WorldWideScience

Sample records for flow multi-equation turbulent

  1. Turbulent flow computation

    National Research Council Canada - National Science Library

    Drikakis, D; Geurts, Bernard

    2002-01-01

    ... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...

  2. Numerical methods for turbulent flow

    Science.gov (United States)

    Turner, James C., Jr.

    1988-01-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  3. Topology optimization of turbulent flows

    DEFF Research Database (Denmark)

    Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.

    2018-01-01

    The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...

  4. Numerical experiments modelling turbulent flows

    Science.gov (United States)

    Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír

    2014-03-01

    The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k - ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  5. Numerical experiments modelling turbulent flows

    Directory of Open Access Journals (Sweden)

    Trefilík Jiří

    2014-03-01

    Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  6. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  7. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  8. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  9. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  10. Numerical experiments for turbulent flows

    Science.gov (United States)

    Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír

    2013-04-01

    The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.

  11. Numerical experiments for turbulent flows

    Directory of Open Access Journals (Sweden)

    Příhoda Jaromír

    2013-04-01

    Full Text Available The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.

  12. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  13. Chemical Reactions in Turbulent Mixing Flows

    National Research Council Canada - National Science Library

    Mimotakis, Paul

    1998-01-01

    .... New measures to characterize level sets in turbulence were developed and successfully employed to characterize experimental data of liquid-phase turbulent-jet flows as well as three-dimensional...

  14. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  15. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  16. Turbulence modeling for hypersonic flows

    Science.gov (United States)

    Marvin, J. G.; Coakley, T. J.

    1992-01-01

    Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models, and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary-layer flows, shock-wave boundary-layer interactions, and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.

  17. Approximate Model for Turbulent Stagnation Point Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  18. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  19. Secondary turbulent flow in an infinte bend

    DEFF Research Database (Denmark)

    Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen

    1999-01-01

    The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... is formed near the surface at the outer bank. This cell might help to stabilise the bank and hereby be an important factor for the morphology in a meandering river. In the laminar runs stability criterion related to a Dean number was estabilshed. In the simulations with the k-e model and the Reynolds stress...

  20. Steady turbulent flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1979-01-01

    After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river

  1. Simulation of turbulent flows containing strong shocks

    Science.gov (United States)

    Fryxell, Bruce; Menon, Suresh

    2008-12-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  2. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  3. Turbulence modeling for high speed flows

    Science.gov (United States)

    Coakley, T. J.; Huang, P. G.

    1992-01-01

    An investigation of turbulence models for high speed flows is presented. The flows consist of simple 2D flows over flat plates and complex shock-wave boundary-layer interaction flows over ramps and wedges. The flows are typical of those encountered by high speed vehicles such as the NASP. The turbulence models investigated include various two-equation models which, as a class, are considered to be well suited to the design of high speed vehicles. A description and discussion of the specific models is given and includes both baseline or uncorrected models, and model corrections which are needed to improve predictions of complex flows. It is found that most of the models studied are able to give good predictions of the flat plate flows, and some of the models are able to predict some of the complex flows, but none of them are able to accurately predict all of the complex flows. Recommendations for future model improvements are discussed.

  4. Turbulence Modeling of Torsional Couette Flows

    Directory of Open Access Journals (Sweden)

    Sofia Haddadi

    2008-01-01

    Full Text Available The present study considers the numerical modeling of the turbulent flow inside a rotor-stator cavity subjected or not to a superimposed throughflow. Extensive numerical predictions based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model are performed mainly in the case of turbulent flows with merged boundary layers known as turbulent torsional Couette flows and belonging to regime III of Daily and Nece (1960. The RSM model has already shown its capability of predicting accurately the mean and turbulent fields in various rotating disk configurations (Poncet, 2005; Poncet et al., 2005, 2007, 2008. For the first time, a detailed mapping of the hydrodynamic flow over a wide range of rotational Reynolds numbers (180 000≤Re≤10 000 000, aspect ratios of the cavity (0.02≤G≤0.05, and flow rate coefficients (−10000≤Cw≤10000 is here provided in the turbulent torsional Couette flow regime.

  5. Turbulent Mixing in Stably Stratified Flows

    Science.gov (United States)

    2008-03-01

    Turbulent fluid motions are typically characterized by several features including randomness in both space and time, vorticity, an energy cascade ...drawback of this method is that the portion of the flow identified as a turbulent structure is dependent on the type of wavelet filter used (e.g., Haar ...the mesoscale variability of the atmosphere. J. Atmos. Sci., 40:749-761, 1983. E. Lindborg. The energy cascade in a strongly stratified fluid. J

  6. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  7. Tackling turbulent flows in engineering

    CERN Document Server

    Dewan, Anupam

    2011-01-01

    Focusing on the engineering aspects of fluid turbulence, this volume offers solutions to the problem in a number of settings. Emphasizing real-world applications rather than mathematics, it will be a must-read text in both industrial and academic environments.

  8. Scour monitoring via turbulent open channel flow

    International Nuclear Information System (INIS)

    Fisher, M; Khan, A; Atamturktur, S

    2013-01-01

    Scour is the leading cause of bridge failure in the United States. It can result in the loss of lives and costs millions to repair the damage. A novel method is proposed for monitoring scour that exploits the turbulence in natural channels. The method utilizes the dynamic pressure associated with the turbulent velocity fluctuations in the flow to excite a flexible plate. A semi-empirical model is developed to describe the interaction of turbulent open channel flow with the plate. The model describes the variation of turbulent velocity fluctuations across the flow depth in an open channel resulting in a method for determining the average dynamic pressure on the flexible plate. The dynamic response of the plate is then modeled by superimposing the response of multiple modes of the disk to the random, turbulent dynamic pressure spectrum. The model is verified considering the pressure integration across the plate surface to ensure converged solutions. Due to the uncertainties in the material properties of the plate, the experimentally determined natural frequencies and vibration measurements are used to calibrate the model. The calibrated model predictions are then compared against an independent dataset for validation. In addition to describing the physical operation of the device, the semi-empirical model is also employed to optimize the field device. Measurements made using the field device also confirmed the model results, even in a non-design, misaligned flow condition. (paper)

  9. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...

  10. Tackling complex turbulent flows with transient RANS

    NARCIS (Netherlands)

    Kenjeres, S.; Hanjalic, K.

    2009-01-01

    This article reviews some recent applications of the transient-Reynoldsaveraged Navier–Stokes (T-RANS) approach in simulating complex turbulent flows dominated by externally imposed body forces, primarily by thermal buoyancy and the Lorentz force. The T-RANS aims at numerical resolving unsteady

  11. Rough flows and homogenization in stochastic turbulence

    Science.gov (United States)

    Bailleul, I.; Catellier, R.

    2017-10-01

    We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the technology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.

  12. Data-parallel DNS of turbulent flow

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Veldman, A.E.P.; Emerson, DR; Ecer, A; Periaux, J; Satofuka, N

    1998-01-01

    This contribution deals with direct numerical simulation (DNS) of incompressible turbulent flows on parallel computers. We make use of the data-parallel model on shared memory systems as well as on a distributed memory machine. The combination of fast parallel computers and efficient numerical

  13. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  14. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  15. Turbulent Heat Transfer in Ribbed Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2012-11-01

    From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).

  16. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  17. Turbulence modeling for complex hypersonic flows

    Science.gov (United States)

    Huang, P. G.; Coakley, T. J.

    1993-01-01

    The paper presents results of calculations for a range of 2D turbulent hypersonic flows using two-equation models. The baseline models and the model corrections required for good hypersonic-flow predictions will be illustrated. Three experimental data sets were chosen for comparison. They are: (1) the hypersonic flare flows of Kussoy and Horstman, (2) a 2D hypersonic compression corner flow of Coleman and Stollery, and (3) the ogive-cylinder impinging shock-expansion flows of Kussoy and Horstman. Comparisons with the experimental data have shown that baseline models under-predict the extent of flow separation but over-predict the heat transfer rate near flow reattachment. Modifications to the models are described which remove the above-mentioned deficiencies. Although we have restricted the discussion only to the selected baseline models in this paper, the modifications proposed are universal and can in principle be transferred to any existing two-equation model formulation.

  18. Turbulent flow in a partially filled pipe

    Science.gov (United States)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  19. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  20. Statistical theory of turbulent incompressible multimaterial flow

    International Nuclear Information System (INIS)

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe

  1. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...

  2. Fractal flow design how to design bespoke turbulence and why

    CERN Document Server

    Vassilicos, Christos

    2016-01-01

    This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.

  3. Superhydrophobic Drag Reduction in Various Turbulent Flows

    Science.gov (United States)

    Gose, James W.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Superhydrophobic surfaces (SHSs) have been studied exhaustively in laminar flow applications while interest in SHS drag reduction in turbulent flow applications has been increasing steadily. In this discussion, we will highlight recent advances of SHS applications in various high-Reynolds number flows. We will address the application of mechanically robust and scalable spray SHSs in three cases: fully-developed internal flow; a near-zero pressure gradient turbulent boundary layer; and an axisymmetric DARPA SUBOFF model. The model will be towed in the University of Michigan's Physical Model Basin. Experimental measurements of streamwise pressure drop and the near-wall flow via Particle Image Velocimetry and Laser Doppler Velocimetry will be discussed where applicable. Moreover, integral measurement of the total resistance of the SUBOFF model, with and without SHS application, will be examined. The SUBOFF model extends 2.6 m and is 0.3 m in diameter, and will be tested at water depths of three to six model diameters. Previous investigation of these SHSs have proven that skin-friction savings of 20% or more can be attained for friction Reynolds numbers greater than of 1,000. This project was carried out as part of the U.S. Office of Naval Research (ONR) MURI (Multidisciplinary University Research Initiatives) program (Grant No. N00014-12-1-0874) managed by Dr. Ki-Han Kim and led by Dr. Steven L. Ceccio.

  4. Multigrid acceleration of turbulent reacting flow simulations

    Science.gov (United States)

    Wasserman, Mark

    The study at hand is motivated by the ever growing complexity of turbulent combustion CFD simulations, imposing severe demands on computational resources. Such demands often render the simulation of practical, supersonic reacting flows about complex geometries unaffordable. As standard numerical methods are inefficient in solving the highly stiff, reacting Reynolds-averaged Navier-Stokes (RANS) equations that govern turbulent combustion, there is a need for methods that accelerate the iterative convergence to a steady-state. This work investigates the applicability of the multigrid (MG) approach as a means to accelerate convergence by alleviating the inherent numerical stiffness present in the RANS equations, especially when coupled with turbulence and finite-rate chemical kinetics models. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of source-terms, small-scale physics of combustion, and loss of positivity. To maximize the acceleration offered by multigrid, this work is aimed at developing a robust and stable multigrid method and an implicit solver for turbulent combustion, that do not rely on extensive artificial stabilization. The unconditionally positive-convergent (UPC) time integration implicit scheme, originally developed for turbulence model equations is adopted in this work, and successfully extended for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. Several modifications aimed at improving the efficiency of the scheme are also proposed. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic Full Approximation Storage (FAS) multigrid method. First, a novel prolongation operator that is based on logarithmic variables is proposed. The new operator prevents loss of positivity due to

  5. Mathematical model for the calculation of internal turbulent flow

    International Nuclear Information System (INIS)

    Nicolau, V. de P.; Valle Pereira Filho, H. do

    1981-01-01

    The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt

  6. Turbulent structure of stably stratified inhomogeneous flow

    Science.gov (United States)

    Iida, Oaki

    2018-04-01

    Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.

  7. Adaptive LES Methodology for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic

  8. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  9. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  10. CISM-IUTAM School on Advanced Turbulent Flow Computations

    CERN Document Server

    Krause, Egon

    2000-01-01

    This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

  11. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  12. Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    Science.gov (United States)

    Kim, S.-W.

    1990-01-01

    A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  13. Experimental studies of occupation times in turbulent flows

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2003-01-01

    as the difference between entrance and exit times of surrounding particles convected through the sphere by the turbulent motions. Simple, and seemingly universal, scaling laws are obtained for the probability density of the occupation times in terms of the basic properties for the turbulent flow and the geometry......The motion of passively convected particles in turbulent flows is studied experimentally in approximately homogeneous and isotropic turbulent flows, generated in water by two moving grids. The simultaneous trajectories of many small passively convected, neutrally buoyant, polystyrene particles...

  14. Applications of URANS on predicting unsteady turbulent separated flows

    Science.gov (United States)

    Xu, Jinglei; Ma, Huiyang

    2009-06-01

    Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practical challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.

  15. accurate, explicit pipe sizing formula for turbulent flows

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    ABSTRACT. This paper develops an explicit formula for computing the diameter of pipes, which is applicable to all turbulent flows. The formula not only avoids iteration but still estimates pipe diameters over the entire range of turbulent flows with an error of less than 4% in the worst cases. This is superior to (without ...

  16. Particle Entrainment under Turbulent Flow Conditions

    Science.gov (United States)

    Diplas, Panayiotis

    2009-11-01

    Erosion, transportation and deposition of sediments and pollutants influence the hydrosphere, pedosphere, biosphere and atmosphere in profound ways. The global amount of sediment eroded annually over the continental surface of the earth via the action of water and wind is estimated to be around 80 billion metric tons, with 20 of them delivered by rivers to the oceans. This redistribution of material over the surface of the earth affects most of its physical, chemical and biological processes in ways that are exceedingly difficult to comprehend. The criterion currently in use for predicting particle entrainment, originally proposed by Shields in 1936, emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. A new criterion that was developed recently in an effort to overcome the limitations of the previous approach will be presented. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions suitable for particle dislodgement. Analytical formulation of the problem and experimental data are used to examine the validity of the new criterion.

  17. Capturing inertial particle transport in turbulent flows

    Science.gov (United States)

    Stott, Harry; Lawrie, Andrew; Szalai, Robert

    2017-11-01

    The natural world is replete with examples of particle advection; mankind is both a beneficiary from and sufferer of the consequences. As such, the study of inertial particle dynamics, both aerosol and bubble, is vitally important. In many interesting examples such as cloud microphysics, sedimentation, or sewage transport, many millions of particles are advected in a relatively small volume of fluid. It is impossible to model these processes computationally and simulate every particle. Instead, we advect the probability density field of particle positions allowing unbiased sampling of particle behaviour across the domain. Given a 3-dimensional space discretised into cubes, we construct a transport operator that encodes the flow of particles through the faces of the cubes. By assuming that the dynamics of the particles lie close to an inertial manifold, it is possible to preserve the majority of the inertial properties of the particles between the time steps. We demonstrate the practical use of this method in a pair of instances: the first is an analogue to cloud microphysics- the turbulent breakdown of Taylor Green vortices; the second example is the case of a turbulent jet which has application both in sewage pipe outflow and pesticide spray dynamics. EPSRC.

  18. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    Turbulent buoyant jets and plumes in flowing ambient environments have been studied theoretically and experimentally. The mechanics of turbulent buoyant jets and plumes in flowing ambients have been discussed. Dimensional analysis was employed to investigate the mean behaviour of the turbulent....... Comprehensive laboratory experiments were conducted to study the mean behaviour of turbulent buoyant jets and plumes in a flowing ambient by using both fresh and salt receiving waters. The experimental data on the jet trajectories and dilutions, for a horizontal jet in a coflowing ambient and for a vertical jet......, the available field observated data on the initial dilutions for a horizontal jet issuing into a perpendicular crossflowing ambient have been presented and discussed. Mathematical modelling of the turbulent buoyant jets and plumes has been carried out by using both an integral model and a turbulence model...

  19. Modelling asphaltene deposition in turbulent pipeline flows

    Energy Technology Data Exchange (ETDEWEB)

    Eskin, D.; Ratulowski, J.; Akbarzadeh, K.; Pan, S. [Schlumberg DBR Technology Center (Canada)

    2011-06-15

    Asphaltene deposition is one of the important problems of oil production that requires accurate predictive modeling. A model of asphaltene deposition in a turbulent pipe flow is introduced in this paper. A Couette device is employed to perform experiments. There are two major modules in this model. (1) A model of particle size distribution evolution along a pipe - the concept of 'critical particle size' is introduced. Only particles smaller than the critical particle size may deposit. (2) A model of particle transport to the wall. The major mechanism of particle transport to the wall is the Brownian motion. The model developed contains three major tuning parameters that are determined experimentally using a Couette device: particle-particle collision efficiency, particle-wall sticking efficiency, and particle critical size. Performance of the deposition model for a pipeline with the coefficients obtained using a laboratory Couette device is also illustrated in this paper.

  20. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  1. Transition to turbulence in plane channel flow

    Science.gov (United States)

    Biringen, S.; Goglia, G. L.

    1983-01-01

    A numerical simulation of the final stages of transition to turbulence in plane channel flow is reported. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time-evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction-blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.

  2. Transition to turbulence in plane channel flows

    Science.gov (United States)

    Biringen, S.

    1984-01-01

    Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.

  3. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    International Nuclear Information System (INIS)

    Gazol, Adriana; Kim, Jongsoo

    2013-01-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  4. A compressible Navier-Stokes code for turbulent flow modeling

    Science.gov (United States)

    Coakley, T. J.

    1984-01-01

    An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.

  5. An implicit Navier-Stokes code for turbulent flow modeling

    Science.gov (United States)

    Huang, P. G.; Coakley, T. J.

    1992-01-01

    This paper presents a numerical approach to calculating turbulent flows employing advanced turbulence models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's approximate Riemann solver, TVD numerical schemes, implicit boundary conditions and a decoupled turbulence-model solver. Based on the problems tested so far, the method has consistently demonstrated its ability in offering accuracy, boundedness and a fast rate of convergence to steady-state solution.

  6. Study and modelling of liquid metal turbulent flows

    International Nuclear Information System (INIS)

    Pimont, Vincent

    1983-01-01

    In this research thesis, the author first reports the study of equations of a turbulent flow with heat transfer: transport equations of 2. order moments related to different fluctuations, influence of a change of referential. He analyses the structure of a non isothermal turbulent flow of liquid metal: study of the turbulent heat flow and of liquid metal temperature fluctuations, study of characteristic scales for such a flow, principle of assessment of orders of magnitude. He presents the modelling of transport equations of moments related to temperature fluctuation, and of transport equations at high Reynolds number. He finally reports the application of the developed model to the wall area of a non isothermal turbulent flow of liquid metal [fr

  7. Two-equation turbulence modeling for 3-D hypersonic flows

    Science.gov (United States)

    Bardina, J. E.; Coakley, T. J.; Marvin, J. G.

    1992-01-01

    An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.

  8. Large-scale turbulence structures in shallow separating flows

    NARCIS (Netherlands)

    Talstra, H.

    2011-01-01

    The Ph.D. thesis “Large-scale turbulence structures in shallow separating flows” by Harmen Talstra is the result of a Ph.D. research project on large-scale shallow-flow turbulence, which has been performed in the Environmental Fluid Mechanics Laboratory at Delft University of Technology. The

  9. Turbulent Reacting Flows at High Speed

    National Research Council Canada - National Science Library

    Brown, Garry

    2001-01-01

    .... To accomplish this goal, expertise in chemical kinetics, experimental fluid mechanics and combustion, and computational fluid mechanics were brought together to make a systematic attack on turbulent...

  10. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)

  11. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  12. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  13. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  14. Flow Separation and Turbulence in Jet Pumps for Thermoacoustic Applications

    NARCIS (Netherlands)

    Oosterhuis, Joris; Verbeek, Antonie Alex; Bühler, Simon; Wilcox, Douglas; van der Meer, Theodorus H.

    The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be

  15. An experimental investigation of turbulent flow heat transfer through ...

    African Journals Online (AJOL)

    An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...

  16. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  17. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  18. Turbulent pipe flow at extreme Reynolds numbers.

    Science.gov (United States)

    Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J

    2012-03-02

    Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.

  19. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  20. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  1. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  2. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  3. DNSLab: A gateway to turbulent flow simulation in Matlab

    Science.gov (United States)

    Vuorinen, V.; Keskinen, K.

    2016-06-01

    Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to

  4. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  5. Numerical simulation of random stresses on an annular turbulent flow

    International Nuclear Information System (INIS)

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  6. Drag Reduction for Turbulent Boundary Layer Flows Using an Oscillating Wall

    National Research Council Canada - National Science Library

    Bogard, David

    2000-01-01

    This research program used experimental measurements and computational simulations to study the drag reduction, and the resulting effects on turbulence structure, for a turbulent wall flow subjected...

  7. New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

    CERN Document Server

    Nicolleau, FCGA; Redondo, J-M

    2012-01-01

    This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic

  8. Numerical simulation of compressible, turbulent, two-phase flow

    Science.gov (United States)

    Coakley, t. J.; Champney, J. M.

    1985-01-01

    A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase is assumed to be dilute, and turbulent effects are modeled by zero- and two-equation eddy viscosity models. An important feature of the turbulence modeling is the treatment of surface boundary conditions which control the ingestion of particles into the boundary layer by turbulent friction and diffusion. The numerical method uses second-order implicit upwind differencing of the inviscid terms of the equations and second-order central differencing of the viscous terms. A diagonal form of the implicit algorithm is used to improve efficiency, and the transformation to a curvilinear coordinate system is accomplished by the finite volume techniques. Applications to a series of representative flows include a two-phase nozzle flow, the steady flow of air over a sand bed, and the air flow behind a normal shock wave in uniform motion over a sand bed. Results of the latter two applications are compared with experimental results.

  9. Sediment Resuspension and Bed Morphology in Highly Turbulent Flows

    Science.gov (United States)

    Johnson, B. A.; Cowen, E. A.

    2010-12-01

    Motivated by environmental flows where turbulence levels are set by processes other than mean shear (e.g., breaking surface and internal waves and bores) we choose to study turbulent boundary layers and sediment resuspension in the absence of mean shear using a recently-developed facility designed to generate homogeneous isotropic turbulence with low mean flows. Similar investigations have been performed with grid-stirred tanks (GSTs), though significant mean flows were found to exist in these tanks, altering the balance of fluid forces present. Significantly, we find that the interaction of turbulence with a permeable sediment boundary results in the formation of ripple patterns. Our facility uses a Randomly Actuated Synthetic Jet Array (RASJA) and allows us to control the turbulent forcing while ensuring significantly less mean flow relative to prior facilities. We performed measurements using Particle Image Velocimetry (PIV), first with a solid bottom boundary, to examine the turbulent structures and nature of the flow at the bed. We measured vertical profiles of statistical metrics such as turbulence intensity, turbulent kinetic energy, spectra, and Reynolds stresses. We then replaced the solid boundary with a layer of narrowly graded sand that has a median grain size (D50) of about 250 μm and made direct comparisons to the solid boundary measurements. Finally, in an effort to verify the ability to measure such flows in the field, we used a Nortek Aquadopp HR Profiler to measure vertical profiles over the depth of the tank and examine the Profiler’s ability to record accurate measurements at the fluid-sediment interface. Our analysis includes the determination of critical turbulent stresses responsible for sediment resuspension from the sand bed from which we develop a non-dimensional Shields-like parameter that captures incipient particle motion. We also make comparisons between simultaneous PIV and HR Profiler measurements to improve our understanding of

  10. Toward large eddy simulation of turbulent flow over an airfoil

    Science.gov (United States)

    Choi, Haecheon

    1993-01-01

    The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.

  11. Turbulent flow through a wall subchannel of a rod bundle

    International Nuclear Information System (INIS)

    Rehme, K.

    1978-04-01

    The turbulent flow through a wall subchannel of a rod bundle was investigated experimentally by means of hotwires und Pitot-tubes. The aim of this investigation was to get experimental information on the transport properties of turbulent flow especially on the momentum transport. Detailed data were measured of the distributions of the time-mean velocity, the turbulence intensities and, hence the kinetic of turbulence, of the shear stresses in the directions normal and parallel to the walls, and of the wall shear stresses. The pitch-to-diameter ratio of the rods equal to the wall-to-diameter ratio was 1.15, the Reynolds number of this investigation was Re = 1.23.10 5 . On the basis of the measurements the eddy viscosities normal and parallel to the walls were calculated. The eddy viscosities observed showed a considerable deviation from the data known up-to-now and from the assumptions introduced in the codes. (orig.) [de

  12. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.

    2017-05-14

    Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.

  13. Specific aspects of turbulent flow in rectangular ducts

    Directory of Open Access Journals (Sweden)

    Stanković Branislav D.

    2017-01-01

    Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools

  14. Temperature-Corrected Model of Turbulence in Hot Jet Flows

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Massey, Steven J.; Elmiligui, Alaa

    2007-01-01

    An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k-epsilon model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, underpredict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.

  15. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  16. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  17. Turbulent Mixing Parameterizations for Oceanic Flows and Student Support

    Science.gov (United States)

    2014-09-30

    shear layer stability analysis (Miles 1961) and has been shown to be a criterion for stationarity in homogeneous shear flows (e.g. Rohr et al. 1988...Journal of Fluid Mechanics, 10, 496- 508. Pope, S., 2000: Turbulent Flows. Cambridge University Press. Rohr , J. J., E. C. Itsweire, K. N. Helland

  18. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  19. Numerical modeling of fine particle fractal aggregates in turbulent flow

    Directory of Open Access Journals (Sweden)

    Cao Feifeng

    2015-01-01

    Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.

  20. Turbulent mixed flow applying CFD in electronic cooling

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Chaves

    2011-01-01

    laminar and turbulent fluxes until heat flux equal 1,000 and maximum dimensionless temperature increase abruptly with heat flux to laminar and turbulent flows for injection dimensionless velocity equal 1, 2, 4, 6, 8, and 10. The results obtained allowed identifying the highest temperature when the system is submitted to combine forced and free convection, making possible to apply control actions, avoiding thermal damages to the devices that work with this cooling process.

  1. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  2. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    International Nuclear Information System (INIS)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-01-01

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds

  3. Numerical computation of compressible, turbulent high-speed flows

    Science.gov (United States)

    Suzen, Yildirim Bora

    Separated flows and subsequent formation of shear layers are important fluid processes which play a dominant role in numerous engineering applications. Accurate prediction of this fluid process is an important element in the design and analysis of high speed vehicles and, ultimately, in performance and trajectory analysis. In this study, a two-dimensional/axisymmetric Navier-Stokes flow solver using Steger-Warming flux vector splitting technique is developed for the accurate simulation of high speed turbulent flows. Computations are performed for an underexpanded, supersonic, turbulent, axisymmetric jet and a two-stream supersonic turbulent wake flowfield behind a two-dimensional thick base as representative of high speed, compressible shear flows. Baldwin-Barth and Spalart-Allmaras one-equation turbulence models and Baseline version of Menter's zonal k - omega/k - varepsilon two-equation turbulence models are used to investigate their performance for the applications considered. Modifications to these models are incorporated in order to improve their prediction capabilities for the types of flows considered. For two-equation models, modifications to include compressibility correction terms are considered and a modeled version of Menter's models including compressible dissipation and pressure dilatation terms is developed. Axisymmetric correction is incorporated to all models by means of coefficient changes. The computational results are compared to available experimental data. Results show that the modifications improve the computed solutions for all models.

  4. A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    Science.gov (United States)

    Kim, S.-W.

    1988-01-01

    A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  5. Turbulent mixing in nonreactive and reactive flows

    CERN Document Server

    1975-01-01

    Turbulence, mixing and the mutual interaction of turbulence and chemistry continue to remain perplexing and impregnable in the fron­ tiers of fluid mechanics. The past ten years have brought enormous advances in computers and computational techniques on the one hand and in measurements and data processing on the other. The impact of such capabilities has led to a revolution both in the understanding of the structure of turbulence as well as in the predictive methods for application in technology. The early ideas on turbulence being an array of complicated phenomena and having some form of reasonably strong coherent struc­ ture have become well substantiated in recent experimental work. We are still at the very beginning of understanding all of the aspects of such coherence and of the possibilities of incorporating such structure into the analytical models for even those cases where the thin shear layer approximation may be valid. Nevertheless a distinguished body of "eddy chasers" has come into existence. T...

  6. Statistical descriptions of polydisperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre

    2016-12-01

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results

  7. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  8. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  9. Effects of polymers on the spatial structure of turbulent flows

    Science.gov (United States)

    Sinhuber, Michael; Ballouz, Joseph G.; Ouellette, Nicholas T.

    2017-11-01

    It is well known that the addition of minor amounts of polymers to a turbulent water flow can significantly change its properties. One of the most prominent effects is the observed drastic reduction of drag in wall-bounded flows that is utilized in many engineering applications. Much of the research on polymers in turbulence has focused on their influence on the turbulent energy cascade and their interaction with the energy transfer processes. Much less investigated are their effects on the spatial structure of turbulent flows. In a classical von-Kárman swirling flow setup, we used Lagrangian particle tracking to obtain three-dimensional particle trajectories, velocities, and accelerations and find that polymers have a significant effect on Lagrangian measures of the turbulence structure such as radial distribution functions and the curvature of particle trajectories. We find that not only do the statistical distributions change, but also that polymers appear to affect the spatial statistics well beyond the size of the polymers themselves.

  10. Turbulent Mixing and Flow Resistance over Dunes and Scours

    Science.gov (United States)

    Dorrell, R. M.; Arfaie, A.; Burns, A. D.; Eggenhuisen, J. T.; Ingham, D. B.; McCaffrey, W. D.

    2014-12-01

    Flows in both submarine and fluvial channels are subject to lower boundary roughness. Lower boundary roughness occurs as frictional roughness suffered by the flow as it moves over the bed (skin friction) or drag suffered by the flow as it moves past a large obstacle (form drag). Critically, to overcome such roughness the flow must expend (lose) energy and momentum. However, whilst overcoming bed roughness the degree of turbulent mixing in the flow may be enhanced increasing the potential energy of the flow. This is of key importance to density driven flows as the balance between kinetic energy lost and potential energy gained (through turbulent diffusion of suspended particulate material) may critically affect the criterion for autosuspension. Moreover, this effect of lower boundary roughness may go as far as helping to explain why, even on shallow slopes, channelized submarine density currents can run out over ultra long distances. Such effects are also important in fluvial systems, where they will be responsible for maximizing or minimizing sediment capacity and competence in different flow environments. Numerical simulations are performed at a high Reynolds number (O (106)) for a series of crestal length to height ratio (c/h) at a fixed width to height ratio (w/h). Here, we present key findings of shear flow over a range of idealized bedform shapes. We show how the total basal shear stress is split into skin friction and form drag and identify how the respective magnitudes vary as a function of bedform shape and scale. Moreover we demonstrate how said bedforms affect the balance of energy lost (frictional) and energy gained (turbulent mixing). Overall, results demonstrate a slow reduction in turbulent mixing and flow resistance with decreasing bedform side slope angle. This suggests that both capacity and competence of the flow may be reduced through decrease in of the potential energy of the flow as a result of change in slope angles.

  11. New Turbulent Multiphase Flow Facilities for Simulation Benchmarking

    Science.gov (United States)

    Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  12. The role of zonal flows in disc gravito-turbulence

    Science.gov (United States)

    Vanon, R.

    2018-04-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  13. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  14. Mean Flow and Turbulence Near a Series of Dikes

    Science.gov (United States)

    Yaeger, M. A.; Duan, J. G.

    2008-12-01

    Scour around various structures obstructing flow in an open channel is a common problem faced by river engineers. To better understand why this occurs, two questions must be answered: what are the mean flow and turbulence distributions around these structures and how do these two fields affect sediment transport? In addition, are the mean flow or turbulence properties more important in predicting the local transport rate? To answer these questions, a near-bed turbulence and shear stress study was conducted in a flat, fixed bed laboratory flume. Three dikes were placed on the left wall at right angles to the flow, extending partway into the flow, and remaining fully emerged throughout the experiment. A micro acoustic Doppler velocimeter (ADV) was used to measure velocities near the bed in the x, y, and z directions and then the turbulence intensities and Reynolds stresses were calculated from these measurements. Preliminary results showed that mean velocity has no relation to the formation of scour near the tips of the dikes but that Reynolds stresses and turbulence intensities do. It was shown that the horizontal component of the Reynolds stress near the bed contributed the most to the formation of scour. The maximum value of this component was over 200 times that of the mean bed shear stress of the incoming flow, whereas in a single dike field, the same Reynolds stress is about 60 times that of the incoming flow. The magnitudes of the other two components of the Reynolds stress were less than that of the horizontal component, with magnitudes about 20 times that of the incoming flow. This may be attributed to the very small contribution of the vertical velocity in these components. Turbulence intensity magnitudes were about 3 to 5 times that of the incoming flow, with the largest being u'. The largest values for both Reynolds stresses and turbulence intensities were seen at the tip of the second dike in the series. Better understanding of these flow processes will

  15. Laminar-turbulent transition in Taylor-Dean flow

    Energy Technology Data Exchange (ETDEWEB)

    Aider, A Ait [Departement de Mecanique, Universite de Tizi Ouzou, B.P. 17 R.P. 15000, Algerie (Algeria); Skali, S [LEMTA, INPL, 2 Avenue de la Foret de Haye, 54504 Vandoeuvre Cedex (France); Brancher, J P [LEMTA, INPL, 2 Avenue de la Foret de Haye, 54504 Vandoeuvre Cedex (France)

    2005-01-01

    An experimental study is reported of flows produced in a moderate Taylor-Couette system, {gamma} {approx} 15, closed or azimuthally opened. In the last case, the flow is bounded by {theta} = 0 and (2{pi} - {theta}{sub 1}) where {theta}{sub 1} = 30 deg. represents the region cut-off by a diaphragm. The basic flow is a combination of a flow caused by the rotation of the inner cylinder and a flow provided azimuthally in the gap by external pumping. Our observations of the laminar-turbulent transition for a wide range of {tau}, the ratio of pumping and rotation flow rates, reveals competition between the Taylor-Dean flow due to rotation and the Dean flow due to pumping leading to new flow regimes which have not counterpart in the closed Taylor-Couette flow.

  16. Diffusive separation of particles by diffusion in swirled turbulent flows

    International Nuclear Information System (INIS)

    Arbuzov, V.N.; Shiliaev, M.I.

    1984-01-01

    An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references

  17. STRUCTURES OF TURBULENT VORTICES AND THEIR INFLUENCE ON FLOW PROPERTIES

    Directory of Open Access Journals (Sweden)

    Alfonsas Rimkus

    2015-03-01

    Full Text Available In spite of the many investigations that have been conducted on turbulent flows, the generation and development of turbulent vortices has not been investigated sufficiently yet. This prevents to understand well the processes involved in the flow. That is unfavorable for the further investigations. The developing vortex structures are interacting, and this needs to be estimated. Physical summing of velocities, formed by all structures, can be unfavorable for investigations, therefore they must be separated; otherwise bias errors can occur. The difficulty for investigations is that the widely employed Particle Image Velocity (PIV method, when a detailed picture of velocity field picture is necessary, can provide photos covering only a short interval of flow, which can’t include the largest flow structures, i.e. macro whirlpools. Consequently, action of these structures could not be investigated. Therefore, in this study it is tried to obtain the necessary data about the flow structure by analyzing the instantaneous velocity measurements by 3D means, which lasts for several minutes, therefore the existence and interaction of these structures become visible in measurement data. The investigations conducted in this way have been already discussed in the article, published earlier. Mostly the generation and development of bottom vortices was analyzed. In this article, the analysis of these turbulent velocity measurements is continued and the additional data about the structure of turbulent vortices is obtained.

  18. Semi-local scaling and turbulence modulation in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.

    2015-01-01

    We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and

  19. Phenomenological friction equation for turbulent flow of Bingham fluids.

    Science.gov (United States)

    Anbarlooei, H R; Cruz, D O A; Ramos, F; Santos, Cecilia M M; Silva Freire, A P

    2017-08-01

    Most discussions in the literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In the present work, a formula is proposed for the evaluation of the friction coefficient of turbulent flows of Bingham fluids. The developments combine a fresh analysis for the description of the microscales of Kolmogorov and the phenomenological turbulence model of Gioia and Chakraborty [G. Gioia and P. Chakraborty, Phys. Rev. Lett. 96, 044502 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.044502]. The resulting Blasius-type friction equation is tested against some experimental data and shows good agreement over a significant range of Hedstrom and Reynolds numbers. Comments on pressure measurements in yielding fluids are made. The limits of the proposed model are also discussed.

  20. Effects of roughness on density-weighted particle statistics in turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)

    2015-12-31

    The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.

  1. Rossby wave, drift wave and zonal flow turbulence

    Science.gov (United States)

    Slobinsky, Demian G.

    An extensive qualitative and quantitative study of Rossby wave, drift wave and zonal flow turbulence in the Charney-Hasegawa-Mima model is presented. This includes details of two generation mechanisms of the zonal flows, evidence of the nonlocal nature of this turbulence and of the energy exchange between the small and large scales. The modulational instability study shows that for strong primary waves the most unstable modes are perpendicular to the primary wave, which corresponds to the generation of a zonal flow if the primary wave is purely meridional. For weak waves, the maximum growth occurs for off-zonal modulations that are close to being in three-wave resonance with the primary wave. Nonlinear jet pinching is observed for all nonlinearity levels but the subsequent dynamics differ between strong and weak primary waves. The jets of the former further roll up into Karman-like vortex streets and saturate, while for the latter, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominant primary wave. A critical level of nonlinearity is defined which separates the two regimes. Some of these characteristics are captured by truncated models. Numerical proof of the extra invariant in Rossby and drift wave turbulence is presented. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively-well conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjortoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the wellknown drift wave - zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation

  2. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow

    Science.gov (United States)

    Costantini, Roberta; Mollicone, Jean-Paul; Battista, Francesco

    2018-02-01

    The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall. With respect to the classical turbulent pipe flow, a substantial drag reduction is observed which strongly depends on the grooves' dimension and on the solid fraction, i.e., the ratio between the solid wall surface and the total surface of the pipe's circumference. The drag reduction is due to the mean slip velocity at the wall which increases the flow rate at a fixed pressure drop. The enforced boundary conditions also produce peculiar turbulent structures which on the contrary decrease the flow rate. The two concurrent effects provide an overall flow rate increase as demonstrated by means of the mean axial momentum balance. This equation provides the balance between the mean pressure gradient, the Reynolds stress, the mean flow rate, and the mean slip velocity contributions.

  3. Settling and collision between small ice crystals in turbulent flows

    Science.gov (United States)

    Jucha, Jennifer; Naso, Aurore; Lévêque, Emmanuel; Pumir, Alain

    2018-01-01

    Ice crystals are present in a variety of clouds, at sufficiently low temperature. We consider here mixed-phase clouds which, at temperature ≳-20 ∘C , contain ice crystals, shaped approximately as thin oblate ellipsoids. We investigate the motion of these particles transported by an isotropic turbulent flow and, in particular, the collision between these crystals, a key process in the formation of graupels. Using fully resolved direct numerical simulations, and neglecting the effects of fluid inertia on the particle motion, we determine the influence of the turbulence intensity and of gravitational settling, in a realistic range of parameters. At small turbulent energy dissipation rate, collisions are induced mainly by differential gravitational settling between particles with different orientations. The effect has a clear signature on the relative orientation of colliding ellipsoids. As the turbulent energy dissipation rate increases, however, the influence of the turbulent velocity fluctuations becomes the dominant effect determining the collision rate. Using simple estimates, we propose an elementary understanding of the relative importance of gravitational settling and turbulent fluctuations.

  4. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  5. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  6. Mass transfer from smooth alabaster surfaces in turbulent flows

    Science.gov (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.

    1987-11-01

    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  7. Turbulence characteristics of open channel flow over non ...

    Indian Academy of Sciences (India)

    The considerable magnitudes of transverse velocities over mobile bedforms necessitate measurement of 3-D velocity components to analyze the flow field. Computed turbulence intensities are found to be maximum in the region consisting of the trough and the reattachment point of the dunes. It is observed that streamwise ...

  8. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  9. Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Sváček, P.

    2015-01-01

    Roč. 17, č. 1 (2015), s. 146-188 ISSN 1815-2406 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : fluid-structure interaction * flow induced vibrations * turbulence models * finite element method Subject RIV: BI - Acoustics Impact factor: 1.778, year: 2015

  10. Numerical modelling of turbulent flow over rough walls

    Czech Academy of Sciences Publication Activity Database

    Louda, P.; Kozel, K.; Příhoda, Jaromír

    2008-01-01

    Roč. 7, - (2008), s. 4100011-4100012 ISSN 1617-7061 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence modelling * rough wall * decelerated flow Subject RIV: BK - Fluid Dynamics

  11. Heat and mass transfer in turbulent multiphase channel flow

    NARCIS (Netherlands)

    Bukhvostova, A.

    2015-01-01

    Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We

  12. accurate, explicit pipe sizing formula for turbulent flows

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    White Formula. Friction loss in turbulent pipe flow is best esti- ... the friction factor f is. Ranga Raju and Garde's method. RangaRaju and Garde (1971) proposed the fol- lowing equations for pipe sizing a) For e3gSf/n2. 10-2. 54.0. 2. 3. 633.2. 39.3.

  13. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  14. Scalar statistics in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Boersma, B.J.; Pecnik, R.

    2017-01-01

    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive

  15. Instantaneous planar pressure determination from PIV in turbulent flow

    NARCIS (Netherlands)

    De Kat, R.; Van Oudheusden, B.W.

    2011-01-01

    This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical

  16. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  17. Dynamics of prolate ellipsoidal particles in a turbulent channel flow

    NARCIS (Netherlands)

    Mortensen, P.H.; Andersson, H.I.; Gillissen, J.J.J.; Boersma, B.J.

    2008-01-01

    The dynamical behavior of tiny elongated particles in a directly simulated turbulent flow field is investigated. The ellipsoidal particles are affected both by inertia and hydrodynamic forces and torques. The time evolution of the particle orientation and translational and rotational motions in a

  18. Water droplet condensation and evaporation in turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical

  19. Universal intermittent properties of particle trajectories in highly turbulent flows

    DEFF Research Database (Denmark)

    Arnèodo, A.; Benzi, R.; Berg, Jacob

    2008-01-01

    We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R-lambda is an element of [120740]. Lagrangian structure functions fro...

  20. Finite element analysis of turbulent flow in fast reactor fuel subassembly elementary flow cell

    International Nuclear Information System (INIS)

    Muehlbauer, P.

    1987-03-01

    The method is described of calculating fully developed longitudinal steady-state turbulent flow of an incompressible fluid through an infinite bundle of parallel smooth rods, based on the finite element method and one-equation turbulence model. Theoretical calculation results are compared with experimental results. (author). 5 figs., 3 refs

  1. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  2. A finite-elements method for turbulent flow analysis

    International Nuclear Information System (INIS)

    Autret, A.

    1986-03-01

    The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. In our specific case, we have to deal with monophasic incompressible flow in Boussinesq approximation in the normal operating conditions of a primary circuit of nuclear power plant. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A Law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step [fr

  3. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    Science.gov (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  4. Large-eddy simulation of turbulent circular jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Sotiropoulos, F. [Georgia Inst. of Technology, Atlanta, GA (United States); Sale, M. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  5. Computation of turbulent flow and heat transfer in subassemblies

    International Nuclear Information System (INIS)

    Slagter, W.

    1979-01-01

    This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development

  6. Computation of supersonic turbulent flow past a spinning cone

    Science.gov (United States)

    Agarwal, R. K.

    1982-01-01

    Computational results are presented for supersonic laminar and turbulent flow past a pointed cone at angle of attack obtained with a parabolic Navier-Stokes marching code. The code takes into account the asymmetries in the flowfield resulting from spinning motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other analyses based on boundary-layer equations. For certain laminar flow conditions, an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results. For turbulent flow, at small angles of attack, good agreement is obtained with the experimental data and other theoretical results.

  7. Turbulent flow with suction in smooth and rough pipes

    International Nuclear Information System (INIS)

    Verdier, Andre.

    1977-11-01

    It concerns an experimental study of turbulent flow inside a pipe with rough and porous wall and suction applied through it. The first part recall the basic knowledge concerning the turbulent flow with roughness. In second part statistical equations of fluid wall stress are written in the case of a permeable rough wall, in order to underline the respective role played by viscosity and pressure terms. In the third part the dynamic equilibrium of the flow is experimentally undertaken in the smooth and rough range with and without wall suction. Some empirical formulae are proposed for the mean velocity profiles in the inertial range and for friction velocity with suction. In the case of the sand roughness used, it does not seem that critical Reynolds number of transition from smooth to rough range is varied [fr

  8. Turbulence modeling of shock separated boundary-layer flows

    Science.gov (United States)

    Coakley, T. J.; Viegas, J. R.

    1977-01-01

    Computations of transonic and hypersonic shock-separated boundary-layer flows using zero-equation (algebraic), one-equation (kinetic energy), and two-equation (kinetic energy plus length scale) turbulence eddy viscosity models are described and compared with measurements. The computations make use of a new Navier-Stokes computer algorithm that has reduced computing times by one to two orders of magnitude. The algorithm, and how the turbulence models are incorporated into it, are described. Results for the transonic flow show that the unmodified one-equation model is superior to the zero-equation model in skin-friction predictions. For the hypersonic flow, a highly modified one-equation model that accurately predicts surface pressure and heat transfer is described. Preliminary two-equation model results are also presented.

  9. Tracking coherent structures in massively-separated and turbulent flows

    Science.gov (United States)

    Rockwood, Matthew; Huang, Yangzi; Green, Melissa

    2018-01-01

    Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.

  10. Energy amplification in turbulent flows over complex walls

    Science.gov (United States)

    Luhar, Mitul

    2016-11-01

    Many boundary layer flows in natural and manmade systems are characterized by the presence of complex walls (e.g. porous, rough, or patterned) that can substantially alter the near-wall turbulence. For example, the streaks and streamwise vortices prevalent in smooth-walled flows are often replaced by structures resembling Kelvin-Helmholtz vortices in flows over porous media and vegetation canopies. While stability analyses can reproduce some of these observations, they are limited in their ability to generate predictions for spectra and coherent structure in fully turbulent flows. The present effort seeks to address this limitation by extending the resolvent formulation to account for complex walls. Under the resolvent formulation, the turbulent velocity field is expressed as a linear superposition of propagating modes, identified via a gain-based decomposition of the Navier-Stokes equations. The presence of the complex substrate is modeled as a distributed body force, which alters the gain (i.e. energy amplification) and structure of the modes. Preliminary results show that this approach reproduces key observations from previous simulations and experiments of flow over porous media, vegetation canopies, as well as riblets with minimal computation.

  11. A driving mechanism of a turbulent puff in pipe flow

    International Nuclear Information System (INIS)

    Shimizu, Masaki; Kida, Shigeo

    2009-01-01

    A turbulent puff is numerically realized in a circular pipe flow driven by a constant uniform external force. The periodic boundary condition is imposed in the axial direction with a period of 16π pipe radius. The Reynolds number based on the pipe radius, the centerline velocity of the Hagen-Poiseuille flow corresponding to the external force, is 3000. Starting with the Hagen-Poiseuille flow superposed by a disturbance of finite amplitude, an equilibrium puff of about 11π pipe radius in length emerges and advects with nearly the mean flow velocity. Turbulence in the puff generates a number of low-speed streaks accompanied by streamwise vortices along the pipe wall. These low-speed streaks move upstream relative to the puff, across the trailing edge and create strong thin vortex layers, arched above the streaks, together with the laminar flow coming from upstream. The vortex layers, whose thickness is typically a few times smaller than the width, are unstable to roll up, through the Kelvin-Helmholtz instability, and induce velocity fluctuations that propagate downstream faster than the puff itself and enhance the turbulent activity in it. This self-sustenance cycle of an equilibrium puff is numerically verified.

  12. Wall pressure signatures of turbulent flow over longitudinal

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2016-01-01

    Full Text Available Five triangular riblets longitudinal in the streamwise direction have been studied experimentally. The riblets have pick to pick spaced (s equal to 1000 μm and with groove height to space ratio (h/s 0.4, 0.6, 0.8 and 1. The tests were conducted in a full turbulence water channel on a flat plate for Reynolds numbers 13000 to 53000 based on channel hydraulic diameter. Pressure drop was measured using pressure transmitter gauge with pressure tap points of 12.7 mm in diameter were provided at the bottom of the channel. The main purpose of the present study is to investigate the response of turbulent flow to longitudinal grooves of triangular shaped riblets and compare the effect of the turbulence structure over smoothed and grooved surfaces with pressure drop measurements. 10.20 was the maximum drag reduction appear at h/s equal to (1.

  13. Constrained dynamics of an inertial particle in a turbulent flow

    International Nuclear Information System (INIS)

    Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M

    2011-01-01

    Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.

  14. High-Speed Turbulent Reacting Flows: Intrinsic Flame Instability and its Effects on the Turbulent Cascade

    Science.gov (United States)

    Poludnenko, Alexei

    2016-11-01

    Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force

  15. Modelling and simulation of turbulence and heat transfer in wall-bounded flows

    NARCIS (Netherlands)

    Popovac, M.

    2006-01-01

    At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type

  16. Numerical Simulation of Air-Sea Turbulent Flow of A Progressive Wave

    Science.gov (United States)

    Wen, Xianyun

    2013-04-01

    The turbulence flow in the coupled water and air of a progressive wave is simulated. The Reynolds Averaged Navier-Stockes equations are used to produce the turbulence velocity and pressure distributions in the water and air. The turbulence Reynolds stress is modelled by the turbulence RNG (Re-Normalization Group) model. The numerical simulation is compared with the laboratory wave.

  17. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    Science.gov (United States)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  18. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  19. Direct numerical simulation of turbulent flow in a square duct

    Science.gov (United States)

    Huser, Asmund

    A study for generating an accurate description of fully developed, low Reynolds number, anisotropic turbulent flow in a square duct is presented. The present numerical scheme employs a time-splitting method to integrate the three dimensional, incompressible Navier-Stokes equations using spectral/finite difference discretization on a staggered mesh. The new numerical code resulting from this work is tailored to the solution of the square duct flow and optimized for operation on the Cray Y-MP supercomputer. Time averaged results from the fully developed turbulent field are compared with available experimental and numerical results and show good qualitative agreement. The existence of two inhomogeneous directions in the transverse plane results in an anisotropic primary shear stress distribution; this is shown to result in convection of mean velocity. By investigating the equations for the mean secondary velocity and streamwise vorticity, it is demonstrated that the mechanisms responsible for the anisotropic secondary Reynolds stresses result in the production of secondary flow. Higher order correlations are presented with emphasis on the behavior of the Reynolds stress and the dissipation rate budgets along the two intersecting walls. These results are used to investigate the dynamics of the Reynolds stress transport equations where it is demonstrated how the anisotropic pressure velocity interactions redistributes energy and shear stresses between the turbulent stresses, promoting the distorted isotachs and the mean secondary flow. The dissipation processes are studied by identifying small-scale topological patterns and show little influence of the corner outside the viscous sublayer. The transport equations for the turbulent dissipation rate and the turbulent enstrophy are evaluated and it is shown that these budgets have the same dynamics near the wall except for two production terms acting in the viscous sub-layer. The effect of the corner inside the viscous sub

  20. Slip velocity of large neutrally buoyant particles in turbulent flows

    International Nuclear Information System (INIS)

    Bellani, G; Variano, E A

    2012-01-01

    We discuss possible definitions for a stochastic slip velocity that describes the relative motion between large particles and a turbulent flow. This definition is necessary because the slip velocity used in the standard drag model fails when particle size falls within the inertial subrange of ambient turbulence. We propose two definitions, selected in part due to their simplicity: they do not require filtration of the fluid phase velocity field, nor do they require the construction of conditional averages on particle locations. A key benefit of this simplicity is that the stochastic slip velocity proposed here can be calculated equally well for laboratory, field and numerical experiments. The stochastic slip velocity allows the definition of a Reynolds number that should indicate whether large particles in turbulent flow behave (a) as passive tracers; (b) as a linear filter of the velocity field; or (c) as a nonlinear filter to the velocity field. We calculate the value of stochastic slip for ellipsoidal and spherical particles (the size of the Taylor microscale) measured in laboratory homogeneous isotropic turbulence. The resulting Reynolds number is significantly higher than 1 for both particle shapes, and velocity statistics show that particle motion is a complex nonlinear function of the fluid velocity. We further investigate the nonlinear relationship by comparing the probability distribution of fluctuating velocities for particle and fluid phases. (paper)

  1. Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models

    Science.gov (United States)

    Kim, Sanghyeon; Cheong, Cheolung; Park, Warn-Gyu

    2017-06-01

    In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier-Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k - ɛ turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.

  2. Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models

    Directory of Open Access Journals (Sweden)

    Sanghyeon Kim

    2017-06-01

    Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.

  3. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  4. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  5. Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2011-01-01

    In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.

  6. Spectral modeling of magnetohydrodynamic turbulent flows.

    Science.gov (United States)

    Baerenzung, J; Politano, H; Ponty, Y; Pouquet, A

    2008-08-01

    We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations.

  7. Processes of Turbulent Liquid Flows in Pipelines and Channels

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  8. PDF modeling of turbulent flows on unstructured grids

    Science.gov (United States)

    Bakosi, J.

    2010-06-01

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Several newly developed algorithms are described that facilitate the numerical solution in complex flow geometries, including a stabilized mean-pressure projection scheme, the estimation of conditional and unconditional Eulerian statistics and their derivatives from stochastic particle fields, particle tracking through unstructured grids, an efficient particle redistribution procedure and techniques related to efficient random number generation. The solver has been parallelized and optimized for shared memory and multi-core architectures using the OpenMP standard. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed and presented in detail. The methodology shows great promise in the simulation of high-Reynolds-number incompressible inert or reactive turbulent flows in realistic configurations.

  9. Framework for simulating droplet vaporization in turbulent flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2017-11-01

    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  10. PIV measurement of turbulent mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Turbulent mixing layer flow with polymer additives was experimentally investigated by PIV in present paper. The velocity ratio between high and low speed is 4:1 and the Reynolds number for pure water case based on the velocity differences of two steams and hydraulic diameter of the channel ranges from 14667∼73333. Flow field and turbulent quantities of turbulent mixing layer with 200ppm polymer additives were measured and compared with pure water mixing layer flow. It is shown that the dynamic development of mixing layer is greatly influenced by polymer addictives. The smaller vortices are eliminated and the coherent structure is much clearer. Similar with pure water case, Reynolds stress and vorticity still concentrate in a coniform area of central part of mixing layer and the width will increase with the Reynolds number increasing. However, compared with pure water case, the coniform width of polymer additives case is larger, which means the polymer additives will lead to the diffusion of coherent structure. The peak value of vorticity in different cross section will decrease with the development of mixing layer. Compared with pure water case, the vorticity is larger at the beginning of the mixing layer but decreases faster in the case with polymer additives.

  11. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.

    Science.gov (United States)

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-16

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  12. Creating Turbulent Flow Realizations with Generative Adversarial Networks

    Science.gov (United States)

    King, Ryan; Graf, Peter; Chertkov, Michael

    2017-11-01

    Generating valid inflow conditions is a crucial, yet computationally expensive, step in unsteady turbulent flow simulations. We demonstrate a new technique for rapid generation of turbulent inflow realizations that leverages recent advances in machine learning for image generation using a deep convolutional generative adversarial network (DCGAN). The DCGAN is an unsupervised machine learning technique consisting of two competing neural networks that are trained against each other using backpropagation. One network, the generator, tries to produce samples from the true distribution of states, while the discriminator tries to distinguish between true and synthetic samples. We present results from a fully-trained DCGAN that is able to rapidly draw random samples from the full distribution of possible inflow states without needing to solve the Navier-Stokes equations, eliminating the costly process of spinning up inflow turbulence. This suggests a new paradigm in physics informed machine learning where the turbulence physics can be encoded in either the discriminator or generator. Finally, we also propose additional applications such as feature identification and subgrid scale modeling.

  13. Description and detection of burst events in turbulent flows

    Science.gov (United States)

    Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.

    2018-04-01

    A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.

  14. On soft stability loss in rotating turbulent MHD flows

    International Nuclear Information System (INIS)

    Kapusta, Arkady; Mikhailovich, Boris

    2014-01-01

    The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

  15. Characterization of zonal flow generation in weak electrostatic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)], E-mail: mnegrea@yahoo.com

    2008-05-15

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted.

  16. Decreasing turbulent helium flow in hard disk drive

    Science.gov (United States)

    Tawinprai, Supitcha; Suriyawanakul, Jarupol; Tangchaichit, Kiatfa

    2018-02-01

    A spoiler installed in a hard disk drive is helpful for reducing the flow which strikes the Head Gimbals Assembly (HGA) causing positioning errors and vibration. Filling a hard disk drive, with an installed spoiler, with helium gas was simulated by ANSYS Fluent software by using a realizable k – ε model to carry out the turbulence calculation of helium flow. The results show that the pressure fluctuation in a hard disk drive with a spoiler installed is lower than in a hard disk drive without, and accordingly the lower pressure fluctuation can reduce the force caused by pressure on the platter disks and reduce vibration in the hard disk drive.

  17. On the measurement of lateral velocity derivatives in turbulent flows

    Science.gov (United States)

    Antonia, R. A.; Zhu, Y.; Kim, J.

    1993-01-01

    Direct numerical simulation data for the lateral velocity derivative delta(u)/delta(y) at the centerline of a fully developed turbulent channel flow provide reasonable support for Wyngaard's analysis of the error involved in measuring this quantity using parallel hot wires. Numerical data in the wall region of the channel flow also provide a useful indication of how to select the separation between the wires. Justification for this choice is obtained by comparing several measured statistics of delta(u)/delta(y) with the corresponding numerical data.

  18. Anisotropic particles in highly turbulent Taylor-Couette flow

    Science.gov (United States)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2017-11-01

    In industry and nature, particle-laden turbulent flows consist mostly, if not always, of anisotropic particles. Examples of such flows are plankton distributions in the oceans, and pumping of concrete. In these flows, the suspended particles often distribute inhomogeneously, thereby affecting the drag and the flow properties significantly. Despite their widespread occurrence, a good understanding of how such particles affect the flow is still missing. Here we performed Particle Tracking Velocimetry and global torque measurements for a suspension of rigid fibers (or rods) in the Twente Turbulent Taylor-Couette facility. The fibers are density matched with the fluid, and we used particle volume fractions up to α = 2 % of fibers with aspect ratio λ = L / d = 5 , where L = 5 mm is the length and d = 1 mm the diameter. The global torque measurements were performed for Reynolds numbers up to 2.5 ×105 and showed similar values of drag reduction as was obtained for spherical particles (λ = 1). Using PTV we have extracted the orientation, the rotation rate, and the translation velocity and acceleration for the fibers. The fibers do not show a clear alignment with the main velocity gradient. We do, however, observe occasional large rotation rates for the fibers. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  19. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures

    Directory of Open Access Journals (Sweden)

    Dragutin Mihailović

    2017-09-01

    Full Text Available Turbulence is often expressed in terms of either irregular or random fluid flows, without quantification. In this paper, a methodology to evaluate the randomness of the turbulence using measures based on the Kolmogorov complexity (KC is proposed. This methodology is applied to experimental data from a turbulent flow developing in a laboratory channel with canopy of three different densities. The methodology is even compared with the traditional approach based on classical turbulence statistics.

  20. Instability of water-ice interface under turbulent flow

    Science.gov (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  1. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  2. Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow.

    Science.gov (United States)

    Ha, Hojin; Ziegler, Magnus; Welander, Martin; Bjarnegård, Niclas; Carlhäll, Carl-Johan; Lindenberger, Marcus; Länne, Toste; Ebbers, Tino; Dyverfeldt, Petter

    2018-01-01

    Turbulent blood flow is implicated in the pathogenesis of several aortic diseases but the extent and degree of turbulent blood flow in the normal aorta is unknown. We aimed to quantify the extent and degree of turbulece in the normal aorta and to assess whether age impacts the degree of turbulence. 22 young normal males (23.7 ± 3.0 y.o.) and 20 old normal males (70.9 ± 3.5 y.o.) were examined using four dimensional flow magnetic resonance imaging (4D Flow MRI) to quantify the turbulent kinetic energy (TKE), a measure of the intensity of turbulence, in the aorta. All healthy subjects developed turbulent flow in the aorta, with total TKE of 3-19 mJ. The overall degree of turbulence in the entire aorta was similar between the groups, although the old subjects had about 73% more total TKE in the ascending aorta compared to the young subjects (young = 3.7 ± 1.8 mJ, old = 6.4 ± 2.4 mJ, p flow velocity and suppressed the development of turbulence. In conclusion, turbulent blood flow develops in the aorta of normal subjects and is impacted by age-related geometric changes. Non-invasive assessment enables the determination of normal levels of turbulent flow in the aorta which is a prerequisite for understanding the role of turbulence in the pathophysiology of cardiovascular disease.

  3. Motion estimation under location uncertainty for turbulent fluid flows

    Science.gov (United States)

    Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao

    2018-01-01

    In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.

  4. A Method for Measuring Sludge Settling Characteristics in Turbulent Flows

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben

    1996-01-01

    distribution occurs in the middle of the column. This eliminates time scale effects such as flocculation from the measurements, as the resulting settling velocity only can be found at steady state and uniform conditions. The method assumes that flocculated sludge settles faster than disintegratedsludge to make......A method for the determination of the settlilng velocity for sludge as a funktion of turbulence intensity and sludge concentration has been developed. The principle of the method is to continuously feed the top of a settling column with sludge so that a steady state and uniform concentration...... a mass balance involving concentration at the top and the middle of the column as well as the inlet sludge flow. The resulting mass balance is used to calculate a lokal settling velocity. The turbulence is introduced by an oscillating grid in the whole depth of the settling column. Settling velocities...

  5. Large Eddy Simulations of turbulent flows at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)

    2011-07-01

    A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)

  6. A computational technique for turbulent flow of wastewater sludge.

    Science.gov (United States)

    Bechtel, Tom B

    2005-01-01

    A computational fluid dynamics (CFD) technique applied to the turbulent flow of wastewater sludge in horizontal, smooth-wall, circular pipes is presented. The technique uses the Crank-Nicolson finite difference method in conjunction with the variable secant method, an algorithm for determining the pressure gradient of the flow. A simple algebraic turbulence model is used. A Bingham-plastic rheological model is used to describe the shear stress/shear rate relationship for the wastewater sludge. The method computes velocity gradient and head loss, given a fixed volumetric flow, pipe size, and solids concentration. Solids concentrations ranging from 3 to 10% (by weight) and nominal pipe sizes from 0.15 m (6 in.) to 0.36 m (14 in.) are studied. Comparison of the CFD results for water to established values serves to validate the numerical method. The head loss results are presented in terms of a head loss ratio, R(hl), which is the ratio of sludge head loss to water head loss. An empirical equation relating R(hl) to pipe velocity and solids concentration, derived from the results of the CFD calculations, is presented. The results are compared with published values of Rhl for solids concentrations of 3 and 6%. A new expression for the Fanning friction factor for wastewater sludge flow is also presented.

  7. Velocity distribution in a turbulent flow near a rough wall

    Science.gov (United States)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.

  8. Effect of mean flow on the interaction between turbulence and zonal flow

    International Nuclear Information System (INIS)

    Uzawa, Ken; Kishimoto, Yasuaki; Li Jiquan

    2006-01-01

    The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having complex frequency ω q =Ω q +iγ q is derived, which depends on the external mean flow's amplitude |φ f | and radial wave number k f . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of the zonal flow γ q is found to be suppressed, showing a relation γ q =γ q0 (1 - α|φ f | 2 k f 2 ), where γ q0 is the growth rate in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing regime where the zonal flow instability is stabilized at α|φ f 2 |k f 2 ≅ 1. Meanwhile, the suppression is accompanied by an increase of the real frequency |Ω q |. The underlying physical mechanism of the suppression is discussed. (author)

  9. Stereoscopic measurements of particle dispersion in microgravity turbulent flow

    Science.gov (United States)

    Groszmann, Daniel Eduardo

    2001-08-01

    The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200

  10. Stability of model flocks in turbulent-like flow

    International Nuclear Information System (INIS)

    Khurana, Nidhi; Ouellette, Nicholas T

    2013-01-01

    We report numerical simulations of a simple model of flocking particles in the presence of an uncertain background environment. We consider two types of environmental perturbations: random noise applied separately to each particle, and spatiotemporally correlated ‘noise’ provided by a turbulent-like flow field. The effects of these two types of noise are very different; surprisingly, the applied flow field tends to destroy the global order of the flocking model even for vanishingly small flow amplitudes. Local order, however, is preserved in smaller sub-flocks, although their composition changes dynamically. Our results suggest that realistic perturbations must be considered in assessing the stability of models of collective animal behavior, and that random noise is not a sufficient proxy. (paper)

  11. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...

  12. Entropic multirelaxation lattice Boltzmann models for turbulent flows.

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S; Karlin, Ilya V

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  13. Visualization of turbulent reacting flow in a microscale nanoprecipitation reactor

    Science.gov (United States)

    Shi, Yanxiang; Vishwanat, Somashekar; Olsen, Michael; Fox, Rodney

    2009-11-01

    A flow visualization technique using the pH sensitive dye phenolphthalein was used to visualize and quantify turbulent reacting mixing in a microscale nanoprecipitation reactor. Phenolphthalein is colorless at pH lower than 8, but turns pink at higher pH, making it useful for visualizing acid-base reactions. Using this dye, turbulent reactive mixing in a confined impinging jets reactor (CIJR) was investigated. The reactor has two inlet streams, one at a pH of 3, and the other at a pH of 11. Phenolphthalein is also dissolved in both streams. A flash lamp with a extremely short pulse duration is used to freeze the turbulent motion of the fluids, and images are captured using a video camera. Quantitative mixing data are obtained by using a thresholding technique where local image intensities are transformed to binary signals which represent the local pH: 0 stands for pH lower than 8 and 1 for pH higher than 8. For each Reynolds number under consideration, thousands of realizations are acquired. Using this thresholding technique, probability density functions are obtained, allowing comparison to numerical simulations.

  14. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  15. Turbulent Flow Validation in the Helios Strand Solver

    Science.gov (United States)

    2014-01-07

    of streamwise velocity and turbulent viscosity profiles for flow over a flat plate atM = 0.2 and Re = 5×106. Figure 20. 137×97 NACA 0012 strand grid 22...6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF...facilitates data exchange between the two mesh types as well as enables relative motion between the mesh systems - i.e. the near-body unstructured rotor

  16. Double helix vortex breakdown in a turbulent swirling annular jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2018-01-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is

  17. Flow and Turbulence at Rubble-Mound Breakwater Armor Layers under Solitary Wave

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2015-01-01

    This paper presents the results of an experimental investigation of the flow and turbulence at the armor layer of rubble-mound breakwaters during wave action. The study focused on the details of the flow and turbulence in the armor layer and on the effect of the porous core on flow and stability....

  18. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  19. Proposed method for measurement of flow rate in turbulent periodic pipe flow

    International Nuclear Information System (INIS)

    Werzner, E; Ray, S; Trimis, D

    2011-01-01

    The present investigation deals with a previously proposed flow metering technique for laminar, fully-developed, time-periodic pipe flow. Employing knowledge of the pulsation frequency-dependent relationship between the mass flow rate and the pressure gradient, the method allows reconstruction of the instantaneous mass flow rate on the basis of a recorded pressure gradient time series. In order to explore if the procedure can be extended for turbulent flows, numerical simulations for turbulent, fully-developed, sinusoidally pulsating pipe flow with low pulse amplitude have been carried out using a ν 2 -f turbulence model. The study covers pulsation frequencies, ranging from the quasi-steady up to the inertia-dominated frequency regime, and three cycle-averaged Reynolds numbers of 4360, 9750 and 15400. After providing the theoretical background of the flow rate reconstruction principle, the numerical model and an experimental facility for the verification of simulations are explained. The obtained results, presented in time and frequency domain, show good agreement with each other and indicate a frequency dependence, similar to that used for the signal reconstruction for laminar flows. A modified dimensionless frequency definition has been introduced, which allows a generalised representation of the results considering the influence of Reynolds number.

  20. Investigation of particle-laden turbulent flow in free shear turbulent combustion

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.; Ellzey, J.; Daily, J.W.

    1983-01-01

    Explicit numerical mixed phase simulations are described which couple random gasdynamic motions to inertiallly interactive gas borne particles. Theses simulations are numerical experiments intended to provide data for investigating the interaction between a developing turbulent free shear layer and gas borne solid particles it entrains. The simulations predict most probable distributions of dispersed phase trajectories, standard deviations, and gas phase mixing dynamics which include the concomitant back-influences of the particle phase on the carrier gas flow. Data for refinement of the computational scheme and physical verification are provided by experiment. The experimental evidence is developed in a splitter plate divided, two-channel free shear mixing combustion tube. A variety of particle concentrations and particle size distributions are admitted into non-combusting or combusting flows with selected heat release levels. The computations, in turn, provide guidance on design and selection of new experiments

  1. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  2. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    Science.gov (United States)

    Manshoor, B.; Zaman, I.; Othman, M. F.; Khalid, Amir

    2013-12-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids.

  3. Stable low-dissipation schemes for turbulent compressible flows

    Science.gov (United States)

    Subbareddy, Pramod Kumar V.

    Shock capturing schemes, which are commonly used in compressible flow simulations, introduce excessive amounts of numerical viscosity which smears out small scale flow features. A few low-dissipation methods have been proposed in the recent literature. They are more selective in the sense that they explicitly identify the portion of the numerical flux that is diffusive and damp its effect in 'smooth' regions of the flow. This work employs flux vector splitting methods; the dissipative portions of the Steger-Warming schemes are explicitly identified and various shock detection switches are explored. For high Reynolds number flows, especially when the energetic scales are close to the Nyquist limits of the grids used, aliasing errors become noticeable. These high frequency oscillations that arise due to the nonlinear nature of the Navier-Stokes equations cause solutions to become unstable. When dissipative methods are used, these errors are suppressed; however when using low-dissipation schemes, they can be prominent and need to be addressed by some other means. In this thesis, we focus on methods that enhance stability by enforcing 'secondary conservation' - the fluxes are constrained in such a way that a conservation law for a secondary, positive quantity is also satisified. In particular, we focus on kinetic energy, and a fully discrete (in time and space) 'kinetic energy consistent' scheme is derived and tested. Hybrid RAMS-LES methods such as Detached Eddy Simulations are necessary in order to make simulations of high speed flows with attached boundary layers affordable. A popular DES model is based on the Spalart-Allmaras RANS equation; a minor modification to the length scale makes the model behave in a hybrid manner. The S-A model itself was constructed using mostly empirical arguments by the authors. This model is analyzed and its connection to other turbulence models, in particular, the ksgs equation, is explored. A dynamic version of the model is proposed

  4. Flow Control for Unsteady and Separated Flows and Turbulent Mixing

    Science.gov (United States)

    1988-10-31

    conditions from surface pressure measurements complemented by advanced flow visulalization and the use of this information to provide active control of the...frequencies and phases were scheduled as functions of the measured jet speed. This was easily done since the information for the schedule had been well...points around the circumference of the jet exit using hot wire anemometers. If this does not give sufficient information for control, other sensors

  5. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  6. Turbulent transition modification in dispersed two-phase pipe flow

    Science.gov (United States)

    Winters, Kyle; Longmire, Ellen

    2014-11-01

    In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.

  7. Experimental study on gas-liquid bubbly turbulent flow in a large square duct

    Science.gov (United States)

    Sun, Haomin; Kunugi, Tomoaki; Nakamura, Hideo

    2012-11-01

    Gas-liquid bubbly turbulent flow exists in many industrial areas. Therefore, many experiments for gas-liquid bubbly turbulent flow have been carried out in circular pipes for bubbly turbulent flow model. However, the cross-section of many flow passages are not the circular shape. Since the secondary flow of 2nd kind for single phase turbulent flow in a non-circular duct is well-known, the interaction between the secondary flow of 2nd kind and bubbles in gas-liquid bubbly turbulent flow in the non-circular duct could play an important role. In this study, in order to validate gas-liquid bubbly turbulent flow model in the non-circular duct, measurements were performed in a large square (136 mm × 136 mm) duct with duct length of 2.8m. The distributions of primary velocity, void fraction and turbulent Reynolds stresses were measured by a hot film probe. It is well-known that the primary velocity distribution of the bubbly flow in a circular pipe has a peak in the pipe center. In contrast, it was found that the primary velocity peaked near the corner of the square duct. In addition, primary velocity distribution changes under various flow conditions were discussed by measuring data of the void fraction and turbulent Reynolds stresses. Financially Supported by JSPS and G-COE Program(J-051).

  8. Study on the relationship between turbulent normal stresses in the fully developed bare rod bundle flow

    International Nuclear Information System (INIS)

    Lee, Kye Bock; Lee, Byung Jin

    1995-01-01

    The turbulence structure for fully developed flow through the subchannels formed by the bare rod array depends on the pitch to rod diameter ratio. For fairly open spaced bare rod arrays, the distributions of the three components of the turbulent normal stresses are similar to those measured in circular pipe. However, for more closely spaced arrays, the turbulence structure, especially in the gap region, departs markedly from the pipe flow distribution. A linear relationship between turbulent normal stresses and turbulent kinetic energy for fully developed turbulent flow through regularly spaced bare rod arrays has been developed. This correlation can be used in connection with various theoretical analyses applied in turbulence research. 9 figs., 10 refs. (Author)

  9. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  10. Turbulent Flows Over Three-Dimensional Shark Skin

    Science.gov (United States)

    Boomsma, Aaron; Wen, Li; Lauder, George; Sotiropoulos, Fotis

    2012-11-01

    Shark skin is covered with thousands of small tooth-like structures called denticles. It has long been hypothesized that denticles act as riblets do in a turbulent boundary layer and help reduce friction drag and enhance shark swimming efficiency. We employ the Curvilinear Immersed Boundary (CURVIB) method (Ge and Sotiropoulos, J. Comp. Physics, 2008) to carry out high-resolution large eddy simulations of turbulent flow past a series of anatomically realistic shark denticles mounted on a flat plate. The denticle shapes used in our simulations were obtained by scanning Mako Short Fin shark skin with micro-CT. The computed results are analyzed to elucidate the three-dimensional structure of the flow past the denticles and identify possible drag reduction mechanics. Drag measurements obtained in a laboratory flume for various denticle spacings and arrangements are also reported and analyzed in tandem with the LES results to explore similarities between shark skin and engineered riblets. Computational Resources were provided by the University of Minnesota Supercomputing Institute.

  11. Reinvestigation on mixing length in an open channel turbulent flow

    Science.gov (United States)

    Kundu, Snehasis; Kumbhakar, Manotosh; Ghoshal, Koeli

    2018-02-01

    The present study proposes a model on vertical distribution of streamwise velocity in an open channel turbulent flow through a newly proposed mixing length, which is derived for both clear water and sediment-laden turbulent flows. The analysis is based on a theoretical consideration which explores the effect of density stratification on the streamwise velocity profile. The derivation of mixing length makes use of the diffusion equation where both the sediment diffusivity and momentum diffusivity are taken as a function of height from the channel bed. The damping factor present in the mixing length of sediment-fluid mixture contains velocity and concentration gradients. This factor is capable of describing the dip-phenomenon of velocity distribution. From the existing experimental data of velocity, the mixing length data are calculated. The pattern shows that mixing length increases from bed to the dip-position, having a larger value at dip-position and then decreases up to the water surface with a zero value thereat. The present model agrees well with these data sets and this behavior cannot be described by any other existing model. Finally, the proposed mixing length model is applied to find the velocity distribution in wide and narrow open channels. The derived velocity distribution is compared with laboratory channel data of velocity, and the comparison shows good agreement.

  12. Image analysis techniques for the study of turbulent flows

    Science.gov (United States)

    Ferrari, Simone

    In this paper, a brief review of Digital Image Analysis techniques employed in Fluid Mechanics for the study of turbulent flows is given. Particularly the focus is on the techniques developed by the research teams the Author worked in, that can be considered relatively "low cost" techniques. Digital Image Analysis techniques have the advantage, when compared to the traditional techniques employing physical point probes, to be non-intrusive and quasi-continuous in space, as every pixel on the camera sensor works as a single probe: consequently, they allow to obtain two-dimensional or three-dimensional fields of the measured quantity in less time. Traditionally, the disadvantages are related to the frequency of acquisition, but modern high-speed cameras are typically able to acquire at frequencies from the order of 1 KHz to the order of 1 MHz. Digital Image Analysis techniques can be employed to measure concentration, temperature, position, displacement, velocity, acceleration and pressure fields with similar equipment and setups, and can be consequently considered as a flexible and powerful tool for measurements on turbulent flows.

  13. Image analysis techniques for the study of turbulent flows

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2017-01-01

    Full Text Available In this paper, a brief review of Digital Image Analysis techniques employed in Fluid Mechanics for the study of turbulent flows is given. Particularly the focus is on the techniques developed by the research teams the Author worked in, that can be considered relatively “low cost” techniques. Digital Image Analysis techniques have the advantage, when compared to the traditional techniques employing physical point probes, to be non-intrusive and quasi-continuous in space, as every pixel on the camera sensor works as a single probe: consequently, they allow to obtain two-dimensional or three-dimensional fields of the measured quantity in less time. Traditionally, the disadvantages are related to the frequency of acquisition, but modern high-speed cameras are typically able to acquire at frequencies from the order of 1 KHz to the order of 1 MHz. Digital Image Analysis techniques can be employed to measure concentration, temperature, position, displacement, velocity, acceleration and pressure fields with similar equipment and setups, and can be consequently considered as a flexible and powerful tool for measurements on turbulent flows.

  14. DNS of turbulent channel flow subject to oscillatory heat flux

    Directory of Open Access Journals (Sweden)

    Bukhvostova Anastasia

    2014-01-01

    Full Text Available In this paper we study the heat transfer in a turbulent channel flow, which is periodically heated through its walls. We consider the flow of air and water vapor using direct numerical simulation. We consider the fluid as a compressible Newtonian gas. We focus on the heat transfer properties of the system, e.g., the temperature difference between the walls and the Nusselt number. We consider the dependence of these quantities on the frequency of the applied heat flux. We observe that the mean temperature difference is quite insensitive to the frequency and that the amplitude of its oscillations is such that its value multiplied by the square root of frequency is approximately constant. Next we add droplets to the channel, which can undergo phase transitions. The heat transfer properties of the channel in the case with droplets are found to increase by more than a factor of two, compared to the situation without droplets.

  15. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially

  16. Fast linear solvers for variable density turbulent flows

    Science.gov (United States)

    Pouransari, Hadi; Mani, Ali; Darve, Eric

    2015-11-01

    Variable density flows are ubiquitous in variety of natural and industrial systems. Two-phase and multi-phase flows in natural and industrial processes, astrophysical flows, and flows involved in combustion processes are such examples. For an ideal gas subject to low-Mach approximation, variations in temperature can lead to a non-uniform density field. In this work, we consider radiatively heated particle-laden turbulent flows as an example application in which density variability is resulted from inhomogeneities in the heat absorption by an inhomogeneous particle field. Under such conditions, the divergence constraint of the fluid is enforced through a variable coefficient Poisson equation. Inversion of the discretized variable coefficient Poisson operator is difficult using the conventional linear solvers as the size of the problem grows. We apply a novel hierarchical linear solve algorithm based on low-rank approximations. The proposed linear solver could be applied to variety of linear systems arising from discretized partial differential equations. It can be used as a standalone direct-solver with tunable accuracy and linear complexity, or as a high-accuracy pre-conditioner in conjunction with other iterative methods.

  17. Large-eddy simulation of unidirectional turbulent flow over dunes

    Science.gov (United States)

    Omidyeganeh, Mohammad

    We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves

  18. Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage

    Directory of Open Access Journals (Sweden)

    Abhishek G. Ramgadia

    2012-01-01

    Full Text Available Numerical simulations of hydrodynamic and thermally fully developed turbulent flow are presented for flow through a stationary duct with periodic array of inline transverse rib turbulators. The rib height to hydraulic diameter ratio (/ℎ is 0.1 and the rib pitch to rib height ratio (/ is 10. The effect of secondary flow due to presence of rib turbulators on heat and mass transfer has been investigated. The present work reviews the use of a large eddy simulation (LES turbulence model, known as shear-improved Smagorinsky model (SISM, for predicting flow and heat transfer characteristics in the fully developed periodic flow region. The computations are performed for Reynolds number of 2,053 and the working fluid chosen to be air, the Prandtl number of which is 0.7. Instantaneous flow field, time-mean, and turbulent quantities are reported together with heat transfer and a close match with experiments has been observed.

  19. Turbulent shear flows 6; International Symposium, 6th, Universite de Toulouse III, France, Sept. 7-9, 1987, Selected Papers

    Science.gov (United States)

    Andre, Jean-Claude; Cousteix, Jean; Durst, Franz; Launder, Brian E.; Schmidt, Frank W.

    1989-08-01

    The conference presents papers on scalar transport and geophysical flows, aerodynamic flows, complex flows, and numerical simulation. Particular attention is given to an eigenfunction analysis of turbulent thermal convection, turbulent diffusion behind a heated line source in a nearly homogeneous turbulent shear flow, and the evolution of axisymmetric wakes from attached and separated flows. Other topics include the vortex street and turbulent wakes behind a circular cylinder placed inside a rotating rectangular channel and a numerical study of a stably stratified mixing layer.

  20. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    Science.gov (United States)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  1. Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy.

    Science.gov (United States)

    Mulligan, Sean; De Cesare, Giovanni; Casserly, John; Sherlock, Richard

    2018-01-16

    Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has been well explicated which classically exhibits successive instability phases manifested in so-called Taylor vortices. In this study, observations made on the turbulent free-surface vortex revealed distinguishable, time-dependent "Taylor-like" vortices in the secondary flow field similar to the Taylor-Couette flow system. The observations were enabled by an original application of 2D ultrasonic Doppler velocity profiling complemented with laser induced fluorescence dye observations. Additional confirmation was provided by three-dimensional numerical simulations. Using Rayleigh's stability criterion, we analytically show that a wall bounded free-surface vortex can indeed become unstable due to a centrifugal driving force in a similar manner to the Taylor-Couette flow. Consequently, it is proposed that the free-surface vortex can be treated analogously to the Taylor-Couette flow permitting advanced conclusions to be drawn on its flow structure and the various states of free-surface vortex flow stability.

  2. Organized Oscillations of Initially-Turbulent Flow Past a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell

    2002-09-17

    Flow past an open cavity is known to give rise to self-sustained oscillations in a wide variety of configurations, including slotted-wall, wind and water tunnels, slotted flumes, bellows-type pipe geometries, high-head gates and gate slots, aircraft components and internal piping systems. These cavity-type oscillations are the origin of coherent and broadband sources of noise and, if the structure is sufficiently flexible, flow-induced vibration as well. Moreover, depending upon the state of the cavity oscillation, substantial alterations of the mean drag may be induced. In the following, the state of knowledge of flow past cavities, based primarily on laminar inflow conditions, is described within a framework based on the flow physics. Then, the major unresolved issues for this class of flows will be delineated. Self-excited cavity oscillations have generic features, which are assessed in detail in the reviews of Rockwell and Naudascher, Rockwell, Howe and Rockwell. These features, which are illustrated in the schematic of Figure 1, are: (i) interaction of a vorticity concentration(s) with the downstream corner, (ii) upstream influence from this corner interaction to the sensitive region of the shear layer formed from the upstream corner of the cavity; (iii) conversion of the upstream influence arriving at this location to a fluctuation in the separating shear layer; and (iv) amplification of this fluctuation in the shear layer as it develops in the streamwise direction. In view of the fact that inflow shear-layer in the present investigation is fully turbulent, item (iv) is of particular interest. It is generally recognized, at least for laminar conditions at separation from the leading-corner of the cavity, that the disturbance growth in the shear layer can be described using concepts of linearized, inviscid stability theory, as shown by Rockwell, Sarohia, and Knisely and Rockwell. As demonstrated by Knisely and Rockwell, on the basis of experiments interpreted

  3. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  4. Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence

    Science.gov (United States)

    Selvam, Kamal; Peixinho, Jorge; Willis, Ashley P.

    2016-12-01

    We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially, depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies, which applied a tilt perturbation, as the localised turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For large vortex amplitude, the localised turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic.

  5. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

    Science.gov (United States)

    Alhamdi, Sabah F. H.; Bailey, Sean C. C.

    2017-11-01

    Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.

  6. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and ...

  7. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  8. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    Abstract. In contrast with free shear flows presenting velocity profiles with inflection points which cascade to turbulence in a relatively mild way, wall bounded flows are de- prived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of ...

  9. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  10. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  11. Bead resuspension and saltation in a turbulent channel flow

    Science.gov (United States)

    van Hout, Rene

    2013-11-01

    Resuspension and saltation of near neutrally buoyant, polystyrene beads in a turbulent boundary layer was studied using TR-PIV and PTV in a horizontal, water channel facility (Re = 7353). Near wall coherent structures were visualized using spatial distributions of vorticity and swirling strength in combination with instantaneous u1u2 correlations and u1. Two case studies, (i) on resuspension and (ii) on saltation showed that lift-off coincided with vortex core passage creating an ejection-sweep cycle. In all cases, beads left the wall when immersed in near-wall ejections and exposed to positive shear. A high shear induced lift force coincided with bead lift-off while the Magnus force and translation induced lift were negligible. The wall-normal component of the drag force mostly opposed lift-off. The difference between resuspension and saltation was governed by the type of coherent structures the beads encountered when lifted out of the viscous sublayer. Resuspension occurred when beads were carried upwards by a combination of a strong, spatially coherent upstream fast moving flow structure and a downstream ejection. On the other hand, saltation was accompanied by similar albeit weaker and spatially less coherent near-wall turbulence structures.

  12. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  13. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Directory of Open Access Journals (Sweden)

    Slouka Martin

    2016-01-01

    Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  14. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Science.gov (United States)

    Slouka, Martin; Kozel, Karel

    2016-03-01

    This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  15. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    Science.gov (United States)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  16. Considerations for the application of cars to turbulent reacting flow

    International Nuclear Information System (INIS)

    Eckbreth, A.C.; Stufflebeam, J.H.

    1984-01-01

    Laser diagnostic techniques have certain advantages for an employment in combustion-related studies. In this connection, coherent anti-Stokes Raman spectroscopy (CARS) has received much attention, taking into account the improvement of the capabilities of CARS for studies regarding reacting flow. This paper is concerned with areas in which improvements would be desirable and with approaches for achieving them. Factors affecting single pulse CARS spectral quality are reviewed, and techniques for improving single pulse measurements are suggested.Attention is given to the physics of single pulse CARS generation, referencing, improved broadband dye laser profiles, temporally-smooth pump laser pulses, spatial mode effects, and single pulse averaging. The effects of turbulence and extinction on the viability of the various CARS concentration measurement approaches are discussed, and a mobile CARS instrument is considered. 47 references

  17. Considerations for the application of CARS to turbulent reacting flows

    Science.gov (United States)

    Eckbreth, A. C.; Stufflebeam, J. H.

    1985-11-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has matured considerably over recent years and is experiencing widespread application in fundamental and practical combustion situations. Its utilization in turbulent reacting flows is far from routine, however, and several problem areas need to be addressed and refined. This paper reviews these problems and assesses the status of current and proposed solution approaches. Due to its highly nonlinear dependence on temperature and species concentration, CARS measurements in time-varying environments necessitate assembly of “instantaneous” single-pulse measurement histograms, even to extract time-averaged properties. A number of factors contribute to distortion of single pulse CARS spectra and, thus, measurement inaccuracy; various improvement strategies will be evaluated. The problem of absolute concentration measurements at low and high Mach numbers in refracting and attenuating media will be discussed. The paper concludes with a description of an approach to permit CARS measurements of several species simultaneously in a single laser pulse.

  18. Drift-wave turbulence and zonal flow generation

    International Nuclear Information System (INIS)

    Balescu, R.

    2003-01-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows

  19. Assessment of closure coefficients for compressible-flow turbulence models

    Science.gov (United States)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1992-01-01

    A critical assessment is made of the closure coefficients used for turbulence length scale in existing models of the transport equation, with reference to the extension of these models to compressible flow. It is shown that to satisfy the compressible 'law of the wall', the model coefficients must actually be functions of density gradients. The magnitude of the errors that result from neglecting this dependence on density varies with the variable used to specify the length scale. Among the models investigated, the k-omega model yields the best performance, although it is not completely free from errors associated with density terms. Models designed to reduce the density-gradient effect to an insignificant level are proposed.

  20. Anisotropic Stochastic Vortex Structure Method for Simulating Particle Collision in Turbulent Shear Flows

    Science.gov (United States)

    Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing

    2017-11-01

    Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.

  1. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    Science.gov (United States)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  2. Complexity analysis of the turbulent environmental fluid flow time series

    Science.gov (United States)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  3. Highly turbulent Taylor-Couette flow: direct numerical simulations

    NARCIS (Netherlands)

    Ostilla Monico, Rodolfo

    2015-01-01

    Turbulence is all around us. Even if we are familiar with every day instances of turbulence, like the smoke coming out of a chimney, it remains a not-well-understood phenomenum. As it is impossible to fully simulate turbulence to precisely take into account its effect, models must be used. These

  4. Turbulence-driven shear flow and self-regulating drift wave turbulence in a cylindrical plasma device

    Science.gov (United States)

    Yan, Zheng

    This dissertation provides an experimental test of the basic theory of the self-regulating drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical plasma device. The work is carried out from three approaches: the first explores the statistical properties of the turbulent Reynolds stress and its link to the ZF generation, the second investigates the dynamical behavior of the DWT/ZF system and the third investigates the variation of the DWT driven ZF verses magnetic field strength and ion-neutral drag. A radially sheared azimuthally symmetric plasma flow is generated by the DWT turbulent Reynolds stress which is directly measured by a multi-tip Langmuir probe. A statistical analysis shows that the cross-phase between the turbulent radial and azimuthal velocity components is the key factor determining the detailed Reynolds stress profile. The coincidence of the radial location of the non-Gaussian distribution of the turbulent Reynolds stress and the ion saturation current, as well as the properties of the joint probability distribution function (PDF) between the radial particle flux and turbulent Reynolds stress suggest that the bursts of the particle transport appear to be associated with radial transport of azimuthal momentum as well. The results link the behavior of the Reynolds stress, its statistical properties, generation of bursty radially going azimuthal momentum transport events, and the formation of the large-scale ZF. From both Langmuir probe and fast-faming imaging measurements this shear flow is found to evolve with low frequency (˜250-300Hz). The envelope of the higher frequency (above 5kHz) floating potential fluctuations associated with the DWT, the density gradient, and the turbulent radial particle flux are all modulated out of phase with the strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at the same slow time scale in a phase-coherent manner consistent with a turbulence-driven shear flow

  5. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  6. Flow rate estimation using acoustic field distortions caused by turbulent flows: time-reversal approach

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, A L; Perez, N; Adamowski, J C, E-mail: zimmer09@gmail.com [Department of Mechatronics and Mechanical Systems Engineering, University of Sao Paulo, Sao Paulo, SP, 05508-10 (Brazil)

    2011-05-01

    A new acoustic technique for flow rate estimation is proposed here. This technique is based on the traditional ultrasonic cross-correlation flow meter, but instead of using a continuous wave or pulse trains in each transmitter-receiver pair, the acoustic time-reversal technique is applied. The system relies on the principle that a turbulent flow with multiple vortices will cause random distortions in a given acoustic field; hence, analyzing this noise caused in the ultrasound signal by the turbulence over time allows a 'signature' or 'tag' of the flow to be defined. In other words, the vortices modify the frequency response function of the flowing system uniquely, since the distortion is assumed to be random. The use of the time-reversal procedure in the cross-correlation flow meter provides improvements in several aspects: it simplifies the signal processing needed after the reception of the signals, avoiding the use of a demodulator to obtain the signature of the vortex; the signal is focused at the position of the reception transducer and; the sensitivity is also increased because the wave travels twice in the acoustic channel. The method is theoretically discussed showing its limitations and improvements. Experimental results in a laboratory water tank are also presented.

  7. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  8. Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1978-01-01

    Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)

  9. Nonlinear dynamics of clustering in particle-laden turbulent flows

    Science.gov (United States)

    Esmaily, Mahdi; Mani, Ali

    2017-11-01

    Heavy inertial particles in spatially and temporally varying flows can form clusters if their relaxation time is on the order of the dissipation time scale of the flow. This regime, identified by St = O (1) , is investigated in this study using analytical tools. We show that the nonlinear variation of segregation versus St can be explained by considering a one-dimensional canonical setting where particles are subjected to an oscillatory velocity gradient that is constant in space. Our analysis shows that the Lyapunov exponent, as a measure of particle segregation, reaches a minimum at St = O (1) and becomes positive at St >> 1 and approaches zero as St -> 0 or ∞. These predictions, which are corroborated by the numerical results, are directly linked and compared against measurements of the dispersion and segregation in three-dimensional turbulence. Our analysis reveals a strongly nonlinear behavior of the Lyapunov exponents in the straining regimes of strong oscillations. This work was supported by the United States Department of Energy under the Predictive Science Academic Alliance Program 2 (PSAAP2) at Stanford University.

  10. Effects of traveling waves on flow separation and turbulence

    Science.gov (United States)

    Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team

    2017-11-01

    Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.

  11. Maximal mixing rate in turbulent stably stratified Couette flow

    Science.gov (United States)

    Caulfield, C. P.; Kerswell, R. R.

    2001-11-01

    A rigorous upper bound on the long-time-averaged vertical buoyancy flux is derived from the Navier-Stokes equations for a Boussinesq fluid confined between two parallel horizontal plates a distance d apart, maintained at a constant statically stabilizing temperature difference Δ T and driven at a constant relative velocity Δ U. The upper bound on the volume and long-time-averaged vertical buoyancy flux \\cal B := limt arrow ∞ 1/t int^t0 g/ρ0 dtildet is \\cal B <= \\cal B_max=(1-16√2/Re) (Δ U)^3 /(64 √2d) where Re=Δ Ud/ν and ρ0 is some reference density. Significantly, \\cal B_max is independent of the bulk Richardson number of the flow and is achieved by an optimal solution with a mixing efficiency (or flux Richardson number) which approaches 0.5 as the Reynolds number becomes large. The time-averaged turbulent dissipation of kinetic energy and the time-averaged vertical buoyancy flux are then in equipartition for the optimising flow.

  12. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  13. Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration

    CERN Document Server

    Pozorski, Jacek

    2017-01-01

    The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

  14. Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    2007-01-01

    Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

  15. Modeling turbulent compressible flows - The mass fluctuating velocity and squared density

    Science.gov (United States)

    Taulbee, D.; Vanosdol, J.

    1991-01-01

    This paper deals with single-point closure theory for compressible turbulent flow, including the effects of compressibility on the turbulence. In particular, the combination of the pressure dilatation and the dilatation dissipation, terms which appear on the turbulent kinetic energy equation, are modeled. Model parameters in these transport equations are determined by comparing predictions with boundary layer measurements. Finally, predictions with a k-epsilon model, including the new formulations, are presented for the compressible shear layer.

  16. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  17. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  18. Turbulent Mechanical Energy Budget in Stably Stratified Baroclinic Flows over Sloping Terrain

    Science.gov (United States)

    Łobocki, Lech

    2017-09-01

    Analysis of second-moment budget equations in a slope-oriented coordinate frame exhibits the pathways of exchange between the potential energy of mean flow and the total turbulent mechanical energy. It is shown that this process is controlled by the inclination of the potential temperature gradient. Hence, this parameter should be considered in studies of turbulence in slope flows as well as the slope inclination. The concept of turbulent potential energy is generalized to include baroclinicity, and is used to explain the role of along-slope turbulent heat flux in energy conversions. A generalization of static stability criteria for baroclinic conditions is also proposed. In addition, the presence of feedback between the turbulent heat flux and the temperature variance in stably-stratified flows is identified, which implies the existence of oscillatory modes characterized by the Brunt-Väisäla frequency.

  19. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Muriel, A.

    2012-01-01

    We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.

  1. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    Science.gov (United States)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  2. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  3. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  4. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  5. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  6. Advances in universal scaling for broadband turbulent noise in internal flow devices

    NARCIS (Netherlands)

    Violato, D.; Jong, A.T. de; Golliard, J.

    2014-01-01

    This paper focuses on the scalability of broadband turbulent noise in internal pipe flows. It discusses a universal scaling approach for broadband turbulent noise that is based on surface acoustic power modeled by ANSYS Fluent. This investigation proposes a strategy for amplitude scaling at

  7. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    Science.gov (United States)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  8. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  9. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    International Nuclear Information System (INIS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-01-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data

  10. NUMERICAL SIMULATION OF CAVITY FLOW AND FLOW OVER AIRCRAFT COMPARTMENT USING SEMI-EMPIRICAL TURBULENCE MODELS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is devoted to the validation and application of CFD code for turbulent flows. Two-dimensional un- steady flows in the cavities and compartments and three-dimensional flow in the compartment of complex geometry have been considered. Two turbulence parameter oriented models are used.Numerical simulation of unsteady transonic flow (Mоо=0.74 in a narrow channel with a cavity inside has been conducted. The dependence of the static pressure on time at fixed points in space has been obtained. The fast Fourier trans- form has been applied for processing data of static pressure. The difference of 6-10% between the numerical and experi-mental data has been obtained.The computations of unsteady transonic cavity flow with Mach number Mоо=0.85 have been performed. Low fre- quency oscillations of the static pressure in several fixed points in space have been obtained. Power spectrum of oscilla- tions at the center of the cavity is compared with experimental data and Rossiter modes. An acceptable agreement between experimental and computed data has been achieved. The influence of geometrical factors on the frequency characteristics of the flow has been investigated. For this purpose two round flaps have been added to the cavity. The most low-frequency oscillation modes changed by the presence of the flaps. The first mode was gone, the second mode amplitude decreased and the third mode amplitude significantly decreased. The changes in height of protruding part of the geometry to the external flow have led to changes in pressure pulsation amplitude without changing the frequency. The spectral functions obtained while using the two considered models of turbulence have been compared for this case. It is found that the frequency values are only slightly different; the main difference is present at the amplitude of pulsations.The effect of deflection of flat flap on the non-stationary subsonic flow parameters in a cylindrical body with an inner

  11. An algebraic stress/flux model for two-phase turbulent flow

    International Nuclear Information System (INIS)

    Kumar, R.

    1995-12-01

    An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

  12. Coherent structures in high Reynolds number turbulent shear flows

    Science.gov (United States)

    Zare, Armin; Nichols, Joseph; Jovanovic, Mihailo

    2017-11-01

    Spatio-temporal frequency response analysis of stochastically-forced linearized Navier-Stokes equations enables efficient computation of the energy amplification as well as estimation of the convection velocity and spatial structure of fluctuations. For a turbulent channel flow with Rτ = 2003 , we build on recent work by Zare, Jovanovic, and Georgiou (J. Fluid Mech., vol. 812, 2017) to determine the forcing statistics to the linearized model that provide consistency with the result of nonlinear simulations in matching one-point velocity correlations. The frequency response of the resulting model can be used to estimate the convection velocity for various spatial length scales as a function of the wall-normal distance. We examine two-point correlations of the fluctuating velocity field and the wall-normal support of the most amplified spatial structures. Our results provide insight into the validity of Taylor's hypothesis as well as the functional forms of two-point correlations that result from Townsend's attached-eddy hypothesis.

  13. Flow, turbulence, and pollutant dispersion in urban atmospheresa)

    Science.gov (United States)

    Fernando, H. J. S.; Zajic, D.; Di Sabatino, S.; Dimitrova, R.; Hedquist, B.; Dallman, A.

    2010-05-01

    The past half century has seen an unprecedented growth of the world's urban population. While urban areas proffer the highest quality of life, they also inflict environmental degradation that pervades a multitude of space-time scales. In the atmospheric context, stressors of human (anthropogenic) origin are mainly imparted on the lower urban atmosphere and communicated to regional, global, and smaller scales via transport and turbulence processes. Conversely, changes in all scales are transmitted to urban regions through the atmosphere. The fluid dynamics of the urban atmospheric boundary layer and its prediction is the theme of this overview paper, where it is advocated that decision and policymaking in urban atmospheric management must be based on integrated models that incorporate cumulative effects of anthropogenic forcing, atmospheric dynamics, and social implications (e.g., health outcomes). An integrated modeling system juxtaposes a suite of submodels, each covering a particular range of scales while communicating with models of neighboring scales. Unresolved scales of these models need to be parametrized based on flow physics, for which developments in fluid dynamics play an indispensible role. Illustrations of how controlled laboratory, outdoor (field), and numerical experiments can be used to understand and parametrize urban atmospheric processes are presented, and the utility of predictive models is exemplified. Field experiments in real urban areas are central to urban atmospheric research, as validation of predictive models requires data that encapsulate four-dimensional complexities of nature.

  14. Rigid spherical particles in highly turbulent Taylor-Couette flow

    Science.gov (United States)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  15. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique

    Science.gov (United States)

    Wang, Hang; Felder, Stefan; Chanson, Hubert

    2014-07-01

    Intense turbulence develops in the two-phase flow region of hydraulic jump, with a broad range of turbulent length and time scales. Detailed air-water flow measurements using intrusive phase-detection probes enabled turbulence characterisation of the bubbly flow, although the phenomenon is not a truly random process because of the existence of low-frequency, pseudo-periodic fluctuating motion in the jump roller. This paper presents new measurements of turbulent properties in hydraulic jumps, including turbulence intensity, longitudinal and transverse integral length and time scales. The results characterised very high turbulent levels and reflected a combination of both fast and slow turbulent components. The respective contributions of the fast and slow motions were quantified using a triple decomposition technique. The decomposition of air-water detection signal revealed "true" turbulent characteristics linked with the fast, microscopic velocity turbulence of hydraulic jumps. The high-frequency turbulence intensities were between 0.5 and 1.5 close to the jump toe, and maximum integral turbulent length scales were found next to the bottom. Both decreased in the flow direction with longitudinal turbulence dissipation. The results highlighted the considerable influence of hydrodynamic instabilities of the flow on the turbulence characterisation. The successful application of triple decomposition technique provided the means for the true turbulence properties of hydraulic jumps.

  16. PIV and DNS analyses of viscoelastic turbulent flows behind a rectangular orifice

    International Nuclear Information System (INIS)

    Tsukahara, Takahiro; Motozawa, Masaaki; Tsurumi, Daisei; Kawaguchi, Yasuo

    2013-01-01

    Highlights: • Viscoelastic fluid turbulence in relaxing and non-equilibrium flow is investigated. • Numerical and experimental results of viscoelastic turbulent orifice flow are provided. • DNS result using Giesekus model agrees well with the experimental one by surfactant solution. • Formation of Kelvin–Helmholtz vortices behind the orifice weakens in viscoelastic flows. • Highly viscoelastic flow reduces the form drag, but increases the skin friction due to extra stress. -- Abstract: We performed PIV (particle image velocimetry) measurements and DNS (direct numerical simulations) on turbulent orifice flows for the Newtonian fluid and viscoelastic fluids, and compared their results with emphasis on turbulence statistics and vortical motions just behind the orifice rib. In the experiment, a cationic surfactant solution of CTAC (cetyltrimethyl ammonium chloride) was chosen as the viscoelastic fluid that is known to provide substantial drag reduction in the case of smooth-wall turbulence. In the viscoelastic flows, the formation of the Kelvin–Helmholtz vortices emanating from the orifice edge was found to be attenuated compared to the Newtonian case, resulting in the suppression of turbulent eddies and Reynolds shear stress behind the orifice. However, the variation of the drag depended on the Reynolds number and the surfactant concentration (or the Weissenberg number): that is, the drag-reducing effect can be achieved only in limited conditions or low Reynolds-number flows. Although DNS results was found to be in qualitative agreement with the experimental data, we discussed also inconsistency between the experimental and DNS results

  17. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...

  18. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  19. A High Order Accuracy Computational Tool for Unsteady Turbulent Flows and Acoustics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate simulations of unsteady turbulent flows for aerodynamics applications, such as accurate computation of heat loads on space vehicles as well the interactions...

  20. Angular momentum transport and turbulence in laboratory models of Keplerian flows

    NARCIS (Netherlands)

    Paoletti, M.S.; van Gils, Dennis Paulus Maria; Dubrulle, B.; Sun, Chao; Lohse, Detlef; Lathrop, D.P.

    2012-01-01

    We present angular momentum transport (torque) measurements in two recent experimental studies of the turbulent flow between independently rotating cylinders. In addition to these studies, we reanalyze prior torque measurements to expand the range of control parameters for the experimental

  1. A High Order Accuracy Computational Tool for Unsteady Turbulent Flows and Acoustics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this research effort is to develop a higher order unsteady turbulent flow solver based on the FDV method, and to exploit its attributes of...

  2. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  3. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  4. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    Science.gov (United States)

    Louda, Petr; Sváček, Petr; Kozel, Karel; Příhoda, Jaromír

    2014-12-01

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  5. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Louda, Petr; Příhoda, Jaromír [Institute of Thermomechanics, Czech Academy of Sciences, Prague (Czech Republic); Sváček, Petr; Kozel, Karel [Czech Technical University in Prague, Fac. of Mechanical Engineering (Czech Republic)

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  6. Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...

  7. Testing a random phase approximation for bounded turbulent flow

    International Nuclear Information System (INIS)

    Ulitsky, M.; Clark, T.; Turner, L.

    1999-01-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., left-angle c(k 1 )c(k 2 )right-angle=δ(k 1 +k 2 )left-angle c(k 1 )c(k 2 )right-angle, where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N 3 grid points actually requires N 3 +1 members in the ensemble. The open-quotes randomnessclose quotes of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N 3 +1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between

  8. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  9. A field study of turbulent flows in shallow gravel-bed rivers

    OpenAIRE

    Franca, Mário Jorge Rodrigues Pereira da; Lemmin, Ulrich

    2007-01-01

    The study of turbulent flows has always been a challenge for scientists. Turbulent flows are common in nature and have an important role in several geophysical processes related to a variety of phenomena such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work in order to advance in the understanding of river processes. In this Ph.D. ...

  10. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  11. A comparative study of turbulence models for dissolved air flotation flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong [School of Mechanical and Aerospace Engineering, Sejong University, Seoul (Korea, Republic of); Seo, Seung Ho [Tops Engineering Co, Ltd., Gwangmyeong (Korea, Republic of)

    2015-07-15

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

  12. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  13. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test

    Science.gov (United States)

    2017-11-01

    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition

  14. Numerical investigation of turbulence models for shock separated boundary-layer flows

    Science.gov (United States)

    Viegas, J. R.; Coakley, T. J.

    1977-01-01

    Numerical solutions of the Navier-Stokes equations for shock separated turbulent boundary-layer flows are presented. Several turbulence models are investigated and assessed by their ability to predict the physical phenomena associated with two extensively documented experiments. The experimental flows consist of shock-wave boundary-layer interactions in axisymmetric internal and external geometries at Mach numbers of 1.5 and 7, respectively. Algebraic and one-equation eddy viscosity models are used to describe the Reynolds shear stress. Calculated values of skin friction, wall pressure distribution, kinetic energy of turbulence, and heat transfer are compared with measurements.

  15. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  16. On the self-preservation of turbulent jet flows with variable viscosity

    Science.gov (United States)

    Danaila, Luminita; Gauding, Michael; Varea, Emilien; Turbulence; mixing Team

    2017-11-01

    The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express one-point or two-point statistics by choosing an appropriate unique length scale. Determining this length scale and its scaling is of high relevance for modeling. In this work, we study turbulent jet flows with variable viscosity from the self-preservation perspective. Turbulent flows encountered in engineering and environmental applications are often characterized by fluctuations of viscosity resulting for instance from variations of temperature or species composition. Starting from the transport equation for the moments of the mixture fraction increment, constraints for self-preservation are derived. The analysis is based on direct numerical simulations of turbulent jet flows where the viscosity between host and jet fluid differs. It is shown that fluctuations of viscosity do not affect the decay exponents of the turbulent energy or the dissipation but modify the scaling of two-point statistics in the dissipative range. Moreover, the analysis reveals that complete self-preservation in turbulent flows with variable viscosity cannot be achieved. Financial support from Labex EMC3 and FEDER is gratefully acknowledged.

  17. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  18. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms

    Directory of Open Access Journals (Sweden)

    Hanmaiahgari Prashanth Reddy

    2017-03-01

    Full Text Available Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV to evaluate the turbulence structure of free surface flow over a fixed (immobile bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.

  19. Experimental study of drop breakup in a turbulent flow; Etude experimentale de la rupture de gouttes dans un ecoulement turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Galinat, S.

    2005-04-15

    This work presents the drop breakup phenomenon in a turbulent flow induced by a cross-section restriction in a pipe. A global analysis of single-drop breakup, in a finite volume downstream of the orifice, has allowed deriving statistical quantities such as the break-up probability and the daughter-drop distribution. These parameters are function of a global Weber number based on the maximal pressure drop through the orifice. At a local scale, the locations of breakup events are distributed heterogeneously and depend on the flow Reynolds number. The local hydrodynamic study in downstream of the orifice, which has been done by using Particle Image Velocimetry, reveals the specific breakup zones. Otherwise, this analysis has proved that the turbulence is the predominant external stress at the drop scale. The relation between drop deformation and the external stress along the trajectory has been simulated numerically by the response of a damped oscillator to the locally measured instantaneous turbulence forcing. The results of statistical analysis have allowed to introduce a breakup criterion, based on a unique deformation threshold value for all experiments. This multi-scale approach has been conducted to study drop breakup mechanisms in a concentrated dispersion. The breakup probability decrease with the increase of dispersed phase concentration, which influences the turbulent Weber number distribution in downstream of the orifice. (author)

  20. Effects of turbulence model selection on the prediction of complex aerodynamic flows

    Science.gov (United States)

    Coakley, T. J.; Bergmann, M. Y.

    1979-01-01

    Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are described. The simulations are made with a new computer program designed to serve as a tool in the development of improved turbulence models for complex flows. The program incorporates zero-, one-, and two-equation eddy viscosity models and includes a variety of subsonic and supersonic boundary conditions. The airfoil flow contains a shock-separated boundary-layer interaction that has resisted previous attempts at simulation. The diffuser flow also contains a shock-boundary-layer interaction, which has not been simulated previously. Calculations using standard turbulence models, developed originally for incompressible unseparated flows, are described. Results indicate that although there are interesting differences in predictions between the various models, none of them predict the flows accurately. Suggestions for improved turbulence models are discussed.

  1. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  2. Analytical and numerical investigations of laminar and turbulent Poiseuille-Ekman flow at different rotation rates

    Science.gov (United States)

    Mehdizadeh, A.; Oberlack, M.

    2010-10-01

    Laminar and turbulent Poiseuille-Ekman flows at different rotation rates have been investigated by means of analytical and numerical approaches. A series of direct numerical simulations (DNSs) with various rotation rates (Ro2=0-1.82) for Reynolds number Reτ0=180 based on the friction velocity in the nonrotating case has been conducted. Both (laminar and turbulent) flow states are highly sensitive to the rotation. Even a small rotation rate can reduce the mean streamwise velocity and induce a very strong flow in the spanwise direction, which, after attaining a maximum, decreases by further increasing the rotation rate. It has been further observed that turbulence is damped by increasing the rotation rate and at about Ro2=0.145 a transition from the fully turbulent to a quasilaminar state occurs. In this region Reynolds number is only large enough to sustain some perturbations and the mean velocity profiles have inflection points. The instability of the turbulent shear stress is probably the main reason for the formation of the elongated coherent structures (roll-like vortices) in this region. In the fully turbulent parameter domain all six components of Reynolds stress tensor are nonzero due to the existence of the spanwise mean velocity. The Poiseuille-Ekman flow in this region can be regarded as a turbulent two-dimensional channel flow with a mean flow direction inclining toward the spanwise direction. Finally, due to the further increase in the rotation rate, at about Ro2=0.546 turbulence is completely damped and the flow reaches a fully laminar steady state, for which an analytical solution of the Navier-Stokes equations exists. The DNS results reproduce this analytical solution for the laminar state.

  3. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  4. LES of turbulent flow in a concentric annulus with rotating outer wall

    International Nuclear Information System (INIS)

    Hadžiabdić, M.; Hanjalić, K.; Mullyadzhanov, R.

    2013-01-01

    Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change

  5. Analysis of the clustering of inertial particles in turbulent flows

    Science.gov (United States)

    Esmaily-Moghadam, Mahdi; Mani, Ali

    2016-12-01

    An asymptotic solution is derived for the motion of inertial particles exposed to Stokes drag in an unsteady random flow. This solution provides an estimate for the sum of Lyapunov exponents as a function of the Stokes number and Lagrangian strain- and rotation-rate autocovariance functions. The sum of exponents in a Lagrangian framework is the rate of contraction of clouds of particles, and in an Eulerian framework, it is the concentration-weighted divergence of the particle velocity field. Previous literature offers an estimate of the divergence of the particle velocity field, which is applicable only in the limit of small Stokes numbers [Robinson, Comm. Pure Appl. Math. 9, 69 (1956), 10.1002/cpa.3160090105 and Maxey, J. Fluid Mech. 174, 441 (1987), 10.1017/S0022112087000193] (R-M). In addition to reproducing R-M at this limit, our analysis provides a first-order correction to R-M at larger Stokes numbers. Our analysis is validated by a directly computed rate of contraction of clouds of particles from simulations of particles in homogeneous isotropic turbulence over a broad range of Stokes numbers. Our analysis and R-M predictions agree well with the direct computations at the limit of small Stokes numbers. At large Stokes numbers, in contrast to R-M, our model predictions remain bounded. In spite of an improvement over R-M, our analysis fails to predict the expansion of high Stokes clouds observed in the direct computations. Consistent with the general trend of particle segregation versus Stokes number, our analysis shows a maximum rate of contraction at an intermediate Stokes number of O (1 ) and minimal rates of contraction at small and large Stokes numbers.

  6. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  7. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  8. Self-regulation of mean flows in strongly stratified sheared turbulence

    Science.gov (United States)

    Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard

    2016-11-01

    We investigate the near-equilibrium state of shear-driven stratified turbulence generated by the breaking of Holmboe wave instability (HWI) and Kelvin-Helmholtz instability (KHI). We discuss DNS analyses associated with HWI under various initial conditions. We analyze the time-dependent distribution of the gradient Richardson number, Rig (z , t) associated with the horizontally-averaged velocity and density fields. We demonstrate that unlike the KHI-induced turbulence, the fully turbulent flow that is generated by HWI is robustly characterized by its high probability of Rig 0 . 2 - 0 . 25 , independent of the strength of the initial stratification and furthermore that the turbulence evolves in a 'near-equilibrium' state. The KHI-induced turbulence may become grossly 'out of equilibrium', however, and therefore decays rapidly when the initial value at the interface, Rig (0 , 0) , is closer to the critical value of 1/4; otherwise as Rig (0 , 0) -> 0 the KHI-induced turbulence is close to a state of equilibrium and hence is much more long-lived. We conjecture that stratified shear turbulence tends to adjust to a state of 'near-equilibrium' with horizontally-averaged flows characterized by a high probability of Rig <= 1 / 4 , and hence sustained turbulence over relatively long times.

  9. DNS of viscoelastic turbulent channel flow with rectangular orifice at low Reynolds number

    International Nuclear Information System (INIS)

    Tsukahara, Takahiro; Kawase, Tomohiro; Kawaguchi, Yasuo

    2011-01-01

    Direct numerical simulations of turbulent viscoelastic-fluid flow in a channel with a rectangular orifice were performed to investigate the influence of viscoelasticity on turbulence statistics and turbulent structures downstream of the orifice. The geometry considered is periodic rectangular orifices with 1:2 expansion. The constitutive equation follows the Giesekus model, valid for polymer (or surfactant) solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. The friction Reynolds number and the Weissenberg number were set to 100 and 20-30, respectively. A drag reduction of about 20% was achieved in the viscoelastic flows. The onset Reynolds number for the transition from a symmetric to an asymmetric state was found to be shifted to higher values than that for the Newtonian flow. In the viscoelastic flow, the turbulent kinetic energy was decreased and fewer turbulent eddies were observed, as the Kelvin-Helmholtz vortices were quickly damped. Away from the orifice, quasi-streamwise vortices in the viscoelastic flow were sustained for a longer period, accompanied by energy exchange from elastic energy of the viscoelastic fluid to kinetic energy.

  10. Steady and decaying quantum turbulence generated in He II flow channel by counterflow and pure super flow

    International Nuclear Information System (INIS)

    Chagovets, T.V.; Gordeev, A.V.; Rotter, M.; Soukup, F.; Sindelar, J.; Skrbek, J.

    2006-01-01

    We report experimental investigations of He II turbulence and its decay. Turbulent state was generated by counterflow and pure super flow in channels of circular and square cross-section. The steady-state turbulence is generated by applying power to the heater placed either in the dead end of the channel or immersed in He II in a volume adjacent to one of the silver sintered super leaks having an outlet above the helium bath level When this power is switched off, quantum turbulence displays a complex decay. We discuss the steady state data and forms of the observed decays in terms of available models and compare with quantum turbulence generated by towing a grid of bars through a stationary sample of He II (Authors)

  11. Multiphysics Simulations of Entrained Flow Gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model

    KAUST Repository

    Kumar, Mayank

    2012-01-19

    In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.

  12. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load.

    Science.gov (United States)

    Hockley, F A; Wilson, C A M E; Brew, A; Cable, J

    2014-02-06

    Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence.

  13. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load

    Science.gov (United States)

    Hockley, F. A.; Wilson, C. A. M. E.; Brew, A.; Cable, J.

    2014-01-01

    Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence. PMID:24284893

  14. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  15. Entropy-viscosity based LES of turbulent flow in a flexible pipe

    Science.gov (United States)

    Wang, Zhicheng; Xie, Fangfang; Triantafyllou, Michael; Constantinides, Yiannis; Karniadakis, George

    2016-11-01

    We present large-eddy simulations (LES) of turbulent flow in a flexible pipe conveying incompressible fluid. We are interested in quantifying the flow-structure interaction in terms of mean quantities and their variances. For the LES, we employ an Entropy Viscosity Method (EVM), implemented in a spectral element code. In previous work, we investigated laminar flow and studied the complex interaction between structural and internal flow dynamics and obtained a phase diagram of the transition between states as function of three non-dimensional quantities: the fluid-tension parameter, the dimensionless fluid velocity, and the Reynolds number. Here we extend our studies in the turbulence regime, Re from 5,000 to 50,000. The motion of the flexible pipe affects greatly the turbulence statistics of the pipe flow, with substantial differences for free (self-sustained) vibrations and prescribed (forced) vibrations.

  16. Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence

    International Nuclear Information System (INIS)

    Uzawa, K.; Li Jiquan; Kishimoto, Y.

    2009-01-01

    The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.

  17. Numerical investigation of flow past rod arrays for determining main parameters of the integral model of turbulence: longitudinal flow

    International Nuclear Information System (INIS)

    Vlasov, M.N.; Korsun, A.S.; Maslov, Yu.A.; Merinov, I.G.; Kharitonov, V.S.

    2013-01-01

    Systematic numerical calculations have been performed for studying the longitudinal flow past an array of rods with a corridor or chess-board packing in a broad range of flow Reynolds numbers. Structures with the porosity varied in a broad range have been studied and the main parameters of the proposed integral model of turbulence are determined [ru

  18. A symmetry-preserving discretisation and regularisation model for compressible flow with application to turbulent channel flow

    NARCIS (Netherlands)

    Rozema, W.; Kok, J. C.; Verstappen, R. W. C. P.; Veldman, A. E. P.

    2014-01-01

    Most simulation methods for compressible flow attain numerical stability at the cost of swamping the fine turbulent flow structures by artificial dissipation. This article demonstrates that numerical stability can also be attained by preserving conservation laws at the discrete level. A new

  19. Simulations of turbulent compressible flows using periodic boundary conditions: high fidelity on a budget

    Science.gov (United States)

    Beardsell, Guillaume; Blanquart, Guillaume

    2017-11-01

    In direct numerical simulations (DNS) of turbulent flows, it is often prohibitively expensive to simulate complete flow geometries. For example, to study turbulence-flame interactions, one cannot perform a DNS of a full combustor. Usually, a well-selected portion of the domain is chosen, in this particular case the region around the flame front. In this work, we perform a Reynolds decomposition of the velocity field and solve for the fluctuating part only. The resulting equations are the same as the original Navier-Stokes equations, except for turbulence-generating large scale features of the flow such as mean shear, which appear as forcing terms. This approach allows us to achieve high Reynolds numbers and sustained turbulence while keeping the computational cost reasonable. We have already applied this strategy to incompressible flows, but not to compressible ones, where special care has to be taken regarding the energy equation. Implementation of the resulting additional terms in the finite-difference code NGA is discussed and preliminary results are presented. In particular, we look at the budget of turbulent kinetic energy and internal energy. We are considering applying this technique to turbulent premixed flames.

  20. Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals

    Science.gov (United States)

    Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.

    2016-09-01

    Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.

  1. Volumetric measurements by tomographic PIV of grid generated turbulence in an open channel flow

    OpenAIRE

    Earl , Thomas; Thomas , Lionel; Cochard , Steve; Ben-Salah , Riadh; Tremblais , Benoit; David , Laurent

    2013-01-01

    International audience; This paper investigates the energy dissipation rate behind two combinations of trash racks (or meshes) in an open channel flow. Five trash rack assemblies divided the flume into four identical pools in the downstream direction. The global characteristics of the flow were compared with Tomo-PIV measurements that were taken in the water column of the flow. From the Tomo-PIV measurements, the instantaneous structures in the flow were visualised and the decay of turbulent ...

  2. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  3. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-01-01

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds

  4. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow

    International Nuclear Information System (INIS)

    Ravelet, F.

    2005-09-01

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  5. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef

    2013-01-01

    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  6. Horizontal Structure of Turbulence on Decimeter to 10m Scales in Fast Tidal Flows

    Science.gov (United States)

    Horwitz, R.; Hay, A. E.

    2016-02-01

    We characterize the structure of turbulence in a very fast tidal channel in the Bay of Fundy, Nova Scotia that has been identified for development as a commercial tidal power resource. A subsurface mooring that orients into the flow was equipped with a horizontally-aimed AD2CP, and upward- and downward-looking ADCPs. Two week-long deployments provide velocity measurements of tidal flows up to 4 m/s that are used to describe the spatial (lateral) and temporal structure of turbulent fluctuations on decimeter to 10m scales. The spatial scales and temporal intermittency vary with both speed of the flow and the effects of upstream topography.

  7. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  8. A simple recipe for modeling reaction-rate in flows with turbulent-combustion

    Science.gov (United States)

    Girimaji, Sharath S.

    1991-01-01

    A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.

  9. Comparison of dns of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition

    NARCIS (Netherlands)

    Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.

    In this paper a turbulent channel flow with dispersed droplets is examined. The dispersed phase is allowed to have phase transition, which leads to heat and mass transfer between the phases, and correspondingly modulates turbulent flow properties. As a point of reference we examine the flow of water

  10. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  11. Turbulent Spot/Separation Bubble Interactions in a Spatially Evolving Supersonic Boundary-Layer Flow

    National Research Council Canada - National Science Library

    Krishnan, L; Sandham, N. D

    2004-01-01

    ...., is capable of advancing the transition process). A substantial increase in the lateral spreading of the spot was observed due to the spot/bubble interaction. Locally averaged profiles of the flow quantities within the spot showed behavior similar to developed turbulent flows.

  12. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  13. Modelling of supercritical turbulent flow over transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 16, č. 1 (2009), s. 65-74 ISSN 1802-1484 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow in open channels * flow over obstacles Subject RIV: BK - Fluid Dynamics

  14. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  15. Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations

    International Nuclear Information System (INIS)

    Kammel, Andreas

    2012-01-01

    The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρ s proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρ s into the high-ρ s zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at

  16. The time scale for the transition to turbulence in a high Reynolds number, accelerated flow

    International Nuclear Information System (INIS)

    Robey, H.F.; Zhou Ye; Buckingham, A.C.; Keiter, P.; Remington, B.A.; Drake, R.P.

    2003-01-01

    An experiment is described in which an interface between materials of different density is subjected to an acceleration history consisting of a strong shock followed by a period of deceleration. The resulting flow at this interface, initiated by the deposition of strong laser radiation into the initially well characterized solid materials, is unstable to both the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. These experiments are of importance in their ability to access a difficult experimental regime characterized by very high energy density (high temperature and pressure) as well as large Reynolds number and Mach number. Such conditions are of interest, for example, in the study of the RM/RT induced mixing that occurs during the explosion of a core-collapse supernova. Under these experimental conditions, the flow is in the plasma state and given enough time will transition to turbulence. By analysis of the experimental data and a corresponding one-dimensional numerical simulation of the experiment, it is shown that the Reynolds number is sufficiently large (Re>10 5 ) to support a turbulent flow. An estimate of three key turbulence length scales (the Taylor and Kolmogorov microscales and a viscous diffusion scale), however, shows that the temporal duration of the present flow is insufficient to allow for the development of a turbulent inertial subrange. A methodology is described for estimating the time required under these conditions for the development of a fully turbulent flow

  17. Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V. T.; Yun, B. J.; Song, C. H. [University of Science and Technology, Daejeon (Korea, Republic of); Bae, B. U.; Euh, D. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-{epsilon} turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)

  18. Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows

    International Nuclear Information System (INIS)

    Nguyen, V. T.; Yun, B. J.; Song, C. H.; Bae, B. U.; Euh, D. J.

    2010-01-01

    EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-ε turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)

  19. Multi-scale-nonlinear interactions among micro-turbulence, magnetic islands, and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.; Okamoto, M.; Ramos, J.J.

    2006-10-01

    We investigate multi-scale-nonlinear interactions among micro-instabilities, macro-scale tearing instabilities and zonal flows, by solving reduced two-fluid equations numerically. We find that the nonlinear interactions of these instabilities trigger macro-scale MHD activity after an equilibrium is formed by a balance between the micro-turbulence and zonal flow. This MHD activity breaks magnetic surfaces then this breaking spreads the micro-turbulence over the plasma. These multi-scale-nonlinear interactions can explain the evolution of fluctuation observed in torus plasma experiments because micro-turbulence and MHD instabilities usually appear in the plasma at the same time, in spite of the fact that effects of micro-turbulence and MHD instabilities on plasma confinement have been investigated separately. For instance, MHD activities are observed in reversed shear tokamak plasmas with a transport barrier related to zonal flows and micro-turbulence, and micro-turbulence is observed in Large Helical Device plasmas that usually exhibit MHD activities. (author)

  20. Experiments on Breakup of Bubbles in a Turbulent Flow.

    Czech Academy of Sciences Publication Activity Database

    Vejražka, Jiří; Zedníková, Mária; Stanovský, Petr

    2018-01-01

    Roč. 64, č. 2 (2018), s. 740-757 ISSN 0001-1541 Institutional support: RVO:67985858 Keywords : bubble * breakup * turbulence Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.836, year: 2016

  1. Turbulence modulation in dilute particle-laden flow

    DEFF Research Database (Denmark)

    Mandø, Matthias; Lightstone, M. F.; Rosendahl, Lasse

    2009-01-01

    A new particle source term to account for the effect of particles on the turbulence equations based on the Euler/Lagrange approach is introduced and compared with existing models and experimental data. Three different sizes of particles are considered to cover the range of large particles, where ...

  2. Homogeneous internal wave turbulence driven by tidal flows

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  3. Turbulent pipe flow downstream a 90° pipe bend with and without superimposed swirl

    International Nuclear Information System (INIS)

    Kalpakli, A.; Örlü, R.

    2013-01-01

    Highlights: ► Turbulent curved pipe flow w/o superimposed swirl is investigated by means of stereo PIV. ► “Swirl-switching” phenomenon is characterised with the aid of snapshot POD. ► Increasing swirl strength merges the Dean vortices gradually and stabilizes the flow. ► Dean-like cells are exposed as energetic structures underlying the imposed swirling motion. ► Large scale structures incline and tear up with increasing swirl strength. -- Abstract: In the present work, the turbulent flow downstream a 90° pipe bend is investigated by means of stereoscopic particle image velocimetry. In particular, the three dimensional flow field at the exit of the curved pipe is documented for non-swirling and swirling flow conditions, with the latter being generated through a unique axially rotating pipe flow facility. The non-swirling flow was examined through snapshot proper orthogonal decomposition (POD) with the aim to reveal the unsteady behaviour of the Dean vortices under turbulent flow conditions, the so-called “swirl-switching” phenomenon. In respect to the swirling turbulent pipe flow, covering a wide range of swirl strengths, POD has been employed to study the effect of varying strength of swirl on the Dean vortices as well as the interplay of swirling motion and Dean cells. Furthermore, the visualised large scale structures in turbulent swirling flows through the bend are found to incline and tear up with increasing swirl intensity. The present time-resolved, three component, experimental velocity field data will provide a unique and useful database for future studies; in particular for the CFD community

  4. The influence of surface roughness on supersonic high Reynolds number turbulent boundary layer flow

    Science.gov (United States)

    Latin, Robert Michael

    A comprehensive study of rough-wall high-speed (M = 2.9) high Reynolds number (Re/m = 1.9e7) turbulent boundary layer flow was performed consisting of experimental, analytical, and numerical methods. Six wall topologies consisting of a smooth and five rough surfaces (two- and three-dimensional machined roughness plates; and 80, 36. and 20 grit sand-grain roughened plates) were studied. A confocal laser scan microscope was used to measure the topography of the sand-grain roughnesses. The experimental measurement techniques included a convention Pitot pressure probe, laser Doppler velocimetry, hot-wire anemometry, color schlieren and laser sheet Mie scattering images. Mean measurements included velocity, Mach number, density, and mass flux. Turbulent measurements included velocity and mass flux turbulence intensities, kinematic Reynolds shear stress, compressible Reynolds shear stress in two planes, and the traverse apparent mass flux. Kinematic turbulent flow statistical properties were found to scale by local mean quantities and displayed a weak dependence on surface roughness. Turbulent flow statistical properties with the explicit appearance of density did not scale by local mean quantities, and had a strong linear dependence on roughness. Surface roughness also had a significant effect on the flow structure size, angles, and energy spectra. A theoretical analysis was performed and a new integral method for the estimation of skin friction was developed. The skin friction estimates were within 4% of compressible semi-empirical relations. A numerical study was performed which used a parabolized Navier-Stokes solver with two algebraic turbulence models and the Rotta model for surface roughness. A new method for the estimation of momentum loss improved the numerical flow predictability. The algebraic turbulence models predicted qualitatively correct profile shapes and accurately predicted the kinematic and compressible Reynolds shear stress levels for all but the

  5. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M

  6. Subchannel friction factors for rod bundles: laminar flow predictions and their application to turbulent flows

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1979-02-01

    For the calculation of friction factors the use of correlations validated for smooth circular tubes along with the duct hydraulic diameter is known to be inappropriate for certain non-circular geometries. In order to test the validity and range of application of such correlations to the subchannels of rod bundles a computer programme has been written for the prediction of subchannel laminar velocity distributions and friction coefficients for fully developed flow. The theoretical basis and development of the programme is described along with comparisons between predictions and existing solutions for some simple geometries. Using the computer programme a wide range of calculations have been carried out for flow sections representing edge, corner and internal subchannels of rod bundles with particular emphasis on those of in-line pin bundle geometries. Where comparison can be made the predicted laminar coefficients are in excellent agreement with existing solutions. Although the approach adopted here could be used as the basis of a model for the subchannel axial friction factor, careful account should be taken of enhanced turbulent momentum transfer in situations where the flow is not unidirectional. (UK)

  7. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  8. Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows

    International Nuclear Information System (INIS)

    Ahmadikia, H.; Shirani, E.

    2001-05-01

    The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)

  9. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.

    2016-12-02

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  10. Interaction of a spherical particle with freestream turbulent flow: Effect of microscale Reynolds number

    Science.gov (United States)

    Bagchi, Prosenjit

    2008-11-01

    The interaction of an isolated rigid sphere with an isotropic turbulent ambient flow is considered using a direct numerical simulation. The turbulence field is obtained from one realization of a separate DNS calculation (Donzis et al, JFM (2005), vol. 532; Yeung et al, JFM (2007) vol. 582), and used as the inflow condition for the flow around the sphere. This study is an extension of an earlier work (Bagchi and Balachandar, Phys. Fluids (2003), vol. 15; Bagchi and Balachandar, JFM (2004), vol. 518), where the Taylor microscale Reynolds number, Rλ, of the turbulence field was kept constant at 164. In the present study, we consider the effect of varying Rλ as 38, 90, 140 and 240. The sphere Reynolds number (based on the diameter and relative velocity) is in the range 63 to 400, and the sphere diameter varies from 1 to 8 times the Kolmogorov scale, and 0.18 to 0.0042 times the integral length scale, of the ambient turbulent flow. We present DNS results on the drag and lift forces, and added-mass and history forces on the sphere under varying Rλ, and compare them with the analytical results. Mean, RMS and PDF of these forces are analyzed. We also present transition in the sphere wake as Rλ is varied. Mean wake, and the modulation of the freestream turbulence in the wake are also presented under varying Rλ of the ambient flow.

  11. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    Science.gov (United States)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-04-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of  art 3D whole-field flow measurement techniques.

  12. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  13. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  14. Counter-flow Induced Decoupling in Super-Fluid Turbulence

    OpenAIRE

    Khomenko, Dmytro; L'vov, Victor S.; Pomyalov, Anna; Procaccia, Itamar

    2015-01-01

    In mechanically driven superfluid turbulence the mean velocities of the normal- and superfluid components are known to coincide: $\\mathbf U_{\\text{n}} =\\mathbf U_{\\text{s}}$. Numerous laboratory, numerical and analytical studies showed that under these conditions the mutual friction between the normal- and superfluid velocity components couples also their fluctuations: $\\mathbf u'_{\\text{n}}(\\mathbf r,t) \\approx \\mathbf u'_{\\text{s}}(\\mathbf r,t)$ almost at all scales. In this paper we show t...

  15. Numerical turbulent convective heat transfer and fluid flow in complex channels

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.

    1996-04-01

    This investigation concerns numerical turbulent heat transfer and fluid flow in complex channels for fully developed periodic state. Numerical application of different turbulence models for forced convective heat transfer in three dimensional channels are presented. It also concerns prediction of secondary motions and temperature distribution in straight and corrugated ducts with different cross section area. The standard linear k-e and Speziale`s non-linear k-e models with wall functions are applied to calculate the turbulent shear stresses. SED, GGDH and WET models are used to predict the turbulent heat fluxes. The overall thermal-hydraulic performance is presented in terms of friction factor and Nu-number. Some formulas are also presented to estimate the Nu-number in various wavy channels. The numerical approach is based on the finite volume technique with non-staggered grid arrangement. Rhie-Chow interpolation with SIMPLEC-algorithm is used. The convective terms are treated by hybrid, MUSCL, van Leer and QUICK schemes while the diffusive terms are treated by central difference scheme. The fully developed turbulent state is achieved by imposing periodic conditions in the main flow direction. In general, a numerical method for calculation of turbulent convective heat transfer in complex channels is presented. 4 refs, 3 figs

  16. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    Science.gov (United States)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  17. Swirl effect on flow structure and mixing in a turbulent jet

    Science.gov (United States)

    Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.

    2018-03-01

    The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.

  18. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  19. Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows

    Science.gov (United States)

    Horstman, C. C.

    1987-01-01

    Solutions of the Reynolds-averaged Navier-Stokes equations are presented and compared with experimental surface data for a series of hypersonic shock-wave/turbulent-boundary-layer interaction flows. The turbulence models used include algebraic and two-equation eddy-viscosity models developed for transonic and supersonic flows. Also several additional modifications to the two-equation model to account for compressibility effects are developed and used. Although the modifications improve the agreement with the experimental data, no single model or modification correctly predicts all the test cases.

  20. Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder

    KAUST Repository

    Richter, David

    2011-01-01

    Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re = 3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy. © 2011 American Society of Mechanical Engineers.

  1. Investigation of turbulent boundary layer flow over 2D bump using highly resolved large eddy simulation

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2011-01-01

    A large eddy simulation (LES) study of turbulent non-equilibrium boundary layer flow over 2 D Bump, at comparatively low Reynolds number Reh = U∞h/ν = 1950, was conducted. A well-known LES issue of obtaining and sustaining turbulent flow inside the computational domain at such low Re, is addresse...... partially confirm a close interdependency between generation and evolution of internal layers and the abrupt changes in the skin friction, previously reported in the literature. © 2011 American Society of Mechanical Engineers....

  2. Turbulent properties of axisymmetric shock-wave/boundary-layer interaction flows

    Science.gov (United States)

    Brown, J. L.; Kussoy, M. I.; Coakley, T. J.

    1986-01-01

    A combined experimental and computational investigation of an axisymmetric turbulent shock-wave boundary-layer interaction flow is presented. Experimental measurements include both mean and fluctuating data obtained by LDV techniques and identify large scale unsteady motions associated with shock induced separation. Computations using the compressible Navier-Stokes equations, and a two-equation turbulence model are in relatively good agreement with experimental measurements. It is found that the large scale unsteady motions do not appear to have a critical impact on the ability to compute the mean properties of the flows investigated in this paper.

  3. SPH modelling of depth‐limited turbulent open channel flows over rough boundaries

    Science.gov (United States)

    Kazemi, Ehsan; Nichols, Andrew; Tait, Simon

    2016-01-01

    Summary A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd PMID:28066121

  4. Statistics of the perceived velocity gradient tensor in a rotating turbulent flow

    International Nuclear Information System (INIS)

    Naso, Aurore; Godeferd, Fabien S

    2012-01-01

    The dynamics and structure of rotating homogeneous turbulence is investigated through the statistical properties of the ‘perceived’ velocity gradient tensor, defined by interpolation from the locations and velocities of a set of four particles. The results of direct numerical simulations of forced homogeneous rotating turbulence at different Rossby numbers are presented. We thus provide a multi-scale analysis of the dynamics of rotating turbulence and some of its important features. We present scaling laws for second- and third-order moments of the perceived velocity gradient tensor. We relate the distribution of the enstrophy and strain variance, and of their production terms, to the topology of the flow, thanks to conditional probability density functions. These quantities demonstrate the role played by the Zeman scale in the elementary processes of rotating turbulence, when compared to the scale at which the perceived velocity gradient tensor is measured. (paper)

  5. MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.

    2010-01-01

    We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)

  6. Influence of geometrical parameters on turbulent flow and heat transfer characteristics in outward helically corrugated tubes

    International Nuclear Information System (INIS)

    Wang, Wei; Zhang, Yaning; Li, Bingxi; Han, Huaizhi; Gao, Xiaoyan

    2017-01-01

    Highlights: • The outward helically corrugated tube is suitable for high pressure fluids. • The effects of corrugation height and pitch on turbulent flow are investigated. • The relationships among swirl, rotational flow and heat transfer are discussed. - Abstract: Concerning a novel outward helically corrugated tube manufactured through hydraulic forming under 290 MPa, a numerical study was conducted to investigate the mechanism of turbulent flow dynamics and heat transfer enhancement based on the Reynolds stress model (RSM) using the FLUENT software. A validation of the Reynolds stress model for turbulent flow over a wavy surface was performed, and the results were then compared with the results from a large eddy simulation (LES) model and with experimental measurements. The helically corrugated tubes with different corrugation height-to-diameter ratios and pitch-to-diameter ratios are then evaluated to explore their influence on turbulent flow and heat transfer. It was found that the intensity of swirl flow was enhanced with an increase in the corrugation height, and it increased with a decrease in the corrugation pitch, the intensification of the swirl flow strengthens the heat transfer and resistance characteristics. The intensity of rotational flow was enhanced with an increase in the corrugation height, and increased with an increase in the corrugation pitch; the enhanced rotational flow causes an inhibition effect on heat transfer and resistance. Moreover, the maximum values of the local Nusselt number and the friction factor along the walls were observed at the reattachment point, and their minimum values appeared at the core of the swirl flow. It is therefore reasonable to keep the corrugation height-to-diameter ratios be less than 0.1, and the pitch-to-diameter ratios be less than 2 to ensure that the growth rate of the heat transfer is greater than the growth rate of the flow resistance.

  7. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  8. Numerical simulation of 3-D turbulent flow through entire stage in a multistage centrifugal pump

    International Nuclear Information System (INIS)

    Huang, S.; Islam, M.F.; Liu, P.

    2005-01-01

    A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k-ε turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in flow field asymmetric and unsteady. There is a considerable interference on velocity field at impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3-D computational flow field. The current computation is verified by comparing predicted and measured head. (author)

  9. Wavelet Analysis on Turbulent Structure in Drag-Reducing Channel Flow Based on Direct Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2013-01-01

    Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.

  10. Large eddy simulations of turbulent flows on graphics processing units: Application to film-cooling flows

    Science.gov (United States)

    Shinn, Aaron F.

    Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of

  11. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  12. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  13. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    International Nuclear Information System (INIS)

    Min, June Kee; Park, Il Seouk

    2014-01-01

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors

  14. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    International Nuclear Information System (INIS)

    Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef

    2016-01-01

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in the simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.

  15. Investigation of reattachment length for a turbulent flow over a ...

    African Journals Online (AJOL)

    user

    1. Introduction. Flow with separation and reattachment has long been a subject of fundamental fluid dynamics research. The presence of a separated flow, together with a reattaching flow, gives rise to increased unsteadiness, pressure fluctuations, structure vibrations and noise, as it also exhibits an unsteady structure with a ...

  16. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    Science.gov (United States)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  17. Numerical vs. turbulent diffusion in geophysical flow modelling

    International Nuclear Information System (INIS)

    D'Isidoro, M.; Maurizi, A.; Tampieri, F.

    2008-01-01

    Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.

  18. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  19. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  20. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  1. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    Science.gov (United States)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence

  2. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    Science.gov (United States)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  3. Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear

    Science.gov (United States)

    2014-04-01

    University of California Department of Physics and Astronomy Los Angeles, CA 90095- 1547 REPORT NUMBER 444025-ST-25188 9. SPONSORING...S. Mudaliar. Scattering of electromagnetic waves in the presence of wave turbulence excited by a flow with velocity shear. IEEE Trans. Plas. Sci., 38

  4. On the Values for the Turbulent Schmidt Number in Environmental Flows

    Directory of Open Access Journals (Sweden)

    Carlo Gualtieri

    2017-04-01

    Full Text Available Computational Fluid Dynamics (CFD has consolidated as a tool to provide understanding and quantitative information regarding many complex environmental flows. The accuracy and reliability of CFD modelling results oftentimes come under scrutiny because of issues in the implementation of and input data for those simulations. Regarding the input data, if an approach based on the Reynolds-Averaged Navier-Stokes (RANS equations is applied, the turbulent scalar fluxes are generally estimated by assuming the standard gradient diffusion hypothesis (SGDH, which requires the definition of the turbulent Schmidt number, Sct (the ratio of momentum diffusivity to mass diffusivity in the turbulent flow. However, no universally-accepted values of this parameter have been established or, more importantly, methodologies for its computation have been provided. This paper firstly presents a review of previous studies about Sct in environmental flows, involving both water and air systems. Secondly, three case studies are presented where the key role of a correct parameterization of the turbulent Schmidt number is pointed out. These include: (1 transverse mixing in a shallow water flow; (2 tracer transport in a contact tank; and (3 sediment transport in suspension. An overall picture on the use of the Schmidt number in CFD emerges from the paper.

  5. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    Science.gov (United States)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  6. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...

  7. Numerical investigation of turbulent flow and heat transfer in channel with ribs

    DEFF Research Database (Denmark)

    Myllerup, Lisbeth; Larsen, Poul Scheel

    1999-01-01

    The performance of three different low-Reynolds number turbulence models has been explored for the benchmark test of fully developed (periodic) flow in a ribbed plane channel. Results are presented for two values of the Reynolds number (based on mean velocity and hydraulic diameter), Re = 37...

  8. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    International Nuclear Information System (INIS)

    Villand, M.; Grand, D.

    1983-01-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented

  9. Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...

  10. Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer

    International Nuclear Information System (INIS)

    Costa, E.B. da.

    1992-09-01

    The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs

  11. Electromagnetic transport components and sheared flows in drift-Alfven turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2003-01-01

    Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...

  12. Determination of Flavonoids and Resveratrol in Wine by Turbulent-Flow Chromatography-LC-MS

    NARCIS (Netherlands)

    Presta, M.A.; Bruyneel, B.; Zanella, R.; Kool, J.; Krabbe, J.G.; Lingeman, H.

    2009-01-01

    Turbulent-flow chromatography (TFC) on-line coupled to liquid chromatography mass spectrometry (LC-MS) is used to determine flavonoids and resveratrol in different types of wines. A fully automated system was developed in which 10 mL of sample (diluted wine) was passed over a TFC column, after which

  13. Measurement of turbulent mixing in a confined wake flow using combined PIV and PLIF

    NARCIS (Netherlands)

    Hjertager, Lene K.; Hjertager, Bjorn H.; Deen, N.G.; Solberg, Tron; Kuipers, J.A.M.

    2003-01-01

    Turbulent mixing in a confined wake flow was studied by using the combined PIV/PLIF technique to measure instantaneous concentration and velocity fields. Measurements were performed at two slightly overlapping areas in the initial mixing zone and at an area at the end of the channel. The

  14. Turbulence equations in incompressible two-phase flow without mass transfer

    International Nuclear Information System (INIS)

    Lance, Michel; Marie, J.-L.; Charnay, Georges; Bataille, Jean

    1979-01-01

    In order to adapt the modelling methods of one-phase turbulence, the equations describing the evolution of the Reynolds stress tensor, of the dissipation and of the fluctuating pressure in each phase of an incompressible two-phase flow without mass transfer were established [fr

  15. Numerical and experimental modelling of turbulent flow in curved channels and diffusers

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2005-01-01

    Roč. 12, č. 6 (2005), s. 429-440 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GA103/02/0545 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow * curved channels and diffusers Subject RIV: BK - Fluid Dynamics

  16. Laminar and turbulent melt flow in computational modeling of crystal growth

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Petr; Jelínek, Pavel; Černý, R.

    2002-01-01

    Roč. 3, - (2002), s. 201-208 ISSN 1108-7609 R&D Projects: GA ČR GA106/01/0648; GA ČR GA201/01/1200 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : crystal growth * computational model * turbulent melt flow Subject RIV: BK - Fluid Dynamics

  17. Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Kunnen, Rudie P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong

  18. Effect of droplet interaction on droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Kuerten, Johannes G.M.; Vreman, A.W.

    2015-01-01

    We present results of direct numerical simulation of heat transfer and droplet concentration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a differentially heated channel. In particular, we study the effects of droplet collisions by comparing results of simulations

  19. Turbulent flow and sand transport over a cobble bed in a laboratory flume

    Science.gov (United States)

    The turbulence structure of flow over rough beds and its interaction with fine sediments in the bed are important for efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored...

  20. The effect of a zwitterionic and cationic surfactant in turbulent flows

    Czech Academy of Sciences Publication Activity Database

    Myška, Jiří; Chára, Zdeněk

    2001-01-01

    Roč. 30, č. 2 (2001), s. 229-236 ISSN 0723-4864 Institutional research plan: CEZ:AV0Z2060917 Keywords : turbulent flows * zwitterionic surfactants * cationic surfactants Subject RIV: BK - Fluid Dynamics Impact factor: 0.821, year: 2001

  1. Effects of turbulence and flow inclination on the performance of cup anemometers in the field

    DEFF Research Database (Denmark)

    Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.

    2001-01-01

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...

  2. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular CHANNEL FLOWS

    International Nuclear Information System (INIS)

    Joong Hun Bae; Jung Yul Yoo; Haecheon Choi

    2005-01-01

    Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)

  3. Model for transversal turbulent mixing in axial flow in rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.

    1990-01-01

    The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)

  4. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  5. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  6. Numerical simulation in a two dimensional turbulent flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A. da; Grand, D.

    1991-01-01

    Numerical simulations of turbulent flows in complex geometries are generally restricted to the prediction of the mean flow and use semi-empirical turbulence models. The present study is devoted to the simulation of the coherence structures which develop in a flow submitted to a velocity change, downstream of a backward facing step. Two aspect ratios (height of the step over height of the channel) have been explored and the values of the Reynolds number vary from (6000 to 90000). In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. The numerical simulations provides results in fairly good agreement with available experimental results. In a second step a thermal stratification is imposed on this flow for one value of Richardson number (0.5) the coherent structures disappear downstream for increasing values of Richardson number. (author)

  7. Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    B. B. Novickii

    2015-01-01

    Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor

  8. Turbulence-wave interactions associated to drainage flows observed during the BLLAST field campaign

    Science.gov (United States)

    Yagüe, Carlos; Sun, Jielun; Román-Cascón, Carlos; Sastre, Mariano; Arrillaga, Jon A.

    2016-04-01

    Gravity waves are often observed in the Nocturnal Stable Atmospheric Boundary Layer (SBL). One of the main topics in SBL studies, which is still far from being well understood, is the interaction between these waves and the turbulence present at the lower troposphere [1]. However it is not easy to establish the origin of these waves and how they interact with turbulence. Following the case study occurred along the evening transition of 2nd July 2011 over the area of Lannemezan (France) during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign [2], in the present work we have extended the study to all the cases found along the campaign, where the evening transition of the Atmospheric Boundary Layer was followed by the formation of drainage flows. Different multiscale techniques (Wavelet Transform -WT- and MultiResolution Flux Decomposition -MRFD-) have been applied to the extensive records of instrumentation deployed at BLLAST. In this way, we can underline the different features related to surface turbulent parameters in the SBL, where several of the studied processes showed an interaction, producing important variations in turbulence with height and between sites along the steep terrain. [1] Sun, J., C. J. Nappo, L. Mahrt, D. Belusic, B. Grisogono, D. R. Stauffer, M. Pulido, C. Staquet, Q. Jiang, A. Pouquet, C. Yagüe, B. Galperin, R. B. Smith, J. J. Finnigan, S.D. Mayor, G. Svensson, A. A. Grachev, and W.D.Neff. (2015): Review of wave-turbulence interactions in the stable atmospheric boundary layer, Rev. Geophys., 53, 956-993, doi:10.1002/2015RG000487. [2] Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G.-J., Pardyjak, E., van de Boer, A., and Hartogensis, O (2015).: Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study, Atmos. Chem. Phys., 15, 9031-9047, doi:10.5194/acp-15-9031-2015.

  9. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor

    Science.gov (United States)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney

    2017-11-01

    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  10. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  11. On the phase lag of turbulent dissipation in rotating tidal flows

    Science.gov (United States)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  12. 3D flow effects on measuring turbulence statistics using 2D PIV

    Science.gov (United States)

    Lee, Hoonsang; Hwang, Wontae

    2017-11-01

    Homogeneous & isotropic turbulence (HIT) with no mean flow is the simplest type of turbulent flow which can be used to study various phenomena. Although HIT is inherently three dimensional in nature, various turbulence statistics can be measured with 2D PIV utilizing various assumptions. In this study, the loss of tracer particle pairs due to out-of-plane motion, and the effect it has on statistics such as turbulence kinetic energy, dissipation rate, and velocity correlations is investigated. Synthetic PIV images created from HIT direct numerical simulation (DNS) data are utilized to quantify this effect. We estimate the out-of-plane error by adjusting parameters such as PIV time interval, interrogation window size, and particle size. This information can be utilized to optimize experimental parameters when examining 3D turbulence via 2D PIV. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4007372), and also by SNU new faculty Research Resettlement Fund.

  13. Local and Nonlocal Strain Rate Fields and Vorticity Alignment in Turbulent Flows

    OpenAIRE

    Hamlington, Peter E.; Schumacher, Jörg; Dahm, Werner J. A.

    2008-01-01

    Local and nonlocal contributions to the total strain rate tensor at any point in a flow are formulated from an expansion of the vorticity field in a local spherical neighborhood of radius R centered on x. The resulting exact expression allows the nonlocal (background) strain rate tensor to be obtained from the total strain rate tensor. In turbulent flows, where the vorticity naturally concentrates into relatively compact structures, this allows the local alignment of vorticity with the most e...

  14. Analysis of Burning Processes in Turbulent Mixing Axial and Tangential Flows

    Directory of Open Access Journals (Sweden)

    R. I. Essmann

    2009-01-01

    Full Text Available The paper demonstrates that in the case of turbulent diffusion flame tongues the burning process of combined multiphase fuel is determined by flow structure and conditions for mixing various types of fuel and distributed oxidizer flows. It has been determined that the ratio of air  supplied for burning through axial and tangential channels governs a shape of the flame tongue, its size and process intensity that allows efficiently to optimize technological parameters.

  15. A sparse-mode spectral method for the simulation of turbulent flows

    International Nuclear Information System (INIS)

    Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M.

    1996-01-01

    We propose a new algorithm belonging to the family of the sparsemode spectral method to simulate turbulent flows. In this method the number of Fourier modes k increases with k more slowly than k D-1 in dimension D, while retaining the advantage of the fast Fourier transform. Examples of applications of the algorithm are given for the one-dimensional Burger's equation and two-dimensional incompressible MHD flows

  16. Single-channel data-validation technique for ΔP cells in turbulent flow

    International Nuclear Information System (INIS)

    Goodrich, L.D.; Brower, R.W.

    1983-01-01

    This paper discusses a single-channel-analysis, data-validation technique which is applicable to all flow-measuring devices in turbulent conditions, can be applied in either real time or batch mode, and allows online correction of zero offset and slope coefficients. This technique of validating flow measurements eliminates the need for multiple measuring devices, thus reducing the complexity of the overall instrumentation system

  17. Turbulence Flow Characteristics of Suspended Sediments and its ...

    African Journals Online (AJOL)

    This paper presents an attempt to describe velocity distribution of suspended sediment laden flow by using a theory based on Monin-Obukhov Length L. It will be shown that experimental results from open channel flow with suspended sediments are better accounted for by this theory. The method involves the coupling of ...

  18. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    Science.gov (United States)

    1975-06-01

    WORDS (Conllnum on rtvmf tldm II nocfmry Td Idmnllly by block number) Turbulent boundary layers Skin friction, heat transfer and pressure High... tD t{> • y rp < J -o ill ... |i| ;| ilh |I ti i llii ffPtffin i ini I ! til. ;■ ; ’ ! ’ : in •■•: \\1’. T ill j i i i...III [lii 5 ft" t H "H— im BJITT i’i 1 i Mt- B ianj ii ( !l!l Mi IF Ii ig| M»-H J , ■*« J J j 1JJ J 4^ Ul CD S D Z V) D -I O z > Ul QC

  19. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    International Nuclear Information System (INIS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-01-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm 3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  20. Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study

    Directory of Open Access Journals (Sweden)

    Abbod Ali

    2014-01-01

    Full Text Available A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.

  1. Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow.

    Science.gov (United States)

    Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo

    2012-02-01

    We present an experimental study of the transition to turbulence in a plane Poiseuille flow. Using a well-controlled perturbation, we analyze the flow by using extensive particle image velocimetry and flow visualization (using laser-induced fluorescence) measurements, and use the deformation of the mean velocity profile as a criterion to characterize the state of the flow. From a large parametric study, four different states are defined, depending on the values of the Reynolds number and the amplitude of the perturbation. We discuss the role of coherent structures, such as hairpin vortices, in the transition. We find that the minimal amplitude of the perturbation triggering transition scales asymptotically as Re(-1).

  2. A comparison of three turbulence models for axisymmetric isothermal swirling flows in the near burner zone

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.

  3. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  4. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow

    Science.gov (United States)

    Querzoli, G.; Fortini, S.; Cenedese, A.

    2010-04-01

    Mechanical heart valves implanted in mitral position have a great effect on the ventricular flow. Changes include alteration of the dynamics of the vortical structures generated during the diastole and the onset of turbulence, possibly affecting the efficiency of the heart pump or causing blood cell damage. Modifications to the hemodynamics in the left ventricle, when the inflow through the mitral orifice is altered, were investigated in vitro using a silicone rubber, flexible ventricle model. Velocity fields were measured in space and time by means of an image analysis technique: feature tracking. Three series of experiments were performed: one with a top hat inflow velocity profile (schematically resembling physiological conditions), and two with mechanical prosthetic valves of different design, mounted in mitral position—one monoleaflet and the other bileaflet. In each series of runs, two different cardiac outputs have been examined by changing the stroke volume. The flow was investigated in terms of phase averaged velocity field and second order moments of turbulent fluctuations. Results show that the modifications in the transmitral flow change deeply the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. Top hat inflow gives the coherent structures which are optimal, among the compared cases, for the systolic function. The flow generated by the bileaflet valve preserves most of the beneficial features of the top hat inflow, whereas the monoleaflet valve generates a strong jet which discourages the permanence of large coherent structures at the end of the diastole. Moreover, the average shear rate magnitudes induced by the smoother flow pattern of the case of top hat inflow are nearly halved in comparison with the values measured with the mechanical valves. Finally, analysis of the turbulence statistics shows that the monoleaflet valves yield higher turbulence

  5. A review of recent developments on turbulent entrainment in stratified flows

    International Nuclear Information System (INIS)

    Cotel, Aline J

    2010-01-01

    Stratified interfaces are present in many geophysical flow situations, and transport across such an interface is an essential factor for correctly evaluating the physical processes taking place at many spatial and temporal scales in such flows. In order to accurately evaluate vertical and lateral transport occurring when a turbulent flow impinges on a stratified interface, the turbulent entrainment and vorticity generation mechanisms near the interface must be understood and quantified. Laboratory experiments were performed for three flow configurations: a vertical thermal, a sloping gravity current and a vertical turbulent jet with various tilt angles and precession speeds. All three flows impinged on an interface separating a two-layer stably stratified environment. The entrainment rate is quantified for each flow using laser-induced fluorescence and compared to predictions of Cotel and Breidenthal (1997 Appl. Sci. Res. 57 349-66). The possible applications of transport across stratified interfaces include the contribution of hydrothermal plumes to the global ocean energy budget, turbidity currents on the ocean floor, the design of lake de-stratification systems, modeling gas leaks from storage reservoirs, weather forecasting and global climate change.

  6. Ring-bursting behavior en route to turbulence in narrow-gap Taylor-Couette flows.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-11-01

    We investigate the Taylor-Couette system where the radius ratio is close to unity. Systematically increasing the Reynolds number, we observe a number of previously known transitions, such as one from the classical Taylor vortex flow (TVF) to wavy vortex flow (WVF) and the transition to fully developed turbulence. Prior to the onset of turbulence, we observe intermittent bursting patterns of localized turbulent patches, confirming the experimentally observed pattern of very short wavelength bursts (VSWBs). A striking finding is that, for a Reynolds number larger than that for the onset of VSWBs, a new type of intermittently bursting behavior emerges: patterns of azimuthally closed rings of various orders. We call them ring-bursting patterns, which surround the cylinder completely but remain localized and separated in the axial direction through nonturbulent wavy structures. We employ a number of quantitative measures including the cross-flow energy to characterize the ring-bursting patterns and to distinguish them from the background flow. These patterns are interesting because they do not occur in the wide-gap Taylor-Couette flow systems. The narrow-gap regime is less studied but certainly deserves further attention to gain deeper insights into complex flow dynamics in fluids.

  7. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  8. Identification of dominant structures and their flow dynamics in the turbulent two-phase flow using POD technique

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Shahzad; Siddiqui, Muhammad Israr; Heikal, Morgan; Aziz, Abdul Rashid Abdul [Universiti Teknologi PETRONAS, Bander Seri Iskandar (Malaysia); Sercey, Guillaume de [University of Brighton, Brighton (United Kingdom)

    2015-11-15

    The Proper orthogonal decomposition (POD) method has seen increasingly used in the last two decades and has a lot of applications for the comparison of experimental and numerically simulated data. The POD technique is often used to extract information about coherent structures dominating the flow. The two-dimensional and two-component instantaneous velocity fields of both liquid and gas phases of a slug flow were obtained by Particle image velocimetry (PIV) combined with Laser induced fluorescence (LIF). POD was applied to the velocity fields of both phases separately to identify the coherent flow structures. We focused on POD eigenmodes and their corresponding energy contents of both liquid and gas phases. The sum of first few eigenmodes that contain maximum turbulent kinetic energy of the flow represents the coherent structures. In the case of liquid phase the first eigenmode contained 42% of the total energy, while in the gas phase the decaying energy distribution was flat. The POD results showed that the coefficient of mode 1 for the liquid phase oscillated between positive and negative values and had the highest amplitude. For the visualization of coherent motion different linear combinations of eigenmodes for liquid and gas phases were used. The phenomena of turbulent bursting events associated with Q2 events (low momentum fluid moving away from the wall) and Q4 events (high momentum flow moving towards the wall) were also discussed to assess its contribution in turbulence production.

  9. Lagrangian evolution of deformation of finite-size bubbles in turbulent multiphase flow

    Science.gov (United States)

    Masuk, Ashik Ullah Mohammad; Salibindla, Ashwanth; Ni, Rui

    2017-11-01

    Finite-size bubbles tend to deform in a strong turbulent environment because of the complex interfacial momentum transfer between them. We have utilized the new V-ONSET turbulence multiphase flow facility to track the deformation and the couplings between two phases in a 3D Lagrangian framework. This rich dataset allows us to understand the roles played by the dynamic pressure and viscous stress, as well as different forces that contribute to the interfacial momentum transfer. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  10. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    Science.gov (United States)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  11. Formation of turbulent structures and the link to fluctuation driven sheared flows

    DEFF Research Database (Denmark)

    Windisch, T; Grulke, O; Naulin, Volker

    2011-01-01

    The formation of turbulent structures in weakly developed drift-wave turbulence is investigated using experimental data obtained in a linear laboratory device. The findings are compared with fully non-linear numerical simulation results. The formation of structures occurs in a region, in which...... the divergence of the Reynolds stress, which is one term in the momentum balance, has a maximum. The generation of a time-averaged shear layer is not observed, but for transient events the shearing rate can become sufficiently strong to decorrelate the fluctuations. This happens when the energy flow...

  12. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow; Bifurcations globales hydrodynamiques et magnetohydrodynamiques dans un ecoulement de von Karman turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Ravelet, F

    2005-09-15

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  13. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    International Nuclear Information System (INIS)

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  14. Higher-order RANS turbulence models for separated flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....

  15. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    Science.gov (United States)

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  16. Bistable features of the turbulent flow in tube banks of triangular arrangement

    International Nuclear Information System (INIS)

    Paula, A.V. de; Endres, L.A.M.; Möller, S.V.

    2012-01-01

    Highlights: ► Hot wires and flow visualizations are used for the study of the turbulent flow in tube banks of triangular arrangement. ► The experimental data are analyzed through statistical, spectral and wavelet tools. ► The results show stable wake patterns after the first row of tubes. ► After the second row, a bistable behavior with the presence of a transverse vertical component is observed. ► After the third row the gap flow presents a fast swapping, from one side to another (flip-flop). - Abstract: In the present work, some features of the turbulent flow in tube banks of triangular arrangement are discussed. The experimental study is performed by means of hot-wire measurements in an aerodynamic channel, and flow visualizations in a water channel. The tube banks had pitch-to-diameter ratio 1.26 and 1.6, and the Reynolds numbers are in the range from 7.5 × 10 3 to 4.4 × 10 4 , computed with the diameter of the tubes and the percolation velocity. The experimental data are analyzed through statistical, spectral and wavelet tools. The results show stable wake patterns after the first row of tubes. Visualizations show that the flow which arises from the gap between the tubes form coalescent jets. In some cases, a changing flow direction occurs. This phenomenon is called in the literature as “metastable”. After two rows of tubes, the flows present a transverse vertical component. For P/D = 1.26, the flow direction changes at irregular time intervals, called “bistable flow”. For P/D = 1.6, the wake pattern is stable. The features of turbulent flow through three, four and five rows of tubes seems to be similar, where the gap flop presents a fast swapping, from one side to another (flip-flop).

  17. A Numerically and Experimentally Investigated Structure of the Turbulent Flow Past a Trench with a Separation

    Directory of Open Access Journals (Sweden)

    V. N. Afanasiev

    2017-01-01

    Full Text Available The paper studies the convective heat exchange intensification due to two-dimensional depressions formed on the initially flat surface. This problem is of interest for engineering applications because many different convective surfaces have cavities and depressions of constructive or random occurrence. During flow around a depression the boundary layer separation and its reattachment result in occurring specific phenomena, which have a significant impact on drag and heat exchange.The work involved an experimental study of hydrodynamic and heat characteristics of the turbulent boundary layer formed when there was an external airflow of the flat surface with a single transversal separation trench.The experimental part used an open subsonic low-turbulence wind tunnel operating in suction mode. A numerical simulation involves hydrodynamics and heat exchange parameters analysis via solution of the system of differential equations, which describe momentum and heat transport processes using ANSYS Fluent solver.The experimental data of this study are compared with numerical simulation results obtained by solving the steady Reynolds-averaged Navier-Stokes equations (RANS with a two-parametrical Menter k-ω (MSST turbulence model.The comparison shows that simulation results are in good agreement with experimental data, heat exchange surface profiling by a transversal trench system with or without flow separation does not lead to increasing surface drag and, moreover, at the certain ratios of geometrical parameters (cylindrical trenches with h/S£ 0.5 it can decrease the surface drag. Surface conjugations in these depressions should be smooth without any sharp curves and transitions, which can lead to forming stagnation regions.The reason for raising heat exchange is a spatial non-uniformity of the generated turbulence field. During flow analysis there were two sources of turbulence generation found out, namely a wall (heat exchange surface and a mixing

  18. Symposium on Turbulent Shear Flows, 6th, Universite de Toulouse III, France, Sept. 7-9, 1987, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This symposium includes topics on wall flows, unsteady flows, scalar and buoyant transport, instrumentation and techniques, combustion, aerodynamic flows, free flows, geophysical flows, complex flows, separated flows, coherent structures, closures, numerical simulation, and two-phase flows. Papers are presented on the effect of favorable pressure gradients on turbulent boundary layers, the models of hydrodynamic resonances in separated shear flows, the transport of passive scalars in a turbulent channel flow, a pulsed hot-wire probe for near-wall measurements, and vortex dynamics in diffusion flames. Consideration is also given to time-dependent structure in wing-body junction flows, bifurcating air jets at high subsonic speeds, the wake of an axisymmetric body with or without tail separation, coherent structures in quasi-geostrophic jets, and separated flow predictions using a new turbulence model. Additional papers are on stochastic estimation of organized structures in turbulent channel flow, a comparative study of eleven models of turbulence, and a numerical study of a stably stratified mixing layer

  19. Hydrodynamics of turbulent liquid flow in the entrance region of circular tubes

    International Nuclear Information System (INIS)

    Levchenko, Yu.D.; Trubakov, Yu.P.

    1975-01-01

    Presented are the main results and analysis of work on experimental research of the turbulent flow of fluid in the inlet section of straight channels of a circular cross-section. The experiments staged with the inlet arrangements of various geometries prove that the length of the initial section depends on the initial turbulence of the flow. The maximum stabilization length of the velocity profile is observed in case of a smooth rounded inlet of the channel. The static pressure gradient acquires the stabilized values on a length of a pipe two or three times less than the velocity profile. Certain experimental data have revealed the variation of the velocity profile in the initial section from the ''wall law'' of the stabilized flow. The effect of the Reynolds number on the length of the inlet section has not been reliably extablished

  20. Numerical Analysis of Turbulent Flow around Tube Bundle by Applying CAD Best Practice Guideline

    International Nuclear Information System (INIS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Cheng, Ae Ju

    2013-01-01

    In this study, the numerical analysis of a turbulent flow around both a staggered and an incline tube bundle was conducted using Annoys Cfx V. 13, a commercial CAD software. The flow was assumed to be steady, incompressible, and isothermal. According to the CAD Best Practice Guideline, the sensitivity study for grid size, accuracy of the discretization scheme for convection term, and turbulence model was conducted, and its result was compared with the experimental data to estimate the applicability of the CAD Best Practice Guideline. It was concluded that the CAD Best Practice Guideline did not always guarantee an improvement in the prediction performance of the commercial CAD software in the field of tube bundle flow

  1. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow.

    Science.gov (United States)

    Wang, Liguang; Vigil, R Dennis; Fox, Rodney O

    2005-05-01

    An experimental and computational investigation of the effects of local fluid shear rate on the aggregation and breakage of approximately 10 microm latex spheres suspended in an aqueous solution undergoing turbulent Taylor-Couette flow was carried out. First, computational fluid dynamics (CFD) simulations were performed and the flow field predictions were validated with data from particle image velocimetry experiments. Subsequently, the quadrature method of moments (QMOM) was implemented into the CFD code to obtain predictions for mean particle size that account for the effects of local shear rate on the aggregation and breakage. These predictions were then compared with experimental data for latex sphere aggregates (using an in situ optical imaging method). Excellent agreement between the CFD-QMOM and experimental results was observed for two Reynolds numbers in the turbulent-flow regime.

  2. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  3. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Science.gov (United States)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  4. Modelling turbulent fluid flows in nuclear and fossil-fired power plants

    International Nuclear Information System (INIS)

    Viollet, P.L.

    1995-06-01

    The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs

  5. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  6. Numerical Study of Correlation of Fluid Particle Acceleration and Turbulence Intensity in Swirling Flow

    Directory of Open Access Journals (Sweden)

    Nan Gui

    2015-01-01

    Full Text Available Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation ur.m.sE~C(aLφ between the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads to the increase of the exponent φ and the trajectory-conditioned correlation coefficient ρ(aL,uE and results in a weak power-law augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

  7. Turbulent conductivity in parallel with iso-velocities in a planar established flow

    International Nuclear Information System (INIS)

    Jullien, F.

    1968-02-01

    In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [fr

  8. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  9. Collective dynamics of particles from viscous to turbulent flows

    CERN Document Server

    2017-01-01

    The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...

  10. Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500

    Science.gov (United States)

    Feldmann, Daniel; Avila, Marc

    2018-04-01

    We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.

  11. Turbulence modeling of transverse flow on ship hulls in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Ken-Robert Gjelstad

    2010-09-15

    The hydrodynamic forces acting on a ship that travels in restricted water vary greatly with water depth and the geometry of the ship hull. This will affect the ship maneuverability in terms of various flow effects like for instance squat, when the ship is sucked down towards the seabed due to a pressure drop on the hull at forward speed. It is, thus, important to gain detailed knowledge on these aspects of marine engineering. The problem is in the present work addressed through a numerical investigation of turbulent transverse flow on two-dimensional ship sections in shallow water. The numerical code is validated against traditional flow problems in the literature. Namely, the Backward-facing step (BFS) and the Smoothly-contoured ramp (SCR). 2D and 3D laminar flows and 2D low Reynolds number turbulent flows are calculated, and the results are found to be in good agreement with the previous numerical and experimental comparison data. The turbulence model used in the calculations is the one-equation Spalart-Allmaras model. The overall goal of achieving more efficient and accurate numerical schemes will always be in focus of code development. Adaptive mesh refinement (AMR) is then a very helpful tool to save both time for grid generation prior to the calculations in question and the CPU hours needed to solve the governing equations. The latter is even more evident in a parallel environment. These aspects are included in the present investigation as part of the process to adapt and investigate a CFD tool suitable to handle turbulent flows on a ship hull in shallow water. Several physical and numerical parameters are included in the present study and the Plackett-Burman screening design is utilized to efficiently analyze the results. With the latter method, a simple function for calculating the drag force on a two-dimensional ship section as function of the given parameters has been obtained. (Author)

  12. Improved numerical methods for turbulent viscous recirculating flows

    Science.gov (United States)

    Turan, A.; Vandoormaal, J. P.

    1988-01-01

    The performance of discrete methods for the prediction of fluid flows can be enhanced by improving the convergence rate of solvers and by increasing the accuracy of the discrete representation of the equations of motion. This report evaluates the gains in solver performance that are available when various acceleration methods are applied. Various discretizations are also examined and two are recommended because of their accuracy and robustness. Insertion of the improved discretization and solver accelerator into a TEACH mode, that has been widely applied to combustor flows, illustrates the substantial gains to be achieved.

  13. Large Eddy Simulation of turbulent flow fields over three- dimensional alluvial dunes

    Science.gov (United States)

    Hardy, R. J.; Parsons, D. R.; Best, J.; Reesink, A. J. H.; Ockelford, A.

    2016-12-01

    Flow over fluvial dunes has been extensively studied and there is general understanding of the nature of the flow field over two dimensional dunes under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we report on a numerical experiment which predicts flow over three dimensional dunes using Large Eddy Simulation (LES). Bed topography generated through flume experiments, where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms, was measured with terrestrial LiDAR to create digital elevation models. This topography was then incorporated into a LES model, with a wall-adapting local eddy-viscosity turbulence model, through a Mass Flux Scaling algorithm, to generate three dimensional, high resolution space time prediction of flow over naturally formed dunes. The numerically predicted flows were analysed by standard Reynolds decomposition approaches, Eulerian and Lagrangian coherent flow structure identification methods and proper orthogonal decomposition. The results show that superimposed bed forms can cause changes in the nature of the classical separated flow regions and turbulence field. In particular, the number of locations where vortices are shed increase which causes coalescence of vortices. This increases the rate of transfer of turbulent kinetic energy into smaller scales. This has significant implications for the time dependent prediction of shear stress and as such for sediment transport dynamics which are required for an improved process understanding of three-dimensional bed form adjustment.

  14. DNS of turbulent heat transfer in a channel flow with a high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kozuka, Makoto [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kozuka.makoto@gmail.com; Seki, Yohji [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan); Kawamura, Hiroshi [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kawa@rs.noda.tus.ac.jp

    2009-06-15

    Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.

  15. DNS of turbulent heat transfer in a channel flow with a high spatial resolution

    International Nuclear Information System (INIS)

    Kozuka, Makoto; Seki, Yohji; Kawamura, Hiroshi

    2009-01-01

    Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.

  16. Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement

    International Nuclear Information System (INIS)

    Park, Y. H.; Choi, W. C.; Koo, J. H.; Song, M. G.; Ju, E. S.

    2000-01-01

    Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as 30 deg., 45 .deg., 60 .deg., 90 .deg., 120 .deg., 135 .deg. and 150 .deg. were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case

  17. Interface-resolved simulations of dense turbulent suspension flows

    NARCIS (Netherlands)

    Simões Costa, P.

    2017-01-01

    Transport of particles by a carrier fluid is an important, ubiquitous process. Few of many obvious examples are the blood flow that feeds oxygen to the different parts of our bodies, wind-assisted pollination, sediment transport in sand storms, avalanches, or rivers, cloud formation, and pyroclastic

  18. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    NARCIS (Netherlands)

    Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the

  19. DNS of turbulent bubble-laden channel flows

    NARCIS (Netherlands)

    Cifani, Paolo

    2017-01-01

    This thesis deals with numerical simulation methods for multiphase flows where different fluid phases are simultaneously present. In particular, the subject of interest is a system in which the carrier fluid is a liquid that transports dispersed gas bubbles. The simultaneous existence of physical

  20. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  1. Turbulence and drag control in jet and wake flows

    Indian Academy of Sciences (India)

    This has been investigated extensively with active techniques, e.g. imposing a periodic excitation of the main flow; feedback control also has been effective in suppressing vortex shedding. Passive control involves the introduction of thin cylinders adjacent to the main cylinder. By controlling the vortex shedding, undesirable ...

  2. Adjoint Optimisation of the Turbulent Flow in an Annular Diffuser

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Agular Knudsen, Christian; Kunoy, Jens Dahl

    2017-01-01

    In the present study, a numerical optimisation of guide vanes in an annular diffuser, is performed. The optimisation is preformed for the purpose of improving the following two parameters simultaneously; the first parameter is the uniformity perpen-dicular to the flow direction, a 1/3 diameter do...

  3. Local heat transfer coefficient for turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1983-03-01

    The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt

  4. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  5. Experimental investigations on the deposition and remobilization of aerosol particles in turbulent flows

    International Nuclear Information System (INIS)

    Barth, Thomas

    2014-01-01

    Aerosol particle deposition and resuspension experiments in turbulent flows were performed to investigate the complex particle transport phenomena and to provide a database for the development and validation of computational fluid dynamics (CFD) codes. The background motivation is related to the source term analysis of an accidental depressurization scenario of a High Temperature Reactor (HTR). During the operation of former HTR pilot plants, larger amounts of radio-contaminated graphite dust were found in the primary circuit. This dust most likely arose due to abrasion between the graphitic core components and was deposited on the inner wall surfaces of the primary circuit. In case of an accident scenario, such as a depressurization of the primary circuit, the dust may be remobilized and may escape the system boundaries. The estimation of the source term being discharged during such a scenario requires fundamental knowledge of the particle deposition, the amount of contaminants per unit mass as well as the resuspension phenomena. Nowadays, the graphite dust distribution in the primary circuit of an HTR can be calculated for stationary conditions using one-dimensional reactor system codes. However, it is rather unknown which fraction of the graphite dust inventory may be remobilized during a depressurization of the HTR primary circuit. Two small-scale experimental facilities were designed and a set of experiments was performed to investigate particle transport, deposition and resuspension in turbulent flows. The facility design concept is based on the fluid dynamic downscaling of the helium pressure boundary in the HTR primary circuit to an airflow at ambient conditions in the laboratory. The turbulent flow and the particles were recorded by high-resolution, non-invasive imaging techniques to provide a spatio-temporal insight into the particle transport processes. The different investigations of this thesis can be grouped into three categories. Firstly, the

  6. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States); Fischer, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gustafson, Jr., William I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moser, Robert [Univ. of Texas, Austin, TX (United States)

    2017-01-01

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  7. Turbulent penetration in T-junction branch lines with leakage flow

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: kickhofel@lke.mavt.ethz.ch; Valori, Valentina, E-mail: v.valori@tudelft.nl; Prasser, H.-M., E-mail: prasser@lke.mavt.ethz.ch

    2014-09-15

    Highlights: • New T-junction facility designed for adiabatic high velocity ratio mixing studies. • Trends in scalar mixing RMS and average in branch line presented and discussed. • Turbulent penetration has unique power spectrum relevant to thermal fatigue. • Forced flow oscillations translate to peaks in power spectrum in branch line. - Abstract: While the study of T-junction mixing with branch velocity ratios of near 1, so called cross flow mixing, is well advanced, to the point of realistic reactor environment fluid–structure interaction experiments and CFD benchmarking, turbulent penetration studies remain an under-researched threat to primary circuit piping. A new facility has been constructed for the express purpose of studying turbulent penetration in branch lines of T-junctions in the context of the high cycle thermal fatigue problem in NPPs. Turbulent penetration, which may be the result of a leaking valve in a branch line or an unisolable branch with heat losses, induces a thermal cycling region which may result in high cycle fatigue damage and failures. Leakage flow experiments have been performed in a perpendicular T-junction in a horizontal orientation with 50 mm diameter main pipe and branch pipe at velocity ratios (main/branch) up to 400. Wire mesh sensors are used as a means of measuring the mixing scalar in adiabatic tests with deionized and tap water. The near-wall region of highest scalar fluctuations is seen to vary circumferentially and in depth in the branch a great deal depending on the velocity ratio. The power spectra of the mixing scalar in the region of turbulent penetration are found to be dominated by high amplitude fluctuations at low frequencies, of particular interest to thermal fatigue. Artificial velocity oscillations in the main pipe manifest in the mixing spectra in the branch line in the form of a peak, the magnitude of which grows with increasing local RMS.

  8. Large-eddy simulation of turbulent flow in a street canyon

    Science.gov (United States)

    Cui, Zhiqiang; Cai, Xiaoming; Baker, J. Chris

    2004-04-01

    The turbulent flow inside an idealized urban street canyon with an aspect ratio of one is studied by means of large-eddy simulation. The Regional Atmospheric Modelling System is configured to simulate the turbulent flow in a neutrally stratified atmosphere with the initial wind perpendicular to the street canyon axis. The mean velocity components, resolved-scale turbulent kinetic energy (RS-TKE), the skewness and kurtosis of the resolved-scale velocity components (u along the canyon and w vertically) are compared with wind-tunnel measurements. The comparison indicates that a reasonable agreement is achieved. The simulation slightly underestimates the intensity of the primary eddy. It is found that distribution of the RS-TKE is very asymmetric: high in the vicinity of the downstream wall, and uniformly low in the vicinity of the upstream wall. The analyses of skewness and kurtosis indicate that there is a layer just below the rooftop in the canyon where ejection events dominate. Quadrant analysis of resolved-scale velocity fluctuations, u and w, under the rooftop at the centre of the canyon reveals that the exchange of momentum across the canyon top is contributed unevenly by different events. Weak ejection events dominate the frequency of occurrences, but fewer strong sweep events contribute the majority of the total momentum transfer. The features of momentum transfer are further investigated by analysing the spatial-temporal variations of u, w, and uw at the roof level. It is found that the variation of these variables is highly intermittent and is associated with multi-scale turbulent events. The period of eddies containing high RS-TKE is attributed to the Kelvin-Helmhotz instabilities. These results improve our understanding of the turbulent structure in street canyon flow.

  9. Turbulent intermittent structure in non-homogeneous non-local flows

    Science.gov (United States)

    Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.

    2010-05-01

    Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are

  10. A local sensor for joint temperature and velocity measurements in turbulent flows

    Science.gov (United States)

    Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca

    2018-01-01

    We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.

  11. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    KAUST Repository

    Zhang, Yue

    2015-07-23

    This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.

  12. A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows

    Energy Technology Data Exchange (ETDEWEB)

    James, Sutherland [University of Utah

    2018-04-12

    Abstract In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the curse of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.

  13. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    International Nuclear Information System (INIS)

    Li Feng-Chen; Wang Lu; Cai Wei-Hua

    2015-01-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. (paper)

  14. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  15. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  16. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  17. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  18. Stability limits of superhydrophobic longitudinal microgrooves in high Reynolds number turbulent flows

    Science.gov (United States)

    Rastegari, Amirreza; Akhavan, Rayhaneh

    2017-11-01

    The stability of the liquid/gas interfaces on SuperHydrophobic (SH) Longitudinal MicroGrooves (LMGs) in high Reynolds number turbulent flows of practical interest is investigated by analytical extrapolation of DNS results in turbulent channel flow at Reτ0 222 and 442 with SH LMGs at protrusion angle of θ = -30o . Given that the magnitude of pressure fluctuations in turbulent channel flow scales as prms+ √{ ln(Reτ) } , it is found that the stability limits of SH LMGs diminishes by factors of 4 when the Reynolds number of the base flow increases from Reτ0 200 of DNS to Reτ0 105 -106 of practical applications. For SH LMGs operating at Weber numbers of We+0 ≡ μuτ0 / σ 3 ×10-3 - 1.5 ×10-2 , corresponding to friction velocities of uτ0 0.2 - 1 m/s, this limits the size of stable LMGs to g+0 5 - 30 at Reτ0 105 and g+0 4 - 20 at Reτ0 106 , and the maximum drag reductions to DRmax 20 - 30 % at Reτ0 105 and DRmax 10 - 20 % at Reτ0 106 .

  19. Transport and deposition of neutral particles in magnetohydrodynamic turbulent channel flows at low magnetic Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Dritselis, C.D., E-mail: dritseli@mie.uth.g [Department of Mechanical Engineering, University of Thessaly, Athens Avenue, 38334 Volos (Greece); Sarris, I.E.; Fidaros, D.K.; Vlachos, N.S. [Department of Mechanical Engineering, University of Thessaly, Athens Avenue, 38334 Volos (Greece)

    2011-04-15

    The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.

  20. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    Science.gov (United States)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  1. Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine

    Science.gov (United States)

    Kang, S.; Sotiropoulos, F.

    2011-12-01

    A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.

  2. On Developments of k-τ and k-ω Models for Near-Wall Turbulence of Engineering Duct Flows

    DEFF Research Database (Denmark)

    Rokni, Masoud; Sundén, Bengt

    2009-01-01

    The performance of a modified k-tau model is assessed in predicting the turbulent flow and forced convective heat transfer in ducts with arbitrary cross-sections, under fully developed conditions. The presented model is based on more physical grounds using bounded time-scale, local turbulent...

  3. The influence of heat transfer and the variations of the properties of the fluids in turbulent flow in tube

    International Nuclear Information System (INIS)

    Menon, G.J.; Sielwa, J.T.

    1977-01-01

    The study is presented of the effects of heat transfer and the variations of the properties of the fluids in turbulent flow in tube. One model for the turbulent Eddy viscosity and termal Eddy diffusivity developed by CEBECI; NA and HABIB was utilized. The theoretical results agree well with experimental results [pt

  4. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

    2010-01-27

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  5. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  6. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  7. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    International Nuclear Information System (INIS)

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-01

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  8. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  9. Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan

    2014-12-01

    Full Text Available The aim of this study is to formulate a computational fluid dynamics (CFD model that can illustrate the fully turbulent flow in a pipe at higher Reynolds number. The flow of fluids in a pipe network is an important and widely studied problem in any engineering industry. It is always significant to see the development of a fluid flow and pressure drop in a pipe at higher Reynolds number. A finite volume method (FVM solver with k–ε turbulence model and enhanced wall treatment is used first time to investigate the flow of water at different velocities with higher Reynolds number in a 3D pipe. Numerical results have been presented to illustrate the effects of Reynolds number on turbulence intensity, average shear stress and friction factor. Friction factor is used to investigate the pressure drop along the length of the pipe. The contours of wall function are also presented to investigate the effect of enhanced wall treatment on a fluid flow. A maximum Reynolds number is also found for which the selected pipe length is sufficient to find a full developed turbulent flow at outlet. The results of CFD modeling are validated by comparing them with available data in literature. The model results have been shown good agreement with experimental and co-relation data.

  10. Study on the temporal and spatial characteristics of high-speed turbulent flow field and its optical transmission effects

    Science.gov (United States)

    Chen, Cheng; Fei, Jindong; Yi, Shihe; Tang, Wenzhuo

    2011-08-01

    When the aircraft flights in the earth's atmosphere with high speed, it will bring the aero-optical effects into optical imaging detector system. These aero-optical propagation effects are caused by two parts: high-speed turbulent flow field and aero-thermal window. This paper discusses the light propagation effects caused by high-speed turbulent flow field. The high-speed turbulent flow field is a highly non-uniformly time-varying medium, which possesses some characteristics depending on both time and space. While the light propagates through such a medium, the imaging on target of detector system will be affected. This paper describes both the temporal and spatial characteristics of high-speed turbulent flow field. To obtain the instantaneous distribution characteristics of turbulent flow field, one method is applying NPLS-based measurement technique of supersonic flow field. The three-dimensional density field is obtained by the relationship between density and image gray. We studied the physical phenomena of optical wave propagating through turbulent flow field and then the caused optical distortion. The NPLS technique is a high-resolution measurement method of the fine structure of supersonic three-dimensional complex flow field. The time resolution of NPLS technique is 6 ns, and the time correlation resolution is 200 ns. These resolutions can satisfy the description of the characteristics related to the time scale. We are able to describe the time correlation characteristics of density field using NPLS image with different time intervals. Finally, the optical transmission effects of light, which propagates through turbulent flow field, were simulated and studied. According to the instantaneous density field obtained from the NPLS technique, it is carried out that the simulation of optical transmission effect of high-speed turbulent flow field at several typical states. Then, using the ray-tracing method, the optical distance OPDi along the propagation path is

  11. Investigations of internal turbulent flows in a low-head tubular pump and its performance predictions

    International Nuclear Information System (INIS)

    Tang, X L; Chen, X S; Wang, F J; Yang, W; Wu, Y L

    2012-01-01

    Based on the RANS equations, standard k−ε turbulence model and SIMPLE algorithm, the internal turbulent flows in a low-head tubular pump were simulated by using the FLUENT software. Based on the predicted flow fields, the external performance curves including the head-discharge, efficiency-discharge and power-discharge curves were further obtained. The calculated results indicate that the internal flow pattern is smooth at the best efficiency point (BEP). When it works under off-design operating cases, the flow pattern inside the diffuser and the discharge passage is disorder, and at the same time, the hydraulic losses mainly come from the secondary flows. At large flow rates, the minimum static pressure near the inlet of the blade pressure surfaces due to the negative attack angle. At small flow rates, the minimum value happens near the inlet of the suction surfaces. At the BEP, the lowest static pressure appears in the region behind the suction surfaces inlet. The newly-designed model is validated by the comparisons between its predicted external performance and the experimental data of the JGM-3 model. This research provides some important references for the optimization of a low-head tubular pump.

  12. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    Science.gov (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  13. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  14. Application of the Proper Orthogonal Decomposition to Turbulent Czochralski Convective Flows

    Energy Technology Data Exchange (ETDEWEB)

    Rahal, S [Department of Mechanical Engineering, University of Batna, Rue Boukhlouf Mohamed el Hadi, 05000 Batna (Algeria); Cerisier, P [IUSTI - CNRS UMR 6595, Polytech' Marseille, Technopole de Chateau-Gombert, 5 rue Enrico Fermi, 13453, Marseille Cedex 13 (France); Azuma, H [Department of Aerospace Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)

    2007-04-15

    The aim of this work is to study the general aspects of the convective flow instabilities in a simulated Czochralski system. We considered the influence of the buoyancy and crystal rotation. Velocity fields, obtained by an ultrasonic technique, the corresponding 2D Fourier spectra and a correlation function, have been used. Steady, quasi-periodic and turbulent flows, are successively recognized, as the Reynolds number was increased, for a fixed Rayleigh number. The orthogonal decomposition method was applied and the numbers of modes, involved in the dynamics of turbulent flows, calculated. As far as we know, this method has been used for the first time to study the Czochralski convective flows. This method provides also information on the most important modes and allows simple theoretical models to be established. The large rotation rates of the crystal were found to stabilize the flow, and conversely the temperature gradients destabilize the flow. Indeed, the increase of the rotation effects reduces the number of involved modes and oscillations, and conversely, as expected, the increase of the buoyancy effects induces more modes to be involved in the dynamics. Thus, the flow oscillations can be reduced either by increasing the crystal rotation rate to the adequate value, as shown in this study or by imposing a magnetic field.

  15. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow

  16. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)

    2015-06-15

    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  17. Performance comparison of the commercial CFD software for the prediction of turbulent flow through tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Because turbulent flow through tube bundles can be found in many important industrial applications, such as PWR reactor, steam generator, CANDU calandria and lower plenum of the VHTR, extensive studies have been made both experimentally and numerically. Although recently licensing applications supported by commercial CFD software are increasing, there is no commercial CFD software which obtains a licensing from the regulatory body until now. Therefore, it is necessary to perform the systematic assessment for the prediction performance of the commercial CFD software. The main objective of the present study is to numerically simulate turbulent flow through both staggered and in line tube bundle using the two popular commercial CFD software, ANSYS CFX and FLUENT and to compare the simulation results with the experimental data for the assessment of these software's prediction performance.

  18. Large artificially generated turbulent boundary layers for the study of atmospheric flows

    International Nuclear Information System (INIS)

    Guimaraes, Joao Henrique D.; Santos Junior, Sergio J.F. dos; Freire, Atila P. Silva; Jian, Su

    1999-01-01

    The present work discusses in detail the experimental conditions for the establishment of thick artificially generated turbulent boundary layer which can be classified as having the near characteristics of an atmospheric boundary layer. The paper describes the experimental arrangement, including the features of the designed wind tunnel and of the instrumentation. the boundary layer is made to develop over a surface fitted with wedge generators which are used to yield a very thick boundary layer. The flow conditions were validated against the following features: growth, structure, equilibrium and turbulent transport momentum. Results are presented for the following main flow variables: mean velocity, local skin-friction coefficient, boundary layer momentum thickness and the Clauser factor. The velocity boundary layer characteristics were shown to be in good agreement with the expected trend in view of the classical expressions found in literature. (author)

  19. Effective Medium Theory for Drag Reducing Micro-patterned Surfaces in Turbulent Flows

    Science.gov (United States)

    Battiato, I.

    2013-12-01

    Inspired by the lotus effect, many studies in the last decade have focused on micro- and nano-patterned surfaces. They revealed that patterns at the micro-scale combined with high contact angles can significantly reduce skin drag. However, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model flow over patterned surfaces in both Cassie and Wenzel states. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Karman) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  20. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    Science.gov (United States)

    Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-01-01

    The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459