focus

    Kaeppeler, H.J.

    It has been attempted to give a coherent explanation of the most important physical processes concerning a model theory of the plasma focus of the Mather type. For this purpose the compression process, the stable dense phase and the subsequent neutron-producing instable phase were described. With the assumption that I 0 2 /rho 0 R 0 2 = const and t 0 /t/sub c/ = const a theoretical explanation is given for the already experimentally determined dependence of the neutron production on the fourth power of the maximum current. A few other conclusions based on these scaling laws are being discussed

  6. Interaction of ion clusters with fusion plasmas: Scaling laws

    Arista, N.R.; Bringa, E.M.

    1997-01-01

    The interaction between large ion clusters or very intense ion beams with fusion plasma is studied using the dielectric function formalism with appropriate quantum corrections. The contributions from individual and collective modes to the energy loss are calculated. The general properties of the interference effects are characterized in terms of the relevant parameters, and simple scaling laws are obtained. In particular, the conditions for a maximum enhancement in the energy deposition are derived. The study provides a unified view and a general formulation of collective effects in the energy loss for low and high velocities of the beam particles. copyright 1997 The American Physical Society

  7. Scaling laws for particle growth in plasma reactors

    Lemons, D.S.; Keinigs, R.K.; Winske, D.; Jones, M.E.

    1996-01-01

    We quantify a model which incorporates observed features of contaminant particle growth in plasma processing reactors. According to the model, large open-quote open-quote predator close-quote close-quote particles grow by adsorbing smaller, typically neutral, open-quote open-quote prey close-quote close-quote protoparticles. The latter are supplied by an assumed constant mass injection of contaminant material. Scaling laws and quantitative predictions compare favorably with published experimental results. copyright 1996 American Institute of Physics

  8. Dimensionless parameters, scaling laws, and the implications for ETG

    Castle, G.G.

    1995-04-20

    ETG will be useful in resolving several physical issues relevant to Spherical Tokamak Reactor concepts. First, it will provide a test of whether transport is Bohm or gyro-Bohm in nature. The second point is that ETG will operate in a completely different range of {rho}* space from other high performance machines, opening up a previously inaccessible region of parameter space. ETG is also a (very) high-{beta} machine. It would be the only device that would have all of its parameters except {rho}* similar to those of a Spherical tokamak Reactor. If it turns out that the transport scales definitively as either Bohm or gyro-Bohm, then extrapolation to reactor conditions with significantly lower values of {rho}* would become more credible. It is also shown that in general one cannot obtain a power law relation in the dimensionless variables for the confinement tim from a power law fit to the engineering variables. It is shown, however, that if T{sub i}/T{sub e} and n{sub i}/n{sub e} are constant or if a modified definition of certain dimensionless variables is adopted, then such a power law conversion is possible.

  9. Scaling up debris-flow experiments on a centrifuge

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  10. Site scale groundwater flow in Haestholmen

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  11. Site scale groundwater flow in Haestholmen

    Loefman, J.

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  12. Two-dimensional divertor modeling and scaling laws

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  13. Dynamical scaling law in the development of drift wave turbulence

    Watanabe, T.; Fujisaka, H.; Iwayama, T.

    1997-01-01

    The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region, which is set to be slightly larger than the characteristic wave number λ, evaluating the inverse ion Larmor radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys a dynamic scaling law for k 1/2 ε 5/4 t 7/4 F(k/bar k(t))[bar k(t)∼λ 3/4 ε -1/8 t -3/8 ] with a scaling function F(x), which turns out to be in good agreement with numerical experiments. copyright 1997 The American Physical Society

  14. LARGE-SCALE FLOWS IN PROMINENCE CAVITIES

    Schmit, D. J.; Gibson, S. E.; Tomczyk, S.; Reeves, K. K.; Sterling, Alphonse C.; Brooks, D. H.; Williams, D. R.; Tripathi, D.

    2009-01-01

    Regions of rarefied density often form cavities above quiescent prominences. We observed two different cavities with the Coronal Multichannel Polarimeter on 2005 April 21 and with Hinode/EIS on 2008 November 8. Inside both of these cavities, we find coherent velocity structures based on spectral Doppler shifts. These flows have speeds of 5-10 km s -1 , occur over length scales of tens of megameters, and persist for at least 1 hr. Flows in cavities are an example of the nonstatic nature of quiescent structures in the solar atmosphere.

  15. Entropy of gravitating systems: scaling laws versus radial profiles

    Pesci, Alessandro

    2007-01-01

    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with the system's size). To accomplish this, the methods introduced by Oppenheim (2003 Phys. Rev.E 68 016108) to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, with r the area radius inside the system. In such circumstances entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary

  16. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence

    Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre

    2005-01-01

    A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.

  17. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  18. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  19. Molecular Dynamics Simulations for Resolving Scaling Laws of Polyethylene Melts

    Kazuaki Z. Takahashi

    2017-01-01

    Full Text Available Long-timescale molecular dynamics simulations were performed to estimate the actual physical nature of a united-atom model of polyethylene (PE. Several scaling laws for representative polymer properties are compared to theoretical predictions. Internal structure results indicate a clear departure from theoretical predictions that assume ideal chain statics. Chain motion deviates from predictions that assume ideal motion of short chains. With regard to linear viscoelasticity, the presence or absence of entanglements strongly affects the duration of the theoretical behavior. Overall, the results indicate that Gaussian statics and dynamics are not necessarily established for real atomistic models of PE. Moreover, the actual physical nature should be carefully considered when using atomistic models for applications that expect typical polymer behaviors.

  20. Scaling law of resistance fluctuations in stationary random resistor networks

    Pennetta; Trefan; Reggiani

    2000-12-11

    In a random resistor network we consider the simultaneous evolution of two competing random processes consisting in breaking and recovering the elementary resistors with probabilities W(D) and W(R). The condition W(R)>W(D)/(1+W(D)) leads to a stationary state, while in the opposite case, the broken resistor fraction reaches the percolation threshold p(c). We study the resistance noise of this system under stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations is found to follow a scaling law |p-p(c)|(-kappa(0)) with kappa(0) = 5.5. The proposed model relates quantitatively the defectiveness of a disordered media with its electrical and excess-noise characteristics.

  1. Scaling of peak flows with constant flow velocity in random self-similar networks

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  2. Scaling of peak flows with constant flow velocity in random self-similar networks

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios

  3. The Physical Origin of Galaxy Morphologies and Scaling Laws

    Steinmetz, Matthias; Navarro, Julio F.

    2002-01-01

    We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

  4. Site scale groundwater flow in Olkiluoto

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  5. Site scale groundwater flow in Olkiluoto

    Loefman, J.

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  6. Cope's Rule and the Universal Scaling Law of Ornament Complexity.

    Raia, Pasquale; Passaro, Federico; Carotenuto, Francesco; Maiorino, Leonardo; Piras, Paolo; Teresi, Luciano; Meiri, Shai; Itescu, Yuval; Novosolov, Maria; Baiano, Mattia Antonio; Martínez, Ricard; Fortelius, Mikael

    2015-08-01

    Luxuriant, bushy antlers, bizarre crests, and huge, twisting horns and tusks are conventionally understood as products of sexual selection. This view stems from both direct observation and from the empirical finding that the size of these structures grows faster than body size (i.e., ornament size shows positive allometry). We contend that the familiar evolutionary increase in the complexity of ornaments over time in many animal clades is decoupled from ornament size evolution. Increased body size comes with extended growth. Since growth scales to the quarter power of body size, we predicted that ornament complexity should scale according to the quarter power law as well, irrespective of the role of sexual selection in the evolution and function of the ornament. To test this hypothesis, we selected three clades (ammonites, deer, and ceratopsian dinosaurs) whose species bore ornaments that differ in terms of the importance of sexual selection to their evolution. We found that the exponent of the regression of ornament complexity to body size is the same for the three groups and is statistically indistinguishable from 0.25. We suggest that the evolution of ornament complexity is a by-product of Cope's rule. We argue that although sexual selection may control size in most ornaments, it does not influence their shape.

  7. Pinch-off Scaling Law of Soap Bubbles

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  8. Localized Enzymatic Degradation of Polymers: Physics and Scaling Laws

    Lalitha Sridhar, Shankar; Vernerey, Franck

    2018-03-01

    Biodegradable polymers are naturally abundant in living matter and have led to great advances in controlling environmental pollution due to synthetic polymer products, harnessing renewable energy from biofuels, and in the field of biomedicine. One of the most prevalent mechanisms of biodegradation involves enzyme-catalyzed depolymerization by biological agents. Despite numerous studies dedicated to understanding polymer biodegradation in different environments, a simple model that predicts the macroscopic behavior (mass and structural loss) in terms of microphysical processes (enzyme transport and reaction) is lacking. An interesting phenomenon occurs when an enzyme source (released by a biological agent) attacks a tight polymer mesh that restricts free diffusion. A fuzzy interface separating the intact and fully degraded polymer propagates away from the source and into the polymer as the enzymes diffuse and react in time. Understanding the characteristics of this interface will provide crucial insight into the biodegradation process and potential ways to precisely control it. In this work, we present a centrosymmetric model of biodegradation by characterizing the moving fuzzy interface in terms of its speed and width. The model predicts that the characteristics of this interface are governed by two time scales, namely the polymer degradation and enzyme transport times, which in turn depend on four main polymer and enzyme properties. A key finding of this work is simple scaling laws that can be used to guide biodegradation of polymers in different applications.

  9. Electrostatic direct energy converter performance and cost scaling laws

    Hoffman, M.A.

    1977-08-01

    This study is concerned with electrostatic type direct energy converters for direct recovery of a large fraction of the plasma ion energy from fusion reactors. Simplified equations are presented for each of the important loss mechanisms in both single-stage direct converters and multistage ''Venetian Blind'' type direct converters. These equations can be used to estimate the efficiency and electric power output of the direct converter subsystem. Scaling relations for the cost of each major component in the direct converter subsystem are also given; these include the vacuum tank, direct converter modules, the DC power conditioning equipment, cryogenic vacuum pumping system and the thermal bottoming plant. The performance and cost scaling laws have been developed primarily for use in overall fusion power plant systems codes. However, to illustrate their utility, cost-effectiveness studies of two specific reference direct converter designs are presented in terms of the specific capital costs (i.e., the capital cost per unit electric power produced) for the Direct Converter Subsystem alone. Some examples of design improvements which can significantly reduce the specific capital costs of the Direct Converter Subsystem are also given

  10. MHD free convection flow of a non-Newtonian power-law fluid over ...

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  11. Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators.

    Nishikawa, Isao; Tanaka, Gouhei; Aihara, Kazuyuki

    2013-08-01

    Universal scaling laws form one of the central issues in physics. A nonstandard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we found that a statistical quantity related to fluctuations follows a nonstandard scaling law with respect to the system size in a synchronized state of globally coupled nonidentical phase oscillators [I. Nishikawa et al., Chaos 22, 013133 (2012)]. However, it is still unclear how widely this nonstandard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems and validate the conditions by numerical simulations of several different models.

  12. Remotely Sensed, catchment scale, estimations of flow resistance

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  13. Assessing carbon flow at the local scale

    McEvoy, D.; Gibbs, D.C.; Longhurst, J.W.S. [University of Hull, Hull (United Kingdom). Dept. of Geography

    1997-12-31

    Greater Manchester, an urban conurbation in the UK, was the birth place of the industrial revolution. Recent restructing and the potential for increases in economic growth place a requirement on the city to consider its future energy strategies if it is to keep its CO{sub 2} emissions to responsible levels. Reducing the carbon intensity of economies is an essential element of combating the threat of global warming, and although the problem is global in nature, effective remedial action has to be instigated at a variety of spatial scales. Inventories that are based at the city level allow the intensity and distribution of local carbon flows to be calculated and therefore have considerable potential in many planning and decision making processes. The CO{sub 2} inventory constructed for this paper is the first stage of prioritising carbon reduction strategies for Greater Manchester, providing an indication of carbon flows specific to the region. The inventory has been developed from the knowledge and experience of other city-scale energy studies which have taken place to date, and although the methodology has been developed for application to the Greater Manchester region the approach can be replicated for other urban areas. Sources of emission included: coal-fired power plants; gas; other solid fuel consumption; and petroleum use by automobiles; and others. The quantity of CO{sub 2} emitted by each was analysed, with a view to increasing efficiency. 27 refs., 1 fig., 17 tabs.

  14. Gravity, turbulence and the scaling ``laws'' in molecular clouds

    Ballesteros-Paredes, Javier

    The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).

  15. Scaling laws for e+/e- linear colliders

    Delahaye, J.P.; Guignard, G.; Raubenheimer, T.; Wilson, I.

    1999-01-01

    Design studies of a future TeV e + e - Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake fields with frequency, the single-bunch emittance blow-up during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high-frequency structures becomes very advantageous because it enables high accelerating fields to be obtained, which reduces the overall length and consequently the total cost of the linac. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  17. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  18. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals

    Kubin, L.P.; Sauzay, M.

    2011-01-01

    This work reviews and critically discusses the current understanding of two scaling laws, which are ubiquitous in the modeling of monotonic plastic deformation in face-centered cubic metals. A compilation of the available data allows extending the domain of application of these scaling laws to cyclic deformation. The strengthening relation tells that the flow stress is proportional to the square root of the average dislocation density, whereas the similitude relation assumes that the flow stress is inversely proportional to the characteristic wavelength of dislocation patterns. The strengthening relation arises from short-range reactions of non-coplanar segments and applies all through the first three stages of the monotonic stress vs. strain curves. The value of the proportionality coefficient is calculated and simulated in good agreement with the bulk of experimental measurements published since the beginning of the 1960's. The physical origin of what is called similitude is not understood and the related coefficient is not predictable. Its value is determined from a review of the experimental literature. The generalization of these scaling laws to cyclic deformation is carried out on the base of a large collection of experimental results on single and polycrystals of various materials and on different microstructures. Surprisingly, for persistent slip bands (PSBs), both the strengthening and similitude coefficients appear to be more than two times smaller than the corresponding monotonic values, whereas their ratio is the same as in monotonic deformation. The similitude relation is also checked in cell structures and in labyrinth structures. Under low cyclic stresses, the strengthening coefficient is found even lower than in PSBs. A tentative explanation is proposed for the differences observed between cyclic and monotonic deformation. Finally, the influence of cross-slip on the temperature dependence of the saturation stress of PSBs is discussed in some detail

  19. Scaled Rocket Testing in Hypersonic Flow

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  20. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  1. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  2. A Kinematic Conservation Law in Free Surface Flow

    Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra

    2015-01-01

    The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...

  3. A numerical model for dynamic crustal-scale fluid flow

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  4. Axial annular flow of power-law fluids - applicability of the limiting cases

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  5. Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws.

    van Essen, G J; Vernooij, J C M; Heesterbeek, J A P; Anjema, D; Merkus, D; Duncker, D J

    2011-02-01

    In view of the remarkable decrease of the relative heart weight (HW) and the relative blood volume in growing pigs, we investigated whether HW, cardiac output (CO), and stroke volume (SV) of modern growing pigs are proportional to BW, as predicted by allometric scaling laws: HW (or CO or SV) = a·BW(b), in which a and b are constants, and constant b is a multiple of 0.25 (quarter-power scaling law). Specifically, we tested the hypothesis that both HW and CO scale with BW to the power of 0.75 (HW or CO = a·BW(0.75)) and SV scales with BW to the power of 1.00 (SV = a·BW(1.0)). For this purpose, 2 groups of pigs (group 1, consisting of 157 pigs of 50 ± 1 kg; group 2, consisting of 45 pigs of 268 ± 18 kg) were surgically instrumented with a flow probe or a thermodilution dilution catheter, under open-chest anesthetized conditions to measure CO and SV, after which HW was determined. The 95% confidence intervals of power-coefficient b for HW were 0.74 to 0.80, encompassing the predicted value of 0.75, suggesting that HW increased proportionally with BW, as predicted by the allometric scaling laws. In contrast, the 95% confidence intervals of power-coefficient b for CO and SV as measured with flow probes were 0.40 to 0.56 and 0.39 to 0.61, respectively, and values obtained with the thermodilution technique were 0.34 to 0.53 and 0.40 to 0.62, respectively. Thus, the 95% confidence limits failed to encompass the predicted values of b for CO and SV of 0.75 and 1.0, respectively. In conclusion, although adult breeding sows display normal heart growth, cardiac performance appears to be disproportionately low for BW. This raises concern regarding the health status of adult breeding sows.

  6. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities (vol 24, pg 2752, 2007)

    Bache, Morten; Moses, J.; Wise, F.W.

    2010-01-01

    Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....

  7. Mathematical modeling for laminar flow of power law fluid in porous media

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  8. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  9. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  10. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  11. On heat transfer of weakly compressible power-law flows

    Li Botong

    2017-01-01

    Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.

  12. Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak

    Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru

    2015-01-01

    We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)

  13. A scaling law derived from a broadband impedance applications to SPEAR

    Vos, L.

    1990-01-01

    The bunch length in high-brightness synchrotron radiation sources is an important performance parameter. It is critically dependent on the μ-wave instability. Usually the SPEAR scaling law is used to compute the expected bunch length. In this paper we show that the SPEAR scaling law is compatible with a broadband impedance. This makes it possible to calculate the appropriate scaling law for a machine like the one proposed in Berkeley assuming that the impedance is known from measurements and/or calculations. (author) 4 refs., 5 figs., 1 tab

  14. Asymptotic scaling laws for precision of parameter estimates in dynamical systems

    Horbelt, W.; Timmer, J.

    2003-01-01

    When parameters are estimated from noisy data, the uncertainty of the estimates in terms of their standard deviation typically scales like the inverse square root of the number of data points. In the case of deterministic dynamical systems with added observation noise, superior scaling laws can be achieved. This is demonstrated numerically for the logistic map, the van der Pol oscillator and the Lorenz system, where exponential scaling laws and power laws have been found, depending on the number of degrees of freedom. For some special cases, analytical expressions are derived

  15. Dynamical scaling laws – A few unanswered questions

    a highly nonlinear process far from equilibrium. The second phase grows with ... The scaling hypothesis assumes the existence of a single characteristic length scale L(t) such that the domain sizes and ... the mean density of the medium varies as a function of distance from a given point, should exhibit the scaling form with ...

  16. Geometry and scaling laws of excursion and iso-sets of enstrophy and dissipation in isotropic turbulence

    Elsas, José Hugo; Szalay, Alexander S.; Meneveau, Charles

    2018-04-01

    Motivated by interest in the geometry of high intensity events of turbulent flows, we examine the spatial correlation functions of sets where turbulent events are particularly intense. These sets are defined using indicator functions on excursion and iso-value sets. Their geometric scaling properties are analysed by examining possible power-law decay of their radial correlation function. We apply the analysis to enstrophy, dissipation and velocity gradient invariants Q and R and their joint spatial distributions, using data from a direct numerical simulation of isotropic turbulence at Reλ ≈ 430. While no fractal scaling is found in the inertial range using box-counting in the finite Reynolds number flow considered here, power-law scaling in the inertial range is found in the radial correlation functions. Thus, a geometric characterisation in terms of these sets' correlation dimension is possible. Strong dependence on the enstrophy and dissipation threshold is found, consistent with multifractal behaviour. Nevertheless, the lack of scaling of the box-counting analysis precludes direct quantitative comparisons with earlier work based on multifractal formalism. Surprising trends, such as a lower correlation dimension for strong dissipation events compared to strong enstrophy events, are observed and interpreted in terms of spatial coherence of vortices in the flow.

  17. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  18. Networks, complexity and internet regulation scale-free law

    Guadamuz, Andres

    2013-01-01

    This book, then, starts with a general statement: that regulators should try, wherever possible, to use the physical methodological tools presently available in order to draft better legislation. While such an assertion may be applied to the law in general, this work will concentrate on the much narrower area of Internet regulation and the science of complex networks The Internet is the subject of this book not only because it is my main area of research, but also because –without...

  19. Scaling laws and indications of self-organized criticality in urban systems

    Chen Yanguang; Zhou Yixing

    2008-01-01

    Evolution of urban systems has been considered to exhibit some form of self-organized criticality (SOC) in the literature. This paper provides further mathematical foundations and empirical evidences to support the supposition. The hierarchical structure of systems of cities can be formulated as three exponential functions: the number law, the population size law, and the area law. These laws are identical in form to the Horton-Strahler laws of rivers and Gutenberg-Richter laws of earthquakes. From the exponential functions, three indications of SOC are also derived: the frequency-spectrum relation indicting the 1/f noise, the power laws indicating the fractal structure, and the Zipf's law indicating the rank-size distribution. These mathematical models form a set of scaling laws for urban systems, as demonstrated in the empirical study of the system of cities in China. The fact that the scaling laws of urban systems bear an analogy to those on rivers and earthquakes lends further support to the notion of possible SOC in urban systems

  20. Intrinsic symmetry of the scaling laws and generalized relations for critical indices

    Plechko, V.N.

    1982-01-01

    It is shown that the scating taws for criticat induces can be expressed as a consequence of a simple symmetry principle. Heuristic relations for critical induces of generalizing scaling laws for the case of arbitrary order parameters are presented, which manifestiy have a symmetric form and include the standard scalling laws as a particular case

  1. submitter Unified Scaling Law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression

    Ekin, Jack W; Goodrich, Loren; Splett, Jolene; Bordini, Bernardo; Richter, David

    2016-01-01

    A scaling study of several thousand Nb$_{3}$Sn critical-current $(I_c)$ measurements is used to derive the Extrapolative Scaling Expression (ESE), a relation that can quickly and accurately extrapolate limited datasets to obtain full three-dimensional dependences of I c on magnetic field (B), temperature (T), and mechanical strain (ε). The relation has the advantage of being easy to implement, and offers significant savings in sample characterization time and a useful tool for magnet design. Thorough data-based analysis of the general parameterization of the Unified Scaling Law (USL) shows the existence of three universal scaling constants for practical Nb$_{3}$Sn conductors. The study also identifies the scaling parameters that are conductor specific and need to be fitted to each conductor. This investigation includes two new, rare, and very large I c(B,T,ε) datasets (each with nearly a thousand I c measurements spanning magnetic fields from 1 to 16 T, temperatures from ~2.26 to 14 K, and intrinsic strain...

  2. Investigation of scaling laws in frequency-dependent minor hysteresis loops for ferromagnetic steels

    Kobayashi, S.; Tsukidate, S.; Kamada, Y.; Kikuchi, H.; Ohtani, T.

    2012-01-01

    Scaling laws in dynamical magnetic minor hysteresis loops have been investigated in the magnetizing frequency range of 0.05-300 Hz for various steels including Cr-Mo-V steel subjected to creep, cold rolled steels, and plastically deformed Ni. Although scaling laws in the medium magnetization range found previously fail in the high magnetization frequency regime owing to a significant contribution of eddy currents, a scaling power law of the relation between remanence and remanence work of minor loops, associated with a constant exponent of approximately 1.9, holds true in a very low magnetization regime, irrespective of magnetization frequency and investigated materials. The coefficient of the law is proportionally related to Vickers hardness over the wide frequency range. These observations demonstrate that the scaling analysis of dynamical minor loops enables us to evaluate materials degradation in a short measurement time with low measurement field and high sensitivity to defect density. - Highlights: → We performed hysteresis scaling for dynamical minor loops in ferromagnetic steels. → An universal scaling power law with an exponent of 1.9 was observed. → Coefficient of the scaling law reflects defect density due to creep and deformation. → This method is useful for on-line non-destructive evaluation.

  3. An alcator-like confinement time scaling law derived from buckingham's PI theorem

    Roth, J.R.

    1983-01-01

    The unsatisfactory state of understanding of particle transport and confinement in tokamaks is well known. The best available theory, neoclassical transport, predicts a confinement time which scales as the square of the magnetic field, and inversely as the number density. Until recently, the best available phenomenological scaling law was the Alcator scaling law. This scaling law has recently been supplanted by the neoAlcator scaling law. Both of these expressions are unsatisfactory, because they not only are unsupported by any physical theory, but also their numerical constants are dimensional, suggesting that additional physical parameters need to be accounted for. A more firmly based scaling law can be derived from Buckingham's pi theorem. We adopt the particle confinement time as the dependent variable (derived dimension), and as independent variables (fundamental dimensions) we use the plasma volume, the average ion charge density, the ion current on the limiter, and the magnetic induction. From Buckingham's pi theorem, we obtain an equation which correctly predicts the absence of magnetic induction dependence, and the direct dependence on the ion density. The dependence on the product of the major radius and the plasma radius is intermediate between the original and neoAlcator scaling laws, and may be consistent with the data if the ion kinetic temperature and limiter area were accounted for

  4. Multifractal aspects of the scaling laws in fully developed compressible turbulence

    Shivamoggi, B.K.

    1995-01-01

    In this paper, multifractal aspects of the scalings laws in fully developed compressible turbulence are considered. Compressibility effects on known results of incompressible turbulence are pointed out. copyright 1995 Academic Press, Inc

  5. The use of scaling laws for the design of high beta tokamaks

    Mauel, M.E.

    1987-01-01

    Several different empirical scaling laws for the tokamak energy confinement time are used to estimate the auxiliary heating power required for a laboratory experiment capable of testing tokamak confinement at high beta and techniques to access the second stability regime. Since operating experience in the second stability regime does not yet exist, these laws predict a wide range of possible power requirements, especially at large aspect ratios. However, by examining a model DT fusion power reactor with reasonable restrictions on the fusion island weight, neutron loading, and maximum magnetic field of the external coils, only a limited range of operating conditions are found for both first and second regime tokamaks, and only a subset of the scaling laws predict ignition. These particular scaling laws are then used to set confinement goals which if demonstrated by the laboratory experiment would indicate favourable scaling to a reactor. (author)

  6. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  7. Beyond KNO multiplicative cascades and novel multiplicity scaling laws

    Hegyi, S

    1999-01-01

    The collapse of multiplicity distributions P/sub n/ onto a universal scaling curve arises when P/sub n/ is expressed as a function of the standardized multiplicity (n-c)/ lambda with c and lambda being location and scale parameters governed by leading particle effects and the growth of average multiplicity. It is demonstrated that self- similar multiplicative cascade processes such as QCD parton branching naturally lead to a novel type of scaling behavior of P/sub n/ which manifests itself in Mellin space through a location change controlled by the degree of multifractality and a scale change governed by the depth of the cascade. Applying the new scaling rule it is shown how to restore data collapsing behavior of P/sub n/ measured in hh collisions at ISR and SPS energies. (21 refs).

  8. Simple analytical approximation for rotationally inelastic rate constants based on the energy corrected sudden scaling law

    Smith, N.; Pritchard, D.E.

    1981-01-01

    We have recently demonstrated that the energy corrected sudden (ECS) scaling law of De Pristo et al. when conbined with the power law assumption for the basis rates k/sub l/→0proportional[l(l+1)]/sup -g/ can accurately fit a wide body of rotational energy transfer data. We develop a simple and accurate approximation to this fitting law, and in addition mathematically show the connection between it and our earlier proposed energy based law which also has been successful in describing both theoretical and experimental data on rotationally inelastic collisions

  9. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    Webb, G M; Zank, G P

    2009-01-01

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  10. Mobile user forecast and power-law acceleration invariance of scale-free networks

    Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao

    2011-01-01

    This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)

  11. Deformation of a Capsule in a Power-Law Shear Flow

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  12. Spectral derivation of the classic laws of wall-bounded turbulent flows.

    Gioia, Gustavo; Chakraborty, Pinaki

    2017-08-01

    We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the 'law of the wall,' the 'defect law' and the 'log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is consistent with empirical data on the spectrum and may be deemed a general property of the energetics of wall turbulence. Our findings shed new light on the physical origin of the classic laws and their immediate offshoot, Prandtl's theory of turbulent friction.

  13. Law machines: scale models, forensic materiality and the making of modern patent law.

    Pottage, Alain

    2011-10-01

    Early US patent law was machine made. Before the Patent Office took on the function of examining patent applications in 1836, questions of novelty and priority were determined in court, within the forum of the infringement action. And at all levels of litigation, from the circuit courts up to the Supreme Court, working models were the media through which doctrine, evidence and argument were made legible, communicated and interpreted. A model could be set on a table, pointed at, picked up, rotated or upended so as to display a point of interest to a particular audience within the courtroom, and, crucially, set in motion to reveal the 'mode of operation' of a machine. The immediate object of demonstration was to distinguish the intangible invention from its tangible embodiment, but models also'machined' patent law itself. Demonstrations of patent claims with models articulated and resolved a set of conceptual tensions that still make the definition and apprehension of the invention difficult, even today, but they resolved these tensions in the register of materiality, performativity and visibility, rather than the register of conceptuality. The story of models tells us something about how inventions emerge and subsist within the context of patent litigation and patent doctrine, and it offers a starting point for renewed reflection on the question of how technology becomes property.

  14. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  15. A scaling law for random walks on networks

    Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-10-01

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.

  16. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  17. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  18. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  19. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

    Talib, Amira Husni; Abdullah, Ilyani

    2017-11-01

    A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

  20. Scaling laws for photoelectron holography in the midinfrared wavelength regime

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A S; Jungmann, J H; Rouz??e, A.; Logman, P. S W M; L??pine, F.; Cauchy, C.; Zamith, S; Marchenko, T; Bakker, Joost M.; Berden, G.; Redlich, B; Van Der Meer, A. F G; Ivanov, M Yu; Yan, T. M.; Bauer, D.; Smirnova, O; Vrakking, M. J J

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  1. Scaling Laws for Photoelectron Holography in the Midinfrared Wavelength Regime

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A. S.; Jungmann, J. H.; Rouzee, A.; Logman, Pswm; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; Bakker, J. M.; G. Berden,; Redlich, B.; van der Meer, A. F. G.; Ivanov, M. Y.; Yan, T. M.; Bauer, D.; Smirnova, O.; Vrakking, M. J. J.

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  2. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  3. EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE

    Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav

    2011-01-01

    Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.

  4. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    El-Amin, Mohamed

    2013-11-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  5. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2013-01-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  6. How to Determine Losses in a Flow Field: A Paradigm Shifttowards the Second Law Analysis

    Heinz Herwig

    2014-05-01

    Full Text Available Assuming that CFD solutions will be more and more used to characterizelosses in terms of drag for external flows and head loss for internal flows, we suggest toreplace single-valued data, like the drag force or a pressure drop, by field information aboutthe losses. These information are gained when the entropy generation in the flow field isanalyzed, an approach that often is called second law analysis (SLA, referring to the secondlaw of thermodynamics. We show that this SLA approach is straight-forward, systematicand helpful when it comes to the physical interpretation of the losses in a flow field. Variousexamples are given, including external and internal flows, two phase flow, compressible flowand unsteady flow. Finally, we show that an energy transfer within a certain process can beput into a broader perspective by introducing the entropic potential of an energy.

  7. Conservation Laws for Gyrokinetic Equations for Large Perturbations and Flows

    Dimits, Andris

    2017-10-01

    Gyrokinetic theory has proved to be very useful for the understanding of magnetized plasmas, both to simplify analytical treatments and as a basis for efficient numerical simulations. Gyrokinetic theories were previously developed in two extended orderings that are applicable to large fluctuations and flows as may arise in the tokamak edge and scrapeoff layer. In the present work, we cast the resulting equations in a field-theoretical variational form, and derive, up to second order in the respective orderings, the associated global and local energy and (linear and toroidal) momentum conservation relations that result from Noether's theorem. The consequences of these for the various possible choices of numerical discretization used in gyrokinetic simulations are considered. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and supported by the U.S. DOE, OFES.

  8. Evidence for large-scale uniformity of physical laws

    Tubbs, A.D.; Wolfe, A.M.

    1980-01-01

    The coincidence of redshifts deduced from 21 cm and resonance transitions in absorbing gas detected in front of four quasi-stellar objects results in stringent limits on the variation of the product of three physical constants both in space and in time. We find that α 2 g/sub p/(m/M) is spatially uniform, to a few parts in 10 4 , throughout the observable universe. This uniformity holds subsequent to an epoch corresponding to less than 5% of the current age of the universe t 0 . Moreover, time variations in α 2 g/sub p/m/M are excluded to the same accuracy subsequent to an epoch corresponding to > or approx. =0.20 t 0 . These limits are largely model independent, relying only upon the cosmoligical interpretation of redshifts, and the isotropy of the 3 K background radiation. That a quantity as complex as g/sub p/, which depends on all the details of strong interaction physics, is uniform throughout most of spacetime, even in causally disjoint regions, suggests that all physical laws are globally invariant

  9. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  10. A study of flame spread in engineered cardboard fuelbeds: Part II: Scaling law approach

    Brittany A. Adam; Nelson K. Akafuah; Mark Finney; Jason Forthofer; Kozo Saito

    2013-01-01

    In this second part of a two part exploration of dynamic behavior observed in wildland fires, time scales differentiating convective and radiative heat transfer is further explored. Scaling laws for the two different types of heat transfer considered: Radiation-driven fire spread, and convection-driven fire spread, which can both occur during wildland fires. A new...

  11. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  12. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.

    Dass, Amala

    2012-04-07

    Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012

  13. Global and local confinement scaling laws of NBI-heated gas-puffing plasmas on LHD

    Yamazaki, K.; Miyazawa, J.; Sakakibara, S.; Yamada, H.; Narihara, K.; Tanaka, K.; Osakabe, M.

    2003-01-01

    The relation between global confinement scaling laws and local transport characteristics is evaluated on the Large Helical Device (LHD). Previous 'new LHD' global scaling laws are revised using the precise plasma edge definition and the recent LHD data of 4th, 5th and 6th experimental campaigns. Strong Gyro-Bohm-like feature of global confinement is reconfirmed. The magnetic field dependence and geometrical scale dependence are stronger than the conventional scaling laws. Using same database of LHD data, the radial profiles of transport coefficients are evaluated, and it is reconfirmed that the local transport in the core is Gyro-Bohm-like, and that near the boundary is strong Gyro-Bohm-like. The global confinement property is consistent with effective transport coefficient near the edge. (author)

  14. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    Drobinski, P.; Bastin, S.; Dabas, A.; Delville, P.; Reitebuch, O.

    2006-08-01

    Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D) mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb), and to the sea breeze depth (zsb) and intensity (usb). They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i) the presence of a systematic non zero background wind, and (ii) the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys) affecting the sea breeze circulation in the area. Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i) latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii) in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted); and (iii) the ratio zsb/usb is approximately constant in the sea breeze flow.

  15. Beyond the Child-Langmuir law: A review of recent results on multidimensional space-charge-limited flow

    Luginsland, J.W.; Lau, Y.Y.; Umstattd, R.J.; Watrous, J.J.

    2002-01-01

    Space-charge-limited (SCL) flows in diodes have been an area of active research since the pioneering work of Child and Langmuir in the early part of the last century. Indeed, the scaling of current density with the voltage to the 3/2's power is one of the best-known limits in the fields of non-neutral plasma physics, accelerator physics, sheath physics, vacuum electronics, and high power microwaves. In the past five years, there has been renewed interest in the physics and characteristics of SCL emission in physically realizable configurations. This research has focused on characterizing the current and current density enhancement possible from two- and three-dimensional geometries, such as field-emitting arrays. In 1996, computational efforts led to the development of a scaling law that described the increased current drawn due to two-dimensional effects. Recently, this scaling has been analytically derived from first principles. In parallel efforts, computational work has characterized the edge enhancement of the current density, leading to a better understanding of the physics of explosive emission cathodes. In this paper, the analytic and computational extensions to the one-dimensional Child-Langmuir law will be reviewed, the accuracy of SCL emission algorithms will be assessed, and the experimental implications of multidimensional SCL flows will be discussed

  16. Large scale flow in the dayside magnetosheath

    Crooker, N.U.; Siscoe, G.L.; Eastman, T.E.; Frank, L.A.; Zwickl, R.D.

    1984-01-01

    The degree of control over plasma flow direction exerted by the compressed magnetic field in the dayside magnetosheath is examined by comparing ISEE 1 LEPEDEA data with hydrodynamic and magnetohydrodynamic predictions. Measured flow directions projected toward the subsolar region pass within approx.1 R/sub E/ of the aberrated theoretical hydrodynamic stagnation point in 11 of 20 cases analyzed. The remaining nine cases pass within approx.2-3 R/sub E/ of the stagnation point. One case with large deflection has been studied in detail with large-time-resolution plasma and magnetic field data both from ISEE 1 and from ISEE 3, in the role of a solar wind monitor. The deflected flow is persitent over a period of 1 1/2 hours, and its direction is consistent with a stagnation point displacement resulting from increased, asymmetric magnetic field pressure contributions during periods of low Alfven Mach number, as predicted by Russell et al. Of the other eight cases with large deflections, four are associated with flux transfer events identified independently by Berchem and Russell. The observed deflections in these cases are consistent with either the subsolar merging line or the antiparallel merging hypothesis, but not exclusively with one or the other. The results relating to the formation of a stagnation line rather than a stagnation point are inconclusive

  17. Flow through a Two-Scale Porosity Material

    A. G. Andersson

    2009-01-01

    Full Text Available Flow through a two-scale porous medium is here investigated by a unique comparison between simulations performed with computational fluid dynamics and the boundary element method with microparticle image velocimetry in model geometries.

  18. Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...

    We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...

  19. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  20. Likert scales, levels of measurement and the "laws" of statistics.

    Norman, Geoff

    2010-12-01

    Reviewers of research reports frequently criticize the choice of statistical methods. While some of these criticisms are well-founded, frequently the use of various parametric methods such as analysis of variance, regression, correlation are faulted because: (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. In this paper, I dissect these arguments, and show that many studies, dating back to the 1930s consistently show that parametric statistics are robust with respect to violations of these assumptions. Hence, challenges like those above are unfounded, and parametric methods can be utilized without concern for "getting the wrong answer".

  1. A Scaling Law for the Snapback in Superconducting Accelerator Magnets

    Bottura, L; Bauer, P; Haverkamp, M; Pieloni, T; Sanfilippo, S; Velev, G

    2005-01-01

    The decay of the sextupole component in the bending dipoles during injection and the subsequent snapback at the start of beam acceleration are issues of common concern for all superconducting colliders built or in construction. Recent studies performed on LHC and Tevatron dipole magnets revealed many similarities in the snapback characteristics. Some are expected, e.g. the effect of operational history. One particular similarity, however, is striking and is the subject of this paper. It appears that there is a simple linear relation between the amount of sextupole drift during the decay and the magnet current (or field) change during the ramp required to resolve the snapback. It is surprising that the linear correlation between snapback amplitude and snapback field holds very well for all magnets of the same family (e.g. Tevatron or LHC dipoles). In this paper we present the data collected to date and discuss a simple theory that explains the scaling found.

  2. Power law scaling in synchronization of brain signals depends on cognitive load

    Jose Luis ePerez Velazquez

    2014-05-01

    Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.

  3. Bulk velocity extraction for nano-scale Newtonian flows

    Zhang, Wenfei, E-mail: zwenfei@gmail.com [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China); Sun, Hongyu [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China)

    2012-04-16

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  4. Bulk velocity extraction for nano-scale Newtonian flows

    Zhang, Wenfei; Sun, Hongyu

    2012-01-01

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  5. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity.

    Tippett, Michael K; Cohen, Joel E

    2016-02-29

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.

  6. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  7. Recurrence spectroscopy of atoms in electric fields: Failure of classical scaling laws near bifurcations

    Shaw, J.A.; Robicheaux, F.

    1998-01-01

    The photoabsorption spectra of atoms in a static external electric field shows modulations from recurrences: electron waves that go out from and return to the vicinity of the atomic core. Closed-orbit theory predicts the amplitudes and phases of these modulations in terms of closed classical orbits. A classical scaling law relates the properties of a closed orbit at one energy and field strength to its properties at another energy and field strength at fixed scaled energy ε=EF -1/2 . The scaling law states that the recurrence strength of orbits along the electric field axis scale as F 1/4 . We show how this law fails near bifurcations when the effective Planck constant ℎ≡ℎF 1/4 increases with increasing field at fixed ε. The recurrences of orbits away from the axis scale as F 1/8 in accordance with the classical prediction. These deviations from the classical scaling law are important in interpreting the recurrence spectra of atoms in current experiments. This leads to an extension of the uniform approximation developed by Gao and Delos [Phys. Rev. A 56, 356 (1997)] to complex momenta. copyright 1998 The American Physical Society

  8. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  9. Mathematical analysis of the dimensional scaling technique for the Schroedinger equation with power-law potentials

    Ding Zhonghai; Chen, Goong; Lin, Chang-Shou

    2010-01-01

    The dimensional scaling (D-scaling) technique is an innovative asymptotic expansion approach to study the multiparticle systems in molecular quantum mechanics. It enables the calculation of ground and excited state energies of quantum systems without having to solve the Schroedinger equation. In this paper, we present a mathematical analysis of the D-scaling technique for the Schroedinger equation with power-law potentials. By casting the D-scaling technique in an appropriate variational setting and studying the corresponding minimization problem, the D-scaling technique is justified rigorously. A new asymptotic dimensional expansion scheme is introduced to compute asymptotic expansions for ground state energies.

  10. A psychometric appraisal of the Jefferson Scale of Empathy using law students

    Williams B

    2016-07-01

    Full Text Available Brett Williams,1 Adiva Sifris,2 Marty Lynch1 1Department of Community Emergency Health and Paramedic Practice, Faculty of Medicine, Nursing and Health Sciences, 2Faculty of Law, Monash University, Frankston, VIC, Australia Background: A growing body of literature indicates that empathic behaviors are positively linked, in several ways, with the professional performance and mental well-being of lawyers and law students. It is therefore important to assess empathy levels among law students using psychometrically sound tools that are suitable for this cohort.Participants and methods: The 20-item Jefferson Scale of Empathy – Health Profession Students Version was adapted for a law context (eg, the word “health care” became “legal”, and the new Jefferson Scale of Empathy – Law Students (JSE-L-S version was completed by 275 students at Monash University, Melbourne, Australia. Data were subjected to principal component analysis.Results: Four factors emerged from the principal component analysis (“understanding the client’s perspective”, “responding to clients’ experiences and emotions”, “responding to clients’ cues and behaviors”, and “standing in clients’ shoes”, which accounted for 46.7% of the total variance. The reliability of the factors varied, but the overall 18-item JSE-L-S yielded a Cronbach’s alpha coefficient of 0.80. Several patterns among the item loadings were similar to those reported in studies using other versions of the Jefferson Scale of Empathy.Conclusion: The JSE-L-S appears to be a reliable measure of empathy among undergraduate law students, which could help provide insights into law student welfare and future performance as legal practitioners. Additional evaluation of the JSE-L-S is required to disambiguate some of the minor findings explored. Adjustments may improve the psychometric properties. Keywords: empathy, law, student, Jefferson, sympathy

  11. Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law

    Liu, H. H.; Chen, J.

    2017-12-01

    About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.

  12. Scaling Law for Photon Transmission through Optically Turbid Slabs Based on Random Walk Theory

    Xuesong Li

    2012-03-01

    Full Text Available Past work has demonstrated the value of a random walk theory (RWT to solve multiple-scattering problems arising in numerous contexts. This paper’s goal is to investigate the application range of the RWT using Monte Carlo simulations and extending it to anisotropic media using scaling laws. Meanwhile, this paper also reiterates rules for converting RWT formulas to real physical dimensions, and corrects some errors which appear in an earlier publication. The RWT theory, validated by the Monte Carlo simulations and combined with the scaling law, is expected to be useful to study multiple scattering and to greatly reduce the computation cost.

  13. The Development and Psychometric Properties of the Immigration Law Concerns Scale (ILCS) for HIV Testing.

    Lechuga, Julia; Galletly, Carol L; Broaddus, Michelle R; Dickson-Gomez, Julia B; Glasman, Laura R; McAuliffe, Timothy L; Vega, Miriam Y; LeGrand, Sarah; Mena, Carla A; Barlow, Morgan L; Valera, Erik; Montenegro, Judith I

    2017-11-08

    To develop, pilot test, and conduct psychometric analyses of an innovative scale measuring the influence of perceived immigration laws on Latino migrants' HIV-testing behavior. The Immigration Law Concerns Scale (ILCS) was developed in three phases: Phase 1 involved a review of law and literature, generation of scale items, consultation with project advisors, and subsequent revision of the scale. Phase 2 involved systematic translation- back translation and consensus-based editorial processes conducted by members of a bilingual and multi-national study team. In Phase 3, 339 sexually active, HIV-negative Spanish-speaking, non-citizen Latino migrant adults (both documented and undocumented) completed the scale via audio computer-assisted self-interview. The psychometric properties of the scale were tested with exploratory factor analysis and estimates of reliability coefficients were generated. Bivariate correlations were conducted to test the discriminant and predictive validity of identified factors. Exploratory factor analysis revealed a three-factor, 17-item scale. subscale reliability ranged from 0.72 to 0.79. There were significant associations between the ILCS and the HIV-testing behaviors of participants. Results of the pilot test and psychometric analysis of the ILCS are promising. The scale is reliable and significantly associated with the HIV-testing behaviors of participants. Subscales related to unwanted government attention and concerns about meeting moral character requirements should be refined.

  14. Flow Induced segregation in full scale castings with SCC

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  15. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  16. Dual plane problems for creeping flow of power-law incompressible medium

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  17. Macro-scale turbulence modelling for flows in porous media

    Pinson, F.

    2006-03-01

    - This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - ε RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - f - w >f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then successfully applied to the study of

  18. Conservation laws for steady flow and solitons in a multifluid plasma revisited

    Mace, R. L.; McKenzie, J. F.; Webb, G. M.

    2007-01-01

    The conservation laws used in constructing the governing equations for planar solitons in multifluid plasmas are revisited. In particular, the concept of generalized vorticity facilitates the derivation of some general ''Bernoulli theorems,'' which reduce, in specific instances, to conservation laws previously deduced by other means. These theorems clarify the underlying physical principles that give rise to the conserved quantities. As an example of the usefulness of the techniques, even for relatively simple flows and progressive waves, the equations governing stationary nonlinear whistler waves propagating parallel to an ambient magnetic field are derived using generalized vorticity concepts

  19. Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process

    Jabbari, Masoud; Hattel, Jesper Henri

    2012-01-01

    Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...

  20. Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field

    Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.

    1984-01-01

    An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)

  1. Study on law of negative corona discharge in microparticle-air two-phase flow media

    Bo He

    2016-03-01

    Full Text Available To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity measurements and ultraviolet observations.

  2. DOES A SCALING LAW EXIST BETWEEN SOLAR ENERGETIC PARTICLE EVENTS AND SOLAR FLARES?

    Kahler, S. W.

    2013-01-01

    Among many other natural processes, the size distributions of solar X-ray flares and solar energetic particle (SEP) events are scale-invariant power laws. The measured distributions of SEP events prove to be distinctly flatter, i.e., have smaller power-law slopes, than those of the flares. This has led to speculation that the two distributions are related through a scaling law, first suggested by Hudson, which implies a direct nonlinear physical connection between the processes producing the flares and those producing the SEP events. We present four arguments against this interpretation. First, a true scaling must relate SEP events to all flare X-ray events, and not to a small subset of the X-ray event population. We also show that the assumed scaling law is not mathematically valid and that although the flare X-ray and SEP event data are correlated, they are highly scattered and not necessarily related through an assumed scaling of the two phenomena. An interpretation of SEP events within the context of a recent model of fractal-diffusive self-organized criticality by Aschwanden provides a physical basis for why the SEP distributions should be flatter than those of solar flares. These arguments provide evidence against a close physical connection of flares with SEP production.

  3. Studies on scaling of flow noise received at the stagnation point of an axisymmetric body

    Arakeri, V. H.; Satyanarayana, S. G.; Mani, K.; Sharma, S. D.

    1991-05-01

    A description of the studies related to the problem of scaling of flow noise received at the stagnation point of axisymmetric bodies is provided. The source of flow noise under consideration is the transitional/turbulent regions of the boundary layer flow on the axisymmetric body. Lauchle has recently shown that the noise measured in the laminar region (including the stagnation point) corresponds closely to the noise measured in the transition region, provided that the acoustic losses due to diffraction are accounted for. The present study includes experimental measurement of flow noise at the stagnation point of three different shaped axisymmetric headforms. One of the body shapes chosen is that used by Lauchle in similar studies. This was done to establish the effect of body size on flow noise. The results of the experimental investigations clearly show that the flow noise received at the stagnation point is a strong function of free stream velocity, a moderately strong function of body scale but a weak function of boundary layer thickness. In addition, there is evidence that when body scale change is involved, flow noise amplitude scales but no frequency shift is involved. A scaling procedure is proposed based on the present observations along with those of Lauchle. At a given frequency, the amplitude of noise level obtained under model testing conditions is first scaled to account for differences in the velocity and size corresponding to the prototype conditions; then a correction to this is applied to account for losses due to diffraction, which are estimated on the basis of the geometric theory of diffraction (GTD) with the source being located at the predicted position of turbulent transition. Use of the proposed scaling law to extrapolate presently obtained noise levels to two other conditions involving larger-scale bodies show good agreement with actually measured levels, in particular at higher frequencies. Since model scale results have been used

  4. Second-order small-disturbance solutions for hypersonic flow over power-law bodies

    Townsend, J. C.

    1975-01-01

    Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.

  5. Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment

    Innocente, P.; Alfier, A.; Canton, A.; Pasqualotto, R.

    2009-01-01

    The large range of plasma currents (I p = 0.2-1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.

  6. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  7. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  8. Reverse flow through a large scale multichannel nozzle

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  9. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  10. Scaling laws for file dissemination in P2P networks with random contacts

    Nunez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate λ a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted node

  11. Scaling laws for file dissemination in P2P networks with random contacts

    Núñez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate lambda a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted

  12. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  13. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Walicka, A.

    2018-02-01

    In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  14. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Walicka A.

    2018-02-01

    Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  15. Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law

    Khan, M.; Hayat, T.; Asghar, S.

    2005-12-01

    This paper deals with an exact solution for the magnetohydrodynamic (MHD) flow of a generalized Oldroyd-B fluid in a circular pipe. For the description of such a fluid, the fractional calculus approach has been used throughout the analysis. Based on modified Darcy's law for generalized Oldroyd-B fluid, the velocity field is calculated analytically. Several known solutions can be recovered as the limiting cases of our solution. (author)

  16. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  17. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns

  18. RELAPS choked flow model and application to a large scale flow test

    Ransom, V.H.; Trapp, J.A.

    1980-01-01

    The RELAP5 code was used to simulate a large scale choked flow test. The fluid system used in the test was modeled in RELAP5 using a uniform, but coarse, nodalization. The choked mass discharge rate was calculated using the RELAP5 choked flow model. The calulations were in good agreement with the test data, and the flow was calculated to be near thermal equilibrium

  19. Topology Optimization of Large Scale Stokes Flow Problems

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  20. Modeling field scale unsaturated flow and transport processes

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  1. Scale dependency of fractional flow dimension in a fractured formation

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  2. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  3. Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws

    Clark, Chris D.; Hughes, Anna L. C.; Greenwood, Sarah L.; Spagnolo, Matteo; Ng, Felix S. L.

    2009-04-01

    Ice sheets flowing across a sedimentary bed usually produce a landscape of blister-like landforms streamlined in the direction of the ice flow and with each bump of the order of 10 2 to 10 3 m in length and 10 1 m in relief. Such landforms, known as drumlins, have mystified investigators for over a hundred years. A satisfactory explanation for their formation, and thus an appreciation of their glaciological significance, has remained elusive. A recent advance has been in numerical modelling of the land-forming process. In anticipation of future modelling endeavours, this paper is motivated by the requirement for robust data on drumlin size and shape for model testing. From a systematic programme of drumlin mapping from digital elevation models and satellite images of Britain and Ireland, we used a geographic information system to compile a range of statistics on length L, width W, and elongation ratio E (where E = L/ W) for a large sample. Mean L, is found to be 629 m ( n = 58,983), mean W is 209 m and mean E is 2.9 ( n = 37,043). Most drumlins are between 250 and 1000 metres in length; between 120 and 300 metres in width; and between 1.7 and 4.1 times as long as they are wide. Analysis of such data and plots of drumlin width against length reveals some new insights. All frequency distributions are unimodal from which we infer that the geomorphological label of 'drumlin' is fair in that this is a true single population of landforms, rather than an amalgam of different landform types. Drumlin size shows a clear minimum bound of around 100 m (horizontal). Maybe drumlins are generated at many scales and this is the minimum, or this value may be an indication of the fundamental scale of bump generation ('proto-drumlins') prior to them growing and elongating. A relationship between drumlin width and length is found (with r2 = 0.48) and that is approximately W = 7 L 1/2 when measured in metres. A surprising and sharply-defined line bounds the data cloud plotted in E- W

  4. Titius--Bode law and the possibility of recent large-scale evolution in the solar system

    Neito, M.M.

    1974-01-01

    Although it is by no means clear that the Titius--Bode law of planetary distances is indeed a ''law'' (even though there are enticing indications), it is proposed that if one assumes that the law is a ''law'' and that the planets obey it, then this argues against recent large-scale evolution in the solar system. Put another way: one can believe in the Titius--Bode law or in recent large-scale evolution or in neither of them. But it appears difficult to believe in both of them

  5. Statistical dynamical subgrid-scale parameterizations for geophysical flows

    O'Kane, T J; Frederiksen, J S

    2008-01-01

    Simulations of both atmospheric and oceanic circulations at given finite resolutions are strongly dependent on the form and strengths of the dynamical subgrid-scale parameterizations (SSPs) and in particular are sensitive to subgrid-scale transient eddies interacting with the retained scale topography and the mean flow. In this paper, we present numerical results for SSPs of the eddy-topographic force, stochastic backscatter, eddy viscosity and eddy-mean field interaction using an inhomogeneous statistical turbulence model based on a quasi-diagonal direct interaction approximation (QDIA). Although the theoretical description on which our model is based is for general barotropic flows, we specifically focus on global atmospheric flows where large-scale Rossby waves are present. We compare and contrast the closure-based results with an important earlier heuristic SSP of the eddy-topographic force, based on maximum entropy or statistical canonical equilibrium arguments, developed specifically for general ocean circulation models (Holloway 1992 J. Phys. Oceanogr. 22 1033-46). Our results demonstrate that where strong zonal flows and Rossby waves are present, such as in the atmosphere, maximum entropy arguments are insufficient to accurately parameterize the subgrid contributions due to eddy-eddy, eddy-topographic and eddy-mean field interactions. We contrast our atmospheric results with findings for the oceans. Our study identifies subgrid-scale interactions that are currently not parameterized in numerical atmospheric climate models, which may lead to systematic defects in the simulated circulations.

  6. Extended power-law scaling of air permeabilities measured on a block of tuff

    M. Siena

    2012-01-01

    Full Text Available We use three methods to identify power-law scaling of multi-scale log air permeability data collected by Tidwell and Wilson on the faces of a laboratory-scale block of Topopah Spring tuff: method of moments (M, Extended Self-Similarity (ESS and a generalized version thereof (G-ESS. All three methods focus on q-th-order sample structure functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited midrange of experimental separation scales, or lags, which are sometimes difficult to identify unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law scaling easier to characterize. Our analysis confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents, ξ(q, of corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. The exponents vary in a nonlinear fashion with q as is typical of real or apparent multifractals. Our estimates of the Hurst scaling coefficient increase with support scale, implying a reduction in roughness (anti-persistence of the log permeability field with measurement volume. The finding by Tidwell and Wilson that log permeabilities associated with all tip sizes can be characterized by stationary variogram models, coupled with our findings that log permeability increments associated with the smallest tip size are approximately Gaussian and those associated with all tip sizes scale show nonlinear variations in ξ(q with q, are consistent with a view of these data as a sample from a truncated version (tfBm of self-affine fractional Brownian motion (fBm. Since in theory the scaling exponents, ξ(q, of tfBm vary linearly with q we conclude that nonlinear scaling in our case is not an indication of multifractality but an artifact of sampling from tfBm. This allows us to explain theoretically how power-law scaling of our data, as well

  7. Compressor Performance Scaling in the Presence of Non-Uniform Flow

    Hill, David Jarrod

    Fuselage-embedded engines in future aircraft will see increased flow distortions due to the ingestion of airframe boundary layers. This reduces the required propulsive power compared to podded engines. Inlet flow distortions mean that localized regions of flow within the fan and first stage compressor are operating at off-design conditions. It is important to weigh the benefit of increased vehicle propulsive efficiency against the resultant reduction in engine efficiency. High computational cost has limited most past research to single distortion studies. The objective of this thesis is to extract scaling laws for transonic compressor performance in the presence of various distortion patterns and intensities. The machine studied is the NASA R67 transonic compressor. Volumetric source terms are used to model rotor and stator blade rows. The modelling approach is an innovative combination of existing flow turning and loss models, combined with a compressible flow correction. This approach allows for a steady calculation to capture distortion transfer; as a result, the computational cost is reduced by two orders of magnitude. At peak efficiency, the rotor work coefficient and isentropic efficiency are matched within 1.4% of previously published experimental results. A key finding of this thesis is that, in non-uniform flow, the state-of-the-art loss model employed is unable to capture the impact of variations in local flow coefficient, limiting the analysis of local entropy generation. New insight explains the mechanism governing the interaction between a total temperature distortion and a compressor rotor. A parametric study comprising 16 inlet distortions reveals that for total temperature distortions, upstream flow redistribution and rotor diffusion factor changes are shown to scale linearly with distortion severity. Linear diffusion factor scaling does not hold true for total pressure distortions. For combined total temperature and total pressure distortions, the

  8. From coastal barriers to mountain belts - commonalities in fundamental geomorphic scaling laws

    Lazarus, E.

    2016-12-01

    Overwash is a sediment-transport process essential to the form and resilience of coastal barrier landscapes. Driven by storm events, overwash leaves behind distinctive sedimentary features that, although intensively studied, have lacked unifying quantitative descriptions with which to compare their morphological attributes across documented examples or relate them to other morphodynamic phenomena. Geomorphic scaling laws quantify how measures of shape and size change with respect to another - information that helps to constrain predictions of future change and reconstructions of past environmental conditions. Here, a physical model of erosional and depositional overwash morphology yields intrinsic, allometric scaling laws involving length, width, area, volume, and alongshore spacing. Corroborative comparisons with natural washover morphology indicate scale invariance spanning several orders of magnitude. Several observers of the physical model remarked that the overwashed barrier resembled a dissected linear mountain front with an alluvial apron - an intriguing reimagining of the intended analog. Indeed, that resemblance is reflected quantitatively in these new scaling relationships, which align with canonical scaling laws for terrestrial and marine drainage basins and alluvial fans on Earth and Mars. This finding suggests disparate geomorphic systems that share common allometric properties may be related dynamically, perhaps by an influence more fundamental than characteristic erosion and deposition processes. Such an influence could come from emergent behavior at the intersection of advection and diffusion. Geomorphic behaviors at advection-diffusion transitions (and vice versa), specifically, could be the key to disentangling mechanistic causality from acausality in physical landscape patterns.

  9. Identifying all moiety conservation laws in genome-scale metabolic networks.

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  10. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Andrea De Martino

    Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  11. Scaling laws and vortex profiles in two-dimensional decaying turbulence.

    Laval, J P; Chavanis, P H; Dubrulle, B; Sire, C

    2001-06-01

    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.

  12. Simulation of flow in dual-scale porous media

    Tan, Hua

    Liquid composite molding (LCM) is one of the most effective processes for manufacturing near net-shaped parts from fiber-reinforced polymer composites. The quality of LCM products and the efficiency of the process depend strongly on the wetting of fiber preforms during the mold-filling stage of LCM. Mold-filling simulation is a very effective approach to optimize the LCM process and mold design. Recent studies have shown that the flow modeling for the single-scale fiber preforms (made from random mats) has difficulties in accurately predicting the wetting in the dual-scale fiber preforms (made from woven and stitched fabrics); the latter are characterized by the presence of unsaturated flow created due to two distinct length-scales of pores (i.e., large pores outside the tows and small pores inside the tows) in the same media. In this study, we first develop a method to evaluate the accuracy of the permeability-measuring devices for LCM, and conduct a series of 1-D mold-filling experiments for different dual-scale fabrics. The volume averaging method is then applied to derive the averaged governing equations for modeling the macroscopic flow through the dual-scale fabrics. The two sets of governing equations are coupled with each other through the sink terms representing the absorptions of mass, energy, and species (degree of resin cure) from the global flow by the local fiber tows. The finite element method (FEM) coupled with the control volume method, also known as the finite element/control volume (FE/CV) method, is employed to solve the governing equations and track the moving boundary signifying the moving liquid-front. The numerical computations are conducted with the help of an in-house developed computer program called PORE-FLOW(c). We develop the flux-corrected transport (FCT) based FEM to stabilize the convection-dominated energy and species equations. A fast methodology is proposed to simulate the dual-scale flow under isothermal conditions, where flow

  13. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    P. Drobinski

    2006-08-01

    Full Text Available Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb, and to the sea breeze depth (zsb and intensity (usb. They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i the presence of a systematic non zero background wind, and (ii the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys affecting the sea breeze circulation in the area.

    Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted; and (iii the ratio zsb/usb is approximately constant in the sea breeze flow.

  14. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    P. Drobinski

    2006-08-01

    Full Text Available Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb, and to the sea breeze depth (zsb and intensity (usb. They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i the presence of a systematic non zero background wind, and (ii the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys affecting the sea breeze circulation in the area. Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted; and (iii the ratio zsb/usb is approximately constant in the sea breeze flow.

  15. Temporal Variation of Large Scale Flows in the Solar Interior ...

    tribpo

    Temporal Variation of Large Scale Flows in the Solar Interior. 355. Figure 2. Zonal and meridional components of the time-dependent residual velocity at a few selected depths as marked above each panel, are plotted as contours of constant velocity in the longitude-latitude plane. The left panels show the zonal component, ...

  16. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  17. Up-Scaled Supercritical Flow Synthesis of Hybrid Materials

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    A new, up-scaled supercritical flow synthesis apparatus is currently under construction in Aarhus. A module based system allows for a range of parameter studies with improved parameter control. The dual-reactor setup enables both single phase and core-shell nanoparticle synthesis, and the large...

  18. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  19. PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena

    Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael

    2008-01-01

    Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to

  20. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  1. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  2. Calibration of the Site-Scale Saturated Zone Flow Model

    Zyvoloski, G. A.

    2001-01-01

    The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)

  3. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale

    P. Horton

    2013-04-01

    Full Text Available The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM. The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time

  4. The cooling law and the search for a good temperature scale, from Newton to Dalton

    Besson, Ugo, E-mail: ugo.besson@unipv.it [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)

    2011-03-15

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  5. The cooling law and the search for a good temperature scale, from Newton to Dalton

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  6. Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization

    Formosa, Fabien; Fréchette, Luc G.

    2013-01-01

    This work explores the scaling effects for FPSE (free piston Stirling engines), which are known for their simple architecture and potentially high thermodynamic performances. Scaling laws are given and their potential for miniaturization is highlighted. A simple model which allows the design of the geometrical parameters of the heat exchangers, the regenerator and the masses of the pistons is proposed. It is based on the definition of six characteristic dimensionless groups. They are derived from the physics underlying the behavior of the free piston Stirling machine and their relevancy is backed up by comparisons between documented Stirling engines from the literature. Keeping constant values for each group throughout the scaling range theoretically ensures constant performance. The main losses of Stirling engine (heat conduction loss, reheat loss in the regenerator, pressure drop and gas-spring hysteresis) can be expressed as a function of the geometrical and operating parameters. Additionally, the consequences of leakage due to the manufacturing precision of pistons architectures are underlined. From the proposed scaling laws, potential power and efficiency of Stirling cycle engines at a millimeter scale can be anticipated. It appears that the power density increases with miniaturization. It is also shown that the dynamic masses related to the engine size are increased when scaling down and that the gap leakage presents the highest detrimental effects on the efficiency. These results call for dedicated architectures for micro-engines. - Highlights: • Similitude strategy is applied to Stirling engines and allows preliminary design. • New scaling laws are derived. • The power density can be increased with miniaturization. • The gap between the piston and casing is highly detrimental to the performances. • High engine operating pressure is required when miniaturizing

  7. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  8. Volume-law scaling for the entanglement entropy in spin-1/2 chains

    Vitagliano, G; Riera, A; Latorre, J I

    2010-01-01

    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from the locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest-neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half-chain. This configuration of the couplings is suggested by real-space renormalization group arguments. Computation of the entanglement entropy is performed by mapping the system to free fermions and diagonalizing numerically its correlation matrix. An analytical relationship between the entanglement entropy and the Frobenius norm of the correlation matrix is also established. Our result is complementary to the known relationship between non-translational invariant, nearest-neighbor interacting Hamiltonians and quantum Merlin-Arthur (QMA)-complete problems.

  9. Experimental verification of the scaling laws for CFB boilers of different designs

    Mirek Paweł

    2016-06-01

    Full Text Available In the paper flow dynamic similarity criteria have been presented to reflect the macroscopic flow pattern in the combustion chamber of large-scale circulating fluidised bed boilers. The proposed scaling rules have been verified on two cold models of CFB boilers operating in Tauron Wytwarzanie S.A. - El. Lagisza division (scale factor 1/20 and Fortum Power and Heat Poland Sp. z o. o. Czestochowa division (scale factor 1/10 – working with the power of 966 MWth and 120 MWth, respectively. As follows from the results of measurements, regardless of CFB boiler’s geometry the use of a defined set of criterial numbers allows to obtain satisfactory agreement between the suspension density distributions registered in the CFB boilers and scaling models.

  10. The l-mixing cross section of Rydberg states of atomic Rb and the scaling LAW

    Liu Hong; Chen Aiqiu; Li Baiwen

    1991-01-01

    On the basis of impulse approximate method, a kind of analytical wavefunctions based on a potential model was used to calculate the l mixing cross section of thermal collision of Rydberg states of atomic Rb with rare gas (He, Ne). The results were compared with the experimental results and other theoretical values. These results show that there exists a kind of scaling law for the l mixing cross section of Rydberg alkali atoms

  11. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  12. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and veloc...

  13. Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws

    El Jarroudi, M.; Brillard, A.

    2008-01-01

    We consider a new way of establishing Navier wall laws. Considering a bounded domain Ω of R N , N=2,3, surrounded by a thin layer Σ ε , along a part Γ 2 of its boundary ∂Ω, we consider a Navier-Stokes flow in Ω union ∂Ω union Σ ε with Reynolds' number of order 1/ε in Σ ε . Using Γ-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Γ 2 . We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context

  14. Boomerang RG flows in M-theory with intermediate scaling

    Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar

    2017-07-01

    We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.

  15. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity

    Tippett, Michael K.; Cohen, Joel E.

    2016-01-01

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210

  16. A simple model for determining photoelectron-generated radiation scaling laws

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  17. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured

  18. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Sami El Boustani

    2009-09-01

    Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population

  19. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Li, Shan; Lin, Ruokuang; Bian, Chunhua; Ma, Qianli D Y; Ivanov, Plamen Ch

    2016-01-01

    Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  20. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Shan Li

    Full Text Available Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  1. Scaling law of runaway electrons in the HL-1M tokamak

    Zheng Yongzhen

    2005-01-01

    Runaway confinement time in ohmic and additionally heated tokamak plasmas presents an anomalous behavior in comparison with theoretical predictions based on neoclassical models. A one-dimensional numerical including generation and loss effects for runaway electrons is used to deduce the dependence of runaway energy ε τ on runaway confinement time. The simulation results are presented in the form of a scaling law for ε τ on plasma parameters. The scaling of ε τ and therefore the runaway confinement time and runaway electron diffusivity has been studied in the HL-1M tokamak, by measuring hard X-ray spectra under different experimental conditions. (authors)

  2. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  3. Truncation of power law behavior in 'scale-free' network models due to information filtering

    Mossa, Stefano; Barthelemy, Marc; Eugene Stanley, H.; Nunes Amaral, Luis A.

    2002-01-01

    We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network 'accessible' to the node. We test our model with empirical data for the World Wide Web and find agreement

  4. Regional-to-site scale groundwater flow in Romuvaara

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  5. Impact of large scale flows on turbulent transport

    Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)

    2006-12-15

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  6. Impact of large scale flows on turbulent transport

    Sarazin, Y; Grandgirard, V; Dif-Pradalier, G; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Besse, N; Crouseilles, N; Sonnendruecker, E; Latu, G; Violard, E

    2006-01-01

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport

  7. Theory and evidence for using the economy-of-scale law in power plant economics

    Phung, D.L.

    1987-05-01

    This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs

  8. The star-formation law at GMC scales in M33, the Triangulum Galaxy

    Williams, Thomas G.; Gear, Walter K.; Smith, Matthew W. L.

    2018-06-01

    We present a high spatial resolution study, on scales of ˜100pc, of the relationship between star-formation rate (SFR) and gas content within Local Group galaxy M33. Combining deep SCUBA-2 observations with archival GALEX, SDSS, WISE, Spitzer and submillimetre Herschel data, we are able to model the entire SED from UV to sub-mm wavelengths. We calculate the SFR on a pixel-by-pixel basis using the total infrared luminosity, and find a total SFR of 0.17 ± 0.06 {M}_⊙/yr, somewhat lower than our other two measures of SFR - combined FUV and 24μ SFR (0.25^{+0.10}_{-0.07} {M}_⊙/yr) and SED-fitting tool MAGPHYS (0.33^{+0.05}_{-0.06} {M}_⊙/yr). We trace the total gas using a combination of the 21cm HI line for atomic hydrogen, and CO(J=2-1) data for molecular hydrogen. We have also traced the total gas using dust masses. We study the star-formation law in terms of molecular gas, total gas, and gas from dust. We perform an analysis of the star-formation law on a variety of pixel scales, from 25" to 500" (100pc to 2kpc). At kpc scales, we find that a linear Schmidt-type power law index is suitable for molecular gas, but the index appears to be much higher with total gas, and gas from dust. Whilst we find a strong scale dependence on the Schmidt index, the gas depletion timescale is invariant with pixel scale.

  9. Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency

    Paradisi, Paolo; Allegrini, Paolo

    2015-01-01

    In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures that are associated with a birth–death process of cooperation. This is found to be described by a renewal point process, i.e., a sequence of crucial birth–death events corresponding to transitions among states that are faster than the typical long-life time of the metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and, thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency. The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are, in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency. In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with event rate r_p. We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent μ of the inter-event time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking the emergence of complexity. In particular

  10. Fully determined scaling laws for volumetrically heated convective systems, a tool for assessing habitability of exoplanets

    Vilella, Kenny; Kaminski, Edouard

    2017-05-01

    The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.

  11. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows

    Lerner, Edan; Bailey, Nicholas; Dyre, J. C.

    2014-01-01

    Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between...... the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established “hidden scale invariance” of simple liquids...

  12. Step scaling and the Yang-Mills gradient flow

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  13. Measurements of pore-scale flow through apertures

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  14. Measuring Dispositional Flow: Validity and reliability of the Dispositional Flow State Scale 2, Italian version.

    Riva, Eleonora F M; Riva, Giuseppe; Talò, Cosimo; Boffi, Marco; Rainisio, Nicola; Pola, Linda; Diana, Barbara; Villani, Daniela; Argenton, Luca; Inghilleri, Paolo

    2017-01-01

    The aim of this study is to evaluate the psychometric properties of the Italian version of the Dispositional Flow Scale-2 (DFS-2), for use with Italian adults, young adults and adolescents. In accordance with the guidelines for test adaptation, the scale has been translated with the method of back translation. The understanding of the item has been checked according to the latest standards on the culturally sensitive translation. The scale thus produced was administered to 843 individuals (of which 60.69% female), between the ages of 15 and 74. The sample is balanced between workers and students. The main activities defined by the subjects allow the sample to be divided into three categories: students, workers, athletes (professionals and semi-professionals). The confirmatory factor analysis, conducted using the Maximum Likelihood Estimator (MLM), showed acceptable fit indexes. Reliability and validity have been verified, and structural invariance has been verified on 6 categories of Flow experience and for 3 subsamples with different with different fields of action. Correlational analysis shows significant high values between the nine dimensions. Our data confirmed the validity and reliability of the Italian DFS-2 in measuring Flow experiences. The scale is reliable for use with Italian adults, young adults and adolescents. The Italian version of the scale is suitable for the evaluation of the subjective tendency to experience Flow trait characteristic in different contest, as sport, study and work.

  15. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Pastewka, Lars; Robbins, Mark O.

    2016-05-01

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  16. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu [Institute for Applied Materials & MicroTribology Center muTC, Karlsruhe Institute of Technology, Engelbert-Arnold-Straße 4, 76131 Karlsruhe (Germany); Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Robbins, Mark O., E-mail: mr@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  17. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    A. Kleidon

    2013-01-01

    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  18. Scale modeling flow-induced vibrations of reactor components

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  19. Wilson flow and scale setting from lattice QCD

    Bornyakov, V.G. [Institute for High Energy Physics, Protvino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation). School of Biomedicine; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Hudspith, R. [York Univ., Toronto, ON (Canada). Dept. of Mathematics and Statistics; Collaboration: QCDSF-UKQCD Collaboration; and others

    2015-08-15

    We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t{sub 0} and w{sub 0} for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum extrapolation to be taken.

  20. Large-scale structures in turbulent Couette flow

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  1. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  2. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows

  3. BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories

    Kneipp, Marco A. C.

    2007-01-01

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories

  4. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas.

    Muller, Nicholas Z; Jha, Akshaya

    2017-01-01

    Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms' production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities.

  5. Direct numerical simulation of cellular-scale blood flow in microvascular networks

    Balogh, Peter; Bagchi, Prosenjit

    2017-11-01

    A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.

  6. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  7. A renormalization group scaling analysis for compressible two-phase flow

    Chen, Y.; Deng, Y.; Glimm, J.; Li, G.; Zhang, Q.; Sharp, D.H.

    1993-01-01

    Computational solutions to the Rayleigh--Taylor fluid mixing problem, as modeled by the two-fluid two-dimensional Euler equations, are presented. Data from these solutions are analyzed from the point of view of Reynolds averaged equations, using scaling laws derived from a renormalization group analysis. The computations, carried out with the front tracking method on an Intel iPSC/860, are highly resolved and statistical convergence of ensemble averages is achieved. The computations are consistent with the experimentally observed growth rates for nearly incompressible flows. The dynamics of the interior portion of the mixing zone is simplified by the use of scaling variables. The size of the mixing zone suggests fixed-point behavior. The profile of statistical quantities within the mixing zone exhibit self-similarity under fixed-point scaling to a limited degree. The effect of compressibility is also examined. It is found that, for even moderate compressibility, the growth rates fail to satisfy universal scaling, and moreover, increase significantly with increasing compressibility. The growth rates predicted from a renormalization group fixed-point model are in a reasonable agreement with the results of the exact numerical simulations, even for flows outside of the incompressible limit

  8. Regional-to-site scale groundwater flow in Kivetty

    Kattilakoski, E. [VTT Energy, Espoo (Finland); Meszaros, F. [The Relief Laboratory, Harskut (Hungary)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 16 km{sup 2}. The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  9. Regional-to-site scale groundwater flow in Kivetty

    Kattilakoski, E.; Meszaros, F.

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km 2 large and 1 km deep volume. The site model in this work covers an area of about 16 km 2 . The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  10. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.

    Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

  11. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.

    Segun Goh

    Full Text Available Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare bus stops are transformed into a (renormalized "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

  12. Scaling of mean inertia and theoretical basis for a log law in turbulent boundary layers

    Philip, Jimmy; Morrill-Winter, Caleb; Klewicki, Joseph

    2017-11-01

    Log law in the mean streamwise velocity (U) for pipes/channels is well accepted based on the derivation from the mean momentum balance (MMB) equation and support from experimental data. For flat plate turbulent boundary layers (TBLs), however, there is only empirical evidence and a theoretical underpinning of the kind available for pipes/channels in lacking. The main difficultly is the mean inertia (MI) term in the MMB equation, which, unlike in pipes/channels, is not a constant in TBLs. We present results from our paper (JFM `` 2017, Vol 813, pp 594-617), where the MI term for TBL is transformed so as to render it invariant in the outer region, corroborated with high Re (δ+) data from Melbourne Wind Tunnel and New Hampshire Flow Physics Facility. The transformation is possible because the MI term in the TBL has a `shape' which becomes invariant with increasing δ+ and a `magnitude' which is proportional to 1 /δ+ . The transformed equation is then employed to derive a log law for U with κ an order one (von-Karman) constant. We also show that the log law begins at y+ =C1√{δ+} , and the peak location of the Reynolds shear stress, ym+ =C2√{δ+} , where, C1 3.6 and C2 2.17 are from high Re data. Australian Research Council and the US National Science Foundation.

  13. Scaling laws in centrifuge modelling for capillary rise in soils; Lois de similitude de l'ascension capillaire dans les sols en centrifugeuse

    Rezzoug, A.; Konig, D.; Triantafyllidis, Th. [Ruhr Bochum Univ. (Germany)

    2000-07-01

    It appears to be possible to extend the application of geotechnical centrifuge modelling to environmental problems. In this paper, one aspect of similitude laws concerning the flow of water through soils is investigated. Within the Network of European Centrifuges of Environmental Geotechnic Research (NECER), several tests have been carried out to study similitude laws describing the capillary ascension in porous media under different levels of acceleration. The aim of this paper is to present the results obtained at Ruhr-Universitaet Bochum. A fine sand is used in the experiment. For the visualisation of capillary height in the soil sample, image processing is used. Different boundary conditions (constant water level or variable) have been investigated and discussed. A simple similitude law for capillary rise has been investigated and the kinetic phenomena has been measured at different g-levels. These experiments confirm, that capillary rise appears to be scaled by the factor N and time seems to be scaled by N{sup 2}. These results validate thus the possibility of using accelerated small-scale models of capillary phenomena in a centrifuge, and open the way to more complex investigations on flow and pollutant transports in unsaturated centrifuged soils. (authors)

  14. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  15. Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-07-01

    Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  16. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  17. Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations

    Hua Jinsong; Lin Ping; Liu Chun; Wang Qi

    2011-01-01

    Highlights: → We study phase-field models for multi-phase flow computation. → We develop an energy-law preserving C0 FEM. → We show that the energy-law preserving method work better. → We overcome unphysical oscillation associated with the Cahn-Hilliard model. - Abstract: We use the idea in to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C 0 finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we treat the divergence free condition by a penalty formulation, under which the discrete energy law can still be derived for these diffusive interface models. Through an example we demonstrate that the energy law preserving method is beneficial for computing these multi-phase flow models. We also demonstrate that when applying the energy law preserving method to the model of Cahn-Hilliard type, un-physical interfacial oscillations may occur. We examine the source of such oscillations and a remedy is presented to eliminate the oscillations. A few two-phase incompressible flow examples are computed to show the good performance of our method.

  18. Air-chemistry "turbulence": power-law scaling and statistical regularity

    H.-m. Hsu

    2011-08-01

    Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3 and aerosol (PM10 measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  19. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  20. Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

    Typel, S.; Baur, G.

    2008-01-01

    Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)

  1. Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry

    Zhang, Q.; Graham, M.J.; Graham, M.J.

    1997-01-01

    The Richtmyer-Meshkov (RM) instability is an interfacial interface between two fluids of different densities driven by shock waves and plays an important role in the studies of inertial confinement fusion and of supernovas. So far, most of the studies are for RM unstable interfaces driven by weak or intermediate shocks in planar geometry. For experiments conducted at the Nova laser, the unstable material interface is accelerated by very strong shocks. In this Letter, we present scaling laws for the RM unstable interface driven by strong imploding and exploding shocks. copyright 1997 The American Physical Society

  2. The O(epsilon2) scaling law for dsigma/dt in the Reggeon field theory

    Dash, J.W.; Grandou, Thierry.

    1979-04-01

    The two loop contributions were calculated within the epsilon-expansion to the Reggeon Field Theory scaling law for dsigma/dt, derived using the renormalization group and a general renormalization point for the Pomeron propagator. This generalizes the O(epsilon) work of Abarbanel, Bartels, Bronzan, and Sidhu. The invariance of the results under certain coupling constant rescalings is demonstrated. Some qualitative comments were made regarding phenomenological applications. Our amplitude in a certain limit approximates the form of the low energy diffractive amplitude advocated by Kane

  3. Transport coefficients for the plasma thermal energy and empirical scaling ''laws''

    Coppi, B.

    1989-01-01

    A set of transport coefficients has been identified for the electron and nuclei thermal energy of plasmas with temperatures in the multi-keV range, taking into account the available experimental information including the temperature spatial profiles and the inferred scaling ''laws'' for the measured energy replacement times. The specific form of these coefficients is suggested by the theory of a mode, so-called ''ubiquitous,'' that can be excited when a significant fraction of the electron population has magnetically trapped orbits. (author)

  4. Conservation laws and radiation in the scale covariant theory of gravitation

    Beesham, A.

    1988-01-01

    The conservation laws for mass, energy, and momentum are derived in the scale covariant theory of gravitation. The entropy problem which exists in the standard Friedmann-Lemaitre-Robertson-Walker models can be solved in the present context. Since the weak and strong energy conditions may be violated, a big bang singularity may be avoided, in contrast to general relativity. Since beta is shown to be constant during the radiation-dominated era, the difficulties in the theory associated with nucleosynthesis are avoided. 10 references

  5. Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V

    Molinari, A.; Soldani, X.; Miguélez, M. H.

    2013-11-01

    The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal cutting. The mechanisms of material weakening that are accounted for are (i) thermal softening and (ii) material failure related to a critical value of the accumulated plastic strain. Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be experimentally produced under well controlled loading conditions by individually tuning the cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting conditions on adiabatic shear banding and chip serration is investigated by combining finite element calculations and analytical modeling. This leads to the characterization and classification of different regimes of shear banding and the determination of scaling laws which involve dimensionless parameters representative of thermal and inertia effects. The analysis gives new insights into the physical aspects of plastic flow instability in chip formation. The originality with respect to classical works on adiabatic shear banding stems from the various facets of cutting conditions that influence shear banding and from the specific role exercised by convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and propagate towards the chip free surface. They grow within the chip formation region while being convected away by chip flow. It is shown that important changes in the mechanism of shear banding take place when the characteristic time of shear band propagation becomes equal to a characteristic convection time. Application to Ti-6Al-4V titanium are considered and theoretical predictions are compared to available experimental data in a wide range of cutting speeds and feeds. The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal cutting processes but also, by analogy, to similar problems where convective flow is also interfering with

  6. Particle-laden flow from geophysical to Kolmogorov scales

    Clercx, Herman; Uijttewaal, Wim

    2007-01-01

    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  7. Site-scale groundwater flow modelling of Beberg

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Walker, D. [Duke Engineering and Services (United States); Hartley, L. [AEA Technology, Harwell (United Kingdom)

    1999-08-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) Safety Report for 1997 (SR 97) study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Beberg, which adopts input parameters from the SKB study site near Finnsjoen, in central Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister positions. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The Base Case simulation takes its constant head boundary conditions from a modified version of the deterministic regional scale model of Hartley et al. The flow balance between the regional and site-scale models suggests that the nested modelling conserves mass only in a general sense, and that the upscaling is only approximately valid. The results for 100 realisation of 120 starting positions, a flow porosity of {epsilon}{sub f} 10{sup -4}, and a flow-wetted surface of a{sub r} = 1.0 m{sup 2}/(m{sup 3} rock) suggest the following statistics for the Base Case: The median travel time is 56 years. The median canister flux is 1.2 x 10{sup -3} m/year. The median F-ratio is 5.6 x 10{sup 5} year/m. The travel times, flow paths and exit locations were compatible with the observations on site, approximate scoping calculations and the results of related modelling studies. Variability within realisations indicates

  8. Site-scale groundwater flow modelling of Beberg

    Gylling, B.; Walker, D.; Hartley, L.

    1999-08-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) Safety Report for 1997 (SR 97) study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Beberg, which adopts input parameters from the SKB study site near Finnsjoen, in central Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister positions. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The Base Case simulation takes its constant head boundary conditions from a modified version of the deterministic regional scale model of Hartley et al. The flow balance between the regional and site-scale models suggests that the nested modelling conserves mass only in a general sense, and that the upscaling is only approximately valid. The results for 100 realisation of 120 starting positions, a flow porosity of ε f 10 -4 , and a flow-wetted surface of a r = 1.0 m 2 /(m 3 rock) suggest the following statistics for the Base Case: The median travel time is 56 years. The median canister flux is 1.2 x 10 -3 m/year. The median F-ratio is 5.6 x 10 5 year/m. The travel times, flow paths and exit locations were compatible with the observations on site, approximate scoping calculations and the results of related modelling studies. Variability within realisations indicates that the change in hydraulic gradient

  9. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  10. Engagement in the electoral processes: scaling laws and the role of political positions.

    Mantovani, M C; Ribeiro, H V; Lenzi, E K; Picoli, S; Mendes, R S

    2013-08-01

    We report on a statistical analysis of the engagement in the electoral processes of all Brazilian cities by considering the number of party memberships and the number of candidates for mayor and councillor. By investigating the relationships between the number of party members and the population of voters, we have found that the functional forms of these relationships are well described by sublinear power laws (allometric scaling) surrounded by a multiplicative log-normal noise. We have observed that this pattern is quite similar to those we previously reported for the relationships between the number of candidates (mayor and councillor) and population of voters [Europhys. Lett. 96, 48001 (2011)], suggesting that similar universal laws may be ruling the engagement in the electoral processes. We also note that the power-law exponents display a clear hierarchy, where the more influential is the political position the smaller is the value of the exponent. We have also investigated the probability distributions of the number of candidates (mayor and councillor), party memberships, and voters. The results indicate that the most influential positions are characterized by distributions with very short tails, while less influential positions display an intermediate power-law decay before showing an exponential-like cutoff. We discuss the possibility that, in addition to the political power of the position, limitations in the number of available seats can also be connected with this changing of behavior. We further believe that our empirical findings point out to an under-representation effect, where the larger the city is, the larger are the obstacles for more individuals to become directly engaged in the electoral process.

  11. A novel nonlinear nano-scale wear law for metallic brake pads.

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  12. Scaling laws for the Okubo-Zweig-Iizuka violating decays and productions and the interpretation of UPSILON and UPSILON'

    Nandi, S.

    1977-08-01

    We propose simple scaling laws for the Okubo-Zweig-Iizuka violating decays and the inclusive productions of hidden flavour vector mesons. These laws are in good agreement with the available data on phi, PSI and PSI'. Assuming that the recently observed bumps at approximately 9.44 (UPSILON) and at approximately 10.17 (UPSILON') GeV to be due to some new hidden flavour vector mesons, (such as t anti t and/or b anti b), these scaling laws are used to estimate the direct hadronic decay widths and the inclusive yields of UPSILON and UPSILON'. (orig.) [de

  13. Analysis of Scaling Law and Figure of Merit of Fiber-Based Biosensor

    Jui-Teng Lin

    2012-01-01

    Full Text Available This paper presents a normalized transmitted signal (NTS of a fiber-based sensor using gold nanorods as the plasmon excitation medium of the evanescent wave. The NTS and the refractive index (RI sensitivity is calculated as a function of the gold aspect ratio (R, the RI of the sensing medium, and a scaling parameter given by the ratio of the fiber length and its diameter. Finally, the optimal value of gold aspect ratio is calculated to be R = (3.0–4.0 for maximum figure of merits (FOMs defined by the ratio of the refractive index sensitivity and the full width at half maximum. The scaling laws and the FOM presented in this paper may serve as the guidelines for optimal designs in fiber-based nanosensors.

  14. Particle simulation of pedestal buildup and study of pedestal scaling law in a quiescent plasma edge

    Chang, C.S.; Ku, S.; Weitzner, H.; Groebner, R.; Osborne, T.

    2005-01-01

    A discrete guiding-center particle code XGC (X-point included Guiding Center code) is used to study pedestal buildup and sheared E r formation in a quiescent plasma edge of a diverted tokamak. A neoclassical pedestal scaling law has been deduced, which shows that the density pedestal width is proportional to T i 1/2 M 1/2 /B t where T i is the ion temperature, M is ion mass and B t is the toroidal magnetic field. Dependence on the pedestal density or the poloidal magnetic field is found to be much weaker. Ion temperature pedestal is not as well defined as the density pedestal. Neoclassical electron transport rate, including the collisional heat exchange rate with ions, is too slow to be considered in the time scale of simulation (∼ 10 ms). (author)

  15. A general scaling law reveals why the largest animals are not the fastest.

    Hirt, Myriam R; Jetz, Walter; Rall, Björn C; Brose, Ulrich

    2017-08-01

    Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.

  16. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  17. A generalized scaling law for the ignition energy of inertial confinement fusion capsules

    Herrmann, M.C.

    2001-01-01

    The minimum energy needed to ignite an inertial confinement fusion capsule is of considerable interest in the optimization of an inertial fusion driver. Recent computational work investigating this minimum energy has found that it depends on the capsule implosion history, in particular, on the capsule drive pressure. This dependence is examined using a series of LASNEX simulations to find ignited capsules which have different values of the implosion velocity, fuel adiabat and drive pressure. It is found that the main effect of varying the drive pressure is to alter the stagnation of the capsule, changing its stagnation adiabat, which, in turn, affects the energy required for ignition. To account for this effect a generalized scaling law has been devised for the ignition energy, E ign ∝α if 1.88±0.05 υ -5.89±0.12 P -0.77±0.03 . This generalized scaling law agrees with the results of previous work in the appropriate limits. (author)

  18. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    Paggi, Marco [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: marco.paggi@polito.it; Carpinteri, Alberto [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-05-15

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  19. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    Paggi, Marco; Carpinteri, Alberto

    2009-01-01

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  20. Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect

    Ayres, T.R.

    1979-01-01

    Simple scaling laws are developed to explain the thickness and mean electron density of late-type stellar chromospheres in an effort to understand why the emission cores of effectively thick resonance lines such as Ca II H and K broaden with increasing stellar luminosity (the Wilson-Bappu effect). It is shown that stellar chromospheres become thicker in mass column density as stellar gravity g decreases and that the mean chromospheric electric density n/sub e/ decreases if the chromospheric heating dF/dm is constant with height and if the total heating F/sup tot/ is independent of g. It is also shown that chromospheres becomes thicker and the mean electron density becomes larger than the total chromospheric heating increases. The predicted behavior of the K 1 minimum separation and full width at half-maximum of the Ca II emission core (W 0 ) based on the derived scaling laws agree quantitatively with the observed correlations of these widths with fundamental stellar parameters, particularly surface gravity. In addition, the predicted behavior of the K 2 peak separation and base emission width with increasing chromospheric heating is consistent with the behavior of the Ca II emission core shapes in solar plages. The analytical arguments suggest that the Wilson-Bappu effect is largely a consequence of hydrostatic equilibrium rather than chromospheric dynamics

  1. An exponential universal scaling law for the volume pinning force of high temperature superconductors

    Hampshire, D.P.

    1993-01-01

    The exponential magnetic field dependence of the critical current density (J c (B,T)) found in many high temperature superconductors, given by: J c (B,T) α(T)exp(-B/β(T)) where α(T) and β(T) are functions of temperature alone, necessarily implies a Universal Scaling Law for the volume pinning force (F p ) of the form: F p /F PMAX exp(+1).(B/β(T)).exp(-B/β(T)). If the Upper Critical Field is not explicitly measured but is artificially determined by smooth extrapolation of J c (B,T) to zero on a linear J c (B,T) vs B plot, this exponential scaling law can be closely approximated by the Kramer dependence given by: F p /F PMAX C.b p .(1-b) q where p = 0.5, q = 2, C ∼ 3.5 and b = B/B C2 (T). The implications for flux pinning studies are discussed. (orig.)

  2. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  3. Dual-scale Galerkin methods for Darcy flow

    Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex

    2018-02-01

    The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.

  4. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  5. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    Ghattas, Omar

    2015-01-07

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  6. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    Ghattas, Omar

    2015-01-01

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  7. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure.

    Mojdehi, Ahmad R; Holmes, Douglas P; Dillard, David A

    2017-10-25

    A generalized scaling law, based on the classical fracture mechanics approach, is developed to predict the bond strength of adhesive systems. The proposed scaling relationship depends on the rate of change of debond area with compliance, rather than the ratio of area to compliance. This distinction can have a profound impact on the expected bond strength of systems, particularly when the failure mechanism changes or the compliance of the load train increases. Based on the classical fracture mechanics approach for rate-independent materials, the load train compliance should not affect the force capacity of the adhesive system, whereas when the area to compliance ratio is used as the scaling parameter, it directly influences the bond strength, making it necessary to distinguish compliance contributions. To verify the scaling relationship, single lap shear tests were performed for a given pressure sensitive adhesive (PSA) tape specimens with different bond areas, number of backing layers, and load train compliance. The shear lag model was used to derive closed-form relationships for the system compliance and its derivative with respect to the debond area. Digital image correlation (DIC) is implemented to verify the non-uniform shear stress distribution obtained from the shear lag model in a lap shear geometry. The results obtained from this approach could lead to a better understanding of the relationship between bond strength and the geometry and mechanical properties of adhesive systems.

  8. Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics

    Herwig, Heinz; Schmandt, Bastian

    2013-01-01

    Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach. (paper)

  9. The Evolution of the Social Criminal Law on an International Wide Scale

    Radu Razvan Popescu

    2009-06-01

    Full Text Available Brought to maturity, the labor criminal law represents a real branch of the criminal law, as well as the business criminal law, fiscal criminal law or the environment criminal law. Notwithstanding labor criminal law cannot be considered merely as an accessory part of the corporate criminal law, but having an essential part such as an exhibit test, in order to determine new legal mechanisms, such as the ones regarding criminal liability of the legal persons. In the Romanian legislation, the labor criminal law, as an interference zone between the criminal law and labor law, has to be regarded from the internal social realities governing the labor aspects, as well from the comparative law's point of view.

  10. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  11. Extreme robustness of scaling in sample space reducing processes explains Zipf’s law in diffusion on directed networks

    Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan

    2016-01-01

    It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such sample space reducing processes offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to −1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management. (paper)

  12. Linear drag law for high-Reynolds-number flow past an oscillating body

    Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif

    2016-07-01

    An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.

  13. Field-scale measurements for separation of catchment discharge into flow route contributions

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  14. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  15. Field-scale measurements for separation of catchment discharge into flow route contributions

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  16. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  17. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  18. The US business cycle: power law scaling for interacting units with complex internal structure

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  19. Scaling laws and universality for the strength of genetic interactions in yeast

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  20. Temporal scaling law and intrinsic characteristic of laser induced damage on the dielectric coating

    Zhou, Li; Jiang, Youen; Wang, Chao; Wei, Hui; Zhang, Peng; Fan, Wei; Li, Xuechun

    2018-01-01

    High power laser is essential for optical manipulation and fabrication. When the laser travels through optics and to the target finally, irreversible damage on the dielectric coating is always accompanied without knowing the law and principle of laser induced damage. Here, an experimental study of laser induced damage threshold (LIDT) Fth of the dielectric coating under different pulse duration t is implemented. We observe that the temporal scaling law of square pulse for high-reflectivity (HR) coating and anti-reflectivity (AR) coating are Fth = 9.53t0.47 and Fth = 6.43t0.28 at 1064 nm, respectively. Moreover, the intrinsic LIDT of HR coating is 62.7 J/cm2 where the coating is just 100% damaged by gradually increasing the fluence densities of a 5ns-duration pulse, which is much higher than the actual LIDT of 18.6 J/cm2. Thus, a more robust and reliable high power laser system will be a reality, even working at very high fluence, if measures are taken to improve the actual LIDT to a considerable level near the intrinsic value.

  1. Scaling law for (e, 2e) cross sections for isoelectronic hydrogen- and alkali-like ions

    Ancarani, L U; Hervieux, P-A

    2003-01-01

    Triple differential cross sections (TDCSs) for (e, 2e) processes on the valence electrons of H-, Li-, Na- and K-like positive ions are calculated for asymmetric coplanar geometries and intermediate incident energies. Although the proper boundary conditions are not respected, both the long-range Coulomb interaction in the initial and final channels, and the short-range effects, are taken into account in the Coulomb Born approximation through the use of two effective charges. The latter are obtained within the framework of the frozen-core Hartree-Fock approximation which is also used for describing the bound state wavefunctions. An approximate scaling law for the TDCSs is predicted for the ionization of sequences of isoelectronic ions, provided the incident and ejected energies are properly scaled. The calculations illustrate that the scaling is generally well verified, in particular for increasing ionicity within a sequence. Moreover, as one moves from the H- to K-like sequences, more TDCS structure is observed. Two main peaks are always situated close to the direction of the momentum transfer and opposite direction, although with strong shifts. Contrary to what is observed for the ionization of outer-shells electrons in neutral atoms, the dominant peak of all cross sections is in the opposite direction to the momentum transfer, a signature of strong elastic scattering from the nucleus

  2. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  3. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  4. Peak Fields of Nb$_{3}$Sn Superconducting Undulators and a Scaling Law

    Kim, S H

    2005-01-01

    The peak fields on the beam axis and the maximum fields in the conductor of Nb$_{3}$Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb$_{3}$Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

  5. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations

    Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.

    1993-01-01

    Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode

  6. Validation of a power-law noise model for simulating small-scale breast tissue

    Reiser, I; Edwards, A; Nishikawa, R M

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. (paper)

  7. Scaling law in free walking of mice in circular open fields of various diameters.

    Shoji, Hiroto

    2016-03-01

    Open-field tests are routinely used to study locomotor activity in rodents. I studied the effects of apparatus size on rodent locomotor activity, specifically with respect to how resting and walking periods are interwoven. I explored the open-field behavior of mice utilizing circular open fields of various diameters. When the diameter of the test apparatus was greater than 75 cm, the durations of the resting and moving periods of free walking behavior obeyed bounded power-law distribution functions. I found that the properties of the scaling exponents and model selection became similar for test apparatus diameters greater than 75 cm. These results can provide a guide for the selection of the size of the test apparatus for use in the study of the open-field behavior of rodents.

  8. In-medium scaling law and electron scattering from high-spin states in 208Pb

    Arias de Saavedra, F.; Lallena, A.M.

    1994-01-01

    The effects of the environment modifications in the structure of the low-lying high-spin states of 208 Pb are studied by analyzing how the in-medium scaling law works on the excitation energies, wave functions, and electron scattering form factors corresponding to these states. It is shown that the consideration of f π * in addition to the effective ρ-meson mass does not affect too much most of the states analyzed. However, some of them appear to be extremely sensitive to its inclusion in the residual nucleon-nucleon interaction. As a result, a value of m ρ * /m ρ ∼f π * /f π ∼0.91 gives a good description of the (e,e') form factors of these particular states without any quenching factor. This value is in agreement with the one found for 48 Ca in a similar analysis performed in a previous work

  9. Solving large scale unit dilemma in electricity system by applying commutative law

    Legino, Supriadi; Arianto, Rakhmat

    2018-03-01

    The conventional system, pooling resources with large centralized power plant interconnected as a network. provides a lot of advantages compare to the isolated one include optimizing efficiency and reliability. However, such a large plant need a huge capital. In addition, more problems emerged to hinder the construction of big power plant as well as its associated transmission lines. By applying commutative law of math, ab = ba, for all a,b €-R, the problem associated with conventional system as depicted above, can be reduced. The idea of having small unit but many power plants, namely “Listrik Kerakyatan,” abbreviated as LK provides both social and environmental benefit that could be capitalized by using proper assumption. This study compares the cost and benefit of LK to those of conventional system, using simulation method to prove that LK offers alternative solution to answer many problems associated with the large system. Commutative Law of Algebra can be used as a simple mathematical model to analyze whether the LK system as an eco-friendly distributed generation can be applied to solve various problems associated with a large scale conventional system. The result of simulation shows that LK provides more value if its plants operate in less than 11 hours as peaker power plant or load follower power plant to improve load curve balance of the power system. The result of simulation indicates that the investment cost of LK plant should be optimized in order to minimize the plant investment cost. This study indicates that the benefit of economies of scale principle does not always apply to every condition, particularly if the portion of intangible cost and benefit is relatively high.

  10. Subgrid-scale turbulence in shock-boundary layer flows

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  11. Electrokinetic flows in cylindrical and slit capillaries in clays: from pore scale to sample scale

    Obliger, Amael; Jardat, Marie; Rotenberg, Benjamin; Duvail, Magali; Bekri, Samir; Coelho, Daniel

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Transport on the nanometer scale of clay interlayers and on the macroscopic sample scale can be well characterized experimentally, using either X-ray or neutron diffraction and diffusion on the one hand, and solute diffusion experiments on the other hand. Current imaging techniques do not allow to provide a direct picture of the pore network on the scale of several nanometers to several micrometers. The lack of knowledge of the pore network structure on intermediate scales requires to use numerical models of analog porous media. We attempt to describe the ionic transport in meso (diam. ∼ 10-50 nm) and macro-porosity (diam. > 50 nm) (due to the organization of clays particles) with a multi-scale approach provided by the Pore Network Model (PNM) that takes into consideration the topology of the media. Such an approach requires to know the transport coefficients of solvent and solutes in a throat connecting two pores, modelled as a capillary. The challenge in the case of clays, compared to the usual PNM methods, is to capture the effect of the surface charge of clay minerals on the transport of ions and water, under the effect of macroscopic pressure, salt concentration and electric potential gradients. Solvent and ionic transports are governed by the Stokes, the Nernst-Planck and the Poisson- Boltzmann equations. This set of equations can be solved analytically using the linearized form of the latter in order to get an approximation of the electro-osmotic speed and the ionic density profile. At variant with most previous works, we consider the case of a fixed surface charge instead of fixed surface potential. In addition to the Nernst-Einstein and chemical flows of solute, we calculated analytically the Poiseuille flow of solutes and the electro-osmotic flow of solvent and solutes. When the linearization is not possible, one must use numerical results for transport coefficients

  12. Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ

    Tartakovsky, A. M. [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland WA USA; Panzeri, M. [Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano Italy; Tartakovsky, G. D. [Hydrology Group, Pacific Northwest National Laboratory, Richland WA USA; Guadagnini, A. [Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano Italy

    2017-11-01

    Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scale $\\eta^*$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.

  13. Dose monitoring in large-scale flowing aqueous media

    Kuruca, C.N.

    1995-01-01

    The Miami Electron Beam Research Facility (EBRF) has been in operation for six years. The EBRF houses a 1.5 MV, 75 KW DC scanned electron beam. Experiments have been conducted to evaluate the effectiveness of high-energy electron irradiation in the removal of toxic organic chemicals from contaminated water and the disinfection of various wastewater streams. The large-scale plant operates at approximately 450 L/min (120 gal/min). The radiation dose absorbed by the flowing aqueous streams is estimated by measuring the difference in water temperature before and after it passes in front of the beam. Temperature measurements are made using resistance temperature devices (RTDs) and recorded by computer along with other operating parameters. Estimated dose is obtained from the measured temperature differences using the specific heat of water. This presentation will discuss experience with this measurement system, its application to different water presentation devices, sources of error, and the advantages and disadvantages of its use in large-scale process applications

  14. Flow of power-law fluids in fixed beds of cylinders or spheres

    Singh, John P.

    2012-10-29

    An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an

  15. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures

    Momeni, A.; Dehghani, K.; Poletti, M.C.

    2013-01-01

    In this investigation the flow curves of a duplex stainless steel were drawn by performing hot compression tests over a wide temperature range of 950–1200 °C and strain rates of 0.001–100 s −1 . The flow curves of ferrite and austenite phases in the duplex structure were depicted by conducting similar hot compression tests on two steels that were cast and prepared with the same chemical compositions. The flow curves of the austenitic steel were found typical of dynamic recrystallization. They were successfully modeled by using the experimental exponential equation proposed by Cingara and McQueen. The flow curves of the ferritic steel were typical of dynamic recovery. They were modeled by the dislocation density evolution function proposed by Estrin and Meckning. Comparing the flow curves of three studied steels, it was found that the flow curves of the duplex steel were very similar and close to those of the ferrite steel. It was understood that in a duplex structure of ferrite and austenite the flow behavior is mostly controlled by the softer phase, i.e. ferrite. The law of mixture was modified to consider the strain partitioning between ferrite and austenite. The distribution coefficients of ferrite and austenite were described and determined at different deformation conditions. The results of modeling satisfactorily predicted the experimental curves. It was shown that the influence of austenite on the flow behavior of the duplex structure is almost low. However, it increases as strain rate or temperature rises. - Highlights: ► Flow curves of austenite and ferrite in the duplex steel were modeled separately. ► The flow behavior of the duplex steel is mostly controlled by ferrite. ► The effect of austenite on flow curve increases with temperature and strain rate. ► The flow curve of the duplex steel is modeled by the modified law of mixture

  16. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    Kittell, David E.; Cummock, Nick R.; Son, Steven F. [School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-08-14

    Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.

  17. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  18. Stochastic characteristics and Second Law violations of atomic fluids in Couette flow

    Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin

    2018-04-01

    Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.

  19. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  20. Scaling Laws in the Transient Dynamics of Firefly-like Oscillators

    Rubido, N; Cabeza, C; Marti, A; Ramirez Avila, G M

    2011-01-01

    Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.

  1. Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei

    Iashina, E. G.; Velichko, E. V.; Filatov, M. V.; Bouwman, W. G.; Duif, C. P.; Brulet, A.; Grigoriev, S. V.

    2017-07-01

    Small-angle neutron scattering (SANS) on nuclei of chicken erythrocytes demonstrates the cubic dependence of the scattering intensity Q-3 in the range of momentum transfer Q ∈10-3-10-2nm-1 . Independent spin-echo SANS measurements give the spin-echo function, which is well described by the exponential law in a range of sizes (3 ×102) -(3 ×104) nm. Both experimental dependences reflect the nature of the structural organization of chromatin in the nucleus of a living cell, which corresponds to the correlation function γ (r )=ln(ξ /r ) for r <ξ , where ξ =(3.69 ±0.07 ) ×103 nm, the size of the nucleus. It has the specific scaling property of the logarithmic fractal γ (r /a )=γ (r )+ln(a ), i.e., the scaling down by a gives an additive constant to the correlation function, which distinguishes it from the mass fractal, which is characterized by multiplicative constant.

  2. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

    Kang, Chang-kwon; Shyy, Wei

    2013-01-01

    We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300

  3. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    Bordini, B; Alknes, P; Bottura, L; Rossi, L; Valentinis, D

    2013-01-01

    The critical current density of the Nb 3 Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb 3 Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature. (paper)

  4. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the

  5. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches

    Kelfoun, Karim

    2011-08-01

    The rheology of volcanic rock avalanches and dense pyroclastic flows is complex, and it is difficult at present to constrain the physics of their processes. The problem lies in defining the most suitable parameters for simulating the behavior of these natural flows. Existing models are often based on the Coulomb rheology, sometimes with a velocity-dependent stress (e.g., Voellmy), but other laws have also been used. Here I explore the characteristics of flows, and their deposits, obtained on simplified topographies by varying source conditions and rheology. The Coulomb rheology, irrespective of whether there is a velocity-dependent stress, forms cone-shaped deposits that do not resemble those of natural long-runout events. A purely viscous or a purely turbulent flow can achieve realistic velocities and thicknesses but cannot form a deposit on slopes. The plastic rheology, with (e.g., Bingham) or without a velocity-dependent stress, is more suitable for the simulation of dense pyroclastic flows and long-runout volcanic avalanches. With this rheology, numerical flows form by pulses, which are often observed during natural flow emplacement. The flows exhibit realistic velocities and deposits of realistic thicknesses. The plastic rheology is also able to generate the frontal lobes and lateral levées which are commonly observed in the field. With the plastic rheology, levée formation occurs at the flow front due to a divergence of the driving stresses at the edges. Once formed, the levées then channel the remaining flow mass. The results should help future modelers of volcanic flows with their choice of which mechanical law corresponds best to the event they are studying.

  6. Validity of cubic law for fluid flow in a deformable rock fracture. Technical information report No. 23

    Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; Gale, J.E.

    1979-10-01

    The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 μm. The law may be given in simplified form by Q/Δh = C(2b) 3 , where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature using homogeneous samples of granite, basalt, and marble. Tension fractures were artifically induced and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 μm down to 4 μm. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/f. The factor f varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture and since flow depends on (2b) 3 , a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field

  7. Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow

    Rana, A.; Ravichandran, R. [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of); Park, J. H.; Myong, R. S., E-mail: myong@gnu.ac.kr [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of); Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-08-15

    The second-order non-Navier-Fourier constitutive laws, expressed in a compact algebraic mathematical form, were validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular dynamics (MD). Emphasis is placed on how completely different methods (a second-order continuum macroscopic theory based on the kinetic Boltzmann equation, the probabilistic mesoscopic direct simulation Monte Carlo, and, in particular, the deterministic microscopic MD) describe the non-classical physics, and whether the second-order non-Navier-Fourier constitutive laws derived from the continuum theory can be validated using MD solutions for the viscous stress and heat flux calculated directly from the molecular data using the statistical method. Peculiar behaviors (non-uniform tangent pressure profile and exotic instantaneous heat conduction from cold to hot [R. S. Myong, “A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation,” Phys. Fluids 23(1), 012002 (2011)]) were re-examined using atomic-level MD results. It was shown that all three results were in strong qualitative agreement with each other, implying that the second-order non-Navier-Fourier laws are indeed physically legitimate in the transition regime. Furthermore, it was shown that the non-Navier-Fourier constitutive laws are essential for describing non-zero normal stress and tangential heat flux, while the classical and non-classical laws remain similar for shear stress and normal heat flux.

  8. Site-scale groundwater flow modelling of Ceberg

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracturezones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of {epsilon}{sub f} 10{sup -4} and a flow-wetted surface area of a{sub r} = 0.1 m{sup 2}/(m{sup 3} rock): The median travel time is 1720 years. The median canister flux is 3.27x10{sup -5} m/year. The median F-ratio is 1.72x10{sup 6} years/m. The base case and the deterministic variant suggest that the variability of the travel times within

  9. Site-scale groundwater flow modelling of Ceberg

    Walker, D.; Gylling, B.

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracture zones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of ε f 10 -4 and a flow-wetted surface area of a r = 0.1 m 2 /(m 3 rock): The median travel time is 1720 years. The median canister flux is 3.27x10 -5 m/year. The median F-ratio is 1.72x10 6 years/m. The base case and the deterministic variant suggest that the variability of the travel times within individual realisations is due to the

  10. Site-scale groundwater flow modelling of Aberg

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method`s self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  11. Site-scale groundwater flow modelling of Aberg

    Walker, D.; Gylling, B.

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method's self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  12. Persistent Homology fingerprinting of microstructural controls on larger-scale fluid flow in porous media

    Moon, C.; Mitchell, S. A.; Callor, N.; Dewers, T. A.; Heath, J. E.; Yoon, H.; Conner, G. R.

    2017-12-01

    Traditional subsurface continuum multiphysics models include useful yet limiting geometrical assumptions: penny- or disc-shaped cracks, spherical or elliptical pores, bundles of capillary tubes, cubic law fracture permeability, etc. Each physics (flow, transport, mechanics) uses constitutive models with an increasing number of fit parameters that pertain to the microporous structure of the rock, but bear no inter-physics relationships or self-consistency. Recent advances in digital rock physics and pore-scale modeling link complex physics to detailed pore-level geometries, but measures for upscaling are somewhat unsatisfactory and come at a high computational cost. Continuum mechanics rely on a separation between small scale pore fluctuations and larger scale heterogeneity (and perhaps anisotropy), but this can break down (particularly for shales). Algebraic topology offers powerful mathematical tools for describing a local-to-global structure of shapes. Persistent homology, in particular, analyzes the dynamics of topological features and summarizes into numeric values. It offers a roadmap to both "fingerprint" topologies of pore structure and multiscale connectedness as well as links pore structure to physical behavior, thus potentially providing a means to relate the dependence of constitutive behaviors of pore structures in a self-consistent way. We present a persistence homology (PH) analysis framework of 3D image sets including a focused ion beam-scanning electron microscopy data set of the Selma Chalk. We extract structural characteristics of sampling volumes via persistence homology and fit a statistical model using the summarized values to estimate porosity, permeability, and connectivity—Lattice Boltzmann methods for single phase flow modeling are used to obtain the relationships. These PH methods allow for prediction of geophysical properties based on the geometry and connectivity in a computationally efficient way. Sandia National Laboratories is a

  13. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during

  14. Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture

    Norazlina Subani

    2015-01-01

    Full Text Available Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order modelling technique. The results show that changes in the pressure wave profile and amplitude depend on the type of closing laws, valve closure times, and the number of polygonal segments in the closing function. The pressure wave profile varies from square to triangular and trapezoidal shape depending on the type of closing laws, while the amplitude of pressure waves reduces as the closing time is reduced and the numbers of polygonal segments are increased. The instantaneous and convex closing laws give rise to minimum and maximum pressure, respectively.

  15. Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling

    Horstman, Erik; Dohmen-Janssen, Catarine M.; Bouma, T.J.; Hulscher, Suzanne J.M.H.

    2015-01-01

    Tidal-scale biophysical interactions establish particular flow routing and sedimentation patterns in coastal mangroves. Sluggish water flows through the mangrove vegetation and enhanced sediment deposition are essential to maintain these valuable ecosystems, thereby enabling their contribution to

  16. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  17. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    Yi Wang

    2013-01-01

    Full Text Available The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa.

  18. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  19. Classifying low flow hydrological regimes at a regional scale

    Kirkby, M. J.; Gallart, F.; Kjeldsen, T. R.; Irvine, B. J.; Froebrich, J.; Lo Porto, A.; de Girolamo, A.; Mirage Team

    2011-12-01

    The paper uses a simple water balance model that partitions the precipitation between actual evapotranspiration, quick flow and delayed flow, and has sufficient complexity to capture the essence of climate and vegetation controls on this partitioning. Using this model, monthly flow duration curves have been constructed from climate data across Europe to address the relative frequency of ecologically critical low flow stages in semi-arid rivers, when flow commonly persists only in disconnected pools in the river bed. The hydrological model is based on a dynamic partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. Arguing from observed ratios of cross-sectional areas at flood and low flows, hydraulic geometry suggests that disconnected flow under "pool" conditions is approximately 0.1% of bankfull flow. Flow duration curves define a measure of bankfull discharge on the basis of frequency. The corresponding frequency for pools is then read from the duration curve, using this (0.1%) ratio to estimate pool discharge from bank full discharge. The flow duration curve then provides an estimate of the frequency of poorly connected pool conditions, corresponding to this discharge, that constrain survival of river-dwelling arthropods and fish. The methodology has here been applied across Europe at 15 km resolution, and the potential is demonstrated for applying the methodology under alternative climatic scenarios.

  20. Classifying low flow hydrological regimes at a regional scale

    M. J. Kirkby

    2011-12-01

    Full Text Available The paper uses a simple water balance model that partitions the precipitation between actual evapotranspiration, quick flow and delayed flow, and has sufficient complexity to capture the essence of climate and vegetation controls on this partitioning. Using this model, monthly flow duration curves have been constructed from climate data across Europe to address the relative frequency of ecologically critical low flow stages in semi-arid rivers, when flow commonly persists only in disconnected pools in the river bed. The hydrological model is based on a dynamic partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. Arguing from observed ratios of cross-sectional areas at flood and low flows, hydraulic geometry suggests that disconnected flow under "pool" conditions is approximately 0.1% of bankfull flow. Flow duration curves define a measure of bankfull discharge on the basis of frequency. The corresponding frequency for pools is then read from the duration curve, using this (0.1% ratio to estimate pool discharge from bank full discharge. The flow duration curve then provides an estimate of the frequency of poorly connected pool conditions, corresponding to this discharge, that constrain survival of river-dwelling arthropods and fish. The methodology has here been applied across Europe at 15 km resolution, and the potential is demonstrated for applying the methodology under alternative climatic scenarios.

  1. Constraining self-interacting dark matter with scaling laws of observed halo surface densities

    Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia

    2018-04-01

    The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.

  2. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  3. Ideal-MHD beta limits: scaling laws and comparison with Doublet III high-beta plasmas

    Bernard, L.C.; Bhadra, D.K.; Helton, F.J.; Lao, L.L.; Todd, T.N.

    1983-06-01

    Doublet III (DIII) recently has achieved a value for #betta#, the ratio of volume averaged plasma to magnetic pressure, of 4.5%. This #betta# value is in the range required for an economically attractive tokamak reactor, and also close to the relevant limit predicted by ideal-MHD theory. It is therefore of great interest to assess the validity of the theory by comparison with experiment and thus to have a basis for the prediction of future reactor performance. A large variety of plasma shapes have been obtained in DIII. These shapes can be divided into two classes: (1) limiter discharges, and (2) diverted discharges, which are of great interest because of their good confinement in the H-mode operation. We derive simple scaling laws from the variation of optimized ideal-MHD beta limits (#betta#/sub c/) with plasma shape parameters. The current profile is optimized for fixed plasma shapes, separately for the high-n (ballooning) and the low-n (kink) modes. Results are presented in the form of suitability normalized curves of #betta# versus poloidal beta, #betta#/sub p/, for both ballooning and kink modes in order to simultaneously compare all the DIII experimental data

  4. Scaling laws for the rotational velocity of a J x B driven rotating plasma

    Igarashi, Yasuhito; Kataoka, Tomohiro; Ikehata, Takashi; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi

    1994-01-01

    Rapidly rotating plasmas of helium and argon have been extracted from a coaxial plasma gun operated in pulsed glow mode. The rotational velocity and its parametric dependence have been analyzed systematically by means of visible - emission spectroscopy. The plasma is observed to rotate rigidly inside the diameter of the gun anode while outside the velocity decreases rapidly ; furthermore, different ions are found to rotate at different angular frequencies as ω (Ar + ) = 0.5 x 10 6 rad/sec, ω (Ar 2+ ) = 1.1 x 10 6 rad/sec, ω (C 2+ ) = 1.8 x 10 6 rad/sec, ω (N + ) = 1.2 x 10 6 rad/sec. The plasma density and rotational velocity have been measured as a function of the discharge current and magnetic field to derive experimental scaling laws. They are summarized as : 1. Ion density is proportional to the square of discharge current. 2. Rotational and axial velocities are proportional to the driving force per ion. These results are confirmed to agree well with a theoretical prediction. (author)

  5. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  6. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scalescale of pores, meso-scalescale of laboratory sample, macro-scalescale of typical blocks in numerical models of groundwater flow, local-scalescale of an aquifer/aquitard and regional-scalescale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  7. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the

  8. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    Saad, Ahmed Mohamed; Kadoura, Ahmad Salim; Sun, Shuyu

    2016-01-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation

  9. Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.

    Park, Junghyun A; Kim, Minki; Yoon, Seokjoon

    2016-05-17

    Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.

  10. On the critical or geometrical nature of the observed scaling laws associated with the fracture and faulting processes

    Potirakis, Stelios M.; Kopanas, John; Antonopoulos, George; Nomicos, Constantinos; Eftaxias, Konstantinos

    2015-04-01

    One of the largest controversial issues of the materials science community is the interpretation of scaling laws associated with the fracture and faulting processes. Especially, an important open question is whether the spatial and temporal complexity of earthquakes and fault structures, above all the interpretation of the observed scaling laws, emerge from geometrical and material built-in heterogeneities or from the critical behavior inherent to the nonlinear equations governing the earthquake dynamics. Crack propagation is the basic mechanism of material's failure. A number of laboratory studies carried out on a wide range of materials have revealed the existence of EMEs during fracture experiments, while these emissions are ranging in a wide frequency spectrum, i.e., from the kHz to the MHz bands. A crucial feature observed on the laboratory scale is that the MHz EME systematically precedes the corresponding kHz one. The aforementioned crucial feature is observed in geophysical scale, as well. The remarkable asynchronous appearance of these two EMEs both on the laboratory and the geophysical scale implies that they refer to different final stages of faulting process. Accumulated laboratory, theoretical and numerical evidence supports the hypothesis that the MHz EME is emitted during the fracture of process of heterogeneous medium surrounding the family of strong entities (asperities) distributed along the fault sustaining the system. The kHz EME is attributed to the family of asperities themselves. We argue in terms of the fracture induced pre-seismic MHz-kHz EMEs that the scaling laws associated with the fracture of heterogeneous materials emerge from the critical behavior inherent to the nonlinear equations governing their dynamics (second-order phase transition), while the scaling laws associated with the fracture of family of asperities have geometric nature, namely, are rooted in the fractal nature of the population of asperities.

  11. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  12. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  13. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical

  14. Conservation laws with non-convex flux and applications to two-phase flow in porous media

    Tegnander, Cathrine

    1998-12-31

    This thesis deals with conservation laws, which form a family of partial differential equations (PDEs) describing conservation of mass, momentum and energy. The first part studies some theoretical aspects of conservation laws: (1) Scalar hyperbolic conservation laws with a non-convex flux function, where time dependent decay estimates are mainly obtained by a front tracking technique, (2) Convergence of solutions for a finite difference scheme given by a class of one dimensional parabolic systems. The second part of the thesis applies the theory to multiphase flow in porous media. A number of mathematical models for multiphase flow in groundwater are studied. Techniques to improve the study of simulations of oil, gas and water phases in reservoirs such as in the North Sea are discussed. Upscaling of a refinement of the permeability field is evaluated using a flow simulation. This is done by a study of the preserving of the rank of a number of realizations with respect to the cumulative production parameter. Finally, the importance of selection of numerical methods in the simulations are exemplified by considering various splitting techniques. The numerical methods of front tracking and finite difference schemes and finite element methods are used. 98 refs., 24 figs., 18 tabs.

  15. Scaling Laws in Arctic Permafrost River Basins: Statistical Signature in Transition

    Rowland, J. C.; Gangodagamage, C.; Wilson, C. J.; Prancevic, J. P.; Brumby, S. P.; Marsh, P.; Crosby, B. T.

    2011-12-01

    The Arctic landscape has been shown to be fundamentally different from the temperate landscape in many ways. Long winters and cold temperatures have led to the development of permafrost, perennially frozen ground, that controls geomorphic processes and the structure of the Arctic landscape. Climate warming is causing changes in permafrost and the active layer (the seasonally thawed surface layer) that is driving an increase in thermal erosion including thermokarst (collapsed soil), retrogressive thaw slumps, and gullies. These geomorphic anomalies in the arctic landscapes have not been well quantified, even though some of the landscape geomorphic and hydrologic characteristics and changes are detectable by our existing sensor networks. We currently lack understanding of the fundamental fluvio-thermal-erosional processes that underpin Arctic landscape structure and form, which limits our ability to develop models to predict the landscape response to current and future climate change. In this work, we seek a unified framework that can explain why permafrost landscapes are different from temperate landscapes. We use high resolution LIDAR data to analyze arctic geomorphic processes at a scale of less than a 1 m and demonstrate our ability to quantify the fundamental difference in the arctic landscape. We first simulate the arctic hillslopes from a stochastic space-filling network and demonstrate that the flow-path convergent properties of arctic landscape can be effectively captured from this simple model, where the simple model represents a landscape flowpath arrangement on a relatively impervious frozen soil layer. Further, we use a novel data processing algorithm to analyze landscape attributes such as slope, curvature, flow-accumulation, elevation-drops and other geomorphic properties, and show that the pattern of diffusion and advection dominated soil transport processes (diffusion/advection regime transition) in the arctic landscape is substantially different

  16. Questioning the Status Quo: Can Stakeholder Participation Improve Implementation of Small-Scale Mining Laws in Ghana?

    Alex Osei-Kojo

    2016-11-01

    Full Text Available Ghana’s small-scale mining sector faces complex challenges, including environmental degradation and pollution, loss of life and increased health risks, despite several years of implementation of small-scale mining laws. These challenges, generally, are known to have escalated because of illegal small-scale mining, locally known as “galamsey”. Despite the illegal status of this category of miners, this paper examines the extent to which stakeholder participation can improve implementation of mining regulations and also address the marginalization of these miners. This paper about stakeholder participation is timely because news reports in mid-2016 mentioned that the Government of Ghana, despite many years of disengagement, is now planning to engage with galamsey operators, in terms of registration, as part of measures to effectively regulate the activities of small-scale miners. Findings from fieldwork indicate that (1 chiefs are seldom consulted in the granting of mining licenses; (2 illegal miners do not participate in the implementation of small-scale mining laws; and (3 stakeholders, such as officers in district mining offices, feel distant from the implementation process. Against the backdrop of these findings, it remains useful to explore the extent to which effective stakeholder participation could help overcome the status quo—particularly its ramifications for both the implementation of ASM laws and the eradication of other underlying challenges the sector faces.

  17. Laser-energy scaling law for neutrons generated from nano particles Coulomb-exploded by intense femtosecond laser pulses

    Sakabe, Shuji; Hashida, Masaki

    2015-01-01

    To discuss the feasibility of compact neutron sources the yield of laser produced neutrons is scaled by the laser energy. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The laser energy scaling law of the neutron yield is estimated using the laser intensity scaling law for the energy of ions emitted from clusters Coulomb-exploded by an intense laser pulse. The neutron yield for D (D, n) He shows the potential of compact neutron sources with modern laser technology, and the yield for p (Li, n) Be shows much higher than that for Li (p, n) Be with the assumption of 500 nm-class cluster Coulomb explosion. (author)

  18. The Cooling Law and the Search for a Good Temperature Scale, from Newton to Dalton

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and…

  19. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes.

    Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  20. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes

    Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  1. ROLE OF LAW IN CONSTRUCTION AND DEVELOPMENT OF SMALL SCALE INDUSTRIES THROUGH NORMATIVE PERSPECTIVE

    Endang Sutrisno

    2015-12-01

    Full Text Available The presence of law has become an absolute prerequisite that must exist in the dynamics of civil society. It is to achieve justice, certainty, and expediency, so the works of it will not be separated from such a noble mission. On the other side, the law is likely inseparable from the fields of meta-juridical, including economics. The expectations of the interference of law into economy, makes the existence of justice for the business players can be realized through the enacted product legislation. Regulations concerning investments and partnerships have the intent to build self-reliance and empowerment for small industry players so as to compete in the era of economic globalization. Laws employed as the instrument of social change to strengthen the capitalization of small industry and business empowerment through the training and development of small industries, as normatively mandated by law.

  2. THE LAWS OF MOLECULAR AND VISCOUS FLOW OF GASES THROUGH TUBES. Die Gesetze der Molekularstroemung und der inneran Reibungsstroemung der Gase durch Roehren

    Knudsen, M

    1909-07-01

    Experimental data from studies of the flow of H/sub 2/, O/sub 2/, and CO/ sub 2/ through glass capillary tubes were collected and treated to determine the effect of tube dimensions and physical properties of the gases on molecular flow. Laws governing the transition from viscous to molecular flow were also sought. (T.R.H.)

  3. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  4. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  5. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  6. Emergence of good conduct, scaling and zipf laws in human behavioral sequences in an online world.

    Stefan Thurner

    Full Text Available We study behavioral action sequences of players in a massive multiplayer online game. In their virtual life players use eight basic actions which allow them to interact with each other. These actions are communication, trade, establishing or breaking friendships and enmities, attack, and punishment. We measure the probabilities for these actions conditional on previous taken and received actions and find a dramatic increase of negative behavior immediately after receiving negative actions. Similarly, positive behavior is intensified by receiving positive actions. We observe a tendency towards antipersistence in communication sequences. Classifying actions as positive (good and negative (bad allows us to define binary 'world lines' of lives of individuals. Positive and negative actions are persistent and occur in clusters, indicated by large scaling exponents α ~ 0.87 of the mean square displacement of the world lines. For all eight action types we find strong signs for high levels of repetitiveness, especially for negative actions. We partition behavioral sequences into segments of length n (behavioral 'words' and 'motifs' and study their statistical properties. We find two approximate power laws in the word ranking distribution, one with an exponent of κ ~ -1 for the ranks up to 100, and another with a lower exponent for higher ranks. The Shannon n-tuple redundancy yields large values and increases in terms of word length, further underscoring the non-trivial statistical properties of behavioral sequences. On the collective, societal level the timeseries of particular actions per day can be understood by a simple mean-reverting log-normal model.

  7. Mass-flux subgrid-scale parameterization in analogy with multi-component flows: a formulation towards scale independence

    J.-I. Yano

    2012-11-01

    Full Text Available A generalized mass-flux formulation is presented, which no longer takes a limit of vanishing fractional areas for subgrid-scale components. The presented formulation is applicable to a~situation in which the scale separation is still satisfied, but fractional areas occupied by individual subgrid-scale components are no longer small. A self-consistent formulation is presented by generalizing the mass-flux formulation under the segmentally-constant approximation (SCA to the grid–scale variabilities. The present formulation is expected to alleviate problems arising from increasing resolutions of operational forecast models without invoking more extensive overhaul of parameterizations.

    The present formulation leads to an analogy of the large-scale atmospheric flow with multi-component flows. This analogy allows a generality of including any subgrid-scale variability into the mass-flux parameterization under SCA. Those include stratiform clouds as well as cold pools in the boundary layer.

    An important finding under the present formulation is that the subgrid-scale quantities are advected by the large-scale velocities characteristic of given subgrid-scale components (large-scale subcomponent flows, rather than by the total large-scale flows as simply defined by grid-box average. In this manner, each subgrid-scale component behaves as if like a component of multi-component flows. This formulation, as a result, ensures the lateral interaction of subgrid-scale variability crossing the grid boxes, which are missing in the current parameterizations based on vertical one-dimensional models, and leading to a reduction of the grid-size dependencies in its performance. It is shown that the large-scale subcomponent flows are driven by large-scale subcomponent pressure gradients. The formulation, as a result, furthermore includes a self-contained description of subgrid-scale momentum transport.

    The main purpose of the present paper

  8. Groundwater flow analysis on local scale. Setting boundary conditions of groundwater flow analysis on site scale model in the former part of the step 3

    Onoe, Hironori; Saegusa, Hiromitsu

    2005-07-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a mainly site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis on the Local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in the former part of the Step 3 in site scale of the MIU project. As a result of the study, the uncertainty of hydrogeological model of the local scale and boundary conditions for the site scale model is decreased as stepwise investigation, and boundary conditions for groundwater flow analysis on the site scale model for the former part of the Step 3 could be obtained. (author)

  9. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  10. Zonal Flow Dynamics and Size-scaling of Anomalous Transport

    Liu Chen; White, Roscoe B.; Zonca, F.

    2003-01-01

    Nonlinear equations for the slow space-time evolution of the radial drift wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7 (2000) 3129]. Solutions clearly demonstrate turbulence spreading due to nonlinearly enhanced dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients

  11. Validación estructural del Wong-Law Emotional Intelligence Scale (WLEIS: estudio preliminar en adultos / Structural validation of the Wong-Law Emotional Intelligence Scale (WLEIS: preliminary study in adults

    César Merino Soto

    2016-06-01

    Full Text Available RESUMEN: La medición de la inteligencia emocional ha tenido muchas propuestas en formato de autorreporte. Una de estas es el Wong-Law Emotional Intelligence Scale (WLEIS, creada para el contexto laboral y que evalúa valoración y expresión de las emociones propias, valoración y reconocimiento de las emociones en otros, regulación de las propias emociones y uso de la emoción para facilitar el desempeño. Hay poca evidencia psicométrica sobre el Wong-Law Emotional Intelligence Scale en habla hispana, lo que posiblemente conduce a que sea también poco utilizado en la investigación y práctica profesional. El objetivo del presente estudio es presentar los primeros resultados de la validez de la estructura interna del WLEIS en adultos peruanos. Fueron 120 participantes (72 mujeres entre 17 y 59 años, quienes respondieron al cuestionario mediados por internet. Se analizó la estructura interna mediante metodología de ecuaciones estructurales. Se halló una satisfactoria estructura de 4 factores y elevadas cargas factoriales de los ítems; las correlaciones interfactores fueron altas o moderadamente altas; y la consistencia interna fue buena. Se concluye que los primeros resultados son aceptables para asumir que el modelo de Wong-Law también es aparentemente generalizable. ABSTRACT: The measurement of emotional intelligence has had many proposals in the form of self-report. One of these is the Wong-Law Emotional Intelligence Scale (WLEIS, created for the job context and which evaluates valuation and the expression of self-emotions; valuation and recognition of emotions in others; regulation of one’s own emotions and the use of emotion to facilitate performance. There is little psychometric evidence regarding the Wong-Law Emotional Intelligence Scale in the Spanish speaking world, which could lead to it also being little used in research and professional practice. The objective of this study is to present the first results of the internal

  12. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  13. Site scale groundwater flow in Olkiluoto - complementary simulations

    Loefman, J.

    2000-06-01

    This work comprises of the complementary simulations to the previous groundwater flow analysis at the Olkiluoto site. The objective is to study the effects of flow porosity, conceptual model for solute transport, fracture zones, land uplift and initial conditions on the results. The numerical simulations are carried out up to 10000 years into the future employing the same modelling approach and site-specific flow and transport model as in the previous work except for the differences in the case descriptions. The result quantities considered are the salinity and the driving force in the vicinity of the repository. The salinity field and the driving force are sensitive to the flow porosity and the conceptual model for solute transport. Ten-fold flow porosity and the dual-porosity approach retard the transport of solutes in the bedrock resulting in brackish groundwater conditions at the repository at 10000 years A.P. (in the previous work the groundwater in the repository turned into fresh). The higher driving forces can be attributed to the higher concentration gradients resulting from the opposite effects of the land uplift, which pushes fresh water deeper and deeper into the bedrock, and the higher flow porosity and the dual-porosity model, which retard the transport of solutes. The cases computed (unrealistically) without fracture zones and postglacial land uplift show that they both have effect on the results and can not be ignored in the coupled and transient groundwater flow analyses. The salinity field and the driving force are also sensitive to the initial salinity field especially at the beginning during the first 500 years A.P. The sensitivity will, however, diminish as soon as fresh water dilutes brackish and saline water and decreases the concentration gradients. Fresh water conditions result in also a steady state for the driving force in the repository area. (orig.)

  14. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  15. A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-01-01

    A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size of the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level

  16. A probabilistic model for the identification of confinement regimes and edge localized mode behavior, with implications to scaling laws

    Verdoolaege, Geert; Van Oost, Guido

    2012-01-01

    Pattern recognition is becoming an important tool in fusion data analysis. However, fusion diagnostic measurements are often affected by considerable statistical uncertainties, rendering the extraction of useful patterns a significant challenge. Therefore, we assume a probabilistic model for the data and perform pattern recognition in the space of probability distributions. We show the considerable advantage of our method for identifying confinement regimes and edge localized mode behavior, and we discuss the potential for scaling laws.

  17. Re-examining the effect of low and intermediate mode number perturbations on Ignition Metrics Scaling Laws

    Malka, Elad; Shvarts, Dov

    2017-10-01

    We re-examine the way 2/3D effects on scaling laws for ignition metrics, such as the generalized Lawson Criterion (GLC) and the Ignition Threshold Factor (ITF). These scaling laws were derived for 1D symmetrical case and 2/3D perturbations [Hann et al. PoP 2010; Lindl et al., PoP 2014; Betti et al., PoP 2010]. The main cause for the difference between the 1D and the 2/3D scaling laws in those works, is heat conduction losses from the hot-spot bubbles to the cold shell [Kishony and Shvarts, PoP 2001]. This ``dry out'' of the bubbles is the dominant mechanism for intermediate mode number perturbations (6hot spot. These two effects do not have an effective 1D analogue and therefore needs a more complicated model. A consistent extension of the ignition metrics for l <=6, accounting for both energy loss mechanisms, will be presented and compared with previous models and results. This work was supported by the LLNL under subcontract B614207.

  18. Knowing the dense plasma focus - The coming of age (of the PF) with broad-ranging scaling laws

    Saw, S. H.; Lee, S.

    2017-03-01

    The dense plasma focus is blessed not only with copious multi-radiations ranging from electron and ion beams, x-rays both soft and hard, fusion neutrons D-D and D-T but also with the property of enhanced compression from radiative collapse leading to HED (high energy density) states. The Lee code has been used in extensive systematic numerical experiments tied to reality through fitting with measured current waveforms and verified through comparison of measured and computed yields and measurements of multi-radiation. The studies have led to establishment of scaling laws with respect to storage energy, discharge current and pinch currents for fusion neutrons, characteristic soft x-rays, all-line radiation and ion beams. These are summarized here together with a first-time presentation of a scaling law of radiatively enhanced compression as a function of atomic number of operational gas. This paper emphasizes that such a broad range of scaling laws signals the coming of age of the DPF and presents a reference platform for planning the many potential applications such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes, imaging and energy and high energy density (HED).

  19. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  20. Scale-up of microwave assisted flow synthesis by transient processing through monomode cavities in series

    Patil, N.G.; Benaskar, F.; Rebrov, E.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.

    2014-01-01

    A new scale-up concept for microwave assisted flow processing is presented where modular scale-up is achieved by implementing microwave cavities in series. The scale-up concept is demonstrated for case studies of a packed-bed reactor and a wall-coated tubular reactor. With known kinetics and

  1. Methodology for the determination of the time of arrival at scale function of the flow of water basin

    Almoza, Yeleine; Grimaldi, Salvador; Petroseli, Andrea; Santini, Monia; Nardi, Fernando

    2008-01-01

    Full text: Physics is closely related to the other natural sciences, and in certain mode covers all. For example, the geomorphology; hydrogeology and other so many branches of Physical geography, linking this science in the modelling of phenomena related with them. Watersheds are areas than by their topographic features are they identify and differ from other types of relief. Specifically in the Rigo basin of the region of Lazio, Italy, relief - flow of water - time relationship, was characterized by the physical relationship T = S/V where T is the time that it takes the water flow produced by a rain event on reaching the mouth or basin (sec.) limit, given the length is the flow to the mouth (m) and V is the speed you can have flow on the land (m/s). The determination of this time is of utmost importance in agriculture and in General for the management of natural disasters of character hydrological, by losses Economic and material which may cause large avenues of water flow in a way surprising and unexpected. Therefore the overall objective of this study is to determine the map of time of arrival of the flow along the entire basin Rigo to the mouth. In addition It has a target specific, compare two maps of time, one normally calculated with the variable speed in the field and another with constant speed. These physical magnitudes T, S, V, were determined in the information system Geographic ArcGIS 9.2 with ArcINFO extension, in an atmosphere of macro language AML of programming, on the basis of the model Digital of elevation (DEM) of the basin Rigo. Then is they were calculating on scales of pixels of 30 meters, different topographic attributes and hydrological. The determination of these attributes as the direction of the flow, Areas Cumulative drainage, drainage network, Horton parameters, among others were used to calculate per unit of map the length of the flow (S) to the mouth. Was subsequently calculated the speed the flow map on the ground since the law of

  2. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  3. Groundwater flow simulation on local scale. Setting boundary conditions of groundwater flow simulation on site scale model in the step 4

    Onoe, Hironori; Saegusa, Hiromitsu; Ohyama, Takuya

    2007-03-01

    Japan Atomic Energy Agency has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological at several spatial scales. The RHS project is a Local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a Site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow simulation on Local scale were carried out in order to set boundary conditions of the Site scale model based on the data obtained from surface-based investigations in the Step4 in Site scale of the MIU project. As a result of the study, boundary conditions for groundwater flow simulation on the Site scale model of the Step4 could be obtained. (author)

  4. Generalization and consolidation of scaling laws of potential formation and associated effects in the GAMMA 10 tandem mirror

    Cho, T.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tanaka, S.; Tatematsu, Y.; Yoshikawa, M.; Numakura, T.; Minami, R.; Nagashima, S.; Watanabe, H.; Yoshida, M.; Sakamoto, Y.; Tamano, T.; Yatsu, K.; Miyoshi, S.

    2001-01-01

    Generalized scaling laws for the formation of plasma confining potentials and the associated effectiveness of the potentials produced are systematically investigated to find the physics essentials common to the representative tandem mirror operational modes of GAMMA 10, and to explore novel extended operational modes from the scaling bases constructed. (a) The potential formation scalings are generalized using a novel finding of wider validity of Cohen's strong ECH theory covering the representative modes. (b) The potentials produced, in turn, provide a favourable novel scaling of the increase in the central cell electron temperatures T e with increasing thermal barrier potentials φ b , limited by the available ECH power. The scaling of T e with φ b is well interpreted in terms of the generalized Pastukhov theory of plasma potential confinement. A detailed comparison of the results from several related modified theories is also made. (c) Consolidation of the two major scalings of (a) and (b) in a tandem mirror is carried out by the use of an electron energy balance equation for the first time. In addition, (d) an empirical scaling of φ c with ECH power in the plug region and the central cell densities are studied to discover whether there is the possibility of extending these theoretically well interpreted scaling data to parameters in the future scalable regime. There is also a discussion about numerical scalings in the three dimensional parameter spaces. (author)

  5. A Scale-Invariant Model of Statistical Mechanics and Modified Forms of the First and the Second Laws of Thermodynamics

    Sohrab, Siavash H.; Pitch, Nancy (Technical Monitor)

    1999-01-01

    A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).

  6. Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel

    Bharti, Ram P.; Harvie, Dalton J.E.; Davidson, Malcolm R.

    2009-01-01

    Electroviscous effects in steady, fully developed, pressure-driven flow of power-law liquids through a uniform cylindrical microchannel have been investigated numerically by solving the Poisson-Boltzmann and the momentum equations using a finite difference method. The pipe wall is considered to have uniform surface charge density and the liquid is assumed to be a symmetric 1:1 electrolyte solution. Electroviscous resistance reduces the velocity adjacent to the wall, relative to the velocity on the axis. The effect is shown to be greater when the liquid is shear-thinning, and less when it is shear-thickening, than it is for Newtonian flow. For overlapping electrical double layers and elevated surface charge density, the electroviscous reduction in the near-wall velocity can form an almost stationary (zero shear) layer there when the liquid is shear-thinning. In that case, the liquid behaves approximately as if it is flowing through a channel of reduced diameter. The induced axial electrical field shows only a weak dependence on the power-law index with the dependence being greatest for shear-thinning liquids. This field exhibits a local maximum as surface charge density increases from zero, even though the corresponding electrokinetic resistance increases monotonically. The magnitude of the electroviscous effect on the apparent viscosity, as measured by the ratio of the apparent and physical consistency indices, decreases monotonically as the power-law index increases. Thus, overall, the electroviscous effect is stronger in shear-thinning, and weaker in shear-thickening liquids, than it is when the liquid is Newtonian.

  7. Integrated flow and temperature modeling at the catchment scale

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael

    2013-01-01

    –groundwater dynamics affect stream temperature. A coupled surface water–groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream...

  8. Semiempirical modeling of large-scale flow on the Sun

    Ambrož, Pavel

    2001-01-01

    Roč. 199, č. 2 (2001), s. 251-266 ISSN 0038-0938 R&D Projects: GA AV ČR IAA3003806; GA AV ČR KSK1003601 Institutional research plan: CEZ:AV0Z1003909 Keywords : sun * magnetic field * horizontal flow Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  9. Flow of power-law fluids in fixed beds of cylinders or spheres

    Singh, John P.; Padhy, Sourav; Shaqfeh, Eric S. G.; Koch, Donald L.

    2012-01-01

    is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n

  10. Animal Construction as a Free Boundary Problem: Evidence of Fractal Scaling Laws

    Nicolis, S. C.

    2014-12-01

    We suggest that the main features of animal construction can be understood as the sum of locally independent actions of non-interacting individuals subjected to the global constraints imposed by the nascent structure. We first formulate an analytically tractable oscopic description of construction which predicts a 1/3 power law for how the length of the structure grows with time. We further show how the power law is modified when biases in random walk performed by the constructors as well as halting times between consecutive construction steps are included.

  11. Challenges in Upscaling Geomorphic Transport Laws: Scale-dependence of Local vs. Non-local Formalisms and Derivation of Closures (Invited)

    Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.

    2010-12-01

    Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.

  12. The application of J integral to measure cohesive laws under large-scale yielding

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A method is developed to obtain the mode I cohesive law of elastic-plastic materials using a Double Cantilever Beam sandwich specimen loaded with pure bending moments. The approach is based on the validity of the J integral for materials having a non-linear stress-strain relationship without...

  13. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  14. A critical review of vapor generation laws used for the analysis of two-phase flows in pipes

    Berne, P.

    1983-05-01

    Some vapor generation laws are reviewed and discussed. They are divided into empirical and analytical laws. Analytical laws are first examined. These laws result from analytical solutions of the local instantaneous equations applied to elementary cases. Empirical laws, i.e. laws that are determined by correlations with experimental data, are then discussed [fr

  15. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1

  16. Strategies for measuring flows of reactive nitrogen at the landscape scale

    Theobald, M.R.; Akkal, N.; Bienkowski, J.

    2011-01-01

    Within a rural landscape there are flows of reactive nitrogen (Nr) through and between the soil, vegetation, atmosphere and hydrological systems as well as transfer as a result of agricultural activities. Measurements of these flows and transfers have generally been limited to individual media (e.......g., hydrological flows) or the interface between two media (e.g., exchange between the soil and the atmosphere). However, the study of flows of Nr at the landscape scale requires a more integrated approach that combines measurement techniques to quantify the flows from one medium to the next. This paper discusses...

  17. Symbolic regression via genetic programming for data driven derivation of confinement scaling laws without any assumption on their mathematical form

    Murari, A; Peluso, E; Gelfusa, M; Lupelli, I; Lungaroni, M; Gaudio, P

    2015-01-01

    Many measurements are required to control thermonuclear plasmas and to fully exploit them scientifically. In the last years JET has shown the potential to generate about 50 GB of data per shot. These amounts of data require more sophisticated data analysis methodologies to perform correct inference and various techniques have been recently developed in this respect. The present paper covers a new methodology to extract mathematical models directly from the data without any a priori assumption about their expression. The approach, based on symbolic regression via genetic programming, is exemplified using the data of the International Tokamak Physics Activity database for the energy confinement time. The best obtained scaling laws are not in power law form and suggest a revisiting of the extrapolation to ITER. Indeed the best non-power law scalings predict confinement times in ITER approximately between 2 and 3 s. On the other hand, more comprehensive and better databases are required to fully profit from the power of these new methods and to discriminate between the hundreds of thousands of models that they can generate. (paper)

  18. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  19. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  20. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  1. Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer

    Li, Lin; Jiang, Yongyue; Chen, Aixin

    2017-04-01

    In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.

  2. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  3. Identification of flow paths and quantification of return flow volumes and timing at field scale

    Claes, N.; Paige, G. B.; Parsekian, A.

    2017-12-01

    Flood irrigation, which constitutes a large part of agricultural water use, accounts for a significant amount of the water that is diverted from western streams. Return flow, the portion of the water applied to irrigated areas that returns to the stream, is important for maintaining base flows in streams and ecological function of riparian zones and wetlands hydrologically linked with streams. Prediction of timing and volumes of return flow during and after flood irrigation pose a challenge due to the heterogeneity of pedogenic and soil physical factors that influence vadose zone processes. In this study, we quantify volumes of return flow and potential pathways in the subsurface through a vadose zone flow model that is informed by both hydrological and geophysical observations in a Bayesian setting. We couple a two-dimensional vadose zone flow model through a Bayesian Markov Chain Monte Carlo approach with time lapse ERT, borehole NMR datasets that are collected during and after flood irrigation experiments, and soil physical lab analysis. The combination of both synthetic models and field observations leads to flow path identification and allows for quantification of volumes and timing and associated uncertainties of subsurface return that stems from flood irrigation. The quantification of the impact of soil heterogeneity enables us to translate these results to other sites and predict return flow under different soil physical settings. This is key when managing irrigation water resources and predictions of outcomes of different scenarios have to be evaluated.

  4. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

    Yan Zhu

    2011-12-01

    Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

  5. Large-Scale Geolocation for NetFlow

    Celeda, Pavel; Velan, Petr; Rabek, Martin; Hofstede, R.J.; Pras, Aiko

    The importance of IP address geolocation has increased significantly in recent years, due to its applications in business advertisements and security analysis, among others. Current approaches perform geolocation mostly on-demand and in a small-scale fashion. As soon as geolocation needs to be

  6. Tests of peak flow scaling in simulated self-similar river networks

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    Icardi, Matteo; Boccardo, Gianluca; Marchisio, Daniele L.; Tosco, Tiziana; Sethi, Rajandrea

    2014-01-01

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed

  8. An Experimental-Numerical Study of Small Scale Flow Interaction with Bioluminescent Plankton

    Latz, Michael

    1998-01-01

    Numerical and experimental approaches were used to investigate the effects of quantified flow stimuli on bioluminescence sUmulatidn at the small length and time scales appropriate for individual plankton...

  9. FFTF scale-model characterization of flow-induced vibrational response of reactor internals

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36 percent to 111 percent of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable

  10. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Ryan, J A; Julyk, L J [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1977-12-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  11. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  12. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  13. Bending the law: tidal bending and its effects on ice viscosity and flow

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  14. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  15. Measuring Black men's police-based discrimination experiences: Development and validation of the Police and Law Enforcement (PLE) Scale.

    English, Devin; Bowleg, Lisa; Del Río-González, Ana Maria; Tschann, Jeanne M; Agans, Robert P; Malebranche, David J

    2017-04-01

    Although social science research has examined police and law enforcement-perpetrated discrimination against Black men using policing statistics and implicit bias studies, there is little quantitative evidence detailing this phenomenon from the perspective of Black men. Consequently, there is a dearth of research detailing how Black men's perspectives on police and law enforcement-related stress predict negative physiological and psychological health outcomes. This study addresses these gaps with the qualitative development and quantitative test of the Police and Law Enforcement (PLE) Scale. In Study 1, we used thematic analysis on transcripts of individual qualitative interviews with 90 Black men to assess key themes and concepts and develop quantitative items. In Study 2, we used 2 focus groups comprised of 5 Black men each (n = 10), intensive cognitive interviewing with a separate sample of Black men (n = 15), and piloting with another sample of Black men (n = 13) to assess the ecological validity of the quantitative items. For Study 3, we analyzed data from a sample of 633 Black men between the ages of 18 and 65 to test the factor structure of the PLE, as we all as its concurrent validity and convergent/discriminant validity. Qualitative analyses and confirmatory factor analyses suggested that a 5-item, 1-factor measure appropriately represented respondents' experiences of police/law enforcement discrimination. As hypothesized, the PLE was positively associated with measures of racial discrimination and depressive symptoms. Preliminary evidence suggests that the PLE is a reliable and valid measure of Black men's experiences of discrimination with police/law enforcement. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales

    David Eiriksson; Michael Whitson; Charles H. Luce; Hans Peter Marshall; John Bradford; Shawn G. Benner; Thomas Black; Hank Hetrick; James P. McNamara

    2013-01-01

    Lateral downslope flow in snow during snowmelt and rain-on-snow (ROS) events is a well-known phenomenon, yet its relevance to water redistribution at hillslope and catchment scales is not well understood. We used dye tracers, geophysical methods, and hydrometric measurements to describe the snow properties that promote lateral flow, assess the relative velocities of...

  17. The application of J integral to measure cohesive laws in materials undergoing large scale yielding

    Sørensen, Bent F.; Goutianos, Stergios

    2015-01-01

    We explore the possibility of determining cohesive laws by the J-integral approach for materials having non-linear stress-strain behaviour (e.g. polymers and composites) by the use of a DCB sandwich specimen, consisting of stiff elastic beams bonded to the non-linear test material, loaded with pure...... bending moments. For a wide range of parameters of the non-linear material, the plastic unloading during crack extension is small, resulting in J integral values (fracture resistance) that deviate maximum 15% from the work of the cohesive traction. Thus the method can be used to extract the cohesive laws...... directly from experiments without any presumption about their shape. Finally, the DCB sandwich specimen was also analysed using the I integral to quantify the overestimation of the steady-state fracture resistance obtained using the J integral based method....

  18. On correction factor in scaling law for low pressure DC gas breakdown

    Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Ronchi, G; Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Machida, M

    2014-01-01

    The low pressure gas breakdown described by Paschen's law in Townsend theory, i.e. the breakdown voltage as a function of gas pressure p and the electrode distance d, provides an accurate description of breakdown in DC discharges when the ratio between inter-electrode gap distance d and electrode radii R tends to zero. On increasing of the ratio d/R, the Paschen's curves are shifted to the region of higher breakdown voltage and higher pd values. A modified Paschen's law recently proposed is well satisfied in our measurements. However, the value of constant b changes not only due to gas type but also according to electrode gap distance; furthermore, gas breakdown voltages are considerably modified by plasma-wall interactions due to glass tube proximity in the discharge.

  19. Safety and risk, a comparison on an international scale with regard to society, law and economy

    Compes, P.C.

    1987-01-01

    More than 130 experts of different nations and different fields of science met to discuss the following subjects: Traffic and transport, labour and employment, products and commodities, energy and environment (safety concepts for fossil-fuel and nuclear power plants, international harmonisation of nuclear technical standards, harmonisation of environmental law in a European context). All contributions are presented in their original language, with abstracts in German, English, and French. (HP) [de

  20. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  1. Nonlocal multi-scale traffic flow models: analysis beyond vector spaces

    Peter E. Kloeden

    2016-08-01

    Full Text Available Abstract Realistic models of traffic flow are nonlinear and involve nonlocal effects in balance laws. Flow characteristics of different types of vehicles, such as cars and trucks, need to be described differently. Two alternatives are used here, $$L^p$$ L p -valued Lebesgue measurable density functions and signed Radon measures. The resulting solution spaces are metric spaces that do not have a linear structure, so the usual convenient methods of functional analysis are no longer applicable. Instead ideas from mutational analysis will be used, in particular the method of Euler compactness will be applied to establish the well-posedness of the nonlocal balance laws. This involves the concatenation of solutions of piecewise linear systems on successive time subintervals obtained by freezing the nonlinear nonlocal coefficients to their values at the start of each subinterval. Various compactness criteria lead to a convergent subsequence. Careful estimates of the linear systems are needed to implement this program.

  2. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  3. A new scaling law for temperature variance profile in the mixing zone of turbulent Rayleigh-Bénard convection

    Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.

  4. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  5. Architectural Synthesis of Flow-Based Microfluidic Large-Scale Integration Biochips

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    ,we propose a top-down architectural synthesis methodology for the flow-based biochips. Starting from a given biochemical application and a microfluidic component library, we are interested in synthesizing a biochip architecture, i.e., performing component allocation from the library based on the biochemical....... By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. The manufacturing technology, soft lithography, used for the flow-based biochips is advancing faster than Moore's law, resulting in increased architectural complexity. However...... by synthesizing architectures for real-life applications as well as synthetic benchmarks....

  6. Neoclassical tearing modes on ASDEX Upgrade: Improved scaling laws, high confinement at high βN and new stabilization experiments

    Guenter, S.; Gude, A.; Igochine, V.; Maraschek, M.; Sips, A.C.C.; Zohm, H.; Gantenbein, G.; Sauter, O.

    2003-01-01

    In this paper recent results on the physics of neoclassical tearing modes (NTMs) achieved on ASDEX Upgrade are reported. A scaling law for NTM decay has been found, showing that the minimum local bootstrap current density required for mode growth is proportional to the ion gyro radius. As this scaling law does not depend on the seed island size, and thus on the background MHD activity, it is more reliable than previously derived scaling laws for the NTM onset. Furthermore, the recently reported Frequently Interrupted Regime (FIR) is discussed. In this new regime (m,n) NTMs are characterized by frequent amplitude drops caused by interaction with (m+1,n+1) background MHD activity. Due to the resulting reduced time averaged island size this leads to lower confinement degradation compared to that caused by the usual NTMs. As shown here, the transition into this regime can actively be triggered by lowering the magnetic shear at the q=(m+1)/=(n+1) rational surface. Further investigations regard mechanisms to increase the β N value for NTM onset such as plasma shaping, seed island size and density profile control. Using these studies, a scenario with high β N (β N = 3:5) at high density (n/n GW = 0.83) and confinement (H 98(y,2) = 1.2) has been developed. Moreover, this scenario is characterized by type II ELM activity and thus by moderate heat load to the target plates. Finally, new NTM stabilization experiments are reported, demonstrating an increase in β N after NTM stabilization. (author)

  7. Second law analysis for hydromagnetic couple stress fluid flow through a porous channel

    S.O. Kareem

    2016-06-01

    Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.

  8. Extended consolidation of scaling laws of potential formation and effects covering the representative Tandem mirror operations in GAMMA 10

    Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tatematsu, Y.; Yoshikawa, M.; Minami, R.; Numakura, T.; Yoshida, M.; Watanabe, H.; Yatsu, K.; Miyoshi, S.; Cho, T.

    2003-01-01

    Scaling laws of potential formation and associated effects along with their physical interpretations are consolidated on the basis of experimental verification using the GAMMA 10 tandem mirror. A proposal of extended consolidation and generalization of the two major theories - (i) Cohen's strong electron cyclotron heating (ECH) theory for the formation physics of plasma confining potentials and (ii) the generalized Pastukhov theory for the effectiveness of the produced potentials on plasma confinement is made through the use of the energy balance equation. This proposal is then followed by verification using experimental data from two representative operational modes of GAMMA 10, characterized in terms of (i) a high-potential mode having plasma confining potentials of the order of kilovolts and (ii) a hot ion mode yielding fusion neutrons with bulk ion temperatures of 10-20 keV. The importance of the validity of the proposed physics-based scaling is highlighted by the possibility of extended capability inherent in Pastukhov's prediction of requiring an ion confining potential of ∼30 kV for a fusion Q value of unity on the basis of an application of Cohen's potential formation method. In addition to the above potential physics scaling, an externally controllable parameter scaling of the potential formation increasing with either plug or barrier ECH powers is summarized. The combination of (i) the physics-based scaling of the proposed consolidation of potential formation and effects with (ii) the externally controllable practical ECH power scaling provides a new direction for future tandem mirror studies. (author)

  9. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  10. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s.

    Hafner, Andreas; Meisenbach, Mark; Sedelmeier, Joerg

    2016-08-05

    The benefits and limitations of a simple continuous flow setup for handling and performing of organolithium chemistry on the multigram scale is described. The developed metalation platform embodies a valuable complement to existing methodologies, as it combines the benefits of Flash Chemistry (chemical synthesis on a time scale of <1 s) with remarkable throughput (g/min) while mitigating the risk of blockages.

  11. Application of cool wan flow control weight scale design on belt conveyor

    Djokorayono, Rony; Junus; Rivai, A; Gunarwan; Indarzah

    2003-01-01

    Control of the coal mass flow on the belt conveyor at coal handling unit PLTU Suralaya has been designed by using weight scale of gamma absorption technique where accuracy for the measurement of weight scale system is 0,5% to 0,1%. The absorption gamma radiation will be measured by scintillation or ion chamber detector

  12. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  13. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  14. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  15. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  16. Spatial scales of carbon flow in a river food web

    Finlay, J.C.; Khandwala, S.; Power, M.E.

    2002-01-01

    Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong

  17. Similarity and scaling laws for transient arcs in a strongly accelerating gas flow

    Blundell, R.E.; Fang, M.T.C.; Terrill, R.M.

    1995-01-01

    A high-power electric arc, such as that burning in the interrupter (usually a supersonic nozzle) of a gas-blast circuit-breaker, presents a challenging problem both to theoretical and experimental investigators. The complex non-linear nature of the governing equations and steep radial gradients of arc quantities make analytic and numerical solution of the equations extremely difficult. Experimental work is also difficult due to the extreme physical conditions encountered. It is therefore highly desirable to use similarity theory to extend the limited results available to as wide a variety of arcing conditions as possible

  18. Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.

    Tavares, Gabriela; Faisal, Aldo

    2013-01-01

    Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an R(2) ≈ 0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication.

  19. Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.

    Gabriela Tavares

    Full Text Available Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person, managed (typically PR agency controlled and bot-controlled (automated system. To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an R(2 ≈ 0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication.

  20. Renormalization-group flow of the effective action of cosmological large-scale structures

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...