WorldWideScience

Sample records for flow modeling conceptual

  1. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  2. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  3. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  4. Geomorphic dam-break flows. Part I: conceptual model

    OpenAIRE

    Leal, JGAB; Ferreira, RML; Cardoso, AH

    2010-01-01

    Proceedings of the Institution of Civil Engineers - Water Management 163 Issue WM6 This paper presents a one-dimensional conceptual model for simulating geomorphic dam-break flows. The model is based on conservation laws drawn from continuum mixture theory that are integrated over the flow depth,assuming that the f10w is composed of two transport layers. Closure equations were derived from the review and reanalysis of previous studies on granular flow,debris f10w and sheet flow. The sedime...

  5. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    Several new capabilities have been added to the Total-System Analyzer (TSA), including a new model of unsaturated flow and transport, two new models of source releases, a different computational method for saturated transport, and gas-release capability. In this paper these new capabilities are described, and a comparison is made of results from the two different conceptual models of unsaturated flow that are now part of the TSA, a composite-porosity model and a simple fracture-flow model

  6. CAPTURING UNCERTAINTY IN UNSATURATED-ZONE FLOW USING DIFFERENT CONCEPTUAL MODELS OF FRACTURE-MATRIX INTERACTION

    International Nuclear Information System (INIS)

    SUSAN J. ALTMAN, MICHAEL L. WILSON, GUMUNDUR S. BODVARSSON

    1998-01-01

    Preliminary calculations show that the two different conceptual models of fracture-matrix interaction presented here yield different results pertinent to the performance of the potential repository at Yucca Mountain. Namely, each model produces different ranges of flow in the fractures, where radionuclide transport is thought to be most important. This method of using different flow models to capture both conceptual model and parameter uncertainty ensures that flow fields used in TSPA calculations will be reasonably calibrated to the available data while still capturing this uncertainty. This method also allows for the use of three-dimensional flow fields for the TSPA-VA calculations

  7. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    As part of the performance-assessment task for the potential repository site at Yucca Mountain, Nevada, Sandia National Laboratories is developing a set of programs called the Total-System Analyzer (TSA). The TSA is one of the tools being used in the current effort to provide a systematic preliminary estimate the total-system performance of the Yucca Mountain site. The purposes of this paper are twofold: (1) to describe capabilities that have been added to the TSA in the last year; and (2) to present a comparison of two conceptual models of unsaturated-zone flow and transport, in terms of the performance measure specified by the Environmental Protection Agency (EPA) in 40 CFR Part 191. The conceptual-model comparison is intended to demonstrate the new TSA capabilities and at the same time shed some light on the performance implications of fracture flow at Yucca Mountain. Unsaturated fracture flow is not yet well understood, and it is of great importance in determining the performance of Yucca Mountain

  8. Conceptualization of preferential flow for hillslope stability assessment

    Science.gov (United States)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  9. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  10. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  11. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  12. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques

    Science.gov (United States)

    Jain, Ashu; Srinivasulu, Sanaga

    2006-02-01

    This paper presents the findings of a study aimed at decomposing a flow hydrograph into different segments based on physical concepts in a catchment, and modelling different segments using different technique viz. conceptual and artificial neural networks (ANNs). An integrated modelling framework is proposed capable of modelling infiltration, base flow, evapotranspiration, soil moisture accounting, and certain segments of the decomposed flow hydrograph using conceptual techniques and the complex, non-linear, and dynamic rainfall-runoff process using ANN technique. Specifically, five different multi-layer perceptron (MLP) and two self-organizing map (SOM) models have been developed. The rainfall and streamflow data derived from the Kentucky River catchment were employed to test the proposed methodology and develop all the models. The performance of all the models was evaluated using seven different standard statistical measures. The results obtained in this study indicate that (a) the rainfall-runoff relationship in a large catchment consists of at least three or four different mappings corresponding to different dynamics of the underlying physical processes, (b) an integrated approach that models the different segments of the decomposed flow hydrograph using different techniques is better than a single ANN in modelling the complex, dynamic, non-linear, and fragmented rainfall runoff process, (c) a simple model based on the concept of flow recession is better than an ANN to model the falling limb of a flow hydrograph, and (d) decomposing a flow hydrograph into the different segments corresponding to the different dynamics based on the physical concepts is better than using the soft decomposition employed using SOM.

  13. Conceptual hydrologic model of flow in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1984-01-01

    The purpose of this report is to propose a conceptual hydrologic model that reasonably describes the flow of fluids through the unsaturated zone at Yucca Mountain, for use as a basis for preliminary site-performance assessment and as a guide to further investigations. Scott and others (1983) presented an initial conceptual hydrogeologic model for the unsaturated zone at Yucca Mountain, based on detailed geologic, but very limited hydrologic, information. In this report, some of their concepts are examined and either supported or modified, and new concepts are developed. The model describes the manner in which flow probably occurs at Yucca Mountain and is based on: (1) current understanding of the hydrogeologic framework; (2) application of the principles of unsaturated flow; and (3) interpretation of some preliminary data from ongoing field and laboratory investigations. Included are extensive geologic information but relatively few hydrologic data that currently exist from the unsaturated zone in the Yucca Mountain area. Many uncertainties remain to be resolved concerning hydrologic conditions and processes. As a result, most of the concepts presented are intentionally descriptive and conjectural, with little quantitative basis provided. However, for the sake of directness and simplicity of expression, the model is presented as if it were a true expression of the facts. The authors recognize, and the reader should be aware, that the proposed model probably is not the only reasonable description that could be made at this point, and it certainly is subject to revision and quantification as more data become available. Although various alternative models probably could be developed, the one described in this report seems to fit current understanding of the unsaturated flow through a section of layered, fractured-rock formations with contrasting hydrologic properties, such as occurs at Yucca Mountain. 41 refs., 14 figs., 1 tab

  14. DEVELOPING AND PROPOSING A CONCEPTUAL MODEL OF THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Lazoc Alina

    2012-07-01

    Full Text Available Information search is an essential part of the consumer`s decision making process. The online medium offers new opportunities and challenges for information search activities (in and outside the marketing context. We are interested in the way human information experiences and behaviors are affected by this. Very often online games and social web activities are perceived as challenging, engaging and enjoyable, while online information search is far below this evaluation. Our research proposal implies that using the online medium for information search may provoke enjoyable experiences through the flow state, which may in turn positively influence an individual`s exploratory information behavior and encourage his/her pro-active market behavior. The present study sets out to improve the understanding of the online medium`s impact on human`s exploratory behavior. We hypothesize that the inclusion of the online flow experience in our research model will better explain exploratory information search behaviors. A 11-component conceptual framework is proposed to explain the manifestations of flow, its personal and technological determinants and its behavioral consequence in the context of online information search. Our research has the primary purpose to present an integrated online flow model. Its secondary objective is to stimulate extended research in the area of informational behaviors in the digital age. The paper is organized in three sections. In the first section we briefly report the analysis results of the most relevant online flow theory literature and, drawing on it, we are trying to identify variables and relationships among these. In the second part we propose a research model and use prior flow models to specify a range of testable hypothesis. Drawing on the conceptual model developed, the last section of our study presents the final conclusions and proposes further steps in evaluating the model`s validity. Future research directions

  15. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  16. A conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Québec, Canada

    International Nuclear Information System (INIS)

    Montcoudiol, N.; Molson, J.; Lemieux, J.-M.; Cloutier, V.

    2015-01-01

    Highlights: • Geochemical and isotope data help constrain the 2D conceptual flow model. • Stable isotopes indicate recharge occurring under conditions similar to current climate. • Mixing was found between younger ( 3 H) and older ( 14 C and 4 He) groundwater. • Mixing occurred under natural flow conditions and/or was induced during sampling. • The new conceptual model shows dominant local and intermediate flow systems. - Abstract: A conceptual model was developed for a hydrogeological flow system in the southern Outaouais Region, Quebec, Canada, where the local population relies heavily on groundwater pumped from shallow overburden aquifers and from deeper fractured crystalline bedrock. The model is based on the interpretation of aqueous inorganic geochemical data from 14 wells along a cross-section following the general flow direction, of which 9 were also analysed for isotopes (δ 18 O, δ 2 H, 3 H, δ 13 C, 14 C) and 4 for noble gases (He, Ne, Ar, Xe, Kr). Three major water types were identified: (1) Ca–HCO 3 in the unconfined aquifer as a result of silicate (Ca-feldspar) weathering, (2) Na–Cl as a remnant of the post-glacial Champlain Sea in stagnant confined zones of the aquifer, and (3) Na–HCO 3 , resulting from freshening of the confined aquifer due to Ca–Na cation exchange. Chemical data also allowed the identification of significant mixing zones. Isotope and noble gas data confirm the hypothesis of remnant water from the Champlain Sea and also support the hypothesis of mixing processes between a young tritium-rich component with an older component containing high 4 He concentrations. It is still unclear if the mixing occurs under natural flow conditions or if it is induced by pumping during the sampling, most wells being open boreholes in the bedrock. It is clear, however, that the hydrogeochemical system is dynamic and still evolving from induced changes since the last glaciation. As a next step, the conceptual model will serve as a

  17. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  18. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  19. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  20. Flow structure through pool-riffle sequences and a conceptual model for their sustainability in gravel-bed rivers

    Science.gov (United States)

    D. Caamano; P. Goodwin; J. M. Buffington

    2010-01-01

    Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...

  1. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  2. Alternative conceptual models and codes for unsaturated flow in fractured tuff: Preliminary assessments for GWTT-95

    International Nuclear Information System (INIS)

    Ho, C.K.; Altman, S.J.; Arnold, B.W.

    1995-09-01

    Groundwater travel time (GWTT) calculations will play an important role in addressing site-suitability criteria for the potential high-level nuclear waste repository at Yucca Mountain,Nevada. In support of these calculations, Preliminary assessments of the candidate codes and models are presented in this report. A series of benchmark studies have been designed to address important aspects of modeling flow through fractured media representative of flow at Yucca Mountain. Three codes (DUAL, FEHMN, and TOUGH 2) are compared in these benchmark studies. DUAL is a single-phase, isothermal, two-dimensional flow simulator based on the dual mixed finite element method. FEHMN is a nonisothermal, multiphase, multidimensional simulator based primarily on the finite element method. TOUGH2 is anon isothermal, multiphase, multidimensional simulator based on the integral finite difference method. Alternative conceptual models of fracture flow consisting of the equivalent continuum model (ECM) and the dual permeability (DK) model are used in the different codes

  3. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  4. BUILDING CONCEPTUAL AND MATHEMATICAL MODEL FOR WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE AT KOSNICA SITE

    Directory of Open Access Journals (Sweden)

    Stanko Ružičić

    2012-12-01

    Full Text Available Conceptual model of flow and solute transport in unsaturated zone at Kosnica site, which is the basis for modeling pollution migration through the unsaturated zone to groundwater, is set up. The main characteristics of the unsaturated zone of the Kosnica site are described. Detailed description of investigated profile of unsaturated zone, with all necessary analytical results performed and used in building of conceptual models, is presented. Experiments that are in progress and processes which are modeled are stated. Monitoring of parameters necessary for calibration of models is presented. The ultimate goal of research is risk assessment of groundwater contamination at Kosnica site that has its source in or on unsaturated zone.

  5. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model

  6. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  7. Laboratory research program to aid in developing and testing the validity of conceptual models for flow and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    Glass, R.J.

    1991-01-01

    As part of the Yucca Mountain Project, a laboratory research program is being developed at Sandia National Laboratories that will integrate fundamental physical experimentation with conceptual model formulation and mathematical modeling and aid in subsequent model validation for unsaturated zone water and contaminant transport. Experimental systems are being developed to explore flow and transport processes and assumptions of fundamental importance to various conceptual models. Experimentation will run concurrently in two types of systems: fractured and nonfractured tuffaceous systems; and analogue systems having specific characteristics of the tuff systems but designed to maximize experimental control and resolution of data measurement. Areas in which experimentation currently is directed include infiltration flow instability, water and solute movement in unsaturated fractures, fracture-matrix interaction, and scaling laws to define effective large-scale properties for heterogeneous, fractured media. 16 refs

  8. Laboratory research program to aid in developing and testing the validity of conceptual models for flow and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    Glass, R.J.

    1990-01-01

    As part of the Yucca Mountain Project, a laboratory research program is being developed at Sandia National Laboratories that will integrate fundamental physical experimentation with conceptual formulation and mathematical modeling and aid in subsequent model validation for unsaturated zone water and contaminant transport. Experimental systems are being developed to explore flow and transport processes and assumptions of fundamental importance to various conceptual models. Experimentation will run concurrently in two types of systems: fractured and nonfractured tuffaceous systems; and analogue systems having specific characteristics of the tuff systems but designed to maximize experimental control and resolution of data measurement. Questions to which experimentation currently is directed include infiltration flow instability, water and solute movement in unsaturated fractures, fracture-matrix interaction, and the definition of effective large-scale properties for heterogeneous, fractured media. 16 refs

  9. Guide for developing conceptual models for ecological risk assessments

    International Nuclear Information System (INIS)

    Suter, G.W., II.

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs

  10. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  11. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  12. Modelling framework for groundwater flow at Sellafield

    International Nuclear Information System (INIS)

    Hooper, A.J.; Billington, D.E.; Herbert, A.W.

    1995-01-01

    The principal objective of Nirex is to develop a single deep geological repository for the safe disposal of low- and intermediate-level radioactive waste. In safety assessment, use is made of a variety of conceptual models that form the basis for modelling of the pathways by which radionuclides might return to the environment. In this paper, the development of a conceptual model for groundwater flow and transport through fractured rock on the various scales of interest is discussed. The approach is illustrated by considering how some aspects of the conceptual model are developed in particular numerical models. These representations of the conceptual model use fracture network geometries based on realistic rock properties. (author). refs., figs., tabs

  13. Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

    International Nuclear Information System (INIS)

    Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

    1996-01-01

    Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution

  14. High flows in the 21st Century: analysis with a simple conceptual hydrological models using the input of 3 GCMs (A2 scenario)

    NARCIS (Netherlands)

    Lanen, H.A.J.; Wanders, N.

    2011-01-01

    The study on high flows with a conceptual hydrological model leads to the following conclusions for about 1500 randomly selected land points across the world that have an intermediate soil water supply capacity and an intermediary responding groundwater system: · the probability distributions of

  15. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    Science.gov (United States)

    Kikuchi, Colin P.

    2013-01-01

    The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were

  16. Using a conceptual model to assess the role of flow regulation in the hydromorphological evolution of riparian corridors

    Science.gov (United States)

    Martínez-Fernández, Vanesa; Gonzalez del Tánago, Marta; García de Jalón, diego

    2017-04-01

    Riparian corridors result from active vegetation-fluvial interactions, which are highly dependent on flow regime conditions and sediment dynamics. Colonization, establishment and survival of species are constrained by fluvial processes which vary according to topographic and sedimentological complexity of the corridor. In order to manage these dynamic and complex riparian systems there is a need for practical tools based on conceptual models. The objective of this study was to apply the conceptual model of riparian corridors lateral zonation in response to the dominant fluvial processes established by Gurnell et al. (2015) and verify its usefulness as a tool for assessing the effect of flow regulation. Two gravel rivers have been selected for this purpose from the north of Spain, the Porma River regulated by Boñar large dam and the unregulated Curueño River. The historical series of flows and the aerial photographs of 1956 and 2011 on which the river corridor has been delimited have been analyzed and identified the permanent inundated zone (1) and four areas of riparian vegetation dominated respectively by fluvial disturbance with coarse sediment erosion and deposition (zone 2), fluvial disturbance with finer sediment deposition (zone 3), inundation (zone 4) and soil moisture regime (zone 5). Likewise, a two-dimensional hydraulic simulation was performed with avenues of different return periods and calculated the prevailing hydraulic conditions (depths, velocities and drag forces) to characterize each of the vegetation zones mentioned in both rivers. The results show that the most active zone 2 (fluvial disturbance dominated showing coarse sediment erosion and deposition) disappears due to the regulation of flows and vegetation encroachment, while the riparian corridor is dominated by the less active zone where the vegetation is maintained by the humidity of sporadic floods and underground runoff. Moreover, by means of the hydraulic simulation we have found a

  17. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  18. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    International Nuclear Information System (INIS)

    McGraw, D.; Oberlander, P.

    2007-01-01

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a)), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The

  19. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  20. A conceptual model of political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.

    2005-01-01

    . The remaining four constructs are attitudinal, designed to capture the awareness of members to the activities and importance of stakeholder groups in society, both internal and external to the organisation. The model not only allows the level of a party's political market orientation to be assessed, but also......This article proposes eight constructs of a conceptual model of political market orientation, taking inspiration from the business and political marketing literature. Four of the constructs are 'behavioural' in that they aim to describe the process of how information flows through the organisation...

  1. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    International Nuclear Information System (INIS)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-01-01

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  2. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  3. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  4. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system, FY 1993 status report

    International Nuclear Information System (INIS)

    Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.

    1993-12-01

    The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model

  5. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  6. A conceptual framework that links pollinator foraging behavior to gene flow

    Science.gov (United States)

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  7. A scalable approach to modeling groundwater flow on massively parallel computers

    International Nuclear Information System (INIS)

    Ashby, S.F.; Falgout, R.D.; Tompson, A.F.B.

    1995-12-01

    We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model

  8. Conceptual model elaboration for the safety assessment of phosphogypsum use in sanitary landfills

    International Nuclear Information System (INIS)

    Cota, Stela D.; Braga, Leticia T.P.; Jacomino, Vanusa F.

    2009-01-01

    Phosphogypsum is a by-product of the phosphatic fertilizer production from the beneficiation of phosphate minerals (apatites). Produced in large quantities throughout the world and stored temporally in stacks, the final destination of this product is nowadays a subject of investigation. Due to the presence of radionuclides ( 226 Ra, 232 Th and 40 K, mainly), possible applications for the phosphogypsum must be verified for radiological safety. The goal of this paper was to elaborate a representative water flow conceptual model of a sanitary landfill for the safety assessment of the impact of using phosphogypsum as a cover material. For this, the ground water flow in variably saturated conditions and solute transport model HYDRUS-2D has been used for simulating the impact in the saturated zone of potential radionuclides leaching. The conceptual model was developed by collecting and analyzing the data from environmental license documentation of municipal sanitary landfills located on the State of Minas Gerais, Brazil. In order to fulfill the requirements of HDRUS-2D model in terms of the necessary parameters, the physical characteristics and typical configuration of the landfills, as well as the hydrogeological parameters of soils and aquifers related to the local of placement of the landfills, were taken in account for the formulation of the conceptual model. (author)

  9. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  10. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  11. Hydrogeochemical evidence supporting models for groundwater flow around Sellafield, U.K

    International Nuclear Information System (INIS)

    Metcalfe, R.; Milodowski, A.E.; Noy, D.J.

    1999-01-01

    Recently, United Kingdom Nirex Limited has investigated a site near Sellafield, north-west England to assess its suitability as the potential location for a deep underground repository for the disposal of intermediate- level, and some low-level, solid radioactive waste. Groundwater flow at the site was simulated using a variety of computer codes, based upon conceptual models of the hydrogeological system. Chemical data for groundwaters aided the development of these conceptual models, and also provided a check upon the computer models' validity. Mineralogical information can be accommodated within the conceptual and theoretical framework. The results of the investigation are presented. (author)

  12. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  13. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  14. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7{approx}20mm pipe break dia., 7{approx}12MPa stagnation pressure, 0{approx}60 deg C subcooling degree and 0{approx}0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m{sup 3}), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined.

  15. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 deg C subcooling degree and 0∼0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m 3 ), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined

  16. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  17. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  18. 300 kWt core conceptual model thermal/hydraulic characteristics

    International Nuclear Information System (INIS)

    Moody, E.

    1971-01-01

    The 300 kW(t), 199 element NASA-Lewis/AEC core conceptual model, has been analyzed to determine it's thermal-hydraulic characteristics using the GEOM-3 code. Stack-ups of tolerances and fuel rod asymmetry patterns were used to ascertain cross element Δ T's. Both zoned and uniform spacing were analyzed with a somewhat lower fuel temperature and cross element ΔT found for zoned spacing. With the models considered, the core design appears adequate to limit thermal gradients to approximately 32 0 F. Bypass flow should be controlled to prevent excessive edge element ΔT's. 11 references. (U.S.)

  19. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  20. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  1. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  2. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    Directory of Open Access Journals (Sweden)

    Gryk Michael R

    2007-01-01

    Full Text Available Abstract Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting

  3. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  4. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996-Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer; FINAL

    International Nuclear Information System (INIS)

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-01-01

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty

  5. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    of spatial variability of the hydraulic properties within soil layers and horizontal versus vertical anisotropy in the hydraulic conductivity of soils. For the deformation zones, the same prescription for assigning transmissivities was followed as for stage 2.2, but a new method for automating the local conditioning of the deformation zone transmissivity in the vicinity of a measurement interval was used. The numerical simulations carried out in stage 2.2 demonstrated that the three geological units: deformation zones, fracture domains and regolith, can be parameterised by means of single-hole hydraulic tests and satisfactorily transformed into heterogeneous hydraulic conductor domains (HCD), hydraulic rock mass domains (HRD) and hydraulic soil domains (HSD). This means that the conceptual model developed from the interpretation of Forsmark data in stage 2.2 can be used to predict a wide range of different types of data and processes such as 1) large-scale cross-hole test responses, 2) natural point-water heads in the bedrock and the regolith, and 3) hydrochemistry profiles along the many cored boreholes drilled in close proximity to the so called target area. It is noted that a primary idea of the confirmatory testing applied in stage 2.2 is that the same groundwater flow and solute transport model is used for each type of simulation to make it transparent that a single implementation of the conceptual model could be calibrated against all three types of field observations, although it may have been possible to improve the modelling of a particular data type by refining the model around a relevant observation borehole, for example. The conceptual modelling in stage 2.2 invoked a number of hypotheses, three of which that were addressed in stage 2.3 by means of complementary field investigations (hydraulic tests). The results from these investigations do not falsify (contradict) any of the three hypotheses, hence none of them should be rejected. In fact, the three

  6. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  7. Conceptual IT model

    Science.gov (United States)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  8. A Conceptual Framework for the Indirect Method of Reporting Net Cash Flow from Operating Activities

    Science.gov (United States)

    Wang, Ting J.

    2010-01-01

    This paper describes the fundamental concept of the reconciliation behind the indirect method of the statement of cash flows. A conceptual framework is presented to demonstrate how accrual and cash-basis accounting methods relate to each other and to illustrate the concept of reconciling these two accounting methods. The conceptual framework…

  9. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  10. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    Science.gov (United States)

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  11. Measuring and Modeling Flow in Welded Fractured Tuffs

    International Nuclear Information System (INIS)

    R. Salve; C. Doughty; J.S. Wang

    2001-01-01

    We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field

  12. First status report on regional groundwater flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-12-01

    Regional groundwater flow within the principal hydrogeological units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wolfcamp carbonate aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and groundwater travel paths. Results from the adjoint sensitivity analysis included importance functions and sensitivity coefficients, using heads or the average Darcy velocities as the performance measures. The reported work is the first stage of an ongoing evaluation of two areas within the Palo Duro Basin as potantial repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of groundwater flow within the Palo Duro Basin

  13. Description and evaluation of a mechanistically based conceptual model for spall

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

  14. Description and evaluation of a mechanistically based conceptual model for spall

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W.

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m 3 is calculated

  15. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  16. The treatment of conceptual model uncertainty in the Nagra programme: a few examples

    International Nuclear Information System (INIS)

    Zuidema, P.; Gautschi, A.; Smith, P.; Vomvoris, S.

    1995-01-01

    In this paper, a few examples are discussed which demonstrate how conceptual model uncertainty is treated within the Nagra programme. These examples cover geometric aspects, small-scale properties of the host rock and direction of the flow paths. Based on the examples, the pragmatic approach adopted in performance assessment is briefly discussed. (author). 3 refs., 7 figs

  17. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes

  18. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-01-01

    abstractions and pollution threatens the fresh water resource, and consequently the ecosystem integrity of both Sian Ka’an and the adjacent coastal environment. Seven different catchment-scale conceptual models were implemented in a distributed hydrological modelling approach. Equivalent porous medium...... to preserve water resources and maintain ecosystem services. Multiple Model Simulation highlights the impact of model structure uncertainty on management decisions using several plausible conceptual models. Multiple Model Simulation was used for this purpose on the Yucatan Peninsula, which is one of the world......Groundwater management in karst is often based on limited hydrologic understanding of the aquifer. The geologic heterogeneities controlling the water flow are often insufficiently mapped. As karst aquifers are very vulnerable to pollution, groundwater protection and land use management are crucial...

  19. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  20. Modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have modeled an infiltration experiment at Fran Ridge, using the TOUGH2 code, to aid in the selection of computational models for waste repository performance assessment. This study investigates the capabilities of TOUGH2 to simulate transient flows through highly fractured tuff, and provides a possible means of calibrating hydrologic parameters such as effective fracture aperture and fracture-matrix connectivity. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The field experiments involved the infiltration of dyed ponded water in highly fractured tuff. The infiltration observed in the experiment was subsequently modeled using Fran Ridge fracture frequencies, obtained during post-experiment site excavation. Comparison of the TOUGH2 results obtained using the two conceptual models gives insight into their relative strengths and weaknesses

  1. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  2. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  3. National Identity: Conceptual models, discourses and political change

    DEFF Research Database (Denmark)

    Harder, Peter

    2014-01-01

    of conceptual models or discourses. This is especially important in cases that involve conflictive political issues such as national and ethnic identity. The article reports on a historical project with a linguistic dimension in my department (PI Stuart Ward, cf. Ward 2004), which aims to throw light......Cognitive Linguistics has demonstrated the applicability of a conceptual approach to the understanding of political issues, cf. Lakoff (2008) and many others. From a different perspective, critical discourse analysis has approached political concepts with a focus on issues involving potentially...... divisive features such as race, class, gender and ethnic identity. Although discourses are not identical to conceptual models, conceptual models are typically manifested in discourse, and discourses are typically reflections of conceptualizations, a theme explored e.g. in Hart and Lukes (2007). As argued...

  4. OWL references in ORM conceptual modelling

    Science.gov (United States)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  5. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  6. Region-scale groundwater flow modelling of generic high level waste disposal sites

    International Nuclear Information System (INIS)

    Metcalfe, D.

    1996-02-01

    Regional-scale groundwater flow modelling analyses are performed on generic high level waste (HLW) disposal sites to assess the extent to which a large crystalline rock mass such as a pluton or batholith can be expected to contain and isolate HLW in terms of hydraulic considerations, for a variety of geologic and hydrogeologic conditions. The two-dimensional cross-sectional conceptual models of generic HLW disposal sites are evaluated using SWIFT III, which is a finite-difference flow and transport code. All steps leading to the final results and conclusions are incorporated in this report. The available data and information on geological and hydrogeologic conditions in plutons and batholiths are summarized. The generic conceptual models developed from this information are defined in terms of the finite difference grid, the geologic and hydrogeologic properties and the hydrologic boundary conditions used. The modelled results are described with contour maps showing the modelled head fields, groundwater flow paths and travel times and groundwater flux rates within the modelled systems. The results of the modelling analyses are used to develop general conclusions on the scales and patterns of groundwater flow in granitic plutons and batholiths. The conclusions focus on geologic and hydrogeologic characteristics that can result in favourable conditions, in terms of hydraulic considerations, for a HLW repository. (author) 43 refs., 9 tabs., 40 figs

  7. Strategies to Move From Conceptual Models to Quantifying Resilience in FEW Systems

    Science.gov (United States)

    Padowski, J.; Adam, J. C.; Boll, J.; Barber, M. E.; Cosens, B.; Goldsby, M.; Fortenbery, R.; Fowler, A.; Givens, J.; Guzman, C. D.; Hampton, S. E.; Harrison, J.; Huang, M.; Katz, S. L.; Kraucunas, I.; Kruger, C. E.; Liu, M.; Luri, M.; Malek, K.; Mills, A.; McLarty, D.; Pickering, N. B.; Rajagopalan, K.; Stockle, C.; Richey, A.; Voisin, N.; Witinok-Huber, B.; Yoder, J.; Yorgey, G.; Zhao, M.

    2017-12-01

    Understanding interdependencies within Food-Energy-Water (FEW) systems is critical to maintain FEW security. This project examines how coordinated management of physical (e.g., reservoirs, aquifers, and batteries) and non-physical (e.g., water markets, social capital, and insurance markets) storage systems across the three sectors promotes resilience. Coordination increases effective storage within the overall system and enhances buffering against shocks at multiple scales. System-wide resilience can be increased with innovations in technology (e.g., smart systems and energy storage) and institutions (e.g., economic systems and water law). Using the Columbia River Basin as our geographical study region, we use an integrated approach that includes a continuum of science disciplines, moving from theory to practice. In order to understand FEW linkages, we started with detailed, connected conceptual models of the food, energy, water, and social systems to identify where key interdependencies (i.e., overlaps, stocks, and flows) exist within and between systems. These are used to identify stress and opportunity points, develop innovation solutions across FEW sectors, remove barriers to the adoption of solutions, and quantify increases in system-wide resilience to regional and global change. The conceptual models act as a foundation from which we can identify key drivers, parameters, time steps, and variables of importance to build and improve existing systems dynamic and biophysical models. Our process of developing conceptual models and moving to integrated modeling is critical and serves as a foundation for coupling quantitative components with economic and social domain components and analyses of how these interact through time and space. This poster provides a description of this process that pulls together conceptual maps and integrated modeling output to quantify resilience across all three of the FEW sectors (a.k.a. "The Resilience Calculator"). Companion posters

  8. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  9. Modeling flow and transport pathways to the potential repository horizon at Yucca Mountain

    International Nuclear Information System (INIS)

    Wolfsberg, A.V.; Roemer, G.J.C.; Fabryka-Martin, J.T.; Robinson, B.A.

    1998-01-01

    The isotopic ratios of 36 Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of 36 Cl/Cl ratios for evaluating alternative conceptual models

  10. Homeland Security and Information Control: A Model of Asymmetric Information Flows.

    Science.gov (United States)

    Maxwell, Terrence A.

    2003-01-01

    Summarizes some of the activities the United States government has undertaken to control the dissemination of information since 2001. It also explores, through a conceptual model of information flows, potential impacts and discontinuities between policy purposes and outcomes. (AEF)

  11. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams

    Science.gov (United States)

    Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan

    2012-06-01

    The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.

  12. Conceptual design and quantification of phosphorus flows and balances at the country scale: The case of France

    Science.gov (United States)

    Senthilkumar, Kalimuthu; Nesme, Thomas; Mollier, Alain; Pellerin, Sylvain

    2012-06-01

    Global biogeochemical cycles have been deeply modified by human activities in recent decades. But detailed studies analyzing the influence of current economic and social organizations on global biogeochemical cycles within a system perspective are still required. Country level offers a relevant scale for assessing nutrient management and identifying key driving forces and possible leaks in the nutrient cycle. Conceptual modeling helps to quantify nutrient flows within the country and we developed such an approach for France. France is a typical Western European country with intensive agriculture, trade and an affluent diet, all of which may increase internal and external P flows. Phosphorus (P) was taken as a case study because phosphate rock is a non-renewable resource which future availability is becoming increasingly bleak. A conceptual model of major P flows at the country scale was designed. France was divided into agriculture, industry, domestic, import and export sectors, and each of these sectors was further divided into compartments. A total of 25 internal and eight external P flows were identified and quantified on a yearly basis for a period of 16 years (from 1990 to 2006) in order to understand long-term P flows. All the P flows were quantified using the substance flow analysis principle. The results showed that the industrial sector remained the largest contributor to P flows in France, followed by the agriculture and domestic sectors. Soil P balance was positive. However, a positive P balance of 18 kg P ha-1 in 1990 was reduced to 4 kg P ha-1 in 2006, mainly due to the reduced application of inorganic P fertilizer. The overall country scale P balance was positive, whereas half of this additional P was lost to the environment mainly through the landfilling of municipal and industrial waste, disposal of treated wastewater from which P was partially removed, and P losses from agricultural soils though erosion and leaching. Consequences for global P

  13. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  14. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  15. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-01-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al

  16. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  17. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates

    Science.gov (United States)

    Todorovic, Andrijana; Plavsic, Jasna

    2015-04-01

    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters

  18. Role of conceptual models in nuclear power plant operation

    International Nuclear Information System (INIS)

    Williams, M.D.; Moran, T.P.; Brown, J.S.

    1982-01-01

    A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly train operators to develop, perhaps with computer aids, robust conceptual models of the plants they control. The question is whether we are actually able to develop robust conceptual models and validate their robustness. Cognitive science is just beginning to come to grips with this problem. This paper describes some of the evolving technology for building conceptual models of physical mechanisms and some of the implications of such models in the context of nuclear power plant operation

  19. COSMO: a conceptual framework for service modelling and refinement

    NARCIS (Netherlands)

    Quartel, Dick; Steen, Maarten W.A.; Pokraev, S.; van Sinderen, Marten J.

    This paper presents a conceptual framework for service modelling and refinement, called the COSMO (COnceptual Service MOdelling) framework. This framework provides concepts to model and reason about services, and to support operations, such as composition and discovery, which are performed on them

  20. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  1. Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy using GIS processing

    Directory of Open Access Journals (Sweden)

    Riccardo Armellini

    2015-03-01

    Full Text Available This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina’s coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa, was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected from 2004 to 2012 in six aqueduct wells; • implementation of a groundwater flow and transport numerical model using the MODFLOW 88/96 and MT3D code and the graphical user interface GroundWaterVistas 5. The conceptual model hypothesizes a multilayer aquifer in the coastal plain extended to the sandy-clay hills, recharged by rainfall and by the Cecina River. The aquifer shows important hydrodynamic features affecting both the contamination spreading, due to the presence of a perched and heavily polluted layer separate from the underlying productive aquifer, and the hydrological balance, due to a thick separation layer that limits exchanges between the river and the second groundwater aquifer. The numerical model, built using increasingly complex versions of the initial conceptual model, has been calibrated using monitoring surveys conducted by the Environmental Protection Agency of Regione Toscana (ARPAT, in order to obtain possible forecast scenarios based on the minimum and maximum flow periods, and it is currently used as a tool for decision support regarding the reclamation and/or protection of the aquifer. Future developments will regard the implementation of the multilayer transport model, based on a new survey, and the final coupling with the regional hydrological model named MOBIDIC.

  2. Educational game models: conceptualization and evaluation ...

    African Journals Online (AJOL)

    Educational game models: conceptualization and evaluation. ... The Game Object Model (GOM), that marries educational theory and game design, forms the basis for the development of the Persona Outlining ... AJOL African Journals Online.

  3. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93

  4. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  5. Aespoe modelling task force - experiences of the site specific flow and transport modelling (in detailed and site scale)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Stroem, A.; Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co. , Stockholm (Sweden)

    1998-09-01

    The Aespoe Task Force on modelling of groundwater flow and transport of solutes was initiated in 1992. The Task Force shall be a forum for the organisations supporting the Aespoe Hard Rock Laboratory Project to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Much emphasis is put on building of confidence in the approaches and methods in use for modelling of groundwater flow and nuclide migration in order to demonstrate their use for performance and safety assessment. The modelling work within the Task Force is linked to the experiments performed at the Aespoe Laboratory. As the first Modelling Task, a large scale pumping and tracer experiment called LPT2 was chosen. This was the final part of the characterisation work for the Aespoe site before the construction of the laboratory in 1990. The construction of the Aespoe HRL access tunnel caused an even larger hydraulic disturbance on a much larger scale than that caused by the LPT2 pumping test. This was regarded as an interesting test case for the conceptual and numerical models of the Aespoe site developed during Task No 1, and was chosen as the third Modelling Task. The aim of Task 3 can be seen from two different perspectives. The Aespoe HRL project saw it as a test of their ability to define a conceptual and structural model of the site that can be utilised by independent modelling groups and be transformed to a predictive groundwater flow model. The modelling groups saw it as a means of understanding groundwater flow in a large fractured rock volume and of testing their computational tools. A general conclusion is that Task 3 has served these purposes well. Non-sorbing tracers tests, made as a part of the TRUE-experiments were chosen as the next predictive modelling task. A preliminary comparison between model predictions made by the Aespoe Task Force and the experimental results, shows that most modelling teams predicted breakthrough from

  6. Conceptual and numerical models of groundwater flow in the Ogallala aquifer in Gregory and Tripp Counties, South Dakota, water years 1985--2009

    Science.gov (United States)

    Davis, Kyle W.; Putnam, Larry D.

    2013-01-01

    The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the

  7. Conceptual models in the field of library catalogues

    Directory of Open Access Journals (Sweden)

    Marija Petek

    2000-01-01

    Full Text Available The publishing world is changing quickly and so must also bibliographic control. It is tirne to re-examine cataloguing rules and MARC formats. This can be done by the method of conceptual modelling. Some conceptual models are presented; an IFLA study on the functional requirements for bibliographic records is described in detail.

  8. A CONCEPTUAL MODEL FOR IMPROVED PROJECT SELECTION AND PRIORITISATION

    Directory of Open Access Journals (Sweden)

    P. J. Viljoen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Project portfolio management processes are often designed and operated as a series of stages (or project phases and gates. However, the flow of such a process is often slow, characterised by queues waiting for a gate decision and by repeated work from previous stages waiting for additional information or for re-processing. In this paper the authors propose a conceptual model that applies supply chain and constraint management principles to the project portfolio management process. An advantage of the proposed model is that it provides the ability to select and prioritise projects without undue changes to project schedules. This should result in faster flow through the system.

    AFRIKAANSE OPSOMMING: Prosesse om portefeuljes van projekte te bestuur word normaalweg ontwerp en bedryf as ’n reeks fases en hekke. Die vloei deur so ’n proses is dikwels stadig en word gekenmerk deur toue wat wag vir besluite by die hekke en ook deur herwerk van vorige fases wat wag vir verdere inligting of vir herprosessering. In hierdie artikel word ‘n konseptuele model voorgestel. Die model berus op die beginsels van voorsieningskettings sowel as van beperkingsbestuur, en bied die voordeel dat projekte geselekteer en geprioritiseer kan word sonder onnodige veranderinge aan projekskedules. Dit behoort te lei tot versnelde vloei deur die stelsel.

  9. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  10. Template for Conceptual Model Construction: Model Review and Corps Applications

    National Research Council Canada - National Science Library

    Henderson, Jim E; O'Neil, L. J

    2007-01-01

    .... The template will expedite conceptual model construction by providing users with model parameters and potential model components, building on a study team's knowledge and experience, and promoting...

  11. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  12. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  13. Integration and consistency testing of groundwater flow models with hydro-geochemistry in site investigations in Finland

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Loefman, J.; Korkealaakso, J.; Koskinen, L.; Ruotsalainen, P.; Hautojaervi, A.; Aeikaes, T.

    1999-01-01

    In the assessment of the suitability and safety of a geological repository for radioactive waste the understanding of the fluid flow at a site is essential. In order to build confidence in the assessment of the hydrogeological performance of a site in various conditions, integration of hydrological and hydrogeochemical methods and studies provides the primary method for investigating the evolution that has taken place in the past, and for predicting future conditions at the potential disposal site. A systematic geochemical sampling campaign was started since the beginning of 1990's in the Finnish site investigation programme. This enabled the initiating of integration and evaluation of site scale hydrogeochemical and groundwater flow models. Hydrogeochemical information has been used to screen relevant external processes and variables for definition of the initial and boundary conditions in hydrological simulations. The results obtained from interpretation and modelling hydrogeochemical evolution have been employed in testing the hydrogeochemical consistency of conceptual flow models. Integration and testing of flow models with hydrogeochemical information are considered to improve significantly the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. (author)

  14. Achievements and Problems of Conceptual Modelling

    Science.gov (United States)

    Thalheim, Bernhard

    Database and information systems technology has substantially changed. Nowadays, content management systems, (information-intensive) web services, collaborating systems, internet databases, OLAP databases etc. have become buzzwords. At the same time, object-relational technology has gained the maturity for being widely applied. Conceptual modelling has not (yet) covered all these novel topics. It has been concentrated for more than two decades around specification of structures. Meanwhile, functionality, interactivity and distribution must be included into conceptual modelling of information systems. Also, some of the open problems that have been already discussed in 1987 [15, 16] still remain to be open. At the same time, novel models such as object-relational models or XML-based models have been developed. They did not overcome all the problems but have been sharpening and extending the variety of open problems. The open problem presented are given for classical areas of database research, i.e., structuring and functionality. The entire are of distribution and interaction is currently an area of very intensive research.

  15. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    International Nuclear Information System (INIS)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model

  16. A conceptual model for the growth, persistence, and blooming behavior of the benthic mat-forming diatom Didymosphenia geminata (Invited)

    Science.gov (United States)

    Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.

    2010-12-01

    The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.

  17. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  18. Conceptual Model for Simulating the Adjustments of Bankfull Characteristics in the Lower Yellow River, China

    Directory of Open Access Journals (Sweden)

    Yuanjian Wang

    2014-01-01

    Full Text Available We present a conceptual model for simulating the temporal adjustments in the banks of the Lower Yellow River (LYR. Basic conservation equations for mass, friction, and sediment transport capacity and the Exner equation were adopted to simulate the hydrodynamics underlying fluvial processes. The relationship between changing rates in bankfull width and depth, derived from quasiuniversal hydraulic geometries, was used as a closure for the hydrodynamic equations. On inputting the daily flow discharge and sediment load, the conceptual model successfully simulated the 30-year adjustments in the bankfull geometries of typical reaches of the LYR. The square of the correlating coefficient reached 0.74 for Huayuankou Station in the multiple-thread reach and exceeded 0.90 for Lijin Station in the meandering reach. This proposed model allows multiple dependent variables and the input of daily hydrological data for long-term simulations. This links the hydrodynamic and geomorphic processes in a fluvial river and has potential applicability to fluvial rivers undergoing significant adjustments.

  19. ADOxx Modelling Method Conceptualization Environment

    Directory of Open Access Journals (Sweden)

    Nesat Efendioglu

    2017-04-01

    Full Text Available The importance of Modelling Methods Engineering is equally rising with the importance of domain specific languages (DSL and individual modelling approaches. In order to capture the relevant semantic primitives for a particular domain, it is necessary to involve both, (a domain experts, who identify relevant concepts as well as (b method engineers who compose a valid and applicable modelling approach. This process consists of a conceptual design of formal or semi-formal of modelling method as well as a reliable, migratable, maintainable and user friendly software development of the resulting modelling tool. Modelling Method Engineering cycle is often under-estimated as both the conceptual architecture requires formal verification and the tool implementation requires practical usability, hence we propose a guideline and corresponding tools to support actors with different background along this complex engineering process. Based on practical experience in business, more than twenty research projects within the EU frame programmes and a number of bilateral research initiatives, this paper introduces the phases, corresponding a toolbox and lessons learned with the aim to support the engineering of a modelling method. ”The proposed approach is illustrated and validated within use cases from three different EU-funded research projects in the fields of (1 Industry 4.0, (2 e-learning and (3 cloud computing. The paper discusses the approach, the evaluation results and derived outlooks.

  20. The structure of conceptual models with application to the Aespoe HRL project

    International Nuclear Information System (INIS)

    Olsson, Olle; Baeckblom, G.; Wikberg, P.; Gustafson, G.; Stanfors, R.

    1994-05-01

    In performance assessment a sequence of models is used to describe the function of the geological barrier. This report proposes a general structure and terminology for description of these models. A model description consists of the following components: A conceptual model which defines the geometric framework in which the problem is solved, the dimensions of the modelled volume, descriptions of the processes included in the model, and the boundary conditions; Data which are introduced into the conceptual model, and a mathematical or numerical tool used to produce output data. Contradictory to common practice in geohydrologic modelling it is proposed that the term conceptual model is restricted to define in what way the model is constructed, and that this is separated from any specific application of the conceptual model. Hence, the conceptual model should not include any specific data. 5 refs, 2 figs, 4 tabs

  1. Conceptual geohydrological model of the separations area

    International Nuclear Information System (INIS)

    Root, R.W.; Marine, I.W.

    1977-01-01

    Subsurface drilling in and around the Separations Areas (F-Area and H-Area of the Savannah River Plant) is providing detailed information for a conceptual model of the geology and hydrology underlying these areas. This conceptual model will provide the framework needed for a mathematical model of groundwater movement beneath these areas. Existing information substantiates the presence of two areally extensive clay layers and several discontinuous clay and sandy-clay layers. These layers occur in and between beds of clayey and silty sand that make up most of the subsurface material. Within these sand beds are geologic units of differing hydraulic conductivity. For the present scale of the model, the subsurface information is considered adequate in H-Area, but additional drilling is planned in F-Area

  2. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    Directory of Open Access Journals (Sweden)

    Mark R. Lafave

    2015-01-01

    Full Text Available Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete’s return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT. The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1 heading descriptors; (2 the order of the model; (3 the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline.

  3. Dense granular Flows: a conceptual design of high-power neutron source

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  4. Calibration of the Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    Zyvoloski, G. A.

    2001-01-01

    The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)

  5. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    Science.gov (United States)

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model

    Science.gov (United States)

    Samaniego, L.; Kumar, R.; Attinger, S.

    2007-12-01

    Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA

  7. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  8. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  9. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    Science.gov (United States)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  10. Conceptual Model of Dynamic Geographic Environment

    Directory of Open Access Journals (Sweden)

    Martínez-Rosales Miguel Alejandro

    2014-04-01

    Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.

  11. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  12. The ACTIVE conceptual framework as a structural equation model

    Science.gov (United States)

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be

  13. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  14. Simulation by a mathematical model of the groundwater flow between the Alps and the Black Forest; Part A: regional model; Part B: local model (Northern Switzerland)

    International Nuclear Information System (INIS)

    Kimmeier, F.; Perrochet, P.; Kiraly, L.

    1985-01-01

    The purpose of this report is to present the development of two hydrogeologic models of the groundwater flow regime in the crystalline of northern Switzerland. These models are constructed at two scales. The regional model (23000 km 2 ) accounts for all recharge to and discharge from the crystalline within the model boundaries. The local model (900 km 2 ) allows for greater structural, stratigraphic and topographic complexity in a more restricted area including some of the areas of interest to CEDRA. The regional model provides the hydrologic boundary conditions for the local model. All steps followed in constructing and testing the models are presented. This includes defining the areal and vertical geometry of the principal aquifers and aquitards. In addition, the hydrogeologic properties of these layers are defined; including their permeability, homogeneity, anisotropy and continuity. Discontinuities (e.g. faults) are modeled as discrete features. Hydrologic boundary conditions are specified based on observed or inferred potentiometric or flow (infiltration/exfiltration) data. The developed conceptual models are tested with program FEM 301. The results of this application consist of heads at every noidal point and recharge/discharge rates at every constant head node. These results are utilized to define the general groundwater flow regimes in the crystalline. In addition, the results are compared to observed heads and discharges in an attempt to validate the conceptual models. Representative hydraulic gradients at potential areas of interest to CEDRA are presented. Sensitivity analyses have been conducted to define the groundwater flow systems response to uncertain parameters and boundary conditions

  15. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  16. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  17. Supra regional ground water modelling - in-depth analysis of the groundwater flow patterns in eastern Smaaland. Comparison with different conceptual descriptions; Storregional grundvattenmodellering - foerdjupad analys av floedesfoerhaallanden i oestra Smaaland. Jaemfoerelse av olika konceptuella beskrivningar

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Lars O. [Lars O Ericsson Consulting AB, Stockholm (Sweden); Holmen, Johan [Golder Associates, Uppsala (Sweden); Rhen, Ingvar; Blomquist, Niklas [SWECO VIAK, Stockholm (Sweden)

    2006-05-15

    One of many geoscientific questions in connection with the siting of a final repository for spent nuclear fuel in Sweden has to do with understanding the large-scale flow patterns of the naturally circulating groundwater. The recharge and discharge of the groundwater is therefore a subject for both SKB's research activities and the interest of the regulatory authorities. This report aims at providing an in-depth scientific analysis of the groundwater flow pattern based on the criteria and suitability indicators which SKB has previously presented with respect to recharge and discharge aspects in a supra regional perspective. The analysis was conducted within the framework of a project whose goals were to: evaluate conceptual simplifications and model uncertainties in supra regional groundwater modelling, and to carry out an in-depth and comprehensive analysis of regional flow conditions in eastern Smaaland. Achieving these goals has required an approach based on the use of available geoscientific data on the Smaaland region combined with an analysis of different conceptual assumptions and system descriptions. The following general conclusions can be drawn from the study and the applied methodology: The factor of greatest importance for the regional flow pattern (from repository depth) is the topography. The discharge areas are mainly found in the low-lying parts of the topography, along valleys, and the recharge areas occur on the heights. The topographic undulation is of greater importance than the properties of the conductivity field. Different lithological units, regional deformation zones, local heterogeneity, Quaternary deposits etc are of less importance than the undulation of the topography. For areas described and analyzed with the most realistic assumptions, the groundwater flow pattern can be described as a primarily local flow process. The median flow path length in the study is on the order of 2 km, and the fraction of supra regional flow paths

  18. Can Bayesian Belief Networks help tackling conceptual model uncertainties in contaminated site risk assessment?

    DEFF Research Database (Denmark)

    Troldborg, Mads; Thomsen, Nanna Isbak; McKnight, Ursula S.

    different conceptual models may describe the same contaminated site equally well. In many cases, conceptual model uncertainty has been shown to be one of the dominant sources for uncertainty and is therefore essential to account for when quantifying uncertainties in risk assessments. We present here......A key component in risk assessment of contaminated sites is the formulation of a conceptual site model. The conceptual model is a simplified representation of reality and forms the basis for the mathematical modelling of contaminant fate and transport at the site. A conceptual model should...... a Bayesian Belief Network (BBN) approach for evaluating the uncertainty in risk assessment of groundwater contamination from contaminated sites. The approach accounts for conceptual model uncertainty by considering multiple conceptual models, each of which represents an alternative interpretation of the site...

  19. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  20. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Simmons, Craig T; Post, Vincent; Stuyfzand, Pieter J

    2010-07-01

    Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic transport under such circumstances exist, they are generally not rigorously evaluated through numerical modeling, especially at field-scale. In this work, geochemical data from an injection experiment in The Netherlands, where the introduction of oxygenated water into an anoxic aquifer mobilized arsenic, was used to develop and evaluate conceptual and numerical models of arsenic release and attenuation under field-scale conditions. Initially, a groundwater flow and nonreactive transport model was developed. Subsequent reactive transport simulations focused on the description of the temporal and spatial evolution of the redox zonation. The calibrated model was then used to study and quantify the transport of arsenic. In the model that best reproduced field observations, the fate of arsenic was simulated by (i) release via codissolution of arsenopyrite, stoichiometrically linked to pyrite oxidation, (ii) kinetically controlled oxidation of dissolved As(III) to As(V), and (iii) As adsorption via surface complexation on neo-precipitated iron oxides.

  1. Process generalization in conceptual models

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    In conceptual modeling, the universe of discourse (UoD) is divided into classes which have a taxonomic structure. The classes are usually defined in terms of attributes (all objects in a class share attribute names) and possibly of events. For enmple, the class of employees is the set of objects to

  2. Modelling food-web mediated effects of hydrological variability and environmental flows.

    Science.gov (United States)

    Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M

    2017-11-01

    Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Simulation of the groundwater flow of the Kivetty area

    International Nuclear Information System (INIS)

    Taivassalo, V.; Meszaros, F.

    1994-02-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel into crystalline bedrock in Finland. Groundwater flow modelling is a part of the preliminary site investigation work. The aim is to simulate groundwater flow as realistically as possible in view of the experimental data available. Three dimensional groundwater flow modelling is based on a conceptual bedrock model. The modelling results will be used in the site evaluation process. Observations from flow simulations will also be used to identify and study uncertainties included in the site characterization. First a conceptual flow model for the Kivetty site in Konginkangas was developed. As a second stage the flow model was calibrated. The goal was to increase the reality of the model. To evaluate the reality of the flow model, the values of the input and output parameters were compared with the field data. Finally groundwater flow simulation results were computed and groundwater flow at the Kivetty area was analysed. (50 refs., 78 figs., 7 tabs.)

  4. A conceptual model of flow to the Waikoropupu Springs, NW Nelson, New Zealand, based on hydrometric and tracer (18O, Cl,3H and CFC evidence

    Directory of Open Access Journals (Sweden)

    J. T. Thomas

    2008-01-01

    Full Text Available The Waikoropupu Springs, a large karst resurgence 4 km from the coast, are supplied by the Arthur Marble Aquifer (AMA underlying the Takaka Valley, South Island, New Zealand. New evidence on the recharge sources in the catchment, combined with previous results, is used to establish a new recharge model for the AMA. Combined with the oxygen-18 mass balance, this yields a quantitative description of the inputs and outputs to the aquifer. It shows that the Main Spring is sourced mainly from the karst uplands (74%, with smaller contributions from the Upper Takaka River (18% and valley rainfall (8%, while Fish Creek Spring contains mostly Upper Takaka River water (50%. In addition, much of the Upper Takaka River contribution to the aquifer (58% bypasses the springs and is discharged offshore via submarine springs. The chemical concentrations of the Main Spring show input of 0.5% of sea water on average, which varies with flow and derives from the deep aquifer. Tritium measurements spanning 40 yr, and CFC-11 measurements, give a mean residence time of 8 yr for the Main Spring water using the preferred two-component model. Our conceptual flow model, based on the flow, chloride, oxygen-18 and age measurements, invokes two different flow systems with different recharge sources to explain the flow within the AMA. One system contains deeply penetrating old water with mean age 10.2 yr and water volume 3 km3, recharged from the karst uplands. The other, at shallow levels below the valley floor, has much younger water with mean age 1.2 yr and water volume 0.4 km3, recharged by Upper Takaka River and valley rainfall. The flow systems contribute in different proportions to the Main Spring, Fish Creek Springs and offshore springs. Their very different behaviours, despite being in the same aquifer, are attributed to the presence of a diorite intrusion below the surface of the lower valley, which diverts the deep flow towards the Waikoropupu Springs and allows

  5. A Proposed Conceptual Model of Military Medical Readiness

    National Research Council Canada - National Science Library

    Van Hall, Brian M

    2007-01-01

    .... The basis for the proposed conceptual model builds on common and accepted latent variable and theoretical modeling techniques proposed by healthcare scholars, organizational theorists, mathematical...

  6. A comparison of results from groundwater flow modelling for two conceptual hydrogeological models for the Konrad site

    International Nuclear Information System (INIS)

    Arens, G.; Fein, E.; Storck, R.

    1991-01-01

    Radioactive wastes with negligible heat production are planned to be disposed of into a deep iron ore formation at the Konrad site. This repository will be bedded in a low permeable formation called Oxfordian in a depth of 800 - 1300 m below the surface. The host formation is largely covered with clay of a few hundred meters thickness. The hydrogeological model area has an extension of 14 km in the west-east and 47 km in the north-south direction. The geological formations within the model area are disturbed by several fractured zones with a vertical extension of several hundred meters intersecting different horizontal layers. Due to this fact two hydrogeological models have been developed: The first one handles the fractured zones by globally increased permeabilities of the geological formations. The second handles the fractured zones by locally increased permeabilities, leaving the permeabilities of undisturbed areas unchanged. For both models, groundwater flow calculations have been carried out including parameter variations of permeability values. The results of the calculations are presented as flow paths which are compared for both models. Computer code used: SWIFT. 1 fig., 3 tabs., 3 refs

  7. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    Science.gov (United States)

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  8. Flow modelling in fractured aquifers, development of multi-continua model (direct and inverse problems) and application to the CEA/Cadarache site

    International Nuclear Information System (INIS)

    Cartalade, Alain

    2002-01-01

    This research thesis concerns the modelling of aquifer flows under the CEA/Cadarache site. The author reports the implementation of a numerical simulation tool adapted to large scale flows in fractured media, and its application to the Cadarache nuclear site. After a description of the site geological and hydrogeological characteristics, the author presents the conceptual model on which the modelling is based, presents the inverse model which allows a better definition of parameters, reports the validation of the inverse approach by means of synthetic and semi-synthetic cases. Then, he reports experiments and simulation of the Cadarache site

  9. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    scenarios with changing conditions for flow (steady state with no flooding or transient with flooding), hydrogeology, denitrification rate, and extent of flooding it is demonstrated how flow paths, residence times, and nitrate removal are affected. With this previous conceptual models on the hydrology......The PhD study presents research results from two re-established Danish riparian zones, Brynemade and Skallebanke, located along Odense River on the island Funen, Denmark. The overall objectives of the PhD study have been to improve the understanding of flow and transport in riparian zones....... The methodology focuses on; construction of field sites along Odense River, understanding flow and transport, and performing numerical/analytical model assessments of flow and transport. An initial 2D simulation study was performed with a conceptual setup based on the Brynemade site. Through a series of 2D model...

  10. Analysis of Subjective Conceptualizations Towards Collective Conceptual Modelling

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Herlau, Tue; Schmidt, Mikkel Nørgaard

    2013-01-01

    This work is conducted as a preliminary study for a project where individuals' conceptualizations of domain knowledge will thoroughly be analyzed across 150 subjects from 6 countries. The project aims at investigating how humans' conceptualizations differ according to different types of mother la...

  11. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  12. Predictions of hydraulic and transport behavior in a granite fracture via coupled mechano-chemo conceptual model

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Lee, Dae Sung; Nakashima, Shinichiro; Kishida, Kiyoshi

    2009-01-01

    A conceptual model, accounting for pressure and free-face dissolutions, is presented to follow the evolution of fracture permeability in granite that was observed in a flow-through experiment. This model addresses the two dissolution processes at contacting asperities and free walls within fractures, and also describes the multi-mineral dissolution behavior, showing a capability that the evolution of fracture aperture (or related permeability) may be followed with time under an arbitrary temperature and pressure conditions. Predictions utilizing the model proposed in this study show a relatively good agreement with the experimental measurements, although the concentrations predicted underestimate the actual. (author)

  13. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    Science.gov (United States)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  14. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  15. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  16. Maintaining Sexual Desire in Long-Term Relationships: A Systematic Review and Conceptual Model.

    Science.gov (United States)

    Mark, Kristen P; Lasslo, Julie A

    The most universally experienced sexual response is sexual desire. Though research on this topic has increased in recent years, low and high desire are still problematized in clinical settings and the broader culture. However, despite knowledge that sexual desire ebbs and flows both within and between individuals, and that problems with sexual desire are strongly linked to problems with relationships, there is a critical gap in understanding the factors that contribute to maintaining sexual desire in the context of relationships. This article offers a systematic review of the literature to provide researchers, educators, clinicians, and the broader public with an overview and a conceptual model of nonclinical sexual desire in long-term relationships. First, we systematically identified peer-reviewed, English-language articles that focused on the maintenance of sexual desire in the context of nonclinical romantic relationships. Second, we reviewed a total of 64 articles that met inclusion criteria and synthesized them into factors using a socioecological framework categorized as individual, interpersonal, and societal in nature. These findings are used to build a conceptual model of maintaining sexual desire in long-term relationships. Finally, we discuss the limitations of the existing research and suggest clear directions for future research.

  17. Conceptual language models for domain-specific retrieval

    NARCIS (Netherlands)

    Meij, E.; Trieschnigg, D.; de Rijke, M.; Kraaij, W.

    2010-01-01

    Over the years, various meta-languages have been used to manually enrich documents with conceptual knowledge of some kind. Examples include keyword assignment to citations or, more recently, tags to websites. In this paper we propose generative concept models as an extension to query modeling within

  18. Toolkit for Conceptual Modeling (TCM): User's Guide and Reference

    NARCIS (Netherlands)

    Dehne, F.; Wieringa, Roelf J.

    1997-01-01

    The Toolkit for Conceptual Modeling (TCM) is a suite of graphical editors for a number of graphical notation systems that are used in software specification methods. The notations can be used to represent the conceptual structure of the software - hence the name of the suite. This manual describes

  19. A Conceptual Model of Military Recruitment

    Science.gov (United States)

    2009-10-01

    Hiring Expectancies – Expectancy (VIE) Theory ( Vroom , 1996) states individuals choose among a set of employment alternatives on the basis of the...A Conceptual Model of Military Recruitment Presented at NATO Technical Course HFM 180 – Strategies to Address Recruiting and Retention Issues in...the Military Fariya Syed October, 2009 Based on A Proposed Model Of Military Recruitment (Schreurs & Syed, 2007) Report Documentation Page

  20. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Science.gov (United States)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average

  1. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  2. Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy) using GIS processing

    OpenAIRE

    Riccardo Armellini; Elena Baldini; Dario Del Seppia; Fabrizio Franceschini; Natacha Gori; Stefano Menichetti; Stefano Tessitore

    2015-01-01

    This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina’s coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa), was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected ...

  3. Geology and Conceptual Model of the Domuyo Geothermal Area, Patagonia, Argentina

    Science.gov (United States)

    Fragoso, A. S.; Ferrari, L.; Norini, G.

    2017-12-01

    Cerro Domuyo is the highest mountain in Patagonia and its western slope is characterized by thermal springs with boiling fluids as well as silicic domes and pyroclastic deposits that suggest the existence of a geothermal reservoir. Early studies proposed that the thermal springs were fault-controlled and the reservoir was located in a graben bounded by E-W normal faults. A recent geochemical study estimated a temperature of 220ºC for the fluid reservoir and a thermal energy release of 1.1 GW, one of the world largest advective heat flux from a continental volcanic center. We carried out a geologic survey and U-Pb and U-Th geochronologic study to elaborate an updated conceptual model for the Domuyo geothermal area. Our study indicates that the Domuyo Volcanic Complex (DVC) is a dome complex overlying an older, Middle Miocene to Pliocene volcanic sequence widely exposed to the southwest and to the north, which in turn covers: 1) the Jurassice-Early Creteacoeus Neuquen marine sedimentary succession, 2) silicic ignimbrites dated at 186.7 Ma and, 3) the Paleozoic metamorphic basement intruded by 288 Ma granite bodies. These pre-Cenozoic successions are involved in dominantly N-S trending folds and thrust faults later displaced by E-W striking normal faults with a right lateral component of motion that underlie the DVC. The volcanic cycle forming the DVC is distinctly bimodal with the emplacement of massive silicic domes but also less voluminous olivine basalts on its southern slope. The central dome underwent a major collapse that produced 0.35 km3 of ash and block flow and associated pyroclastic flows that filled the valley to the southwest up to 30 km from the source. This was followed by a voluminous effusive activity that formed silicic domes dated between 254-322 Ky, which is inferred to overlain a partially molten silicic magma chamber. Integrating the geologic model with magnetotelluric and gravity surveys we developed a conceptual model of the geothermal system

  4. Field studies at the Apache Leap Research Site in support of alternative conceptual models

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, E.G.; Davidson, G.R.; Theis, C. [eds.] [and others

    1997-08-01

    This is a final technical report for a project of the U.S Nuclear Regulatory Commission (sponsored contract NRC-04-090-51) with the University of Arizona. The contract was an optional extension that was initiated on July 21, 1994 and that expired on May 31, 1995. The project manager was Thomas J. Nicholson, Office of Nuclear Regulatory Research. The objectives of this contract were to examine hypotheses and conceptual models concerning unsaturated flow and transport through fractured rock, and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models at the Apache Leap Research Site near Superior, Arizona. The results discussed here are products of specific tasks that address a broad spectrum of issues related to flow and transport through fractures. Each chapter in this final report summarizes research related to a specific set of objectives and can be read and interpreted as a separate entity. The tasks include detection and characterization of historical rapid fluid flow through fractured rock and the relationship to perched water systems using environmental isotopic tracers of {sup 3}H and {sup 14}C, fluid- and rock-derived {sup 2343}U/{sup 238}U measurements, and geophysical data. The water balance in a small watershed at the ALRS demonstrates the methods of acounting for ET, and estimating the quantity of water available for infiltration through fracture networks. Grain density measurements were made for core-sized samples using a newly designed gas pycnometer. The distribution and magnitude of air permeability measurements have been measured in a three-dimensional setting; the subsequent geostatistical analysis is presented. Electronic versions of the data presented here are available from authors; more detailed discussions and analyses are available in technical publications referenced herein, or soon to appear in the professional literature.

  5. Field studies at the Apache Leap Research Site in support of alternative conceptual models

    International Nuclear Information System (INIS)

    Woodhouse, E.G.; Davidson, G.R.; Theis, C.

    1997-08-01

    This is a final technical report for a project of the U.S Nuclear Regulatory Commission (sponsored contract NRC-04-090-51) with the University of Arizona. The contract was an optional extension that was initiated on July 21, 1994 and that expired on May 31, 1995. The project manager was Thomas J. Nicholson, Office of Nuclear Regulatory Research. The objectives of this contract were to examine hypotheses and conceptual models concerning unsaturated flow and transport through fractured rock, and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models at the Apache Leap Research Site near Superior, Arizona. The results discussed here are products of specific tasks that address a broad spectrum of issues related to flow and transport through fractures. Each chapter in this final report summarizes research related to a specific set of objectives and can be read and interpreted as a separate entity. The tasks include detection and characterization of historical rapid fluid flow through fractured rock and the relationship to perched water systems using environmental isotopic tracers of 3 H and 14 C, fluid- and rock-derived 2343 U/ 238 U measurements, and geophysical data. The water balance in a small watershed at the ALRS demonstrates the methods of acounting for ET, and estimating the quantity of water available for infiltration through fracture networks. Grain density measurements were made for core-sized samples using a newly designed gas pycnometer. The distribution and magnitude of air permeability measurements have been measured in a three-dimensional setting; the subsequent geostatistical analysis is presented. Electronic versions of the data presented here are available from authors; more detailed discussions and analyses are available in technical publications referenced herein, or soon to appear in the professional literature

  6. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    Science.gov (United States)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  7. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  8. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    Science.gov (United States)

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  9. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  10. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Troldborg, Mads; McKnight, Ursula S.

    2012-01-01

    site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level...... the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We...... propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same...

  11. Conceptual Model of Quantities, Units, Dimensions, and Values

    Science.gov (United States)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration

    Science.gov (United States)

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  13. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  14. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    Science.gov (United States)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  15. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  16. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  17. Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research

    Science.gov (United States)

    Fried, Leanne; Mansfield, Caroline; Dobozy, Eva

    2015-01-01

    This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…

  18. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  19. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  20. Porous Media and Immersed Boundary Hybrid-Modelling for Simulating Flow in Stone Cover-Layers

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Liu, Xiaofeng; Christensen, Erik Damgaard

    In this paper we present a new numerical modelling approach for coastal and marine applications where a porous media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an immersed boundary method (IBM). The immersed boundary model covers the method of describing....... In this paper, the model is applied to investigate two practical cases in terms of a cover layer of stones on a flat bed under oscillatory flow at different packing densities, and a rock toe structure at a breakwater....

  1. Modelling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock

    International Nuclear Information System (INIS)

    Herbert, A.; Gale, J.; MacLeod, R.; Lanyon, G.

    1991-12-01

    We present our approach to predicting flow through a fractured rock site; the site characterization and validation region in the Stripa mine. Our approach is based on discrete fracture network modelling using the NAPSAC computer code. We describe the conceptual models and assumptions that we have used to interpret the geometry and flow properties of the fracture networks, from measurements at the site. These are used to investigate large scale properties of the network and we show that for flows on scales larger than about 10 m, porous medium approximation should be used. The porous medium groundwater flow code CFEST is used to predict the large scale flows through the mine and the SCV region. This, in turn, is used to provide boundary conditions for more detailed models, which predict the details of flow, using a discrete fracture network model, on scales of less than 10 m. We conclude that a fracture network approach is feasible and that it provides a better understanding of details of flow than conventional porous medium approaches and a quantification of the uncertainty associated with predictive flow modelling characterised from field measurement in fractured rock. (au)

  2. A unifying conceptual model of entrepreneurial management

    DEFF Research Database (Denmark)

    Senderovitz, Martin

    This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...

  3. Using Annotated Conceptual Models to Derive Information System Implementations

    Directory of Open Access Journals (Sweden)

    Anthony Berglas

    1994-05-01

    Full Text Available Producing production quality information systems from conceptual descriptions is a time consuming process that employs many of the world's programmers. Although most of this programming is fairly routine, the process has not been amenable to simple automation because conceptual models do not provide sufficient parameters to make all the implementation decisions that are required, and numerous special cases arise in practice. Most commercial CASE tools address these problems by essentially implementing a waterfall model in which the development proceeds from analysis through design, layout and coding phases in a partially automated manner, but the analyst/programmer must heavily edit each intermediate stage. This paper demonstrates that by recognising the nature of information systems, it is possible to specify applications completely using a conceptual model that has een annotated with additional parameters that guide automated implementation. More importantly, it will be argued that a manageable number of annotations are sufficient to implement realistic applications, and techniques will be described that enabled the author's commercial CASE tool, the Intelligent Develope to automated implementation without requiring complex theorem proving technology.

  4. Menthor Editor: An Ontology-Driven Conceptual Modeling Platform

    NARCIS (Netherlands)

    Moreira, João Luiz; Sales, Tiago Prince; Guerson, John; Braga, Bernardo F.B; Brasileiro, Freddy; Sobral, Vinicius

    2016-01-01

    The lack of well-founded constructs in ontology tools can lead to the construction of non-intended models. In this demonstration we present the Menthor Editor, an ontology-driven conceptual modelling platform which incorporates the theories of the Unified Foundational Ontology (UFO). We illustrate

  5. Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions

    Science.gov (United States)

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2017-01-01

    This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…

  6. Geological investigations contributing to the hydrogeological conceptual model in the Meuse/Haute-Marne area, Eastern France

    International Nuclear Information System (INIS)

    Rocher, M.; De Hoyos, A.; Hibsch, C.; Viennot, P.

    2010-01-01

    Callovian-Oxfordian (COX) indurated clay formation is currently studied by Andra in the 'Meuse/Haute-Marne' (MHM) area for hosting a potential repository of high level, long-lived radioactive waste. IRSN is conducting studies in support of the safety evaluation of the geological disposal programme developed by Andra. IRSN, in collaboration with the Paris School of Mines, develops conceptual and numerical models of the underground water flows throughout the Paris sedimentary basin. The calibrated numerical model correctly represents the hydraulic heads and water salinities collected throughout the basin. At the MHM scale however, several flow patterns can still reproduce the measured heads, some of them assuming specific flow pathways along regional tectonic trends. Considering or not such tectonic trends in the model has however an impact on the estimated radionuclide transfer times to the outlets. Even though most ANDRA and IRSN geochemical analyses suggest a dominant diffusive transport across the COX between the underlying Dogger and overlying Oxfordian aquifers, few data point out the possible existence of local vertical connections across major tectonic structures. In order to select the most plausible options for the numerical modelling, IRSN compiled published studies and carried out fieldwork analysis to provide new data for its hydrogeological conceptual model. Relevant geological data can be considered both at the kilometre scale and at the metre scale. At the kilometre scale, the litho-stratigraphic scheme both for Dogger and Oxfordian series had previously been documented in the MHM area. Regional sedimentologic and diagenetic models are available for the Oxfordian aquifer and partially for the Dogger aquifer. Our fieldwork analysis complete these models thanks to new correlations pointed out during detailed iso-hyps mapping performed by G2R laboratory, southeast from the MHM area. Unlike the Kimmeridgian and COX sedimentary piles, which are

  7. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    program DarcyTools in order to evaluate the current conceptual model for groundwater flow under ice sheet conditions, as well as to provide some guidance to the field investigations. For this first modelling phase, coupled processes are not considered for the modelling of the groundwater flow system under ice sheet conditions; e.g. density driven flow, thermal and geomechanical effects as well as coupling with a dynamical ice sheet model shall be investigated in the next phase

  8. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    program DarcyTools in order to evaluate the current conceptual model for groundwater flow under ice sheet conditions, as well as to provide some guidance to the field investigations. For this first modelling phase, coupled processes are not considered for the modelling of the groundwater flow system under ice sheet conditions; e.g. density driven flow, thermal and geomechanical effects as well as coupling with a dynamical ice sheet model shall be investigated in the next phase

  9. Conceptual Commitments of the LIDA Model of Cognition

    Science.gov (United States)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  10. Conceptual models for cumulative risk assessment.

    Science.gov (United States)

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  11. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    Science.gov (United States)

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  12. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Directory of Open Access Journals (Sweden)

    L. Rodríguez

    2013-01-01

    Full Text Available In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through

  13. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  14. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  15. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    Science.gov (United States)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  16. A Conceptual Framework of Business Model Emerging Resilience

    OpenAIRE

    Goumagias, Nik; Fernandes, Kiran; Cabras, Ignazio; Li, Feng; Shao, Jianhao; Devlin, Sam; Hodge, Victoria Jane; Cowling, Peter Ivan; Kudenko, Daniel

    2016-01-01

    In this paper we introduce an environmentally driven conceptual framework of Business Model change. Business models acquired substantial momentum in academic literature during the past decade. Several studies focused on what exactly constitutes a Business Model (role model, recipe, architecture etc.) triggering a theoretical debate about the Business Model’s components and their corresponding dynamics and relationships. In this paper, we argue that for Business Models as cognitive structures,...

  17. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  18. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  19. Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology

    Science.gov (United States)

    Weiler, Markus; McDonnell, Jeff

    2004-01-01

    We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When

  20. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  1. Revised model of regional groundwater flow in the Whiteshell research area

    International Nuclear Information System (INIS)

    Ophori, D.U.; Brown, A.; Chan, T.; Davison, C.C.; Gascoyne, M.; Scheier, N.W.; Stanchell, F.W.; Stevenson, D.R.

    1996-08-01

    Steady-state regional groundwater flow of the Whiteshell Research Area (WRA) has been simulated in order to evaluate alternate locations for a hypothetical nuclear fuel waste disposal vault that maximize the retention of vault contaminants in long, slow groundwater flow paths through the geosphere. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite element code, MOTIF. A base-case simulation was performed using average value estimates of hydraulic parameters obtained from the field data, and freshwater was assumed to occur in the entire groundwater flow region. The simulated freshwater heads did not compare favourably with the freshwater beads that were derived from the field data. The simulated equivalent freshwater heads for the final calibrated model compared reasonably well with measured heads in the network of boreholes at the WRA. The simulated recharge rate for the final model was 4.8 mm/a Most of the groundwater flow in the model occurred in local systems between ground surface and a depth of 1000 m. A particle tracking code, TRACK3D, was used to determine the pathways, travel times and exit locations of particles released from different depths in the groundwater velocity field of the calibrated model. The exit locations of these pathways were found to be controlled by the network of regional fracture zones in the model. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault in the regional groundwater flow model that maximizes the retention of vault contaminants in long, slow groundwater flow paths. A smaller region of about 75 km 2 was identified around this location for the development of a local geosphere model. (author). 32 refs., 4 tabs., 29 figs

  2. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  3. [Impact of small-area context on health: proposing a conceptual model].

    Science.gov (United States)

    Voigtländer, S; Mielck, A; Razum, O

    2012-11-01

    Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.

  4. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2016-11-01

    Full Text Available The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed conceptual model for global market entry decisions.

  5. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  6. Modeling flow in fractured medium. Uncertainty analysis with stochastic continuum approach

    International Nuclear Information System (INIS)

    Niemi, A.

    1994-01-01

    For modeling groundwater flow in formation-scale fractured media, no general method exists for scaling the highly heterogeneous hydraulic conductivity data to model parameters. The deterministic approach is limited in representing the heterogeneity of a medium and the application of fracture network models has both conceptual and practical limitations as far as site-scale studies are concerned. The study investigates the applicability of stochastic continuum modeling at the scale of data support. No scaling of the field data is involved, and the original variability is preserved throughout the modeling. Contributions of various aspects to the total uncertainty in the modeling prediction can also be determined with this approach. Data from five crystalline rock sites in Finland are analyzed. (107 refs., 63 figs., 7 tabs.)

  7. Conceptual models in man-machine design verification

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-01-01

    The need for systematic methods for evaluation of design concepts for new man-machine systems has been rapidly increasing in consequence of the introduction of modern information technology. Direct empirical methods are difficult to apply when functions during rare conditions and support of operator decisions during emergencies are to be evaluated. In this paper, the problems of analytical evaluations based on conceptual models of the man-machine interaction are discussed, and the relations to system design and analytical risk assessment are considered. Finally, a conceptual framework for analytical evaluation is proposed, including several domains of description: 1. The problem space, in the form of a means-end hierarchy; 2. The structure of the decision process; 3. The mental strategies and heuristics used by operators; 4. The levels of cognitive control and the mechanisms related to human errors. Finally, the need for models representing operators' subjective criteria for choosing among available mental strategies and for accepting advice from intelligent interfaces is discussed

  8. An Empirical Review of the Connection Between Model Viewer Characteristics and the Comprehension of Conceptual Process Models

    NARCIS (Netherlands)

    Mendling, Jan; Recker, Jan; Reijers, Hajo A.; Leopold, Henrik

    2018-01-01

    Understanding conceptual models of business domains is a key skill for practitioners tasked with systems analysis and design. Research in this field predominantly uses experiments with specific user proxy cohorts to examine factors that explain how well different types of conceptual models can be

  9. Overall evaluation of the modelling of the TRUE-1 tracer tests - Task 4. The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes

    International Nuclear Information System (INIS)

    Marschall, Paul; Elert, Mark

    2003-09-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. The task was carried out in 1995-2000 and consisted of several modelling exercises in support of the TRUE-1 tracer tests, including predictive modelling where experimental results were not available beforehand. This report presents an overall evaluation of the achievements of Task 4. The specific objectives of the overall evaluation were to highlight innovative and successful modelling approaches developed, to assess the stages of the task which proved most beneficial for conceptual understanding of transport processes at the TRUE-1 site and to assess the success of various steering tools. A concise summary of scientific achievements is given and conclusions drawn with respect to unresolved technical issues. Recommendations are presented that can optimise the management of future modelling tasks

  10. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  11. An informal conceptual introduction to turbulence

    CERN Document Server

    Tsinober, Arkady

    2009-01-01

    This book is a second completely revised edition of ""An Informal Introduction to Turbulence"". The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows such an emphasis is a consequence of the view that without corresponding progress in fundamental aspects there is little chance for progress in any applications such as drag reduction, mixing, control and modeling of turbulence. More generally th

  12. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  13. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  14. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  15. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  16. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. Conceptual basis for developing of trainig models in complex ...

    African Journals Online (AJOL)

    This paper presents conceptual basis for developing of training models of interactive assembling system for automatic building of application software systems, ... software generation, such as: program module compatibility, formalization of computer interaction and choosing of formal model for human machine interface.

  18. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.

    2011-01-01

    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  19. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  20. A conceptual model of daily water balance following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii a transient Stream zone Store (iii a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a downward approach by analysing data from Ernies (control and Lemon (53% cleared catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments.

  1. Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.

    Science.gov (United States)

    Gilbert, Jason H; Von Ah, Diane; Broome, Marion E

    Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing

  2. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Michelle H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions. this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.

  3. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    Science.gov (United States)

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Technologies for conceptual modelling and intelligent query formulation

    CSIR Research Space (South Africa)

    Alberts, R

    2008-11-01

    Full Text Available The aim of the project is to devise and evaluate algorithms, methodologies, techniques and interaction paradigms to build a tool for conceptual modelling and query management of complex data repositories based on a framework with solid formal...

  5. A basis for modelling of radionuclide flow in the Forsmark biotest basin

    International Nuclear Information System (INIS)

    Notter, M.; Snoeijs, P.; Argaerde, L.; Elert, M.

    1987-01-01

    Certain radionuclides are discharged together with the cooling water of Forsmark power station. Of these, Mn-54, Co-60, Zn-65 and Ag-110 m are easily detectable in the environment. This report gives a conceptual five-compartment model for the flows of radionuclides within the basin ecosystem. The available data from biological and radio-ecological investigations in the biotest basin were used to quantify the amounts of radionuclides in each of the reservoirs. The subsystem water-sediment-primary producers was pointed out to be the most interesting part of the ecosystem for studying radionuclides with mathematical modelling in the future. (orig./DG)

  6. A Conceptual Model to Identify Intent to Use Chemical-Biological Weapons

    Directory of Open Access Journals (Sweden)

    Mary Zalesny

    2017-10-01

    Full Text Available This paper describes a conceptual model to identify and interrelate indicators of intent of non-state actors to use chemical or biological weapons. The model expands on earlier efforts to understand intent to use weapons of mass destruction by building upon well-researched theories of intent and behavior and focusing on a sub-set of weapons of mass destruction (WMD to account for the distinct challenges of employing different types of WMD in violent acts. The conceptual model is presented as a first, critical step in developing a computational model for assessing the potential for groups to use chemical or biological weapons.

  7. Conceptual model and evaluation of generated power and emissions in an IGCC plant

    International Nuclear Information System (INIS)

    Perez-Fortes, M.; Bojarski, A.D.; Velo, E.; Nougues, J.M.; Puigjaner, L.

    2009-01-01

    This work develops a design and operation support tool for an Integrated Gasification Combined Cycle (IGCC) power plant, which allows the efficiency and environmental issues of alternative process designs and feedstock to be assessed. The study is based on a conceptual model of an IGCC plant, validated with data from the ELCOGAS power plant in Spain. The layout of the model includes an Air Separation Unit (ASU), a Pressurized Entrained Flow (PRENFLO) gasifier, a series of purification gas units (venturi scrubber, sour water steam stripper, COS hydrolysis reactor, MDEA absorber columns and a sulphur recovery Claus plant), a Heat Recovery Steam Generator (HRSG) and a Combined Cycle (CC) system. It comprises steady state models. One of the purposes of this work is to analyze the feasibility of coal co-gasification using waste materials; specifically petcoke and olive pomace (orujillo) are considered here. The model has been developed in Aspen Hysys. It uses electrolyte models that have been implemented in Aspen Plus which are connected to Aspen Hysys by means of Artificial Neural Networks (ANNs) models. Results of the model's, gas composition and generated power, are in agreement with the industrial data.

  8. Conceptual model and evaluation of generated power and emissions in an IGCC plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fortes, M.; Bojarski, A. D.; Velo, E.; Nougues, J. M. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, ETSEIB, Avda. Diagonal, 647, E-08028 Barcelona (Spain); Puigjaner, L., E-mail: luis.puigjaner@upc.edu [Department of Chemical Engineering, Universitat Politecnica de Catalunya, ETSEIB, Avda. Diagonal, 647, E-08028 Barcelona (Spain)

    2009-10-15

    This work develops a design and operation support tool for an Integrated Gasification Combined Cycle (IGCC) power plant, which allows the efficiency and environmental issues of alternative process designs and feedstock to be assessed. The study is based on a conceptual model of an IGCC plant, validated with data from the ELCOGAS power plant in Spain. The layout of the model includes an Air Separation Unit (ASU), a Pressurized Entrained Flow (PRENFLO) gasifier, a series of purification gas units (venturi scrubber, sour water steam stripper, COS hydrolysis reactor, MDEA absorber columns and a sulphur recovery Claus plant), a Heat Recovery Steam Generator (HRSG) and a Combined Cycle (CC) system. It comprises steady state models. One of the purposes of this work is to analyze the feasibility of coal co-gasification using waste materials; specifically petcoke and olive pomace (orujillo) are considered here. The model has been developed in Aspen Hysys. It uses electrolyte models that have been implemented in Aspen Plus which are connected to Aspen Hysys by means of Artificial Neural Networks (ANNs) models. Results of the model's, gas composition and generated power, are in agreement with the industrial data.

  9. Conceptual model and evaluation of generated power and emissions in an IGCC plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fortes, M; Bojarski, A D; Velo, E; Nougues, J M; Puigjaner, L [Department of Chemical Engineering, Universitat Politecnica de Catalunya, ETSEIB, Avda. Diagonal, 647, E-08028 Barcelona (Spain)

    2009-10-15

    This work develops a design and operation support tool for an Integrated Gasification Combined Cycle (IGCC) power plant, which allows the efficiency and environmental issues of alternative process designs and feedstock to be assessed. The study is based on a conceptual model of an IGCC plant, validated with data from the ELCOGAS power plant in Spain. The layout of the model includes an Air Separation Unit (ASU), a Pressurized Entrained Flow (PRENFLO) gasifier, a series of purification gas units (venturi scrubber, sour water steam stripper, COS hydrolysis reactor, MDEA absorber columns and a sulphur recovery Claus plant), a Heat Recovery Steam Generator (HRSG) and a Combined Cycle (CC) system. It comprises steady state models. One of the purposes of this work is to analyze the feasibility of coal co-gasification using waste materials; specifically petcoke and olive pomace (orujillo) are considered here. The model has been developed in Aspen Hysys. It uses electrolyte models that have been implemented in Aspen Plus which are connected to Aspen Hysys by means of Artificial Neural Networks (ANNs) models. Results of the model's, gas composition and generated power, are in agreement with the industrial data. (author)

  10. Conceptual model and evaluation of generated power and emissions in an IGCC plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fortes, M.; Bojarski, A.D.; Velo, E.; Nougues, J.M.; Puigjaner, L. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, ETSEIB, Avda. Diagonal, 647, E-08028 Barcelona (Spain)

    2009-10-15

    This work develops a design and operation support tool for an Integrated Gasification Combined Cycle (IGCC) power plant, which allows the efficiency and environmental issues of alternative process designs and feedstock to be assessed. The study is based on a conceptual model of an IGCC plant, validated with data from the ELCOGAS power plant in Spain. The layout of the model includes an Air Separation Unit (ASU), a Pressurized Entrained Flow (PRENFLO) gasifier, a series of purification gas units (venturi scrubber, sour water steam stripper, COS hydrolysis reactor, MDEA absorber columns and a sulphur recovery Claus plant), a Heat Recovery Steam Generator (HRSG) and a Combined Cycle (CC) system. It comprises steady state models. One of the purposes of this work is to analyze the feasibility of coal co-gasification using waste materials; specifically petcoke and olive pomace (orujillo) are considered here. The model has been developed in Aspen Hysys. It uses electrolyte models that have been implemented in Aspen Plus which are connected to Aspen Hysys by means of Artificial Neural Networks (ANNs) models. Results of the model's, gas composition and generated power, are in agreement with the industrial data. (author)

  11. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times

  12. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  13. A Conceptual Model of eLearning Adoption

    Directory of Open Access Journals (Sweden)

    Muneer Abbad

    2011-05-01

    Full Text Available Internet-based learning systems are being used in many universities and firms but their adoption requires a solid understanding of the user acceptance processes. The technology acceptance model (TAM has been used to test the acceptance of various technologies and software within an e-learning context. This research aims to discuss the main factors of a successful e-learning adoption by students. A conceptual research framework of e-learning adoption is proposed based on the TAM model.

  14. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  15. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  16. Business Model Innovation: An Integrative Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Bernd Wirtz

    2017-01-01

    Full Text Available Purpose: The point of departure of this exploratory study is the gap between the increasing importance of business model innovation (BMI in science and management and the limited conceptual assistance available. Therefore, the study identi es and explores scattered BMI insights and deduces them into an integrative framework to enhance our understanding about this phenomenon and to present a helpful guidance for researchers and practitioners. Design/Methodology/Approach: The study identi es BMI insights through a literature-based investigation and consolidates them into an integrative BMI framework that presents the key elements and dimensions of BMI as well as their presumed relationships. Findings: The study enhances our understanding about the key elements and dimensions of BMI, presents further conceptual insights into the BMI phenomenon, supplies implications for science and management, and may serve as a helpful guidance for future research. Practical Implications: The presented framework provides managers with a tool to identify critical BMI issues and can serve as a conceptual BMI guideline. Research limitations: Given the vast amount of academic journals, it is unlikely that every applicable scienti c publication is included in the analysis. The illustrative examples are descriptive in nature, and thus do not provide empirical validity. Several implications for future research are provided. Originality/Value: The study’s main contribution lies in the unifying approach of the dispersed BMI knowledge. Since our understanding of BMI is still limited, this study should provide the necessary insights and conceptual assistance to further develop the concept and guide its practical application.

  17. Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow

    Science.gov (United States)

    Dey, Subhasish; Ali, Sk Zeeshan

    2018-06-01

    Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.

  18. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  19. A conceptual and disease model framework for osteoporotic kyphosis.

    Science.gov (United States)

    Bayliss, M; Miltenburger, C; White, M; Alvares, L

    2013-09-01

    This paper presents a multi-method research project to develop a conceptual framework for measuring outcomes in studies of osteoporotic kyphosis. The research involved literature research and qualitative interviews among clinicians who treat patients with kyphosis and among patients with the condition. Kyphosis due to at least one vertebral compression fracture is prevalent among osteoporotic patients, resulting in well-documented symptoms and impact on functioning and well-being. A three-part study led to development of a conceptual measurement framework for comprehensive assessment of symptoms, impact, and treatment benefit for kyphosis. A literature-based disease model (DM) was developed and tested with physicians (n = 10) and patients (n = 10), and FDA guidelines were used to develop a final disease model and a conceptual framework. The DM included signs, symptoms, causes/triggers, exacerbations, and functional status associated with kyphosis. The DM was largely confirmed, but physicians and patients added several concepts related to impact on functioning, and some concepts were not confirmed and removed from the DM. This study confirms the need for more comprehensive assessment of health outcomes in kyphosis, as most current studies omit key concepts.

  20. River City High School Guidance Services: A Conceptual Model.

    Science.gov (United States)

    American Coll. Testing Program, Iowa City, IA.

    This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…

  1. Preliminary geohydrologic conceptual model of the Los Medanos region near the Waste Isolation Pilot Plant for the purpose of performance assessment

    International Nuclear Information System (INIS)

    Brinster, K.F.

    1991-01-01

    This report describes a geohydrologic conceptual model of the northern Delaware Basin to be used in modeling three-dimensional, regional ground-water flow for assessing the performance of the Waste Isolation Pilot Plant (WIPP) in the Los Medanos region near Carlsbad, New Mexico. Geochemical and hydrological evidence indicates that flow is transient in the Rustler Formation and the Capitan aquifer in response to changing geologic, hydrologic, and climatic conditions. Before the Pleistocene, ground-water flow in the Rustler Formation was generally eastward, but uneven tilting of the Delaware Basin lowered the regional base level and formed fractures in the evaporitic sequence of rocks approximately parallel to the basin axis. Dissolution along the fractures, coupled with erosion, formed Nash Draw. Also, the drop in base level resulted in an increase in the carrying power of the Pecos River, which began incising the Capitan/aquifer near Carlsbad, New Mexico. Erosion and downcutting released hydraulic pressure that caused a reversal in Rustler ground-water flow direction near the WIPP. Flow in the Rustler west of the WIPP is toward Nash Draw and eventually toward Malaga Bend; flow south of the WIPP is toward Malaga Bend. 126 refs., 70 figs., 18 tabs

  2. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  3. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  4. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    Science.gov (United States)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport

  5. Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.

    Science.gov (United States)

    Henry, Stephen G; Matthias, Marianne S

    2018-02-01

    Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  7. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  8. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  9. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    Science.gov (United States)

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  10. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    Science.gov (United States)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  11. Advertisement Effectiveness for Print Media: A Conceptual Model

    OpenAIRE

    Prateek Maheshwari; Nitin Seth; Anoop Kumar Gupta

    2015-01-01

    The objective of present research paper is to highlight the importance of measuring advertisement effectiveness in print media and to develop a conceptual model for advertisement effectiveness. The developed model is based on dimensions on which advertisement effectiveness depends and on the dimensions which are used to measure the effectiveness. An in-depth and extensive literature review is carried out to understand the concept of advertisement effectiveness and its var...

  12. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  13. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  14. Improving ecological response monitoring of environmental flows.

    Science.gov (United States)

    King, Alison J; Gawne, Ben; Beesley, Leah; Koehn, John D; Nielsen, Daryl L; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  15. Improving Ecological Response Monitoring of Environmental Flows

    Science.gov (United States)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  16. Conceptual Model for Effective Sports Marketing in Nigeria | Akarah ...

    African Journals Online (AJOL)

    Conceptual Model for Effective Sports Marketing in Nigeria. ... that are influenced by the sports market mix and sports consumers that are influenced by psychological factors and notes that; ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  17. Penerapan Model Pembelajaran Conceptual Understanding Procedures (CUPS sebagai Upaya Mengatasi Miskonsepsi Matematis Siswa

    Directory of Open Access Journals (Sweden)

    Asri Gita

    2018-01-01

    Full Text Available Kesalahan dalam memahami konsep menjadi salah satu faktor yang menyebabkan miskonsepsi pada pelajaran matematika. Miskonsepsi pada materi bangun datar disebabkan oleh cara belajar siswa yang hanya menghafalkan bentuk dasar tanpa memahami hubungan antar bangun datar dan sifat-sifatnya. Upaya yang dilakukan dalam mengatasi miskonsepsi tersebut adalah dengan menerapkan pembelajaran konstruktivis. Salah satu model pembelajaran konstruktivis adalah Conceptual Understanding Procedures (CUPs. Tujuan dari penelitian ini adalah untuk mengetahui penerapan model pembelajaran Conceptual Understanding Procedures (CUPs sebagai upaya mengatasi miskonsepsi matematis siswa pada materi sifat-sifat bangun datar segiempat. Subjek penelitian adalah 12 orang siswa SMP yang mengalami miskonsepsi pada materi sifat-sifat bangun datar segiempat. Teknik pengumpulan data pada penelitian ini melalui tes, video, observasi, dan wawancara. Validitas dan reliabilitas data melalui credibility, dependability, transferability, dan confirmability. Hasil dari penelitian ini menunjukkan bahwa penerapan model pembelajaran Conceptual Understanding Procedures (CUPs yang terdiri dari fase individu, fase kelompok triplet, dan fase interpretasi seluruh kelas dapat mengatasi miskonsepsi siswa pada materi sifat-sifat bangun datar segiempat. Perubahan miskonsepsi siswa juga dapat dilihat dari nilai tes yang mengalami peningkatan nilai berdasarkan nilai tes awal dan tes akhir siswa. Kata Kunci: Conceptual Understanding Procedures (CUPs, miskonsepsi, segiempat.   ABSTRACT Mistakes in understanding the concept became one of the factors that led to misconceptions in mathematics. The misconceptions in plane shapes are caused by the way of learning of students who only memorize the basic form without understanding the relationship between the plane shapes and its properties. Efforts made in overcoming these misconceptions is to apply constructivist learning. One of the constructivist learning

  18. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    International Nuclear Information System (INIS)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-01-01

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive

  19. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  20. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  1. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customer base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.

  2. Interacting Conceptual Spaces

    OpenAIRE

    Bolt, Josef; Coecke, Bob; Genovese, Fabrizio; Lewis, Martha; Marsden, Daniel; Piedeleu, Robin

    2016-01-01

    We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples.

  3. Extracting conceptual models from user stories with Visual Narrator

    NARCIS (Netherlands)

    Lucassen, Garm; Robeer, Marcel; Dalpiaz, Fabiano; van der Werf, Jan Martijn E. M.; Brinkkemper, Sjaak

    2017-01-01

    Extracting conceptual models from natural language requirements can help identify dependencies, redundancies, and conflicts between requirements via a holistic and easy-to-understand view that is generated from lengthy textual specifications. Unfortunately, existing approaches never gained traction

  4. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-12-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  5. Conceptual model of fractured aquifer of Uranium Deposit in Caetité, Bahia: implications for groundwater flow

    International Nuclear Information System (INIS)

    Silva, Liliane Ferreira da

    2015-01-01

    The studied area is represented by the uraniferous district of Lagoa Real, located in the center-south of Bahia State, Brazil. The region is set in a semiarid climate context, with hot and dry weather parameters, with hydric deficit along all months of the year and high aridity index. Rural population is affected on drought periods since small agriculture and animal rearing are the main economic activities which are vulnerable in dry seasons. Groundwater represents the main supply source considering that most surface water sources are temporary and only exhibit flow in rainy periods. The main aquifer system present on the region is fractured, and the presence of groundwater flow occurs through the discontinuities of the rock considering that the rock mass corresponds to the set formed by the rock matrix and all its discontinuities (fractures, foliations, discordance, etc). In this sense, the main purpose of this Master Dissertation was to develop a conceptual model for the aquifer system, through the geotechnical characterization of discontinuities, once these structures allow the secondary porosity of the medium. Hydrochemical data hand out as complement for physical characterization for the behavioral interpretation of the aquifer. The aquifer system is unconfined, however, presents points of stagnation of flow forming compartments without communication with the surrounding areas. According to the International Society of Rock Mechanics ISRM method, which consist on qualitative and quantitative characterization of discontinuities of rock mass scanlines were constructed, systematically, describing, the following structure parameters: attitude, spacing, persistence, openness, infilling and roughness. From the results analysis it could be concluded that the aquifer system is composed of three discontinuities sets: one set which dips to NE, second set dipping to SW-W-NW and the last set sub-horizontal. The first and second sets are responsible for the aquifer

  6. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Doctor, P.G.; Williford, R.E.; Van Luik, A.E.

    1984-11-01

    Part of a strategy for evaluating the compliance of geologic repositories with federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative releases from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  7. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Van Luik, A.E.; Williford, R.E.; Doctor, P.G.; Pacific Northwest Lab., Richland, WA; Roy F. Weston, Inc./Rogers and Assoc. Engineering Corp., Rockville, MD)

    1984-01-01

    Part of a strategy for evaluating the compliance of geologic repositories with Federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilitistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative released from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  8. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Dunbar, D.B.; Thackston, J.W.

    1985-10-01

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  9. Conceptual Modeling in the Time of the Revolution: Part II

    Science.gov (United States)

    Mylopoulos, John

    Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.

  10. Towards Smart and Resilient City: A Conceptual Model

    Science.gov (United States)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  11. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  12. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  13. A Conceptual Model of the World of Work.

    Science.gov (United States)

    VanRooy, William H.

    The conceptual model described in this paper resulted from the need to organize a body of knowledge related to the world of work which would enable curriculum developers to prepare accurate, realistic instructional materials. The world of work is described by applying Malinowski's scientific study of the structural components of culture. It is…

  14. Conceptualizing Group Flow: A Framework

    Science.gov (United States)

    Duncan, Jana; West, Richard E.

    2018-01-01

    This literature review discusses the similarities in main themes between Csikszentmihályi theory of individual flow and Sawyer theory of group flow, and compares Sawyer's theory with existing concepts in the literature on group work both in education and business. Because much creativity and innovation occurs within groups, understanding group…

  15. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  16. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Y. Wu

    2004-01-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11

  17. On the practical modeling of conceptual overlap among multiple facets in ontology domain concepts (Mini-thesis)

    OpenAIRE

    Rodriguez-Castro, Benedicto; Glaser, Hugh; Carr, Leslie

    2007-01-01

    This report presents a study on the practical modelling of the conceptual overlap that might exist among the multiple facets that define a particular ontology domain concept. The notions of conceptual overlap and facet are defined, together with their relation to scenarios of multiple inheritance in ontology models. Starting from the notion of a value partition, a terminology of ontology modelling constructs is introduced that allows the characterization of two types of conceptual overlap wit...

  18. A simple conceptual model of abrupt glacial climate events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2007-11-01

    Full Text Available Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events to a few simple principles, namely (i the existence of two different climate states, (ii a threshold process and (iii an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2, in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations. We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.

  19. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  20. Structure of conceptual models in the senior operating staff of nuclear power plants

    Directory of Open Access Journals (Sweden)

    Oboznov A. A.

    2017-09-01

    Full Text Available Background. The relationships between conceptual model structures and an operator’s professional efficiency are of direct practical importance, particularly in the case of large-scale industrial complexes combining several human-machine systems. A typical example is the power unit of a nuclear power plant (NPP. Objective and methods. The purpose of this study was to explore the conceptual models of senior reactor operators (SROs of NPPs. The study involved 64 men working as SRO at five NPPs in Russia. The methods included: structured interviews, expert estimations, multidimensional scaling (ALSCAL, the K-means clustering algorithm, and frequency analysis. The procedure was as follows: 32 key characteristics of the power unit were defined, including shift operators’ jobs and duties, technical subsystems, types of equipment, and the crucial power unit parameters. The participants were offered a 32×32 matrix for pair-wise estimation of the strength of the links between these key characteristics on a seven-point scale (496 links in total. Results. A general scheme of key characteristics in the conceptual models was defined. is scheme was displayed in the operators regardless of their employment history. Within the scheme, however, two types of conceptual models were identified, which could be distinguished by the relative number of strong links between the key characteristics. With respect to intersystem links including key characteristics of the reactor and turbine NPP departments, this number was significantly higher in models of Type 1 than in those of Type 2. A positive correlation between the number of these links and the professional efficiency indicators was also established. Operators with Type 1 models were able to more predictably represent the power unit operation. Conclusion. The main role in creating predictable and efficient conceptual models was played by strong intersystem links in mental representations of workflow.

  1. The conceptual model of organization social responsibility

    OpenAIRE

    LUO, Lan; WEI, Jingfu

    2014-01-01

    With the developing of the research of CSR, people more and more deeply noticethat the corporate should take responsibility. Whether other organizations besides corporatesshould not take responsibilities beyond their field? This paper puts forward theconcept of organization social responsibility on the basis of the concept of corporate socialresponsibility and other theories. And the conceptual models are built based on theconception, introducing the OSR from three angles: the types of organi...

  2. A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river

    Science.gov (United States)

    Akter, A.; Tanim, A. H.

    2018-03-01

    Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the

  3. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  4. Some problems with social cognition models: a pragmatic and conceptual analysis.

    Science.gov (United States)

    Ogden, Jane

    2003-07-01

    Empirical articles published between 1997 and 2001 from 4 health psychology journals that tested or applied 1 or more social cognition models (theory of reasoned action, theory of planned behavior, health belief model, and protection motivation theory; N = 47) were scrutinized for their pragmatic and conceptual basis. In terms of their pragmatic basis, these 4 models were useful for guiding research. The analysis of their conceptual basis was less positive. First, these models do not enable the generation of hypotheses because their constructs are unspecific; they therefore cannot be tested. Second, they focus on analytic truths rather than synthetic ones, and the conclusions resulting from their application are often true by definition rather than by observation. Finally, they may create and change both cognitions and behavior rather than describe them.

  5. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  6. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  7. LCM 3.0: A Language for describing Conceptual Models

    NARCIS (Netherlands)

    Feenstra, Remco; Wieringa, Roelf J.

    1993-01-01

    The syntax of the conceptual model specification language LCM is defined. LCM uses equational logic to specify data types and order-sorted dynamic logic to specify objects with identity and mutable state. LCM specifies database transactions as finite sets of atomic object transitions.

  8. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  9. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  10. Developing two-phase flow modelling concepts for rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))

    2010-01-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  11. Developing two-phase flow modelling concepts for rock fractures

    International Nuclear Information System (INIS)

    Keto, V.

    2010-01-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  12. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  13. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  14. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    Science.gov (United States)

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  15. Conceptualizing Programme Evaluation

    Science.gov (United States)

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  16. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  17. A conceptual data model and modelling language for fields and agents

    Science.gov (United States)

    de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown

  18. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    Science.gov (United States)

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  19. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  20. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    Directory of Open Access Journals (Sweden)

    Christopher R Kelble

    Full Text Available There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society

  1. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    Science.gov (United States)

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  2. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    Science.gov (United States)

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  3. A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare

    OpenAIRE

    Kotiadis, Kathy; Tako, Antuela; Vasilakis, Christos

    2014-01-01

    Existing approaches to conceptual modelling (CM) in discrete-event simulation do not formally support the participation of a group of stakeholders. Simulation in healthcare can benefit from stakeholder participation as it makes possible to share multiple views and tacit knowledge from different parts of the system. We put forward a framework tailored to healthcare that supports the interaction of simulation modellers with a group of stakeholders to arrive at a common conceptual model. The fra...

  4. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  5. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  6. A conceptual model for the development and management of the ...

    African Journals Online (AJOL)

    A conceptual model for the development and management of the Cape Flats ... rainfall; this rainfall pattern has implications for recharge and water management issues in ... Keywords: water resource management, Cape Town, water quality, ...

  7. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  8. Construction of a groundwater-flow model for the Big Sioux Aquifer using airborne electromagnetic methods, Sioux Falls, South Dakota

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Carter, Janet M.; Smith, Bruce D.; Smith, David V.

    2016-09-28

    The city of Sioux Falls is the fastest growing community in South Dakota. In response to this continued growth and planning for future development, Sioux Falls requires a sustainable supply of municipal water. Planning and managing sustainable groundwater supplies requires a thorough understanding of local groundwater resources. The Big Sioux aquifer consists of glacial outwash sands and gravels and is hydraulically connected to the Big Sioux River, which provided about 90 percent of the city’s source-water production in 2015. Managing sustainable groundwater supplies also requires an understanding of groundwater availability. An effective mechanism to inform water management decisions is the development and utilization of a groundwater-flow model. A groundwater-flow model provides a quantitative framework for synthesizing field information and conceptualizing hydrogeologic processes. These groundwater-flow models can support decision making processes by mapping and characterizing the aquifer. Accordingly, the city of Sioux Falls partnered with the U.S. Geological Survey to construct a groundwater-flow model. Model inputs will include data from advanced geophysical techniques, specifically airborne electromagnetic methods.

  9. Testing an integral conceptual model of frailty.

    Science.gov (United States)

    Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M

    2012-09-01

    This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty.   The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.

  10. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    OpenAIRE

    Bistra Vassileva; Miroslav Nikolov

    2016-01-01

    The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed concep...

  11. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    OpenAIRE

    Lee, Jin Kook; Kim, Mi Jeong

    2014-01-01

    This paper describes how a building information modelling (BIM)-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs), which follow an object-oriented data modelli...

  12. A conceptual framework for measuring airline business model convergence

    OpenAIRE

    Daft, Jost; Albers, Sascha

    2012-01-01

    This paper develops a measurement framework that synthesizes the airline and strategy literature to identify relevant dimensions and elements of airline business models. The applicability of this framework for describing airline strategies and structures and, based on this conceptualization, for assessing the potential convergence of airline business models over time is then illustrated using a small sample of five German passenger airlines. For this sample, the perception of a rapprochement ...

  13. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    Science.gov (United States)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    Like many other coastal areas, Göksu Delta (Mersin-Silifke, Southern Turkey) is a preferred place for human settlement especially due to its productive farmlands and water resources. The water dependent ecosystem in Göksu delta hosts about 332 different plant species and 328 different bird species besides serving for human use. Göksu Delta has been declared as Special Environmental Protection Zone, Wildlife Protection Area, and RAMSAR Convention for Wetlands of International Importance area. Unfortunately, rising population, agricultural and industrial activities cause degradation of water resources both by means of quality and quantity. This problem also exists for other wetlands around the world. It is necessary to prepare water management plans by taking global warming issues into account to protect water resources for next generations. To achieve this, the most efficient tool is to come up with groundwater management strategies by constructing groundwater flow models. By this aim, groundwater modeling studies were carried out for Göksu Delta coastal aquifer system. As a first and most important step in all groundwater modeling studies, geological and hydrogeological settings of the study area have been investigated. Göksu Delta, like many other deltaic environments, has a complex structure because it was formed with the sediments transported by Göksu River throughout the Quaternary period and shaped throughout the transgression-regression periods. Both due to this complex structure and the lack of observation wells penetrating deep enough to give an idea of the total thickness of the delta, it was impossible to reveal out the hydrogeological setting in a correct manner. Therefore, six wells were drilled to construct the conceptual hydrogeological model of Göksu Delta coastal aquifer system. On the basis of drilling studies and slug tests that were conducted along Göksu Delta, hydrostratigraphic units of the delta system have been obtained. According to

  14. A conceptual model of referee efficacy

    Directory of Open Access Journals (Sweden)

    Félix eGuillén

    2011-02-01

    Full Text Available This paper presents a conceptual model of referee efficacy, defines the concept, proposes sources of referee specific efficacy information, and suggests consequences of having high or low referee efficacy. Referee efficacy is defined as the extent to which referees believe they have the capacity to perform successfully in their job. Referee efficacy beliefs are hypothesized to be influenced by mastery experiences, referee knowledge/education, support from significant others, physical/mental preparedness, environmental comfort, and perceived anxiety. In turn, referee efficacy beliefs are hypothesized to influence referee performance, referee stress, athlete rule violations, athlete satisfaction, and co-referee satisfaction.

  15. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  16. Conceptual model for quality of life among adults with congenital or early deafness.

    Science.gov (United States)

    Kushalnagar, Poorna; McKee, Michael; Smith, Scott R; Hopper, Melinda; Kavin, Denise; Atcherson, Samuel R

    2014-07-01

    A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Large regional groundwater modeling - a sensitivity study of some selected conceptual descriptions and simplifications

    International Nuclear Information System (INIS)

    Ericsson, Lars O.; Holmen, Johan

    2010-12-01

    The primary aim of this report is: - To present a supplementary, in-depth evaluation of certain conceptual simplifications, descriptions and model uncertainties in conjunction with regional groundwater simulation, which in the first instance refer to model depth, topography, groundwater table level and boundary conditions. Implementation was based on geo-scientifically available data compilations from the Smaaland region but different conceptual assumptions have been analysed

  18. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    Science.gov (United States)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  19. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  20. A Conceptual Model for Multidimensional Analysis of Documents

    Science.gov (United States)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  1. A note on the translation of conceptual data models into description logics: disjointness and covering assumptions

    CSIR Research Space (South Africa)

    Casini, G

    2012-10-01

    Full Text Available possibilities for conceptual data modeling. It also raises the question of how existing conceptual models using ER, UML or ORM could be translated into Description Logics (DLs), a family of logics that have proved to be particularly appropriate for formalizing...

  2. Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual models

    Science.gov (United States)

    Izuka, Scot K.; Engott, John A.; Rotzoll, Kolja; Bassiouni, Maoya; Johnson, Adam G.; Miller, Lisa D.; Mair, Alan

    2016-06-13

    Hawai‘i’s aquifers have limited capacity to store fresh groundwater because each island is small and surrounded by saltwater. Saltwater also underlies much of the fresh groundwater. Fresh groundwater resources are, therefore, particularly vulnerable to human activity, short-term climate cycles, and long-term climate change. Availability of fresh groundwater for human use is constrained by the degree to which the impacts of withdrawal—such as lowering of the water table, saltwater intrusion, and reduction in the natural discharge to springs, streams, wetlands, and submarine seeps—are deemed acceptable. This report describes the hydrogeologic framework, groundwater budgets (inflows and outflows), conceptual models of groundwater occurrence and movement, and the factors limiting groundwater availability for the largest and most populated of the Hawaiian Islands—Kaua‘i, O‘ahu, Maui, and Hawai‘i Island.The bulk of each of Hawai‘i’s islands is built of many thin lava flows erupted from shield volcanoes; the great piles of lava flows form highly permeable aquifers. In some areas, low-permeability dikes cutting across the lava flows, or low-permeability ash and soil horizons interlayered with the lava flows, can substantially alter groundwater flow. On some islands, sedimentary rocks form thick semiconfining coastal-plain deposits, locally known as caprock, that impede natural groundwater discharge to the ocean. In some regions, thick lava flows that ponded in preexisting depressions form aquifers that are much less permeable than aquifers formed by thin lava flows.Fresh groundwater inflow to Hawai‘i’s aquifers comes from recharge. For predevelopment conditions (1870), estimates of groundwater recharge from this study are 871, 675, 1,279, and 5,291 million gallons per day (Mgal/d) for Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, respectively. Estimates of recharge for recent conditions (2010 land cover and 1978–2007 rainfall for Kaua‘i, O

  3. Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change

    Directory of Open Access Journals (Sweden)

    Zdeslav Hrepic

    2010-09-01

    Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.

  4. Literature Review of Enterprise Systems Research Using Institutional Theory: Towards a Conceptual Model

    DEFF Research Database (Denmark)

    Svejvig, Per

    This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...... model which advocates for multi-level and multi-theory approaches, and applies newer institutional aspects such as institutional logics. The findings show that institutional theory in ES research is in its infancy and adopts mainly traditional institutional aspects like isomorphism....... Key institutional features are presented such as isomorphism, rationalized myths, bridging macro and micro structures, and institutional logics and their implications for ES research are discussed. Through a literature review of 180 articles, of which 18 papers are selected, we build a conceptual...

  5. Flow experiences in Shakuhachi teaching via Skype

    OpenAIRE

    How, Meng Leong

    2017-01-01

    This study examined how flow experiences contributed to the teaching practices of seven shakuhachi teachers from Australia, North America, Europe, and Japan, who were engaged in teaching their students via Skype. Findings in this study suggested that the shakuhachi teachers’ gravitas of teaching and the observed effortlessness in their practices of teaching students contributed to their experience of flow during teaching via Skype. An epi-flow conceptual model was engendered via a review ...

  6. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  7. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  8. Conceptual model of management steadfast economic development production-economic systems

    OpenAIRE

    Prokhorova, V.

    2010-01-01

    The article is devoted developments of conceptual model of management proof economic development of the industrialeconomy systems. Features are certain, the algorithm of impulse is offered and intercommunication of contours of management proof economic development of the industrialeconomy systems is investigational

  9. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  10. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  11. Cost and performance analysis of conceptual designs of physical protection systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Snell, M.S.; Sandoval, J.S.; Potter, C.S.

    1998-01-01

    CPA -- Cost and Performance Analysis -- is a methodology that joins Activity Based Cost (ABC) estimation with performance based analysis of physical protection systems. CPA offers system managers an approach that supports both tactical decision making and strategic planning. Current exploratory applications of the CPA methodology are addressing analysis of alternative conceptual designs. To support these activities, the original architecture for CPA, is being expanded to incorporate results from a suite of performance and consequence analysis tools such as JTS (Joint Tactical Simulation), ERAD (Explosive Release Atmospheric Dispersion) and blast effect models. The process flow for applying CPA to the development and analysis conceptual designs is illustrated graphically

  12. Development and validation of a mass casualty conceptual model.

    Science.gov (United States)

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  13. Conceptual design of an integrated technology model for carbon policy assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  14. Conceptual model for reinforced grass on inner dike slopes

    NARCIS (Netherlands)

    Verhagen, H.J.; ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing

  15. Modeling brine inflow to Room Q: A numerical investigation of flow mechanisms

    International Nuclear Information System (INIS)

    Freeze, G.A.; Christian-Frear, T.L.; Webb, S.W.

    1997-04-01

    A hydrologic modeling study was performed to gain insight into the flow mechanisms around Room Q. A summary of hydrologic and structural data and of predictive fluid flow models from Room Q are provided. Six years of measured data are available from the time of excavation. No brine accumulation in Room Q was measured in the first two years following excavation. However, there is considerable uncertainty associated with this early-time data due to inadequate sealing of the room. Brine may have been lost to evaporation or it may have flowed into newly created disturbed rock zone (DRZ) porosity resulting from excavation. Non-zero brine accumulation rates were measured from 2--5 years, but brine accumulation within the room dropped to zero after 5.5 years. A conceptual model for brine inflow to Room Q was developed which assumes far-field Darcy flow combined with an increasing DRZ pore volume. Numerical simulations employed TOUGH28W and used predictive DRZ porosity increase with time from SPECTROM-32 rock deformation simulations. Simulated brine inflow showed good agreement with measured brine accumulation rates for the first five years. Two important conclusions were drawn from the simulation results: (1) early-time brine inflow to the room can be reduced to zero if the DRZ pore volume increases with time, and (2) brine accumulation (inflow) rates from 2 to 5 years suggest a far-field permeability of 5 x 10 -22 m 2 with a bulk rock compressibility of 5.4 x 10 -12 Pa -1

  16. A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment

    Science.gov (United States)

    Tyler Jon Smith

    2008-01-01

    In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...

  17. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    Science.gov (United States)

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  18. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  19. A Conceptual Model for Analysing Management Development in the UK Hospitality Industry

    Science.gov (United States)

    Watson, Sandra

    2007-01-01

    This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…

  20. A Conceptual Model for Increasing Use of Electronic Medical Records by Primary Care Physicians Through End-User Support.

    Science.gov (United States)

    Randhawa, Gurprit K

    2017-01-01

    A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.

  1. A Conceptual Model of the Pasadena Housing System

    Science.gov (United States)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  2. Designing Public Library Websites for Teens: A Conceptual Model

    Science.gov (United States)

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  3. A two-dimensional analytical well model with applications to groundwater flow and convective transport modelling in the geosphere

    International Nuclear Information System (INIS)

    Chan, T.; Nakka, B.W.

    1994-12-01

    A two-dimensional analytical well model has been developed to describe steady groundwater flow in an idealized, confined aquifer intersected by a withdrawal well. The aquifer comprises a low-dipping fracture zone. The model is useful for making simple quantitative estimates of the transport of contaminants along groundwater pathways in the fracture zone to the well from an underground source that intercepts the fracture zone. This report documents the mathematical development of the analytical well model. It outlines the assumptions and method used to derive an exact analytical solution, which is verified by two other methods. It presents expressions for calculating quantities such as streamlines (groundwater flow paths), fractional volumetric flow rates, contaminant concentration in well water and minimum convective travel time to the well. In addition, this report presents the results of applying the analytical model to a site-specific conceptual model of the Whiteshell Research Area in southeastern Manitoba, Canada. This hydrogeological model includes the presence of a 20-m-thick, low-dipping (18 deg) fracture zone (LD1) that intercepts the horizon of a hypothetical disposal vault located at a depth of 500 m. A withdrawal well intercepts LD1 between the vault level and the ground surface. Predictions based on parameters and boundary conditions specific to LD1 are presented graphically. The analytical model has specific applications in the SYVAC geosphere model (GEONET) to calculate the fraction of a plume of contaminants moving up the fracture zone that is captured by the well, and to describe the drawdown in the hydraulic head in the fracture zone caused by the withdrawal well. (author). 16 refs., 6 tabs., 35 figs

  4. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  5. Conceptual Model for Mitigating Human - Wildlife Conflict based on System Thinking

    Science.gov (United States)

    Patana, Pindi; Mawengkang, Herman; Silvi Lydia, Maya

    2018-01-01

    In conservation process it is unavoidably that conflict incidents may occur among the people and wild-life in the surrounding of the conservation area. Mitigating conflict between wildlife and people is considered a top conservation priority, particularly in landscapes where high densities of people and wildlife co-occur. This conflict is also happened in Leuser conservation area located in the border of North Sumatra and Aceh province, Indonesia. Easing the conflict problem is very difficult. This paper proposes a conceptual model based on system thinking to explore factors that may have great influence on the conflict and to figure out mitigating the conflict. We show how this conceptual framework can be utilized to analyze the conflict occur and further how it could used to develop a multi- criteria decision model.

  6. Theory for source-responsive and free-surface film modeling of unsaturated flow

    Science.gov (United States)

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  7. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  8. Creating a Universe, a Conceptual Model

    Directory of Open Access Journals (Sweden)

    James R. Johnson

    2016-10-01

    Full Text Available Space is something. Space inherently contains laws of nature: universal rules (mathematics, space dimensions, types of forces, types of fields, and particle species, laws (relativity, quantum mechanics, thermodynamics, and electromagnetism and symmetries (Lorentz, Gauge, and symmetry breaking. We have significant knowledge about these laws of nature because all our scientific theories assume their presence. Their existence is critical for developing either a unique theory of our universe or more speculative multiverse theories. Scientists generally ignore the laws of nature because they “are what they are” and because visualizing different laws of nature challenges the imagination. This article defines a conceptual model separating space (laws of nature from the universe’s energy source (initial conditions and expansion (big bang. By considering the ramifications of changing the laws of nature, initial condition parameters, and two variables in the big bang theory, the model demonstrates that traditional fine tuning is not the whole story when creating a universe. Supporting the model, space and “nothing” are related to the laws of nature, mathematics and multiverse possibilities. Speculation on the beginning of time completes the model.

  9. Purpose and Pedagogy: A Conceptual Model for an ePortfolio

    Science.gov (United States)

    Buyarski, Catherine A.; Aaron, Robert W.; Hansen, Michele J.; Hollingsworth, Cynthia D.; Johnson, Charles A.; Kahn, Susan; Landis, Cynthia M.; Pedersen, Joan S.; Powell, Amy A.

    2015-01-01

    This conceptual model emerged from the need to balance multiple purposes and perspectives associated with developing an ePortfolio designed to promote student development and success. A comprehensive review of literature from various disciplines, theoretical frameworks, and scholarship, including self-authorship, reflection, ePortfolio pedagogy,…

  10. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.; Nicholl, M.J.; Arnold, B.W.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 microm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  11. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 μm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  12. TOWARDS A CONCEPTUAL FRAMEWORK OF ISLAMIC LEADERSHIP SUCCESSOR'S ATTRIBUTES MODEL AND GOOD GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Naji Zuhair Alsarhi

    2015-12-01

    Full Text Available The purpose of this paper is to propose a conceptual model that explains the relationship between Islamic leadership successionpersonalityattributes and good governance. The paper sources information from an extensive search of literature to design a conceptual model of Islamic leadership succession (personal attributes & governmental characteristics of Succession and good governance. The model will provide an integration of relationships that will add valuable insights into improved leadership succession theory in the related literature. The paper may assist particularly policy makers and strategists to focus on new possibilities of leadership successors attributes that will lead to improved governance as well as government performance in the world in general, and the Palestine community, in particular.

  13. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  14. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    Science.gov (United States)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  15. Testing a Conceptual Model of Working through Self-Defeating Patterns

    Science.gov (United States)

    Wei, Meifen; Ku, Tsun-Yao

    2007-01-01

    The present study developed and examined a conceptual model of working through self-defeating patterns. Participants were 390 college students at a large midwestern university. Results indicated that self-defeating patterns mediated the relations between attachment and distress. Also, self-esteem mediated the link between self-defeating patterns…

  16. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, N.A., E-mail: natalie.kruse@ncl.ac.uk [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-07-15

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  17. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  18. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    Science.gov (United States)

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  19. Revising a conceptual model of partnership and sustainability in global health.

    Science.gov (United States)

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  20. A conceptual holding model for veterinary applications

    Directory of Open Access Journals (Sweden)

    Nicola Ferrè

    2014-05-01

    Full Text Available Spatial references are required when geographical information systems (GIS are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a “schema” that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application “schema” of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC - INSPIRE. The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application “schema” that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  1. TRAC-PF1 choked-flow model

    International Nuclear Information System (INIS)

    Sahota, M.S.; Lime, J.F.

    1983-01-01

    The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures

  2. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    International Nuclear Information System (INIS)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-01-01

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load

  3. A conceptual model of psychological contracts in construction projects

    Directory of Open Access Journals (Sweden)

    Yongjian Ke

    2016-09-01

    Full Text Available The strategic importance of relationship style contracting is recognised in the construction industry. Both public and private sector clients are stipulating more integrated and collaborative forms of procurement. Despite relationship and integrated contractual arrangement being available for some time, it is clear that construction firms have been slow to adopt them. Hence it is timely to examine how social exchanges, via unwritten agreement and behaviours, are being nurtured in construction projects. This paper adopted the concept of Psychological Contracts (PC to describe unwritten agreement and behaviours. A conceptual model of the PC is developed and validated using the results from a questionnaire survey administered to construction professionals in Australia. The results uncovered the relationships that existed amongst relational conditions and relational benefits, the PC and the partners’ satisfaction. The results show that all the hypotheses in the conceptual model of the PC are supported, suggesting the PC model is important and may have an effect on project performance and relationship quality among contracting parties. A validated model of the PC in construction was then developed based on the correlations among each component. The managerial implications are that past relationships and relationship characteristics should be taken into account in the selection of procurement partners and the promise of future resources, support and tangible relational outcomes are also vital. It is important for contracting parties to pay attention to unwritten agreements (the PC and behaviours when managing construction projects.

  4. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  5. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  6. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    Science.gov (United States)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  7. New Conceptual Model for Soil Treatment Units: Formation of Multiple Hydraulic Zones during Unsaturated Wastewater Infiltration.

    Science.gov (United States)

    Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E

    2013-07-01

    Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  9. Site scale groundwater flow in Olkiluoto - complementary simulations

    International Nuclear Information System (INIS)

    Loefman, J.

    2000-06-01

    This work comprises of the complementary simulations to the previous groundwater flow analysis at the Olkiluoto site. The objective is to study the effects of flow porosity, conceptual model for solute transport, fracture zones, land uplift and initial conditions on the results. The numerical simulations are carried out up to 10000 years into the future employing the same modelling approach and site-specific flow and transport model as in the previous work except for the differences in the case descriptions. The result quantities considered are the salinity and the driving force in the vicinity of the repository. The salinity field and the driving force are sensitive to the flow porosity and the conceptual model for solute transport. Ten-fold flow porosity and the dual-porosity approach retard the transport of solutes in the bedrock resulting in brackish groundwater conditions at the repository at 10000 years A.P. (in the previous work the groundwater in the repository turned into fresh). The higher driving forces can be attributed to the higher concentration gradients resulting from the opposite effects of the land uplift, which pushes fresh water deeper and deeper into the bedrock, and the higher flow porosity and the dual-porosity model, which retard the transport of solutes. The cases computed (unrealistically) without fracture zones and postglacial land uplift show that they both have effect on the results and can not be ignored in the coupled and transient groundwater flow analyses. The salinity field and the driving force are also sensitive to the initial salinity field especially at the beginning during the first 500 years A.P. The sensitivity will, however, diminish as soon as fresh water dilutes brackish and saline water and decreases the concentration gradients. Fresh water conditions result in also a steady state for the driving force in the repository area. (orig.)

  10. Patient-reported outcomes in insomnia: development of a conceptual framework and endpoint model.

    Science.gov (United States)

    Kleinman, Leah; Buysse, Daniel J; Harding, Gale; Lichstein, Kenneth; Kalsekar, Anupama; Roth, Thomas

    2013-01-01

    This article describes qualitative research conducted with patients with clinical diagnoses of insomnia and focuses on the development of a conceptual framework and endpoint model that identifies a hierarchy and interrelationships of potential outcomes in insomnia research. Focus groups were convened to discuss how patients experience insomnia and to generate items for patient-reported questionnaires on insomnia and associated daytime consequences. Results for the focus group produced two conceptual frameworks: one for sleep and one for daytime impairment. Each conceptual framework consists of hypothesized domains and items in each domain based on patient language taken from the focus group. These item pools may ultimately serve as a basis to develop new questionnaires to assess insomnia.

  11. Using a lumped conceptual hydrological model for five different catchments in Sweden

    OpenAIRE

    Ekenberg, Madeleine

    2016-01-01

    Hydrological models offer powerful tools for understanding and predicting. In this thesis we havereviewed the advantages and disadvantages of physically based distributed hydrological models andconceptually lumped hydrological models. Based on that review, we went into depth and developed aMATLAB code to test if a simple conceptual lumped hydrological model, namely GR2M, wouldperform satisfactory for five different catchments in different parts of Sweden. The model had ratherunsatisfactory re...

  12. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    Science.gov (United States)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  13. Development of Sodium Two Phase Flow Model for Kalimer Core Analysis

    International Nuclear Information System (INIS)

    Chang, W.P.; Hahn, Dohee

    2002-01-01

    An algorithm for sodium boiling is developed in order to extend the applicability of SSC-K, which is a main system analysis code for the KALIMER (Korea Advanced LIquid Metal Reactor) conceptual design. As the capability of the current SSC-K version is limited to simulation of only a single-phase sodium flow, its applicable range should not be enough to assess the fuel integrity under some of HCDA (Hypothetical Core Disruptive Accident) initiating events where sodium boiling is anticipated. The two-phase flow model similar to that used for the light water system is known to be no more effective directly to liquid metal reactors, because the phenomena observed between two reactor coolant systems are definitely different. The developing algorithm is based on a multiple-bubble slug ejection model, which allows a finite number of bubbles in a channel at any time. The present work is a continuous effort following the former study to confirm a qualitative acceptance on the model. Since the model has been applied only to the active fuel region in the former study, a part of its qualification seems to have already been demonstrated. For its application to the whole KALIMER core channel, however, the model needs to be examined the applicability to the fuel regions other than the active fuel. The present study primarily focuses on that point. In a result, although the model may be improved in a sense through the present study over the previous modeling, a clear limitation is also confirmed with the validity of the model. The further development, therefore, is required for this model to achieve its goal by resolving such limitations. (authors)

  14. A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems

    Science.gov (United States)

    Duque, Rafael; Bravo, Crescencio; Ortega, Manuel

    Collaborative work using groupware systems is a dynamic process in which many tasks, in different application domains, are carried out. Currently, one of the biggest challenges in the field of CSCW (Computer-Supported Cooperative Work) research is to establish conceptual models which allow for the analysis of collaborative activities and their resulting products. In this article, we propose an ontology that conceptualizes the required elements which enable an analysis to infer a set of analysis indicators, thus evaluating both the individual and group work and the artefacts which are produced.

  15. Analysis of Economic Burden of Seasonal Influenza: An Actuarial Based Conceptual Model

    Directory of Open Access Journals (Sweden)

    S. S. N. Perera

    2017-01-01

    Full Text Available Analysing the economic burden of the seasonal influenza is highly essential due to the large number of outbreaks in recent years. Mathematical and actuarial models can be considered as management tools to understand the dynamical behavior, predict the risk, and compute it. This study is an attempt to develop conceptual model to investigate the economic burden due to seasonal influenza. The compartment SIS (susceptible-infected-susceptible model is used to capture the dynamical behavior of influenza. Considering the current investment and future medical care expenditure as premium payment and benefit (claim, respectively, the insurance and actuarial based conceptual model is proposed to model the present economic burden due to the spread of influenza. Simulation is carried out to demonstrate the variation of the present economic burden with respect to model parameters. The sensitivity of the present economic burden is studied with respect to the risk of disease spread. The basic reproduction is used to identify the risk of disease spread. Impact of the seasonality is studied by introducing the seasonally varying infection rate. The proposed model provides theoretical background to investigate the economic burden of seasonal influenza.

  16. The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.

    Science.gov (United States)

    Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K

    2000-06-01

    The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.

  17. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  18. Combining static and dynamic modelling methods: a comparison of four methods

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1995-01-01

    A conceptual model of a system is an explicit description of the behaviour required of the system. Methods for conceptual modelling include entity-relationship (ER) modelling, data flow modelling, Jackson System Development (JSD) and several object-oriented analysis method. Given the current

  19. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    Science.gov (United States)

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  20. Stochastic cycle selection in active flow networks

    Science.gov (United States)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  1. Search for a New Conceptual Bookkeeping Model : Different Levels of Abstraction

    NARCIS (Netherlands)

    Sweere, A.M.J.; van Groenendaal, W.J.H.

    1999-01-01

    Nowadays, every bookkeeping system used in practice is automated. Most bookkeeping software and integrated information systems are based on databases. In this paper, we develop a new conceptual bookkeeping model which is not based on manual techniques, but which is applicable in a database

  2. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    Science.gov (United States)

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  3. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  4. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  5. A Conceptual Modeling for a GoldSim Program for Safety Assessment of an LILW Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Lee, Sung Ho

    2009-12-01

    Modeling study and development of a total system performance assessment (TSPA) program, by which an assessment of safety and performance for a low- and intermediate-level radioactive waste disposal repository with normal or abnormal nuclide release cases associated with the various FEPs involved in the performance of the proposed repository could be made has been carrying out by utilizing GoldSim under contract with KRMC. The report deals with a detailed conceptual modeling scheme by which a GoldSim program modules, all of which are integrated into a TSPA program as well as the input data set currently available. In-depth system models that are conceptually and rather practically described and then ready for implementing into a GoldSim program are introduced with plenty of illustrative conceptual models and sketches. The GoldSim program that will be finally developed through this project is expected to be successfully applied to the post closure safety assessment required both for the LILW repository and pyro processed repository by the regulatory body with both increased practicality and much reduced uncertainty

  6. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2017-02-15

    Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.

  7. Constraining performance assessment models with tracer test results: a comparison between two conceptual models

    Science.gov (United States)

    McKenna, Sean A.; Selroos, Jan-Olof

    Tracer tests are conducted to ascertain solute transport parameters of a single rock feature over a 5-m transport pathway. Two different conceptualizations of double-porosity solute transport provide estimates of the tracer breakthrough curves. One of the conceptualizations (single-rate) employs a single effective diffusion coefficient in a matrix with infinite penetration depth. However, the tracer retention between different flow paths can vary as the ratio of flow-wetted surface to flow rate differs between the path lines. The other conceptualization (multirate) employs a continuous distribution of multiple diffusion rate coefficients in a matrix with variable, yet finite, capacity. Application of these two models with the parameters estimated on the tracer test breakthrough curves produces transport results that differ by orders of magnitude in peak concentration and time to peak concentration at the performance assessment (PA) time and length scales (100,000 years and 1,000 m). These differences are examined by calculating the time limits for the diffusive capacity to act as an infinite medium. These limits are compared across both conceptual models and also against characteristic times for diffusion at both the tracer test and PA scales. Additionally, the differences between the models are examined by re-estimating parameters for the multirate model from the traditional double-porosity model results at the PA scale. Results indicate that for each model the amount of the diffusive capacity that acts as an infinite medium over the specified time scale explains the differences between the model results and that tracer tests alone cannot provide reliable estimates of transport parameters for the PA scale. Results of Monte Carlo runs of the transport models with varying travel times and path lengths show consistent results between models and suggest that the variation in flow-wetted surface to flow rate along path lines is insignificant relative to variability in

  8. Hydrogeological conceptual model for Guarani Aquifer System: A tool for management; Modelo hidrogeologico conceptual del Sistema Acuifero Guarani (SAG): una herramienta para la gestion

    Energy Technology Data Exchange (ETDEWEB)

    Gastmans, D.; Veroslavsky, G.; Kiang Cahng, H.; Caetano-Chang, M. R.; Nogueira Pressinotti, M. M.

    2012-11-01

    The Guarani aquifer system (GAS) extends beneath the territories of Argentina, Brazil, Paraguay and Uruguay and thus represents a typical example of a transboundary aquifer. The GAS is an important source of drinking water for the population living within its area. Because of differences in the legal norms concerning water resources in these four countries, an urgently required legal framework for the shared management of the groundwater is currently being drawn up. Within this context, the conceptual regional hydrogeological model should be used as an important tool to delineate shared actions, particularly in regions where the groundwater flow is transboundary. The GAS is considered to be a continuous aquifer made up of Mesozoic continental clastic sedimentary rocks that occur in the Parana and Chacoparanense sedimentary basins, and is bounded at its base by a Permo-Eotriassic regional unconformity and at the top by lower-Cretaceous basaltic lava. The groundwater flow shows a regional trend from N to S along the main axis of these basins. With regard to the major tectonic structures of these sedimentary basins, various main hydrodynamic domains can be distinguished, such as the Ponta Grossa arch and the Asuncion-Rio Grande dorsal. Regional recharge areas are primarily located in the eastern and northern outcrop areas, whilst the western end of the GAS, the Mato Grosso do Sul, contains zones of local recharge and regional discharge. Transboundary flow is observed in areas confined to the national borders of the four countries. Nevertheless, due to the groundwater residence times in the GAS special management actions are called for to prevent over-exploitation, particularly in the confined zones of the aquifer. (Author)

  9. Towards a dynamic assessment of raw materials criticality: Linking agent-based demand — With material flow supply modelling approaches

    International Nuclear Information System (INIS)

    Knoeri, Christof; Wäger, Patrick A.; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-01-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a ‘snapshot’ of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. - Highlights: ► Current criticality assessment methods provide a ‘snapshot’ at one point in time. ► They do not account for dynamic interactions between demand and supply. ► We propose a conceptual framework to overcomes these limitations. ► The framework integrates an agent-based behaviour model with a dynamic material flow model. ► The approach proposed makes

  10. Examining the Etiology of Reading Disability as Conceptualized by the Hybrid Model

    Science.gov (United States)

    Erbeli, Florina; Hart, Sara A.; Wagner, Richard K.; Taylor, Jeanette

    2018-01-01

    A fairly recent definition of reading disability (RD) is that in the form of a hybrid model. The model views RD as a latent construct that is manifested through various observable unexpected impairments in reading-related skills and through inadequate response to intervention. The current report evaluated this new conceptualization of RD from an…

  11. Revised model of regional groundwater flow of the Whiteshell Research Area: Summary

    International Nuclear Information System (INIS)

    Ophori, D.U.; Stevenson, D.R.; Gascoyne, M.; Brown, A.; Davison, C.C.; Chan, T.; Stanchell, F.W.

    1995-10-01

    Regional groundwater flow of the Whiteshell Research Area (WRA) is simulated in order to evaluate alternative locations for a hypothetical nuclear fuel waste disposal vault that maximizes retention of vault contaminants in the geosphere, and to define boundary conditions for a smaller local model around the vault. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite-element code, MOTIF. Average values of hydraulic parameters obtained from the field data were used for a base-case simulation, in which freshwater was assumed to occur in the entire flow region. The simulated average groundwater recharge rate for this base case did not compare favourably with the recharge rate that was estimated from the field data. Model calibration was ultimately achieved by modifying the hydraulic parameters and total dissolved solids (TDS) distribution of the fluid in a series of consecutive simulations. The simulated recharge rate for the final calibrated model was 4.8 mm/a which compares well with the rate of 5 mm/a, that was estimated from independent field experiments. The simulated freshwater heads also compared reasonably well with measured heads in the network of boreholes at the WRA. Most of the groundwater flow occurred in local systems between the ground surface and the depth of 2000 m. The travel times, pathways and exit locations of particles released from different depth horizons in the groundwater velocity field of the calibrated model were determined using a particle tracking code, TRACK3D. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault that maximizes the retention of vault contaminants in a long, slow groundwater flow pathways. The selected location is about 5 km northeast of the location of Underground Research Laboratory (URL

  12. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    Science.gov (United States)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically

  13. Conceptual data modeling on the KRR-1 and 2 decommissioning database

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Park, Seung Kook; Lee, Kune Woo; Park, Jin Ho

    2002-01-01

    A study of the conceptual data modeling to realize the decommissioning database on the KRR-1 and 2 was carried out. In this study, the current state of the abroad decommissioning databased was investigated to make a reference of the database. A scope of the construction of decommissioning database has been set up based on user requirements. Then, a theory of the database construction was established and a scheme on the decommissioning information was classified. The facility information, work information, radioactive waste information, and radiological information dealing with the decommissioning database were extracted through interviews with an expert group and also decided upon the system configuration of the decommissioning database. A code which is composed of 17 bit was produced considering the construction, scheme and information. The results of the conceptual data modeling and the classification scheme will be used as basic data to create a prototype design of the decommissioning database

  14. Transient Inverse Calibration of the Site-Wide Groundwater Flow Model (ACM-2): FY03 Progress Report

    International Nuclear Information System (INIS)

    Vermeul, Vince R.; Bergeron, Marcel P.; Cole, C R.; Murray, Christopher J.; Nichols, William E.; Scheibe, Timothy D.; Thorne, Paul D.; Waichler, Scott R.; Xie, YuLong

    2003-01-01

    DOE and PNNL are working to strengthen the technical defensibility of the groundwater flow and transport model at the Hanford Site and to incorporate uncertainty into the model. One aspect of the initiative is developing and using a three-dimensional transient inverse model to estimate the hydraulic conductivities, specific yields, and other parameters using data from Hanford since 1943. The focus of the alternative conceptual model (ACM-2) inverse modeling initiative documented in this report was to address limitations identified in the ACM-1 model, complete the facies-based approach for representing the hydraulic conductivity distribution in the Hanford and middle Ringold Formations, develop the approach and implementation methodology for generating multiple ACMs based on geostatistical data analysis, and develop an approach for inverse modeling of these stochastic ACMs. The primary modifications to ACM-2 transient inverse model include facies-based zonation of Units 1 (Hanford ) and 5 (middle Ringold); an improved approach for handling run-on recharge from upland areas based on watershed modeling results; an improved approach for representing artificial discharges from site operations; and minor changes to the geologic conceptual model. ACM-2 is the first attempt to fully incorporate the facies-based approach to represent the hydrogeologic structure. Further refinement and additional improvements to overall model fit will be realized during future inverse simulations of groundwater flow and transport. In addition, preliminary work was completed on an approach and implementation for generating an inverse modeling of stochastic ACMs. These techniques were applied to assess the uncertainty in the facies-based zonation of the Hanford formation and the geological structure of Ringold mud units. The geostatistical analysis used a preliminary interpretation of the facies-based zonation that was not consistent with that used in ACM-2. Although the overall objective of

  15. Probabilistically modeling lava flows with MOLASSES

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  16. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  17. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  18. Groundwater flow modeling for near-field of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, H. Y.; Park, J. W.; Jang, G. M.; Kim, C. R.

    2000-01-01

    For a hypothetical near-surface radioactive disposal facility, the behavior of groundwater flow around the near-field of disposal vault located at the unsaturated zone were analyzed. Three alternative conceptual models proposed as the hydraulic barrier layer design were simulated to assess the hydrologic performance of engineered barriers for the facility. In order to evaluate the seepage possibility of the infiltrated water passed through the final disposal cover after the facility closure, the flow path around and water flux through each disposal vault were compared. The hydrologic parameters variation that accounts for the long-term aging and degradation of the cover and engineered materials was considered in the simulations. The results showed that it is necessary to construct the hydraulic barrier at the upper and sides of the vault, and that, for this case, achieving design hydraulic properties of bentonite/sand mixture barrier in the as-built condition is crucial to limit the seepage into the waste

  19. A conceptual framework for a long-term economic model for the treatment of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A

    2017-06-01

    Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.

  20. MAPIT: A new software tool to assist in the transition from conceptual model to numerical simulation models

    International Nuclear Information System (INIS)

    Canales, T.W.; Grant, C.W.

    1996-01-01

    MapIt is a new software tool developed at Lawrence Livermore National Laboratory to assist ground water remediation professionals in generating numerical simulation models from a variety of physical and chemical data sources and the corresponding 1, 2, and 3 dimensional conceptual models that emerge from analysis of such data

  1. The treatment of conceptual model uncertainty for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Boak, J.M.; Flint, A.; Dockery, H.A.

    1995-01-01

    A reasonable risk assessment of radioactive waste disposals faces three main problems : 1) the ability of the conceptual model to account for the effective repository process ; 2) the boundary conditions ; 3) the parameters values that model the particular site. Yucca mountain Site Characterization Project deals with these problems through two major approaches that are described here : 1) the evolution of models for the recurrence rate of volcanism ; 2) the nominal hydrologic performance for the site. These two approaches are expected to lead to a reasonable demonstration of the suitability of the site. (D.L.). 13 refs., 2 figs

  2. Regional groundwater flow model for a glaciation scenario. Simpevarp subarea - version 1.2

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2006-10-01

    A groundwater flow model (glaciation model) was developed at a regional scale in order to study long term transient effects related to a glaciation scenario likely to occur in response to climatic changes. Conceptually the glaciation model was based on the regional model of Simpevarp and was then extended to a mega-regional scale (of several hundred kilometres) in order to account for the effects of the ice sheet. These effects were modelled using transient boundary conditions provided by a dynamic ice sheet model describing the phases of glacial build-up, glacial completeness and glacial retreat needed for the glaciation scenario. The results demonstrate the strong impact of the ice sheet on the flow field, in particular during the phases of the build-up and the retreat of the ice sheet. These phases last for several thousand years and may cause large amounts of melt water to reach the level of the repository and below. The highest fluxes of melt water are located in the vicinity of the ice margin. As the ice sheet approaches the repository location, the advective effects gain dominance over diffusive effects in the flow field. In particular, up-coning effects are likely to occur at the margin of the ice sheet leading to potential increases in salinity at repository level. For the base case, the entire salinity field of the model is almost completely flushed out at the end of the glaciation period. The flow patterns are strongly governed by the location of the conductive features in the subglacial layer. The influence of these glacial features is essential for the salinity distribution as is their impact on the flow trajectories and, therefore, on the resulting performance measures. Travel times and F-factor were calculated using the method of particle tracking. Glacial effects cause major consequences on the results. In particular, average travel times from the repository to the surface are below 10 a during phases of glacial build-up and retreat. In comparison

  3. Regional groundwater flow model for a glaciation scenario. Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Siegel, P. [Colenco Power Engineering Ltd, Baden-Daettwil (Switzerland)

    2006-10-15

    A groundwater flow model (glaciation model) was developed at a regional scale in order to study long term transient effects related to a glaciation scenario likely to occur in response to climatic changes. Conceptually the glaciation model was based on the regional model of Simpevarp and was then extended to a mega-regional scale (of several hundred kilometres) in order to account for the effects of the ice sheet. These effects were modelled using transient boundary conditions provided by a dynamic ice sheet model describing the phases of glacial build-up, glacial completeness and glacial retreat needed for the glaciation scenario. The results demonstrate the strong impact of the ice sheet on the flow field, in particular during the phases of the build-up and the retreat of the ice sheet. These phases last for several thousand years and may cause large amounts of melt water to reach the level of the repository and below. The highest fluxes of melt water are located in the vicinity of the ice margin. As the ice sheet approaches the repository location, the advective effects gain dominance over diffusive effects in the flow field. In particular, up-coning effects are likely to occur at the margin of the ice sheet leading to potential increases in salinity at repository level. For the base case, the entire salinity field of the model is almost completely flushed out at the end of the glaciation period. The flow patterns are strongly governed by the location of the conductive features in the subglacial layer. The influence of these glacial features is essential for the salinity distribution as is their impact on the flow trajectories and, therefore, on the resulting performance measures. Travel times and F-factor were calculated using the method of particle tracking. Glacial effects cause major consequences on the results. In particular, average travel times from the repository to the surface are below 10 a during phases of glacial build-up and retreat. In comparison

  4. Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling

    International Nuclear Information System (INIS)

    Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.

    2011-01-01

    Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.

  5. Towards an Integrated Conceptual Model of International Student Adjustment and Adaptation

    Science.gov (United States)

    Schartner, Alina; Young, Tony Johnstone

    2016-01-01

    Despite a burgeoning body of empirical research on "the international student experience", the area remains under-theorized. The literature to date lacks a guiding conceptual model that captures the adjustment and adaptation trajectories of this unique, growing, and important sojourner group. In this paper, we therefore put forward a…

  6. Event-based model diagnosis of rainfall-runoff model structures

    International Nuclear Information System (INIS)

    Stanzel, P.

    2012-01-01

    The objective of this research is a comparative evaluation of different rainfall-runoff model structures. Comparative model diagnostics facilitate the assessment of strengths and weaknesses of each model. The application of multiple models allows an analysis of simulation uncertainties arising from the selection of model structure, as compared with effects of uncertain parameters and precipitation input. Four different model structures, including conceptual and physically based approaches, are compared. In addition to runoff simulations, results for soil moisture and the runoff components of overland flow, interflow and base flow are analysed. Catchment runoff is simulated satisfactorily by all four model structures and shows only minor differences. Systematic deviations from runoff observations provide insight into model structural deficiencies. While physically based model structures capture some single runoff events better, they do not generally outperform conceptual model structures. Contributions to uncertainty in runoff simulations stemming from the choice of model structure show similar dimensions to those arising from parameter selection and the representation of precipitation input. Variations in precipitation mainly affect the general level and peaks of runoff, while different model structures lead to different simulated runoff dynamics. Large differences between the four analysed models are detected for simulations of soil moisture and, even more pronounced, runoff components. Soil moisture changes are more dynamical in the physically based model structures, which is in better agreement with observations. Streamflow contributions of overland flow are considerably lower in these models than in the more conceptual approaches. Observations of runoff components are rarely made and are not available in this study, but are shown to have high potential for an effective selection of appropriate model structures (author) [de

  7. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    International Nuclear Information System (INIS)

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field

  8. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  9. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  10. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  11. Field research program for unsaturated flow and transport experimentation

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Rautman, C.A.; Glass, R.J.

    1992-01-01

    As part of the Yucca Mountain Site Characterization Project, a field research program has been developed to refine and validate models for flow and transport through unsaturated fractured rock. Validation of these models within the range of their application for performance assessment requires a more sophisticated understanding of the processes that govern flow and transport within fractured porous media than currently exists. In particular, our research is prioritized according to understanding and modeling processes that, if not accurately incorporated into performance assessment models, would adversely impact the project's ability to evaluate repository performance. For this reason, we have oriented our field program toward enhancing our understanding of scaling processes as they relate to effective media property modeling, as well as to the conceptual modeling of complex flow and transport phenomena

  12. Conceptual model for collision detection and avoidance for runway incursion prevention

    Science.gov (United States)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  13. A Conceptual Model for Teaching Critical Thinking in a Knowledge Economy

    Science.gov (United States)

    Chadwick, Clifton

    2011-01-01

    Critical thinking, viewed as rational and analytic thinking, is crucial for participation in a knowledge economy and society. This article provides a brief presentation of the importance of teaching critical thinking in a knowledge economy; suggests a conceptual model for teaching thinking; examines research on the historical role of teachers in…

  14. The ISO Edi Conceptual Model Activity and Its Relationship to OSI.

    Science.gov (United States)

    Fincher, Judith A.

    1990-01-01

    The edi conceptual model is being developed to define common structures, services, and processes that syntax-specific standards like X12 and EDIFACT could adopt. Open Systems Interconnection (OSI) is of interest to edi because of its potential to help enable global interoperability across Electronic Data Interchange (EDI) functional groups. A…

  15. A conceptual competitive intelligence quality assurance model

    Directory of Open Access Journals (Sweden)

    Tshilidzi Eric Nenzhelele

    2015-12-01

    Full Text Available Competitive Intelligence (CI improves the quality of product and service, decision-making and it improves quality of life. However, it has been established that decision makers are not happy about the quality of CI. This is because enterprises fail in quality assurance of CI. It has been concluded that most enterprises are clueless concerning CI quality assurance. Studies that previously attempted to resolve CI quality problem were limited in scope and focused too much on the quality of information than the overall CI quality. The purpose of this study is to propose a conceptual CI quality assurance model which will help in quality assurance of CI. The research was qualitative in nature and used content analysis.

  16. Assessment of private hospital portals: A conceptual model

    Directory of Open Access Journals (Sweden)

    Mehdi Alipour-Hafezi

    2016-01-01

    Full Text Available Introduction: Hospital portals, as the first virtual entry, play an important role in connecting people with hospital and also presenting hospital virtual services. The main purpose of this article was to suggest a conceptual model to improve Tehran private hospital portals. The suggested model can be used by all the health portals that are in the same circumstances and all the health portals which are in progress. Method: This is a practical research, using evaluative survey research method. Research population includes all the private hospital portals in Tehran, 34 portals, and ten top international hospital portals. Data gathering tool used in this research was a researcher-made checklist including 14 criteria and 77 sub-criteria with their weight score. In fact, objective observation with the mentioned checklist was used to gather information. Descriptive statistics were used to analyze the data and tables and graphs were used to present the organized data. Also, data were analyzed using independent t-test. Conceptual modeling technique was used to design the model and demonstration method was used to evaluate the proposed model. In this regard, SPSS statistical software was used to perform the tests. Results:The comparative study between the two groups of portals, TPH and WTH, in the 14 main criteria showed that the value of t-test in contact information criteria was 0.862, portal page specification was -1.378, page design criteria -1.527, updating pages -0.322, general information and access roads -3.161, public services -7.302, patient services -4.154, patient data -8.703, research and education -9.155, public relationship -3.009, page technical specifications -4.726, telemedicine -7.488, pharmaceutical services -6.183, and financial services -2.782. Finally, the findings demonstrated that Tehran private hospital portals in criterion of contact information were favorable; page design criteria were relatively favorable; page technical

  17. A model for evaluating the flow rate of an extruder for plastic recycling

    International Nuclear Information System (INIS)

    Oke, S.A.; Popoola, I.O.

    2007-01-01

    For several years, Municipal Solid Wastes (MSW) from packaging, newspapers, batteries, furniture, metals, clothing's, bottles, and food scraps have contributed negatively to the increased deterioration of our environments particularly in developing countries. It has resulted in activities that threaten lives (such as disease outbreaks and severe health hazards). As a result, governments and other stakeholders in environment have considered both theoretical and practical approaches to waste control. Recycling, which has enormous benefits of reducing manufacturing cost of new products and providing employment for the populace has been chosen as a viable option. Despite the multi-disciplinary efforts involved recycling models, guidelines applicable in the design of flow rates of extruders for plastic recycling processes are missing. This gap is addressed in the current paper. This paper conceptualizes the flow rates as an input-output system in a continuous dynamic state. With a focus on the melting activity (operation section), the analysis of flow in the metering zone involves an estimation of the quantity of recycled materials that could be produced per time. The work hopefully stimulates research in an area where quantitative methodologies are sparse. (author)

  18. Application of the human needs conceptual model of dental hygiene to the role of the clinician : part II.

    Science.gov (United States)

    Walsh, M M; Darby, M

    1993-01-01

    In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.

  19. Identification of calculation hierarchy and information flow for postclosure performance assessment

    International Nuclear Information System (INIS)

    Avci, H.I.; Cunnane, J.C.; Brandstetter, A.

    1990-01-01

    A management tool consisting of calculation hierarchy and information flow diagrams is being prepared to address the resolution of major postclosure performance issues for a geologic high-level radioactive waste repository in the U.S.A. The diagrams will indicate the types of calculations and data needed to assess the postclosure performance of the repository. Separate diagrams will be generated for different scenario classes and conceptual models. The methodology used in developing these diagrams and their contents are illustrated for a single scenario and conceptual model. 5 refs., 5 figs

  20. Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model

    Science.gov (United States)

    Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa

    2011-01-01

    Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…

  1. Mathematical modeling of swirled flows in industrial applications

    Science.gov (United States)

    Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.

    2018-03-01

    Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.

  2. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  3. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  4. Modeling Submarine Lava Flow with ASPECT

    Science.gov (United States)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  5. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2003-01-01

    This Scientific Analysis report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of the Unsaturated Zone Flow and Transport Model (UZ Model), a complex, three-dimensional (3-D) model of Yucca Mountain. This revision incorporates changes made to both the geologic framework model and the proposed repository layout. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management of this Scientific Analysis report was initially controlled by the planning document, ''Technical Work Plan (TWP) for: Unsaturated Zone Sections of License Application Chapters 8 and 12'' (BSC 2002 [159051], Section 1.6.4). This TWP was later superseded by ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819]), which contains the Data Qualification Plan used to qualify the DTN: MO0212GWLSSPAX.000 [161271] (See Attachment IV). Grids generated and documented in this report supersede those documented in previous versions of this report (BSC 2001 [159356]). The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow. There were no deviations from the TWP scope of work in this report. Two software packages not listed in Table IV-2 of the TWP (BSC 2002 [159051]), ARCINFO V7.2.1 (CRWMS M and O 2000 [157019]; USGS 2000 [148304]) and 2kgrid8.for V1.0 (LBNL 2002 [154787]), were utilized in the development of the numerical grids; the use of additional software is accounted for in the TWP (BSC 2002 [159051], Section 13). The use of

  6. A conceptual magnetic fabric development model for the Paks loess in Hungary

    DEFF Research Database (Denmark)

    Bradák, B.; Ujvari, Gabor; Seto, Y.

    2018-01-01

    We describe magnetic fabric and depositional environments of aeolian (loess) deposits from Paks, Hungary, and develop a novel, complex conceptual sedimentation model based on grain size and low-field magnetic susceptibility anisotropy data. A plot of shape factor (magnetic fabric parameter) and d...

  7. Conceptual Model of IT Infrastructure Capability and Its Empirical Justification

    Institute of Scientific and Technical Information of China (English)

    QI Xianfeng; LAN Boxiong; GUO Zhenwei

    2008-01-01

    Increasing importance has been attached to the value of information technology (IT) infrastructure in today's organizations. The development of efficacious IT infrastructure capability enhances business performance and brings sustainable competitive advantage. This study analyzed the IT infrastructure capability in a holistic way and then presented a concept model of IT capability. IT infrastructure capability was categorized into sharing capability, service capability, and flexibility. This study then empirically tested the model using a set of survey data collected from 145 firms. Three factors emerge from the factor analysis as IT flexibility, IT service capability, and IT sharing capability, which agree with those in the conceptual model built in this study.

  8. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  9. Balance between calibration objectives in a conceptual hydrological model

    NARCIS (Netherlands)

    Booij, Martijn J.; Krol, Martinus S.

    2010-01-01

    Three different measures to determine the optimum balance between calibration objectives are compared: the combined rank method, parameter identifiability and model validation. Four objectives (water balance, hydrograph shape, high flows, low flows) are included in each measure. The contributions of

  10. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    Science.gov (United States)

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  11. Conceptual Model of Weight Management in Overweight and Obese African-American Females.

    Science.gov (United States)

    Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M

    2017-04-01

    Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.

  12. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  13. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live.......Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...

  14. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valerie

    2015-01-01

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution...... within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate...... the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate...

  15. Two-phase flow model with nonequilibrium and critical flow

    International Nuclear Information System (INIS)

    Sureau, H.; Houdayer, G.

    1976-01-01

    The model proposed includes the three conservation equations (mass, momentum, energy) applied to the two phase flows and a fourth partial derivative equation which takes into account the nonequilibriums and describes the mass transfer process. With this model, the two phase critical flow tests performed on the Moby-Dick loop (CENG) with several geometries, are interpreted by a unique law. Extrapolations to industrial dimension problems show that geometry and size effects are different from those obtained with earlier models (Zaloudek, Moody, Fauske) [fr

  16. Combining Different Conceptual Change Methods within Four-Step Constructivist Teaching Model: A Sample Teaching of Series and Parallel Circuits

    Science.gov (United States)

    Ipek, Hava; Calik, Muammer

    2008-01-01

    Based on students' alternative conceptions of the topics "electric circuits", "electric charge flows within an electric circuit", "how the brightness of bulbs and the resistance changes in series and parallel circuits", the current study aims to present a combination of different conceptual change methods within a four-step constructivist teaching…

  17. Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX

    Science.gov (United States)

    Potter, S. R.; Tu, M.; Wilcox, B. P.

    2011-12-01

    Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The

  18. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  19. Simulation of shallow groundwater levels: Comparison of a data-driven and a conceptual model

    Science.gov (United States)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2015-04-01

    Despite an abundance of models aimed at simulating shallow groundwater levels, application of such models is often hampered by a lack of appropriate input data. Difficulties especially arise with regard to soil data, which are typically hard to obtain and prone to spatial variability, eventually leading to uncertainties in the model results. Modelling approaches relying entirely on easily measured quantities are therefore an alternative to encourage the applicability of models. We present and compare two models for calculating 1-day-ahead predictions of the groundwater level that are only based on measurements of potential evapotranspiration, precipitation and groundwater levels. The first model is a newly developed conceptual model that is parametrized using the White method (which estimates the actual evapotranspiration on basis of diurnal groundwater fluctuations) and a rainfall-response ratio. Inverted versions of the two latter approaches are then used to calculate the predictions of the groundwater level. Furthermore, as a completely data-driven alternative, a simple feed-forward multilayer perceptron neural network was trained based on the same inputs and outputs. Data of 4 growing periods (April to October) from a study site situated in the Spreewald wetland in North-east Germany were taken to set-up the models and compare their performance. In addition, response surfaces that relate model outputs to combinations of different input variables are used to reveal those aspects in which the two approaches coincide and those in which they differ. Finally, it will be evaluated whether the conceptual approach can be enhanced by extracting knowledge of the neural network. This is done by replacing in the conceptual model the default function that relates groundwater recharge and groundwater level, which is assumed to be linear, by the non-linear function extracted from the neural network.

  20. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  1. What Can Be Learned From a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    Science.gov (United States)

    Ohlsson, Stellan; Cosejo, David G.

    2014-07-01

    The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.

  2. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    Science.gov (United States)

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  3. Investigation On Ethics In Public Sector Necessity Or Obligation Planning A Conceptual Model

    Directory of Open Access Journals (Sweden)

    N. Ghozat

    2015-06-01

    Full Text Available Abstract These All the objectives are attainable in line with ethics and if a system is not ethical in spite of scientific and modern facilities it cannot achieve its goals so the main duty of managers is to provide ground for morality since trustworthy morality are the fundamental axes in any system this article has tried to consider ethical issues according Islamic and Iranian values how should be the view point toward ethics in any system is it a necessity or obligation In this article we are to provide a conceptual model base on Iranian situation so our article which is a descriptive one uses multi sources of gathering data questionnaire interview to criticize the theoretical views based on western values and to offer a conceptual model.

  4. Facilitating Corporate Entrepreneurship in Public Sector Higher Education Institutions: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Javed Nayyar Malik

    2012-06-01

    Full Text Available This paper develops a conceptual model of public sector corporate entrepreneurship for the state government higher education institutions. The proposed model is intended to depict the main antecedents that relate to corporate entrepreneurship within the public sector higher education institution  and the impact of corporate entrepreneurship on public sector HEI’s performance, as well as factors influencing its continuous performance.

  5. Defining pharmacy and its practice: a conceptual model for an international audience

    Directory of Open Access Journals (Sweden)

    Scahill SL

    2017-05-01

    Full Text Available SL Scahill,1 M Atif,2 ZU Babar3,4 1School of Management, Massey Business School, Massey University, Albany, Auckland, New Zealand; 2Pharmacy School, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 3School of Pharmacy, University of Huddersfield, Huddersfield, England, UK; 4School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand Background: There is much fragmentation and little consensus in the use of descriptors for the different disciplines that make up the pharmacy sector. Globalization, reprofessionalization and the influx of other disciplines means there is a requirement for a greater degree of standardization. This has not been well addressed in the pharmacy practice research and education literature. Objectives: To identify and define the various subdisciplines of the pharmacy sector and integrate them into an internationally relevant conceptual model based on narrative synthesis of the literature. Methods: A literature review was undertaken to understand the fragmentation in dialogue surrounding definitions relating to concepts and practices in the context of the pharmacy sector. From a synthesis of this literature, the need for this model was justified. Key assumptions of the model were identified, and an organic process of development took place with the three authors engaging in a process of sense-making to theorize the model. Results: The model is “fit for purpose” across multiple countries and includes two components making up the umbrella term “pharmaceutical practice”. The first component is the four conceptual dimensions, which outline the disciplines including social and administrative sciences, community pharmacy, clinical pharmacy and pharmaceutical sciences. The second component of the model describes the “acts of practice”: teaching, research and professional advocacy; service and academic enterprise. Conclusions: This model aims to expose issues

  6. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  7. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model

    OpenAIRE

    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M

    2017-01-01

    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  8. Premodelling of the importance of the location of the upstream hydraulic boundary of a regional flow model of the Laxemar-Simpevarp area. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Holmen, Johan G.

    2008-03-01

    properties. The small model: - Overestimates length of flow paths with a factor of 1.2. - Overestimates breakthrough time of flow paths with a factor of 1.3. - Underestimates the specific flow with a factor of 0.7. The small model underestimates the size of the groundwater flow; the underestimation follows from the limited size of the small model and the weakly developed surface water divide used as the westernmost boundary condition of the small model. The weakly developed surface water divide is conceptually applied in the small model as a groundwater divide; and in the small model it is represented by a no-flow boundary condition. The simulation with the large model demonstrates however that the weakly developed surface water divide is not a groundwater divide for the groundwater flow at large depths. It follows that the deep groundwater flow that passes below the weakly developed surface water divide will not be included in the small model. As this deep groundwater flow is not included in the small model, the small model will underestimate the groundwater flows at the repository area, and overestimate lengths of flow paths as well as the breakthrough times of flow paths from the repository area. The differences when comparing the flow paths properties (as calculated by the large and small models) are however not large; because the deep groundwater flow that is missing in the small model is not large

  9. Generation of leachate and the flow regime in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, D.

    1998-06-01

    In this thesis the generation of leachate and the presence and movement of water in landfilled municipal solid waste (MSW) is investigated. The precipitation-leachate discharge relationship for landfills was found to be dominated by evaporation, accumulation in the soil cover, accumulation in the solid waste and fast gravitational flow in a network of channels. The flow regime is governed by the heterogeneity of the internal geometry of the landfill, which is characterized by a discrete structure, significant horizontal stratification, structural voids, impermeable surfaces, and low capillarity. Also the boundary conditions, that is the water input pattern, has shown to be important for the flow process. Based on this, landfilled waste can be conceptualized as a dual domain medium, consisting of a channel domain and a matrix domain. The matrix flow is slow and diffusive, whereas the channel flow is assumed to be driven solely by gravity and to take place as a thin viscous film on solid surfaces. A kinematic wave model for unsaturated infiltration and internal drainage in the channel domain is presented. The model employs a two-parameter power expression as macroscopic flux law. Solutions were derived for the cases when water enters the channel domain laterally and when water enters from the upper end. The model parameters were determined and interpreted in terms of the internal geometry of the waste medium by fitting the model to one set of infiltration and drainage data derived from a large scale laboratory experiment under transient conditions. The model was validated using another set of data from a sequence of water input events and was shown to perform accurately. A solute transport model was developed by coupling a simple piston flux expression and a mobile-immobile conceptualization of the transport domains with the water flow model. Breakthrough curves derived from steady and transient tracer experiments where interpreted with the model. The transport

  10. A conceptual framework to model long-run qualitative change in the energy system

    OpenAIRE

    Ebersberger, Bernd

    2004-01-01

    A conceptual framework to model long-run qualitative change in the energy system / A. Pyka, B. Ebersberger, H. Hanusch. - In: Evolution and economic complexity / ed. J. Stanley Metcalfe ... - Cheltenham [u.a.] : Elgar, 2004. - S. 191-213

  11. A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Mehran FARAJOLLAHI

    2010-07-01

    Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.

  12. Managing postgraduate research service quality: Developing and assessing a conceptual model

    Directory of Open Access Journals (Sweden)

    Shawn Ramroop

    2013-05-01

    Full Text Available This paper reports on the conceptual development and empirical evaluation of a postgraduate (PG research service quality management model, through conducting an electronic survey among a cohort of master’s and doctorate graduates at one of the top three research universities in South Africa, using specifically developed and validated research instruments.By fitting the data from a sample of 117 graduates to a conceptual model using structural equation modelling, it became evident that the PG research students’ perception of the Organisational Climate for Research (OCR is associated with their perception of the PG Research Service Quality (PGSQUAL, the PG Service Experience (SERVEXP and their perception of their Role (RC. However, no association was found between the students’ perception of the research climate (OCR and their satisfaction (SERVSAT with the research service; the service experience (SERVEXP and postgraduate research service quality (PGSQUAL; service satisfaction (SERVSAT and postgraduate service quality (PGSQUAL.  The aforementioned findings imply that higher education institutions need to create a research climate which is supportive of service quality, and better manage the research climate, so that the PG students are clear about their role, which will eventually translate to a better PG service experience and improved perception of PG service quality.

  13. Supporting conceptual modelling of dynamic systems: A knowledge engineering perspective on qualitative reasoning

    NARCIS (Netherlands)

    Liem, J.

    2013-01-01

    Research has shown that even students educated in science at prestigious universities have misconceptions about the systems underlying climate change, sustainability and government spending. Interactive conceptual modelling and simulation tools, which are based on Artificial Intelligence techniques,

  14. A Generalized Minimum Cost Flow Model for Multiple Emergency Flow Routing

    Directory of Open Access Journals (Sweden)

    Jianxun Cui

    2014-01-01

    Full Text Available During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.

  15. A conceptual model to improve performance in virtual teams

    Directory of Open Access Journals (Sweden)

    Shopee Dube

    2016-09-01

    Full Text Available Background: The vast improvement in communication technologies and sophisticated project management tools, methods and techniques has allowed geographically and culturally diverse groups to operate and function in a virtual environment. To succeed in this virtual environment where time and space are becoming increasingly irrelevant, organisations must define new ways of implementing initiatives. This virtual environment phenomenon has brought about the formation of virtual project teams that allow organisations to harness the skills and knowhow of the best resources, irrespective of their location. Objectives: The aim of this article was to investigate performance criteria and develop a conceptual model which can be applied to enhance the success of virtual project teams. There are no clear guidelines of the performance criteria in managing virtual project teams. Method: A qualitative research methodology was used in this article. The purpose of content analysis was to explore the literature to understand the concept of performance in virtual project teams and to summarise the findings of the literature reviewed. Results: The research identified a set of performance criteria for the virtual project teams as follows: leadership, trust, communication, team cooperation, reliability, motivation, comfort and social interaction. These were used to conceptualise the model. Conclusion: The conceptual model can be used in a holistic way to determine the overall performance of the virtual project team, but each factor can be analysed individually to determine the impact on the overall performance. The knowledge of performance criteria for virtual project teams could aid project managers in enhancing the success of these teams and taking a different approach to better manage and coordinate them.

  16. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    Science.gov (United States)

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  17. Impact of Participatory Health Research: A Test of the Community-Based Participatory Research Conceptual Model

    Directory of Open Access Journals (Sweden)

    John G. Oetzel

    2018-01-01

    Full Text Available Objectives. A key challenge in evaluating the impact of community-based participatory research (CBPR is identifying what mechanisms and pathways are critical for health equity outcomes. Our purpose is to provide an empirical test of the CBPR conceptual model to address this challenge. Methods. A three-stage quantitative survey was completed: (1 294 US CBPR projects with US federal funding were identified; (2 200 principal investigators completed a questionnaire about project-level details; and (3 450 community or academic partners and principal investigators completed a questionnaire about perceived contextual, process, and outcome variables. Seven in-depth qualitative case studies were conducted to explore elements of the model not captured in the survey; one is presented due to space limitations. Results. We demonstrated support for multiple mechanisms illustrated by the conceptual model using a latent structural equation model. Significant pathways were identified, showing the positive association of context with partnership structures and dynamics. Partnership structures and dynamics showed similar associations with partnership synergy and community involvement in research; both of these had positive associations with intermediate community changes and distal health outcomes. The case study complemented and extended understandings of the mechanisms of how partnerships can improve community conditions. Conclusions. The CBPR conceptual model is well suited to explain key relational and structural pathways for impact on health equity outcomes.

  18. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    Science.gov (United States)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by

  19. University Library Strategy Development: A Conceptual Model of Researcher Performance to Inform Service Delivery

    Science.gov (United States)

    Maddox, Alexia; Zhao, Linlin

    2017-01-01

    This case study presents a conceptual model of researcher performance developed by Deakin University Library, Australia. The model aims to organize research performance data into meaningful researcher profiles, referred to as researcher typologies, which support the demonstration of research impact and value. Three dimensions shaping researcher…

  20. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    Science.gov (United States)

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  1. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    John McCord

    2006-01-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component

  2. Apparel shopping behaviour – Part 2: Conceptual theoretical model, market segments, profiles and implications

    Directory of Open Access Journals (Sweden)

    R. Du Preez

    2003-10-01

    Full Text Available This article is based on the conceptual theoretical model developed in Part 1 of this series of articles. The objective of this research is to identify female apparel consumer market segments on the basis of differentiating lifestyles, shopping orientation, cultural consciousness, store patronage and demographics. These profiles are discussed in full and the implications thereof for retailers, marketers and researchers are highlighted. A new conceptual model is proposed and recommendations are made for further research. Opsomming Hierdie artikel word gebaseer op die konseptuele teoretiese model wat reeds in Deel 1 van hierdie artikelreeks ontwikkel is. Die doel van hierdie navorsing is om marksegmente van vroue klere-kopers te identifiseer na aanleiding van hulle lewenstyle, kooporiëntasie, kulturele bewustheid, winkelvoorkeurgedrag en demografie. Hierdie profiele word volledig beskryf en die implikasies van die verskillende profiele vir kleinhandelaars, bemarkers en navorsers word uitgelig. ’n Nuwe konseptuele model word voorgestel en aanbevelings vir verdere navorsing word gemaak.

  3. An updated conceptual model of Delta Smelt biology: Our evolving understanding of an estuarine fish

    Science.gov (United States)

    Baxter, Randy; Brown, Larry R.; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven D.; Dekar, Matthew P.; Dekar, Melissa; Feyrer, Frederick; Hunt, Thaddeus; Jones, Kristopher; Kirsch, Joseph; Mueller-Solger, Anke; Nobriga, Matthew; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Erickson, Gregg; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce

    2015-01-01

    The main purpose of this report is to provide an up-to-date assessment and conceptual model of factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life cycle and to demonstrate how this conceptual model can be used for scientific and management purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco Estuary. Once abundant, it is now rare and has been protected under the federal and California Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the early 1980s; however, population abundance decreased even further with the onset of the “pelagic organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions are favorable for spawning, growth, and survival. In this report, we update previous conceptual models for Delta Smelt to reflect new data and information since the release of the last synthesis report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) in 2010. Specific objectives include:

  4. Navigating the flow: individual and continuum models for homing in flowing environments.

    Science.gov (United States)

    Painter, Kevin J; Hillen, Thomas

    2015-11-06

    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).

  5. HRL Aespoe - two-phase flow experiment - gas and water flow in fractured crystalline rock

    International Nuclear Information System (INIS)

    Kull, H.; Liedtke, L.

    1998-01-01

    (The full text of the contribution follows:) Gas generated from radioactive waste may influence the hydraulic and mechanical properties of the man-made barriers and the immediate surroundings of the repository. Prediction of alteration in fractured crystalline rock is difficult. There is a lack of experimental data, and calibrated models are not yet available. Because of the general importance of this matter the German Federal Ministry for Education, Science, Research and Technology decided to conduct a two-phase flow study at HRL Aespoe within the scope of the co-operation agreement with SKB. Within the presentation an overview of field experiments and modelling studies scheduled until end of '99 are given. Conceptual models for one- and two-phase flow, methodologies and with respect to numerical calculations necessary parameter set-ups are discussed. Common objective of in-situ experiments is to calibrate flow models to improve the reliability of predictions for gas migration through fractured rock mass. Hence, in a defined dipole flow field in niche 2/715 at HRL Aespoe effective hydraulic parameters are evaluated. Numerical modelling of non-isothermal, two-phase, two-component processes is feasible only for two-dimensional representation of a porous medium. To overcome this restriction a computer program will be developed to model three-dimensional, fractured, porous media. Rational aspects of two-phase flow studies are for the designing of geotechnical barriers and for the long-term safety analysis of potential radionuclide transport in a future repository required for the licensing process

  6. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  7. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  8. A New Model to Facilitate Individualized Case Conceptualization and Treatment of Social Phobia: An Examination and Reaction to Moscovitch's Model

    Science.gov (United States)

    Heimberg, Richard G.

    2009-01-01

    Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…

  9. Mathematical modelling of two-phase flows

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Stoop, P.M.

    1992-11-01

    A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs

  10. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  11. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    Science.gov (United States)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  12. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  13. A conceptual model of channel choice : measuring online and offline shopping value perceptions

    NARCIS (Netherlands)

    Broekhuizen, Thijs L.J.; Jager, Wander

    2004-01-01

    This study tries to understand how consumers evaluate channels for their purchasing. Specifically, it develops a conceptual model that addresses consumer value perceptions of using the Internet versus the traditional (physical) channel. Previous research showed that perceptions of price, product

  14. On the foundation for roles in RM-ODP: contributions from conceptual modelling

    NARCIS (Netherlands)

    Guizzardi, G.; Andrade Almeida, João; Linington, P.F.; Vallecillo, A.; Wood, B.

    2007-01-01

    In this paper, we attempt to provide a semantic foundation for the role-related concepts in the RM-ODP. We believe that some theories of conceptual modelling may help us to provide a well-founded underpinning for these concepts, and to harmonize competing proposals for them. As a starting point of

  15. Conceptualizing operations strategy processes

    DEFF Research Database (Denmark)

    Rytter, Niels Gorm; Boer, Harry; Koch, Christian

    2007-01-01

    Purpose - The purpose of this paper is to present insights into operations strategy (OS) in practice. It outlines a conceptualization and model of OS processes and, based on findings from an in-depth and longitudinal case study, contributes to further development of extant OS models and methods......; taking place in five dimensions of change - technical-rational, cultural, political, project management, and facilitation; and typically unfolding as a sequential and parallel, ordered and disordered, planned and emergent as well as top-down and bottom-up process. The proposed OS conceptualization...

  16. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  17. Conceptual Diagnosis Model Based on Distinct Knowledge Dyads for Interdisciplinary Environments

    Directory of Open Access Journals (Sweden)

    Cristian VIZITIU

    2014-06-01

    Full Text Available The present paper has a synergic dual purpose of bringing a psychological and neuroscience related perspective oriented towards decision making and knowledge creation diagnosis in the frame of Knowledge Management. !e conceptual model is built by means ofCognitive-Emotional and Explicit-Tacit knowledge dyads and structured on Analytic Hierarchy Process (AHP according to the hypothesis which designates the first dyad as an accessing mechanism of knowledge stored in the second dyad. Due to the well acknowledged needsconcerning new advanced decision making instruments and enhanced knowledge creation processes in the field of technical space projects emphasized by a high level of complexity, the herein study tries also to prove the relevance of the proposed conceptual diagnosis modelin Systems Engineering (SE methodology which foresees at its turn concurrent engineering within interdisciplinary working environments. !e theoretical model, entitled DiagnoSE, has the potential to provide practical implications to space/space related business sector butnot merely, and on the other hand, to trigger and inspire other knowledge management related researches for refining and testing the proposed instrument in SE or other similar decision making based working environment.

  18. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Bockgaard, Niclas

    2011-06-01

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  19. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas [Golder Associates AB, Stockholm (Sweden)

    2011-06-15

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  20. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  1. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  2. A Conceptual Modeling Approach for OLAP Personalization

    Science.gov (United States)

    Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan

    Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.

  3. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Stigsson, Martin; Marsic, Niko; Gylling, Bjoern

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km 2 . The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of flow

  4. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Stigsson, Martin [Golder Associates, Stockholm (Sweden); Marsic, Niko; Gylling, Bjoern [Kemakta Konsult AB, Stockholm (Sweden)

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km{sup 2}. The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of

  5. Dialectic Antidotes to Critics of the Technology Acceptance Model: Conceptual, Methodological, and Replication Treatments for Behavioural Modelling in Technology-Mediated Environments

    Directory of Open Access Journals (Sweden)

    Weng Marc Lim

    2018-01-01

    Full Text Available The technology acceptance model (TAM is a prominent and parsimonious conceptual lens that is often applied for behavioural modelling in technology-mediated environments. However, TAM has received a great deal of criticism in recent years. This article aims to address some of the most pertinent issues confronting TAM through a rejoinder that offers dialectic antidotes—in the form of conceptual, methodological, and replication treatments—to support the continued use of TAM to understand the peculiarities of user interactions with technology in technology-mediated environments. In doing so, this article offers a useful response to a common but often inadequately answered question about how TAM can continue to be relevant for behavioural modelling in contemporary technology-mediated environments.

  6. Conceptual framework of Tenaga Nasional Berhad (TNB) cost of service (COS) model

    Science.gov (United States)

    Zainudin, WNRA; Ishak, WWM; Sulaiman, NA

    2017-09-01

    One of Malaysia Electricity Supply Industry (MESI) objectives is to ensure Tenaga Nasional Berhad (TNB) economic viability based on a fair economic electricity pricing. In meeting such objective, a framework that investigates the effect of cost of service (COS) on revenue is in great need. This paper attempts to present a conceptual framework that illustrate the distribution of the COS among TNB’s various cost centres which are subsequently redistributed in varying quantities among all of its customer categories. A deep understanding on the concepts will ensure optimal allocation of COS elements between different sub activities of energy production processes can be achieved. However, this optimal allocation needs to be achieved with respect to the imposed TNB revenue constraint. Therefore, the methodology used for this conceptual approach is being modelled into four steps. Firstly, TNB revenue requirement is being examined to ensure the conceptual framework addressed the requirement properly. Secondly, the revenue requirement is unbundled between three major cost centres or business units consist of generation, transmission and distribution and the cost is classified based on demand, energy and customers related charges. Finally, the classified costs are being allocated to different customer categories i.e. Household, Commercial, and Industrial. In summary, this paper proposed a conceptual framework on the cost of specific services that TNB currently charging its customers and served as potential input into the process of developing revised electricity tariff rates. On that purpose, the finding of this COS study finds cost to serve customer varies with the voltage level that customer connected to, the timing and the magnitude of customer demand on the system. This COS conceptual framework could potentially be integrated into a particular tariff structure and serve as a useful tool for TNB.

  7. Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report - December 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM) of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.

  8. Structure and use of conceptual models in the Aespoe site investigations

    International Nuclear Information System (INIS)

    Gustafsson, Gunnar

    1998-01-01

    Early in the Aespoe project a need for structuring and clarification of the models used for different purposes was identified. The problem lied not in the numerical codes or the data base used for the modelling but rather in the process of how the real world was conceptualized into descriptive and predictive models. A proposal on how to structure these conceptual assumptions was made on which a standardised representation of used models was worked out. An essential objective has been to condensate the model descriptions to one page and still present the essential aspects of each model. It is hoped that in this way it is easier to obtain an overview of the assumptions underlying each model and facilitate comparison between different models. The base for the description is the 'intended use of the model'. Based on the intended use the next step is to identify what 'physical' processes should be included in the model. In some cases these processes can be represented by constitutive equations. The next step is to define the 'concepts' needed to solve the problem. The concepts may be separated into four groups. Firstly, the type of 'geometrical framework' and the framework-related parameters have to be defined. Secondly, the type of 'material properties' to be assigned to the domains defined by the geometrical framework must be decided. Thirdly, the 'spatial assignment method' of the material properties within a domain has to be described. Finally, the model normally has a limited extent and the 'boundary conditions' have to be defined to compute or judge the effects within the model. For a real case the data can now be defined for the four groups of concepts by analysing measurements representing the actual case. If needed a 'numerical or mathematical tool' that handles the processes and concepts should the be chosen. 'Output parameters' of interest for model purposes must then be defined

  9. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  10. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  11. A coupled three dimensional model of vanadium redox flow battery for flow field designs

    International Nuclear Information System (INIS)

    Yin, Cong; Gao, Yan; Guo, Shaoyun; Tang, Hao

    2014-01-01

    A 3D (three-dimensional) model of VRB (vanadium redox flow battery) with interdigitated flow channel design is proposed. Two different stack inlet designs, single-inlet and multi-inlet, are structured in the model to study the distributions of fluid pressure, electric potential, current density and overpotential during operation of VRB cell. Electrolyte flow rate and stack channel dimension are proved to be the critical factors affecting flow distribution and cell performance. The model developed in this paper can be employed to optimize both VRB stack design and system operation conditions. Further improvements of the model concerning current density and electrode properties are also suggested in the paper. - Highlights: • A coupled three-dimensional model of vanadium redox flow cell is proposed. • Interdigitated flow channels with two different manifold designs are simulated. • Manifold structure affects uniformity of distribution patterns significantly. • Increased electrolyte flow rate improves cell performance for both designs. • Decreased channel size and enlarged land width enhance cell voltage

  12. The Relationships among Leadership, Entrepreneurial Mindset, Innovation and Competitive Advantage (A Conceptual Model of Logistics Service Industry

    Directory of Open Access Journals (Sweden)

    Darjat Sudrajat

    2015-11-01

    Full Text Available Nowadays, improvement of competitive advantage is an important and urgent issue facing logistics service companies in Indonesia. Some previous researches showed that to improve the competitive advantage could be conducted through improvement of leadership, entrepreneurial mindset and innovation variables. This research intended to recognize relationships among the variables. The research used causal-explanatory method. The results of research encompass a conceptual model, status of each variable and hypotheses. The conceptual model could be further verified through verification research. 

  13. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  14. Squirt flow due to interfacial water films in hydrate bearing sediments

    Directory of Open Access Journals (Sweden)

    K. Sell

    2018-05-01

    Full Text Available Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  15. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  16. A conceptual definition of vocational rehabilitation based on the ICF: building a shared global model.

    Science.gov (United States)

    Escorpizo, Reuben; Reneman, Michiel F; Ekholm, Jan; Fritz, Julie; Krupa, Terry; Marnetoft, Sven-Uno; Maroun, Claude E; Guzman, Julietta Rodriguez; Suzuki, Yoshiko; Stucki, Gerold; Chan, Chetwyn C H

    2011-06-01

    The International Classification of Functioning, Disability and Health (ICF) is a conceptual framework and classification system by the World Health Organization (WHO) to understand functioning. The objective of this discussion paper is to offer a conceptual definition for vocational rehabilitation (VR) based on the ICF. We presented the ICF as a model for application in VR and the rationale for the integration of the ICF. We also briefly reviewed other work disability models. Five essential elements of foci were found towards a conceptual definition of VR: an engagement or re-engagement to work, along a work continuum, involved health conditions or events leading to work disability, patient-centered and evidence-based, and is multi-professional or multidisciplinary. VR refers to a multi-professional approach that is provided to individuals of working age with health-related impairments, limitations, or restrictions with work functioning and whose primary aim is to optimize work participation. We propose that the ICF and VR interface be explored further using empirical and qualitative works and encouraging stakeholders' participation.

  17. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  18. CONCEPTUAL MODEL OF CONSUMERS TRUST TO ONLINE SHOPS

    Directory of Open Access Journals (Sweden)

    T. Dubovyk

    2014-06-01

    Full Text Available In the article the conceptual model of the major factors that influence consumers trust in online shop: reliability of online store, reliable information system for making purchases online, factors of ethic interactiveness (security, third-party certification, internet-marketing communications of online-shop and other factors – that is divided enterprises of trade and consumers (demographic variables, psychological perception of internet-marketing communications, experience of purchase of commodities are in the Internet. The degree of individual customer trust propensity which reflects the personality traits, culture and previous experience. An implement signs of consumer confidence due to site elements online shop – graphic design, structured design, design of content, design harmonized with perception of target audience.

  19. Conceptual Models of the Individual Public Service Provider

    DEFF Research Database (Denmark)

    Andersen, Lotte Bøgh; Pedersen, Lene Holm; Bhatti, Yosef

    are used to gain insight on the motivation of public service providers; namely principal-agent theory, self-determination theory and public service motivation theory. We situate the theoretical discussions in the context of public service providers being transferred to private organizations......Individual public service providers’ motivation can be conceptualized as either extrinsic, autonomous or prosocial, and the question is how we can best theoretically understand this complexity without losing too much coherence and parsimony. Drawing on Allison’s approach (1969), three perspectives...... theoretical – to develop a coherent model of individual public service providers – but the empirical illustration also contributes to our understanding of motivation in the context of public sector outsourcing....

  20. Investigation of discrete-fracture network conceptual model uncertainty at Forsmark

    International Nuclear Information System (INIS)

    Geier, Joel

    2011-04-01

    In the present work a discrete fracture model has been further developed and implemented using the latest SKB site investigation data. The model can be used for analysing the fracture network and to model flow through the rock in Forsmark. The aim has been to study uncertainties in the hydrological discrete fracture network (DFN) for the repository model. More specifically the objective has been to study to which extent available data limits uncertainties in the DFN model and how data that can be obtained in future underground work can further limit these uncertainties. Moreover, the effects on deposition hole utilisation and placement have been investigated as well as the effects on the flow to deposition holes