Flow microfluorometric DNA content measurements of tissue culture cells and peripheral lymphocytes
Energy Technology Data Exchange (ETDEWEB)
Cram, L.S. (Los Alamos Scientific Lab., NM); Lehman, J.M.
1977-01-01
The difference in DNA content of peripheral lymphocytes from normal males, normal females, and an individual with a 48 (xxxy) chromosome constitution was determined by rapid flow microfluorometric techniques. A similar comparison was performed using tissue culture fibroblasts derived from an individual with a 49 (xxxxy) chromosome constitution and WI-38 cells as a normal control. Less than 60 min were required to isolate the lymphocytes, to stain the cells fluorescently, and to measure the increased DNA content. The measured increase in DNA content is consistent with chromosome DNA analyses and chromosome length measurements.
Geometry: A Flow Proof Approach.
McMurray, Robert
The inspiration for this text was provided by an exposure to the flow proof approach to a proof format as opposed to the conventional two-column approach. Historical background is included, to provide a frame of reference to give the student an appreciation of the subject. The basic constructions are introduced early and briefly, to aid the…
Flow Analysis: A Novel Approach For Classification.
Vakh, Christina; Falkova, Marina; Timofeeva, Irina; Moskvin, Alexey; Moskvin, Leonid; Bulatov, Andrey
2016-09-01
We suggest a novel approach for classification of flow analysis methods according to the conditions under which the mass transfer processes and chemical reactions take place in the flow mode: dispersion-convection flow methods and forced-convection flow methods. The first group includes continuous flow analysis, flow injection analysis, all injection analysis, sequential injection analysis, sequential injection chromatography, cross injection analysis, multi-commutated flow analysis, multi-syringe flow injection analysis, multi-pumping flow systems, loop flow analysis, and simultaneous injection effective mixing flow analysis. The second group includes segmented flow analysis, zone fluidics, flow batch analysis, sequential injection analysis with a mixing chamber, stepwise injection analysis, and multi-commutated stepwise injection analysis. The offered classification allows systematizing a large number of flow analysis methods. Recent developments and applications of dispersion-convection flow methods and forced-convection flow methods are presented.
Exchange Rate Forecasting with Information Flow Approach
Directory of Open Access Journals (Sweden)
Irena Mačerinskienė
2016-06-01
Full Text Available The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can forecast the exchange rate, the most significant information flows are distinguished. The results lead to further development of the information flow approach as a tool to forecast exchange rate fluctuations.
Exchange Rate Forecasting with Information Flow Approach
Irena Mačerinskienė; Andrius Balčiūnas
2016-01-01
The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can for...
Nguyen, L T; Stephenson, D G; Stephenson, G M
1998-08-01
The main objective of this study was to analyse glycogen in single muscle fibres, using a recently developed microfluorometric method which detects subpicomol amounts of NADPH, glucose and glycogen (as glucosyl units) (detection limit 0.16-0.17 pmol in a 25 nl sample) without fluorochrome amplification. The fibres were freshly dissected from the twitch region of the iliofibularis muscle of the cane toad (Bufo marinus), and were mechanically skinned under paraffin oil to gain access to the intracellular compartments. The results show that (1) glycogen concentrations in toad skeletal muscle fibres range between 25.8 and 369 mmol glucosyl units/litre fibre volume; (2) there is a large variation in glycogen content between individual fibres from the iliofibularis muscle of one animal; (3) there are seasonal differences in the glycogen content of toad single muscle fibres; (4) the total amount of glycogen in single muscle fibres of the toad does not decrease significantly when storing the tissue, under paraffin oil, at 20-25 degree C for up to 6 h or at 4 degree C for up to 24 h; and (5) 15-26% of fibre glycogen can be washed in an aqueous solution at pH 5-7, within 5 min, while 74-85% of fibre glycogen remains associated with the washed skinned fibre, even after 40 min exposure of the skinned fibre preparation to the aqueous environment. The retention of most glycogen in the fibre preparation after mechanical removal of the plasma membrane and extensive washing indicates that in toad skeletal muscle fibres the largest proportion of glycogen is tightly bound to intracellular structures. The results also show that the skinned muscle fibre preparation is well suited for microfluorometric glycogen determination, since low molecular weight non-glycogen contributors to the fluorescence signal can be removed from the myoplasmic space prior to the glycogen hydrolysis step.
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Collective Flows in a Transport Approach
Plumari, S.; Baran, V.; Di Toro, M.; Greco, V.
2010-01-01
We introduce a transport approach at fixed shear viscosity to entropy ratio $\\etas$ to study the generation of collective flows in ultra-relativistic heavy-ion collisions. Transport theory supplies a covariant approach valid also at large $\\etas$ and at intermediate transverse momentum $p_T$, where deviations from equilibrium is no longer negligible. Such an approach shows that at RHIC energies a temperature dependent $\\etas$ enhances significantly the $v_4/v_2^2$ respect to the case of const...
A perturbative approach to Lagrangian flow networks
Fujiwara, Naoya; Donges, Jonathan F; Donner, Reik V
2016-01-01
Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway or airline infrastructure over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (a...
Mixture modeling approach to flow cytometry data.
Boedigheimer, Michael J; Ferbas, John
2008-05-01
Flow Cytometry has become a mainstay technique for measuring fluorescent and physical attributes of single cells in a suspended mixture. These data are reduced during analysis using a manual or semiautomated process of gating. Despite the need to gate data for traditional analyses, it is well recognized that analyst-to-analyst variability can impact the dataset. Moreover, cells of interest can be inadvertently excluded from the gate, and relationships between collected variables may go unappreciated because they were not included in the original analysis plan. A multivariate non-gating technique was developed and implemented that accomplished the same goal as traditional gating while eliminating many weaknesses. The procedure was validated against traditional gating for analysis of circulating B cells in normal donors (n = 20) and persons with Systemic Lupus Erythematosus (n = 42). The method recapitulated relationships in the dataset while providing for an automated and objective assessment of the data. Flow cytometry analyses are amenable to automated analytical techniques that are not predicated on discrete operator-generated gates. Such alternative approaches can remove subjectivity in data analysis, improve efficiency and may ultimately enable construction of large bioinformatics data systems for more sophisticated approaches to hypothesis testing.
Covert Flow Graph Approach to Identifying Covert Channels
XiangMei Song; ShiGuang Ju
2011-01-01
In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of ...
Microcanonical and canonical approach to traffic flow
Surda, Anton
2007-01-01
A system of identical cars on a single-lane road is treated as a microcanonical and canonical ensemble. Behaviour of the cars is characterized by the probability of car velocity as a function of distance and velocity of the car ahead. The calculations a performed on a discrete 1D lattice with discrete car velocities. Probability of total velocity of a group of cars as a function of density is calculated in microcanonical approach. For a canonical ensemble, fluctuations of car density as a function of total velocity is found. Phase transitions between free and jammed flow for large deceleration rate of cars and formation of queues of cars with the same velocity for low deceleration rate are described.
A semiparametric approach to physiological flow models.
Verotta, D; Sheiner, L B; Ebling, W F; Stanski, D R
1989-08-01
By regarding sampled tissues in a physiological model as linear subsystems, the usual advantages of flow models are preserved while mitigating two of their disadvantages, (i) the need for assumptions regarding intratissue kinetics, and (ii) the need to simultaneously fit data from several tissues. To apply the linear systems approach, both arterial blood and (interesting) tissue drug concentrations must be measured. The body is modeled as having an arterial compartment (A) distributing drug to different linear subsystems (tissues), connected in a specific way by blood flow. The response (CA, with dimensions of concentration) of A is measured. Tissues receive input from A (and optionally from other tissues), and send output to the outside or to other parts of the body. The response (CT, total amount of drug in the tissue (T) divided by the volume of T) from the T-th one, for example, of such tissues is also observed. From linear systems theory, CT can be expressed as the convolution of CA with a disposition function, F(t) (with dimensions 1/time). The function F(t) depends on the (unknown) structure of T, but has certain other constant properties: The integral integral infinity0 F(t) dt is the steady state ratio of CT to CA, and the point F(0) is the clearance rate of drug from A to T divided by the volume of T. A formula for the clearance rate of drug from T to outside T can be derived. To estimate F(t) empirically, and thus mitigate disadvantage (i), we suggest that, first, a nonparametric (or parametric) function be fitted to CA data yielding predicted values, CA, and, second, the convolution integral of CA with F(t) be fitted to CT data using a deconvolution method. By so doing, each tissue's data are analyzed separately, thus mitigating disadvantage (ii). A method for system simulation is also proposed. The results of applying the approach to simulated data and to real thiopental data are reported.
Covert Flow Graph Approach to Identifying Covert Channels
Directory of Open Access Journals (Sweden)
XiangMei Song
2011-12-01
Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.
A variational approach to estimate incompressible fluid flows
Indian Academy of Sciences (India)
2017-02-01
A variational approach is used to recover fluid motion governed by Stokes and Navier–Stokes equations. Unlike previous approaches where optical flow method is used to track rigid body motion, this new framework aims at investigating incompressible flows using optical flow techniques. We formulate a minimization problem and determine conditions under which unique solution exists. Numerical results using finite element method not only support theoretical results but also show that Stokes flow forced by a potential are recovered almost exactly.
Wireless Network Information Flow: A Deterministic Approach
Avestimehr, Salman; Tse, David
2009-01-01
In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and for this model, the capacity of even a network with a single relay node is open for 30 years. In this paper, we present a deterministic approach to this problem by focusing on the signal interaction rather than the noise. To this end, we propose a deterministic channel model which is analytically simpler than the Gaussian model but still captures two key wireless channel properties of broadcast and superposition. We consider a model for a wireless relay network with nodes connected by such deterministic channels, and present an exact characterization of the end-to-end capacity when there is a single source and one or more destinations (all interested in the same information) and an arbitrary number of relay nodes....
Robust Traffic Flow Management: Coevolutionary Approach Project
National Aeronautics and Space Administration — We will develop a Coevolutionary Decision Support Tool (CDST) that explicitly incorporates weather uncertainty (non-probabilistically) into strategic Traffic Flow...
PDF approach for compressible turbulent reacting flows
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1993-01-01
The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.
The pdf approach to turbulent flow
Kollmann, W.
1990-01-01
This paper provides a detailed discussion of the theory and application of probability density function (pdf) methods, which provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. The basic laws governing the flow of Newtonian fluids are set up in the Eulerian and the Lagrangian frame, and the exact and linear equations for the characteristic functionals in those frames are discussed. Pdf equations in both frames are derived as Fourier transforms of the equations of the characteristic functions. Possible formulations for the nonclosed terms in the pdf equation are discussed, their properties are assessed, and closure modes for the molecular-transport and the fluctuating pressure-gradient terms are reviewed. The application of pdf methods to turbulent combustion flows, supersonic flows, and the interaction of turbulence with shock waves is discussed.
Validation of Modeling Flow Approaching Navigation Locks
2013-08-01
instrumentation, direction vernier . ........................................................................ 8 Figure 11. Plan A lock approach, upstream approach...13-9 8 Figure 9. Tools and instrumentation, bracket attached to rail. Figure 10. Tools and instrumentation, direction vernier . Numerical model
Parametric and experimental analysis using a power flow approach
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach
Directory of Open Access Journals (Sweden)
S. Mimouni
2011-01-01
Full Text Available The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The study compares a general multiphase approach implemented in NEPTUNE_CFD with a homogeneous model, of widespread use for engineering studies, implemented in Code_Saturne. The model implemented in NEPTUNE_CFD assumes that liquid droplets form along the wall within nucleation sites. Vapor condensation on droplets makes them grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall and form a liquid film. This approach allows taking into account simultaneously the mechanical drift between the droplet and the gas, the heat and mass transfer on droplets in the core of the flow and the condensation/evaporation phenomena on the walls. As concern the homogeneous approach, the motion of the liquid film due to the gravitational forces is neglected, as well as the volume occupied by the liquid. Both condensation models and compressible procedures are validated and compared to experimental data provided by the TOSQAN ISP47 experiment (IRSN Saclay. Computational results compare favorably with experimental data, particularly for the Helium and steam volume fractions.
A forward modeling approach for interpreting impeller flow logs.
Parker, Alison H; West, L Jared; Odling, Noelle E; Bown, Richard T
2010-01-01
A rigorous and practical approach for interpretation of impeller flow log data to determine vertical variations in hydraulic conductivity is presented and applied to two well logs from a Chalk aquifer in England. Impeller flow logging involves measuring vertical flow speed in a pumped well and using changes in flow with depth to infer the locations and magnitudes of inflows into the well. However, the measured flow logs are typically noisy, which leads to spurious hydraulic conductivity values where simplistic interpretation approaches are applied. In this study, a new method for interpretation is presented, which first defines a series of physical models for hydraulic conductivity variation with depth and then fits the models to the data, using a regression technique. Some of the models will be rejected as they are physically unrealistic. The best model is then selected from the remaining models using a maximum likelihood approach. This balances model complexity against fit, for example, using Akaike's Information Criterion.
A Logical Approach to the Statement of Cash Flows
Petro, Fred; Gean, Farrell
2014-01-01
Of the three financial statements in financial reporting, the Statement of Cash Flows (SCF) is perhaps the most challenging. The most difficult aspect of the SCF is in developing an understanding of how previous transactions are finalized in this document. The purpose of this paper is to logically explain the indirect approach of cash flow whereby…
Steady shear flow thermodynamics based on a canonical distribution approach.
Taniguchi, Tooru; Morriss, Gary P
2004-11-01
A nonequilibrium steady-state thermodynamics to describe shear flow is developed using a canonical distribution approach. We construct a canonical distribution for shear flow based on the energy in the moving frame using the Lagrangian formalism of the classical mechanics. From this distribution, we derive the Evans-Hanley shear flow thermodynamics, which is characterized by the first law of thermodynamics dE=TdS-Qdgamma relating infinitesimal changes in energy E, entropy S, and shear rate gamma with kinetic temperature T. Our central result is that the coefficient Q is given by Helfand's moment for viscosity. This approach leads to thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation function for Q. We show the consistency of this approach with the Kawasaki distribution function for shear flow, from which a response formula for viscosity is derived in the form of a correlation function for the time-derivative of Q. We emphasize the role of the external work required to sustain the steady shear flow in this approach, and show theoretically that the ensemble average of its power W must be non-negative. A nonequilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is equal to the average of W. Numerical results from nonequilibrium molecular-dynamics simulation of two-dimensional many-particle systems with soft-core interactions are presented which support our interpretation.
Grad-Shafranov Approach To Axisymmetric Stationary Flows In Astrophysics
Beskin, V S
2004-01-01
My lecture is devoted to the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. First, the most general case is formulated corresponding to the axisymmetric stationary MHD flow in the Kerr metric. Then, I discuss the hydrodynamical version of the Grad-Shafranov equation. Although not so well-known as the full MHD one, it allows us to clarify the nontrivial structure of the Grad-Shafranov approach as well as to discuss the simplest version of the 3+1-split language -- the most convenient one for the description of ideal flows in the vicinity of rotating black holes. Finally, I consider several examples that demonstrate how this approach can be used to obtain the quantitative description of the real transonic flows in the vicinity of rotating and moving black holes.
An engineering based approach for hydraulic computations in river flows
Di Francesco, S.; Biscarini, C.; Pierleoni, A.; Manciola, P.
2016-06-01
This paper presents an engineering based approach for hydraulic risk evaluation. The aim of the research is to identify a criteria for the choice of the simplest and appropriate model to use in different scenarios varying the characteristics of main river channel. The complete flow field, generally expressed in terms of pressure, velocities, accelerations can be described through a three dimensional approach that consider all the flow properties varying in all directions. In many practical applications for river flow studies, however, the greatest changes occur only in two dimensions or even only in one. In these cases the use of simplified approaches can lead to accurate results, with easy to build and faster simulations. The study has been conducted taking in account a dimensionless parameter of channels (ratio of curvature radius and width of the channel (R/B).
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
An active, collaborative approach to learning skills in flow cytometry.
Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J
2016-06-01
Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. Copyright © 2016 The American Physiological Society.
Extended Approach to Water Flow Algorithm for Text Line Segmentation
Institute of Scientific and Technical Information of China (English)
Darko Brodi(c)
2012-01-01
This paper proposes a new approach to the water flow algorithm for text line segmentation.In the basic method the hypothetical water flows under few specified angles which have been defined by water flow angle as parameter.It is applied to the document image frame from left to right and vice versa.As a result,the unwetted and wetted areas are established.Thesc areas separate text from non-text elements in each text line,respectively.Hence,they represent the control areas that are of major importance for text line segmentation.Primarily,an extended approach means extraction of the connected-components by bounding boxes ovcr text.By this way,each connected component is mutually separated.Hence,the water flow angle,which defines the unwetted areas,is determined adaptively.By choosing appropriate water flow angle,the unwetted areas are lengthening which leads to the better text line segmentation.Results of this approach are encouraging due to the text line segmentation improvement which is the most challenging step in document image processing.
Monitoring Debris Flows Using Spatial Filtering and Entropy Determination Approaches
Directory of Open Access Journals (Sweden)
Hung-Ming Kao
2013-01-01
Full Text Available We developed an automatic debris flow warning system in this study. The system uses a fixed video camera mounted over mountainous streams with a high risk for debris flows. The focus of this study is to develop an automatic algorithm for detecting debris flows with a low computational effort which can facilitate real-time implementation. The algorithm is based on a moving object detection technique to detect debris flow by comparing among video frames. Background subtraction is the kernel of the algorithm to reduce the computational effort, but non-rigid properties and color similarity of the object and the background color introduces some difficulties. Therefore, we used several spatial filtering approaches to increase the performance of the background subtraction. To increase the accuracy entropy is used with histogram analysis to identify whether a debris flow occurred. The modified background subtraction approach using spatial filtering and entropy determination is adopted to overcome the error in moving detection caused by non-rigid and similarities in color properties. The results of this study show that the approach described here can improve performance and also reduce the computational effort.
Governing cruise tourism at Bonaire: a networks and flows approach
Bets, van L.K.J.; Lamers, M.A.J.; Tatenhove, van J.P.M.
2016-01-01
Conceptual approaches to thoroughly study governance of cruise tourism are lacking in the literature. Relying on Castells’ network society, we analyze how two interconnected flows of cruise ships and passengers are governed by a marine community of users and policy makers. Bonaire is used as a case
Dynamical-systems approach to localised turbulence in pipe flow
Ritter, Paul; Avila, Marc
2015-01-01
Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.
A perturbation-theoretic approach to Lagrangian flow networks
Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.
2017-03-01
Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.
A Galerkin least squares approach to viscoelastic flow.
Energy Technology Data Exchange (ETDEWEB)
Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.
Three statistical approaches to sessionizing network flow data
Rubin-Delanchy, Patrick T G; Lawson, Daniel John; Turcotte, Melissa J.; Heard, Nicholas A.; Adams, Niall M.
2014-01-01
The network traffic generated by a computer, or a pair of computers, is often well modelled as a series of sessions. These are, roughly speaking, intervals of time during which a computer is engaging in the same, continued, activity. This article explores a variety of statistical approaches to re-discovering sessions from network flow data using timing alone. Solutions to this problem are essential for network monitoring and cyber-security. For example overlapping sessions on a computer netwo...
Characterising powder flow properties - the need for a multivariate approach
Freeman, Tim; Brockbank, Katrina; Sabathier, Jerome
2017-06-01
Despite their widespread and well-established use, powders are challenging materials to work with, as evidenced by the common problems encountered during storage and processing, as well as in the quality and consistency of final products. The diverse range of unit operations used to handle and manipulate powders subject them to extremes of stress and flow regimes; from the high stress, static conditions present in hoppers to the dispersed, dynamic state of a fluidised bed dryer. It is therefore possible for a powder to behave a certain way in a given unit operation, but entirely differently in another. Many existing powder testing techniques don't deliver the required information as the test conditions do not represent the conditions in the process. Modern powder rheometers generate process relevant data by accurately measuring dynamic flow, bulk and shear properties. This approach enables a powder's response to aeration, consolidation, forced flow and changes in flow rate to be reliably quantified thereby simulating the conditions which a powder will be subjected to in process. This paper provides an introduction to powder rheology, including a comparison with traditional techniques, and uses case studies to demonstrate how powder rheology can be applied to optimise production processes and enhance product quality
THE CONTEMPORARY METHODOLOGICAL APPROACHES AND THEORIES EXPLAINING INTERNATIONAL TOURISM FLOWS
Directory of Open Access Journals (Sweden)
Zorina SISCAN
2017-08-01
Full Text Available Proceeding from the fact that international tourism is in permanent growth the last decades, and contributes significantly to the development of contemporary national economies, the authors of the article have focused on methodological and theoretical frame that allows deeper understanding of the touristic flows from various aspects. In doing so, the first author has launched some methodological approaches that allow deepening a perspective research on touristic flows while the second author has concentrated upon grouping and analysis of existing theories used to explain touristic flows. As an outcome, the authors recommend a blend of those approaches and theories to be used for an adequate understanding and managing the existing and perspective touristic flows.ABORDDĂRI METODOLOGICE ȘI TEORII CONTEMPORANE CARE EXPLICĂ FLUXURILE DE TURISM INTERNAȚIONALPornind de la faptul că turismul internațional manifestă permanentă creștere în ultimele decenii, precum și contribuie semnificativ la dezvoltarea economiilor naționale contemporane, autorii articolului s-au axat pe cadrul metodologic și teoretic ce ar permite conceperea aprofundată a fluxurilor de turism internațional. Primul autor a lansat unele abordări metodologice care ar contribui la aprofundarea cercetărilor de perspectivă ale fluxurilor turistice, iar cel de-al doilea autor și-a concentrat atenția asupra grupării și analizei teoriilor existente în care se explică natura fluxurilor de turism. Ca rezultat, autorii recomandă utilizarea îmbinării organice a abordărilor și teoriilor considerate pentru perceperea și gestionarea adecvată a fluxurilor de turism existente și de perspectivă.
Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW
Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew
2012-01-01
Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.
A methodological approach of estimating resistance to flow under unsteady flow conditions
Mrokowska, M. M.; Rowiński, P. M.; Kalinowska, M. B.
2015-10-01
This paper presents an evaluation and analysis of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The main points of the methodology are (1) to choose a resistance relation with regard to a shape of a channel and (2) type of wave, (3) to choose an appropriate method to evaluate slope of water depth, and (4) to assess the uncertainty of result. In addition to a critical analysis of existing methods, new approaches are presented: formulae for resistance parameters for a trapezoidal channel, and a translation method instead of Jones' formula to evaluate the gradient of flow depth. Measurements obtained from artificial dam-break flood waves in a small lowland watercourse have made it possible to apply the method and to analyse to what extent resistance parameters vary in unsteady flow. The study demonstrates that results of friction slope and friction velocity are more sensitive to applying simplified formulae than the Manning coefficient (n). n is adequate as a flood routing parameter but may be misleading when information on trend of resistance with flow rate is crucial. Then friction slope or friction velocity seems to be better choice.
Compositional Space Parameterization Approach for Reservoir Flow Simulation
Voskov, D.
2011-12-01
Phase equilibrium calculations are the most challenging part of a compositional flow simulation. For every gridblock and at every time step, the number of phases and their compositions must be computed for the given overall composition, temperature, and pressure conditions. The conventional approach used in petroleum industry is based on performing a phase-stability test, and solving the fugacity constraints together with the coupled nonlinear flow equations when the gridblock has more than one phase. The multi-phase compositional space can be parameterized in terms of tie-simplexes. For example, a tie-triangle can be used such that its interior encloses the three-phase region, and the edges represent the boundary with specific two-phase regions. The tie-simplex parameterization can be performed for pressure, temperature, and overall composition. The challenge is that all of these parameters can change considerably during the course of a simulation. It is possible to prove that the tie-simplexes change continuously with respect to pressure, temperature, and overall composition. The continuity of the tie-simplex parameterization allows for interpolation using discrete representations of the tie-simplex space. For variations of composition, a projection to the nearest tie-simplex is used, and if the tie-simplex is within a predefined tolerance, it can be used directly to identify the phase-state of this composition. In general, our parameterization approach can be seen as the generalization of negative flash idea for systems with two or more phases. Theory of dispersion-free compositional displacements, as well as computational experience of general-purpose compositional flow simulation indicates that the displacement path in compositional space is determined by a limited number of tie-simplexes. Therefore, only few tie-simplex tables are required to parameterize the entire displacement. The small number of tie-simplexes needed in a course of a simulation motivates
An improved approach for flow-based cloud point extraction.
Frizzarin, Rejane M; Rocha, Fábio R P
2014-04-11
Novel strategies are proposed to circumvent the main drawbacks of flow-based cloud point extraction (CPE). The surfactant-rich phase (SRP) was directly retained into the optical path of the spectrophotometric cell, thus avoiding its dilution previously to the measurement and yielding higher sensitivity. Solenoid micro-pumps were exploited to improve mixing by the pulsed flow and also to modulate the flow-rate for retention and removal of the SRP, thus avoiding the elution step, often carried out with organic solvents. The heat released and the increase of the salt concentration provided by an on-line neutralization reaction were exploited to induce the cloud point without an external heating device. These innovations were demonstrated by the spectrophotometric determination of iron, yielding a linear response from 10 to 200 μg L(-1) with a coefficient of variation of 2.3% (n=7). Detection limit and sampling rate were estimated at 5 μg L(-1) (95% confidence level) and 26 samples per hour, respectively. The enrichment factor was 8.9 and the procedure consumed only 6 μg of TAN and 390 μg of Triton X-114 per determination. At the 95% confidence level, the results obtained for freshwater samples agreed with the reference procedure and those obtained for digests of bovine muscle, rice flour, brown bread and tort lobster agreed with the certified reference values. The proposed procedure thus shows advantages in relation to previously proposed approaches for flow-based CPE, being a fast and environmental friendly alternative for on-line separation and pre-concentration.
Heterogeneity of cerebral blood flow: a fractal approach
Energy Technology Data Exchange (ETDEWEB)
Kuikka, J.T.; Hartikainen, P. [Department of Clinical Physiology, Kuopioo Univ. Hospital (Finland); Department of Neurology, Kuopio Univ. Hosspital (Finland); Niuvanniemi Hospital, Kuopio (Finland)
2000-07-01
Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17{+-}0.05 (mean{+-}SD) for the left hemisphere and 1.15{+-}0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04{+-}0.03 than in healthy controls. (orig.) [German] Ziel: Unter Einsatz einer fraktalen Annaeherung und SPECT wird die Heterogenitaet der regionalen Hirndruchblutung demonstriert. Methode: Tc-99m-ECD wurde nach intravenoeser Injektion bei zehn Gesunden sowie bei zehn Patienten mit Demenz vom Frontallappen-Typ eingesetzt. Aus dem SPECT-Umlauf wurden transaxiale, sagittale und koronare Schnitte rekonstruiert. 265 symmetrische Regions of Interest wurden im Gebiet der funktionellen grauen Substanz fuer jede Hemisphaere markiert. Die fraktale Analyse wurde eingesetzt zur Bestimmung der raeumlichen Heterogenitaet der Hirndurchblutung als Funktion der ROI-Anzahl. Ergebnisse: Die relative Streuung (Variationskoeffizient der regionalen Durchblutung) war bei Gesunden fraktalaehnlich geordnet und konnte durch eine Fraktaldimension von 1,17{+-}0,05 (Mittelwert
Analytical approach to continuous and intermittent bottleneck flows
DEFF Research Database (Denmark)
Helbing, D.; Johansson, A.; Mathiesen, Joachim Kaj;
2006-01-01
Many-particle-inspired theory, Continuous and Intermittent Bottleneck Flows Udgivelsesdato: Oct. 20......Many-particle-inspired theory, Continuous and Intermittent Bottleneck Flows Udgivelsesdato: Oct. 20...
A scalable approach for high throughput branch flow filtration.
Inglis, David W; Herman, Nick
2013-05-07
Microfluidic continuous flow filtration methods have the potential for very high size resolution using minimum feature sizes that are larger than the separation size, thereby circumventing the problem of clogging. Branch flow filtration is particularly promising because it has an unlimited dynamic range (ratio of largest passable particle to the smallest separated particle) but suffers from very poor volume throughput because when many branches are used, they cannot be identical if each is to have the same size cut-off. We describe a new iterative approach to the design of branch filtration devices able to overcome this limitation without large dead volumes. This is demonstrated by numerical modelling, fabrication and testing of devices with 20 branches, with dynamic ranges up to 6.9, and high filtration ratios (14-29%) on beads and fungal spores. The filters have a sharp size cutoff (10× depletion for 12% size difference), with large particle rejection equivalent to a 20th order Butterworth low pass filter. The devices are fully scalable, enabling higher throughput and smaller cutoff sizes and they are compatible with ultra low cost fabrication.
Solving the power flow equations: a monotone operator approach
Energy Technology Data Exchange (ETDEWEB)
Dvijotham, Krishnamurthy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Low, Steven [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-07-21
The AC power flow equations underlie all operational aspects of power systems. They are solved routinely in operational practice using the Newton-Raphson method and its variants. These methods work well given a good initial “guess” for the solution, which is always available in normal system operations. However, with the increase in levels of intermittent generation, the assumption of a good initial guess always being available is no longer valid. In this paper, we solve this problem using the theory of monotone operators. We show that it is possible to compute (using an offline optimization) a “monotonicity domain” in the space of voltage phasors. Given this domain, there is a simple efficient algorithm that will either find a solution in the domain, or provably certify that no solutions exist in it. We validate the approach on several IEEE test cases and demonstrate that the offline optimization can be performed tractably and the computed “monotonicity domain” includes all practically relevant power flow solutions.
MULTISCALE OPTIMIZATION OF FLOW DISTRIBUTION BY CONSTRUCTAL APPROACH
Institute of Scientific and Technical Information of China (English)
Lingai Luo; Daniel Tondeur
2005-01-01
Constructal approach is a recent concept allowing to generate and optimize multi-scale structures, in particular, branching structures, connecting a microscopic world to a macroscopic one, from an engineer's point of view.Branching morphologies are found in many types of natural phenomena, and may be associated to some kind of optimization, expressing the evolutionary adaptation of natural systems to their environment. In a sense, the constructal approach tries to imitate this morphogenesis while short-cutting the trial-and-error of nature.The basic ideas underlying the constructal concept and methodology are illustrated here by the examples of fluid distribution to a multi-channel reactor, and of the design of a porous material and system for gas adsorption and storage. In usual constructal theory, a tree branching is postulated for the channels or flow-paths or conductors, usually a dichotomic tree (every branch is divided into two "daughters"). The objective function of the optimization is built from the resistances to mass or heat transport, expressed here as "characteristic transport times", and the geometric result is expressed as a shape factor of a domain. The optimized shape expresses the compromise between the mass or heat transport characteristics at adjacent scales. Under suitable assumptions, simple analytical scaling laws are found, which relate the geometric and transport properties of different scales.Some challenging geometric problems may arise when applying the constructal approach to practical situations where strong geometric constraints exist. The search for analytical solutions imposes simplifying assumptions which may be at fault, calling for less constraining approaches, for example making only weak assumptions on the branching structure.Some of these challenges are brought forward along this text.
A Wall-Function Approach to Incorporating Knudsen-Layer Effects in Gas Micro Flow Simulations
2005-07-13
7) Planar Couette and Poiseuille Flow Simulations To test this proposed wall-function approach, we use a simple centered finite-difference...numerical scheme to solve the Navier-Stokes equations for monatomic gas flow in benchmark one-dimensional planar Couette and Poiseuille systems. Figures 2...and compressible flows . The limited test cases we have investigated (planar Couette flow , planar Poiseuille flow , and low-Reynolds number flow around
Directory of Open Access Journals (Sweden)
Cecilia Maya Ochoa
2004-12-01
Full Text Available There exists an abysm between market prices and traditional valuation approaches such as Discounted Cash Flows (DCF, a fact that neither academics nor practitioners could continue ignoring. Recently, a complementary approach has taken a foothold into the valuation world. Building on the DCF approach yet going further in the sense of incorporating flexibility in management investment decisions, and taking advantage of the advances in option pricing theory, the real options approach (ROA has become the alternative to capital budgeting and, lately, to corporate valuation. Empirical evidence shows that ROA explains actual prices better than DCF approaches and nowadays there is no question that from a theoretical point of view, ROA is a much more appealing concept than passive NPV. However, its acceptance by practitioners has been very slow due to the complexity of real options pricing.Existe un abismo entre precios de Mercado y la valoración estimada por métodos tradicionales tales como Flujos de Caja Descontados, un hecho que ni académicos ni practicantes pueden continuar ignorando. Recientemente, una metodología complementaria ha tomado gran fuerza. Partiendo de los Flujos de Caja Descontados, pero incorporando flexibilidad en las decisiones de inversión y aprovechando los avances en la teoría de valoración de opciones, el enfoque de opciones reales (ROA se ha convertido en la alternativa para presupuestación de capital y valoración de empresas. La evidencia empírica muestra que ROA explica los precios de mercado mejor que los enfoques basados en flujos de caja descontados y, hoy en día, no hay discusión de que es más atractivo desde un punto de vista teórico; sin embargo, su utilización en la práctica ha sido muy limitada debido a las dificultades que presenta la valoración de las opciones reales.
CFD modelling approach for dam break flow studies
Directory of Open Access Journals (Sweden)
C. Biscarini
2009-11-01
Full Text Available This paper presents numerical simulations of free surface flows induced by a dam break comparing the shallow water approach to fully three-dimensional simulations. The latter are based on the solution of the complete set of Reynolds-Averaged Navier-Stokes (RANS equations coupled to the Volume of Fluid (VOF method.
The methods assessment and comparison are carried out on a dam break over a flat bed without friction and a dam break over a triangular bottom sill. Experimental and numerical literature data are compared to present results.
The results demonstrate that the shallow water approach loses some three-dimensional phenomena, which may have a great impact when evaluating the downstream wave propagation. In particular, water wave celerity and water depth profiles could be underestimated due to the incorrect shallow water idealization that neglects the three-dimensional aspects due to the gravity force, especially during the first time steps of the motion.
Flow cytometric and laser scanning microscopic approaches in epigenetics research.
Szekvolgyi, Lorant; Imre, Laszlo; Minh, Doan Xuan Quang; Hegedus, Eva; Bacso, Zsolt; Szabo, Gabor
2009-01-01
Our understanding of epigenetics has been transformed in recent years by the advance of technological possibilities based primarily on a powerful tool, chromatin immunoprecipitation (ChIP). However, in many cases, the detection of epigenetic changes requires methods providing a high-throughput (HTP) platform. Cytometry has opened a novel approach for the quantitative measurement of molecules, including PCR products, anchored to appropriately addressed microbeads (Pataki et al. 2005. Cytometry 68, 45-52). Here we show selected examples for the utility of two different cytometry-based platforms of epigenetic analysis: ChIP-on-beads, a flow-cytometric test of local histone modifications (Szekvolgyi et al. 2006. Cytometry 69, 1086-1091), and the laser scanning cytometry-based measurement of global epigenetic modifications that might help predict clinical behavior in different pathological conditions. We anticipate that such alternative tools may shortly become indispensable in clinical practice, translating the systematic screening of epigenetic tags from basic research into routine diagnostics of HTP demand.
Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems
Marston, J. B.; Hastings, M. B.
2005-03-01
The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.
Unsteady flow phenomena in human undulatory swimming: a numerical approach.
Pacholak, Steffen; Hochstein, Stefan; Rudert, Alexander; Brücker, Christoph
2014-06-01
The undulatory underwater sequence is one of the most important phases in competitive swimming. An understanding of the recurrent vortex dynamics around the human body and their generation could therefore be used to improve swimming techniques. In order to produce a dynamic model, we applied human joint kinematics to three-dimensional (3D) body scans of a female swimmer. The flow around this dynamic model was then calculated using computational fluid dynamics with the aid of moving 3D meshes. Evaluation of the numerical results delivered by the various motion cycles identified characteristic vortex structures for each of the cycles, which exhibited increasing intensity and drag influence. At maximum thrust, drag forces appear to be 12 times higher than those of a passive gliding swimmer. As far as we know, this is the first disclosure of vortex rings merging into vortex tubes in the wake after vortex recapturing. All unsteady structures were visualized using a modified Q-criterion also incorporated into our methods. At the very least, our approach is likely to be suited to further studies examining swimmers engaging in undulatory swimming during training or competition.
A potential approach for low flow selection in water resource supply and management
Ouyang, Ying
2012-08-01
SummaryLow flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was then compared to the conventional 7Q10 approach for low flow selections prior to its applications, using the USGS flow data from the freshwater environment (Big Sunflower River, Mississippi) as well as from the estuarine environment (St. Johns River, Florida). Unlike the FL approach that is associated with the biological and ecological impacts, the 7Q10 approach could lead to the selections of extremely low flows (e.g., near-zero flows) that may hinder its use for establishing criteria to prevent streams from significant harm to biological and ecological communities. Additionally, the 7Q10 approach could not be used when the period of data records is less than 10 years by definition while this may not the case for the FL approach. Results from both approaches showed that the low flows from the Big Sunflower River and the St. Johns River decreased as time elapsed, demonstrating that these two rivers have become drier during the last several decades with a potential of salted water intrusion to the St. Johns River. Results from the FL approach further revealed that the recurrence probability of low flow increased while the recurrence interval of low flow decreased as time elapsed in both rivers, indicating that low flows occurred more frequent in these rivers as time elapsed. This report suggests that the FL approach, developed in this study, is a useful alternative for low flow selections in addition to the 7Q10 approach.
Data-Flow Modeling: A Survey of Issues and Approaches
Cristina-Claudia DOLEAN; Razvan PETRUSEL
2012-01-01
This paper presents a survey of previous research on modeling the data flow perspective of business processes. When it comes to modeling and analyzing business process models the current research focuses on control flow modeling (i.e. the activities of the process) and very little attention is paid to the data-flow perspective. But data is essential in a process. In order to execute a workflow, the tasks need data. Without data or without data available on time, the control flow cannot be exe...
Limiting flows of a viscous fluid with stationary separation zones with Re approaching infinity
Taganov, G. I.
1982-01-01
The limiting flows of a viscous noncondensable fluid, which are approached by flows with stationary separation zones behind planar symmetrical bodies, with an unlimited increase in the Reynolds number are studied. Quantitative results are obtained in the case of a circulation flow inside of a separation zone.
Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach
DEFF Research Database (Denmark)
Li, Ye
Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... the capability of acquiring color flow mapping with a high frame rate. Secondly, the new method is extended to the vector velocity estimation using directional beamforming, which beamforms data in the flow direction. The magnitude of the flow can be obtained and results of simulations and phantom measurements...
Cunha, João Cristiano; Carvalho, Sara
2011-01-01
Extensive literature exists on Flow Theory. However there is a lack of published research investigating possible links between Orff-Schulwerk approach and Csikszentmihalyi’s concept of flow or optimal experience. Based on preliminary results from an ongoing research on Music / Music Pedagogy and (is links to) Musical Thought / Musical Cognition, the present paper aims to discuss the existence of optimal experiences / flow states boosted by Orff- Schulwerk approach activities / ...
Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer
Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.
2013-12-01
We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known
A new approach to speed-flow curves
DEFF Research Database (Denmark)
Fosgerau, Mogens; Hjorth, Katrine; Jensen, Thomas Christian
. Instead, we employ the assumption that observed traffic flow is exogenous (and equal to demand) before congestion sets in, such that it can be used to predict when this happens. We model a single-peak scenario (morning/afternoon) with two traffic states: Uncongested and congested. We refer to the times......We develop a simple model of travel time as a function of travel demand, using loop detector data of travel times and traffic flows on a Danish motorway. Our goal is a model that avoids the potential endogeneity problems related to modelling travel time as a function of observed traffic flow...... of transition between the states as breakdown time (TB) and recovery time (TR). We estimate a simple distribution of travel times for each state, and we model TB and TR using duration models with exponential hazard rates depending on observed traffic conditions. The model predicts travel times by first...
A service and value based approach to estimating environmental flows
DEFF Research Database (Denmark)
Korsgaard, Louise; Jensen, R.A.; Jønch-Clausen, Torkil
2008-01-01
An important challenge of Integrated Water Resources Management (IWRM) is to balance water allocation between different users and uses. While economically and/or politically powerful users have relatively well developed methods for quantifying and justifying their water needs, this is not the case...... of sustaining ecosystems but also a matter of supporting humankind/livelihoods. One reason for the marginalisation of environmental flows is the lack of operational methods to demonstrate the inherently multi-disciplinary link between environmental flows, ecosystem services and economic value. This paper aims...
A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems
Geissert, Matthias; Hieber, Matthias; Nguyen, Thieu Huy
2016-06-01
This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.
Flow cytometry approach for studying the interaction between ...
African Journals Online (AJOL)
Tuoyo Aghomotsegin
2016-06-29
Jun 29, 2016 ... Thirty five bacteria isolates were obtained from arid soil in the south of Algeria. Three of ..... desolvation temperature, 250°C; nitrogen flow, 500 l/h; cone ..... Andean soils of Peru and their potential PGPR characteristic. Braz. J.
National policy measures. Right approach to foreign direct investment flows
Directory of Open Access Journals (Sweden)
Cătălin-Emilian HUIDUMAC-PETRESCU
2013-02-01
Full Text Available 2011 was a difficult year for all the countries, developed and emerging ones. For overcoming the negative effects of the financial crisis, many economies have established as purpose to adopt new economic policies regarding the foreign direct investment flows (FDI, even to stimulate the flows or to reduce it (protectionism measures. So, there can be identified two categories of national policies: measures for the FDI flows stimulation and measures whose aim was the weighting of FDI developing, through restriction and regulation. In the first category we could include the liberalization measures and promotional and faciletation policies. In this study we evidenced that the fundament of the second category of policies is the belief that the FDI outward lead to job exports, to a raise of unemployment and a weakness of the industrial base.Many reports on FDI flows, here we talk about those made by UNCTAD, show that the regulation and restriction policies are seen as a possible protectionism, especially in the agricultural and extractive industries, where there have been required nationalization processes and divestments. Even more, the economies which adopted this kind of policies have been less interested in investing abroad, the outward of FDI being affected and globally the total outward decreased.
The phenomenon of information a conceptual approach to information flow
Pérez-Montoro, Mario
2007-01-01
This study examines critically major theories of information and offers an original treatment of information flows that attempts to remedy weaknesses in earlier treatments and may serve as a basis on which a satisfactory analysis of the concept of information can be developed.
Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach.
Harvey, Paul McA; Shellie, Robert A; Haddad, Paul R
2010-04-01
A dynamic flow model, which maps carrier gas pressures and carrier gas flow rates through the first dimension separation column, the modulator sample loop, and the second dimension separation column(s) in a pulsed-flow modulation comprehensive two-dimensional gas chromatography (PFM-GCxGC) system is described. The dynamic flow model assists design of a PFM-GCxGC modulator and leads to rapid determination of pneumatic conditions, timing parameters, and the dimensions of the separation columns and connecting tubing used to construct the PFM-GCxGC system. Three significant innovations are introduced in this manuscript, which were all uncovered by using the dynamic flow model. A symmetric flow path modulator improves baseline stability, appropriate selection of the flow restrictors in the first dimension column assembly provides a generally more stable and robust system, and these restrictors increase the modulation period flexibility of the PFM-GCxGC system. The flexibility of a PFM-GCxGC system resulting from these innovations is illustrated using the same modulation interface to analyze Special Antarctic Blend (SAB) diesel using 3 s and 9 s modulation periods.
Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations
Salimi, H.; Wolf, K.-H.; Bruining, J.
2011-01-01
This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition. T
Rheological flow laws for multiphase magmas: An empirical approach
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity ( 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and "apparent shear-thinning" for the behaviours observed at low and high crystallinity, respectively. At low
Zhang, Yongbin
2015-06-01
Quantitative comparisons were made between the flow factor approach model and the molecular dynamics simulation (MDS) results both of which describe the flow of a molecularly thin fluid film confined between two solid walls. Although these two approaches, respectively, calculate the flow of a confined molecularly thin fluid film by different ways, very good agreements were found between them when the Couette and Poiseuille flows, respectively, calculated from them were compared. It strongly indicates the validity of the flow factor approach model in modeling the flow of a confined molecularly thin fluid film.
Assessment of Average Tracer Concentration Approach for Flow Rate Measurement and Field Calibration
Directory of Open Access Journals (Sweden)
P. Sidauruk
2015-12-01
Full Text Available Tracer method is one of the methods available for open channel flow rate measurements such as in irrigation canals. Average tracer concentration approach is an instantaneous injection method that based on the average tracer concentrations value at the sampling point. If the procedures are correct and scientific considerations are justified, tracer method will give relatively high accuracy of measurements. The accuracy of the average tracer concentration approach has been assessed both in laboratory and field. The results of accuracy tests of open channel flow that has been conducted at the Center for Application Isotopes and Radiation Laboratory-BATAN showed that the accuracy level of average concentrations approach method was higher than 90% compared to the true value (volumetric flow rate. The accuracy of average tracer concentration approach was also assessed during the application of the method to measure flow rate of Mrican irrigation canals as an effort to perform field calibration of existing weirs. Both average tracer concentration approach and weirs can predict the trend of the flow correctly. However, it was observed that flow discrepancies between weirs measurement and average tracer concentration approach predictions were as high as 27%. The discrepancies might be due to the downgrading performances of the weirs because of previous floods and high sediment contents of the flow
An integrated approach to combating flow assurance problems
Energy Technology Data Exchange (ETDEWEB)
Abney, Laurence; Browne, Alan [Halliburton, Houston, TX (United States)
2005-07-01
Any upset to the internal pipe surface of a pipeline can significantly impact both pipeline through-put and energy requirements for maintaining design flow rates. Inefficient flow through pipelines can have a significant negative impact on operating expense (Opex) and the energy requirements necessary to maintain pipeline through-put. Effective flow maintenance helps ensure that Opex remains within budget, processing equipment life is extended and that excessive use of energy is minimized. A number of events can result in debris generation and deposition in a pipeline. Corrosion, hydrate formation, paraffin deposition, asphaltene deposition, development of 'black powder' and scale formation are the most common sources of pipeline debris. Generally, a combination of pigging and chemical treatments is used to remove debris; these two techniques are commonly used in isolation. Incorporation of specialized fluids with enhanced solid-transport capabilities, specialized dispersants, or specialized surfactants can improve the success of routine pigging operations. An array of alternative and often complementary remediation technologies can be used to effect the removal of deposits or even full restrictions from pipelines. These include the application of acids, specialized chemical products, and intrusive interventions techniques. This paper presents a review of methods of integrating existing technologies. (author)
An optimization approach to the similarity criteria of flows and its application
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In the present paper, we propose an optimization approach to investigate the similarity criteria of complex flows. With this approach, we may identify the dominant dimensionless variables governing complex flows by numerical sensitivity analysis. Firstly,we define the sensitivity factor and examine its dependence on the dimensionless variables. Then, we apply this approach to study the similarity criteria of porous media flow in a presumed oil reservoir. The similarity principle obtained from the numerical sensitivity analysis is in agreement with the theoretical law, thus demonstrating the feasibility of the proposed optimization approach. Further explanation is given by analyzing the deviation of pressure distribution in a model from its prototype. In addition, we examine the effects of flow parameter variation on the sensitivity factors and find that the dominant dimensionless variables may change from different sets of parameters.
Quantifying Flow Resistance of Mountain Streams Using the HHT Approach
Zhang, L.; Fu, X.
2014-12-01
This study quantifies the flow resistance of mountain streams with gravel bed and remarkable bed forms. The motivation is to follow the previous ideas (Robert, A. 1990) that the bed surface can be divided into micro-scale and macro-scale roughness, respectively. We processed the field data of longitudinal bed profiles of the Longxi River, Sichuan Province, China, using the Hilbert-Huang Transformation Method (HHT). Each longitudinal profile was decomposed into a set of curves with different frequencies of spatial fluctuation. The spectrogram was accordingly obtained. We supposed that a certain high and low frequency curves correspond to the micro- and macro-roughness of stream bed, respectively. We specified the characteristic height and length with the spectrogram, which represent the macro bed form accounting for bed form roughness. We then estimated the bed form roughness as being proportional to the ratio of the height to length multiplied by the height(Yang et al,2005). We also assumed the parameter, Sp, defined as the sinuosity of the highest frequency curve as the measure of the micro-scale roughness. We then took into account the effect of bed material sizes through using the product of d50/R and Sp, where d50 is the sediment median size and R is the hydraulic radius. The macro- and micro-scale roughness parameters were merged together nonlinearly to evaluate the flow resistance caused by the interplaying friction and form drag forces. Validation results show that the square of the determinant coefficient can reach as high as 0.84 in the case of the Longxi River. Future studies will focus on the verification against more field data as well as the combination of skin friction and form drag. Key words: flow resistance; roughness; HHT; spectrogram; form drag Robert, A. (1990), Boundary roughness in coarse-grained channels, Prog. Phys. Geogr., 14(1), 42-69. Yang, S.-Q., S.-K. Tan, and S.-Y. Lim. (2005), Flow resistance and bed form geometry in a wide alluvial
A stochastic approach to the flow-concentration curve in traffic flow theory
Qian, Wei-Liang; Lin, Kai; Siqueira, Adriano F
2016-01-01
An alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters is proposed. The key features of the model lie in its "catastrophic" potential function as well as in its stochastic nature, which makes it possible to describe the main features of the flow-concentration relation. In particular, the inverse-$\\lambda$ shape as well as the wide scattering of congested traffic data are both reproduced. In our model, the scattering of the data is attributed to the noise terms introduced in the stochastic differential equations. The inverse-$\\lambda$ shape and the associated sudden jump of physical quantities arise, on the other hand, due to the existence of two simultaneous stable traffic flow states and/or to the effect of stochastic noises on the stability of the system. The model parameters are calibrated and compared qualitatively with the data.
Chang, Chih-Hao; Liou, Meng-Sing
2007-07-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations . Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM +-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion. However, conservative form is lost in these balance equations when considering each individual phase; in fact, the interactions that exist simultaneously in both phases manifest themselves as nonconservative terms.
Soares, Joao S; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny
2013-11-01
Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets.
Jaan Alver
2005-01-01
A cash flow statement is required as part of a complete set of financial statements prepared in conformity with IFRS as well as US GAAP for all business enterprises. IAS 7 lays down a formal structure for the cash flow statement. Cash flows should be classified under the following three standard headings: íOperating activitiesî, íInvesting activitiesî, íFinancing activitiesî. The classification of cash flows among operating, investing and financing activities is essential to the analysis of c...
A Monte Carlo Comparison between the Free Cash Flow and Discounted Cash Flow Approaches
Akalu, M.M.; Turner, Rodney
2002-01-01
textabstractOne of the debates in the capital budgeting model selection is between the free cash flow and DCF methods. In this paper an attempt is made to compare SVA against NPV model based on Monte Carlo simulations. Accordingly, NPV is found less sensitive to value driver variations and has got higher forecast errors as compared to SVA model.
A Monte Carlo Comparison between the Free Cash Flow and Discounted Cash Flow Approaches
M.M. Akalu; J.R. Turner (Rodney)
2002-01-01
textabstractOne of the debates in the capital budgeting model selection is between the free cash flow and DCF methods. In this paper an attempt is made to compare SVA against NPV model based on Monte Carlo simulations. Accordingly, NPV is found less sensitive to value driver variations and has got h
Energy Cost Accounting: Conventional and Flow-oriented Approaches
Directory of Open Access Journals (Sweden)
Bierer Annett
2012-06-01
Full Text Available In more and more companies, energy efficiency and energy cost come to the fore. The scope ranges from energy consumption and energy delivery cost to energy losses and the infrastruc-ture facilitating the use of energy. Their increasing importance asks for more trans¬parency of the cost of energy consumption, losses, and conservation potentials. However, despite of the identified relevance, no mature concepts exist to record energy-related cost in a way that con-sumption and losses become transparent. Consequently, based on the charac¬teris¬tics of the production factor energy, the paper presents options for a sophisticated energy cost accu¬mu¬la-tion and assignment in conventional cost accounting and flow cost accounting methodology.
Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–Stefan Approach
DEFF Research Database (Denmark)
Shapiro, Alexander
2015-01-01
We develop an approach to coupling between viscous flows of the two phases in porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are presented: the general form, and the form based on the interaction of the flowing phases with the interface between them. The last...... approach is supported by the description of the flow on the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations. It becomes possible, in some simplifying geometric assumptions, to derive exact expressions for the phenomenological coefficients in the Maxwell–Stefan transport...
Visual guidance based on optic flow: a biorobotic approach.
Franceschini, Nicolas
2004-01-01
This paper addresses some basic questions as to how vision links up with action and serves to guide locomotion in both biological and artificial creatures. The thorough knowledge gained during the past five decades on insects' sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some useful tricks for designing agile autonomous robots. Since constructing a "biorobot" first requires exactly formulating the biological principles presumably involved, it gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. "Biorobotics" therefore goes one step beyond computer simulation. It leads to experimenting with real physical robots which have to pass the stringent test of the real world. Biorobotics provide us with a new tool, which can help neurobiologists and neuroethologists to identify and investigate worthwhile issues in the field of sensory-motor control. Here we describe some of the visually guided terrestrial and aerial robots we have developed since 1985 on the basis of our biological findings. All these robots behave in response to the optic flow, i.e., they work by measuring the slip speed of the retinal image. Optic flow is sensed on-board by miniature electro-optical velocity sensors. The very principle of these sensors was based on studies in which we recorded the responses of single identified neurons to single photoreceptor stimulation in a model visual system: the fly's compound eye.
Flow-based approach for holistic factory engineering and design
Constantinescu, C.; Westkämper, E.
2010-01-01
The engineering of future factories requires digital tools along life cycle phases from investment planning to ramp-up. Manufacturers need scientific-based integrated highly dynamic data management systems for the participative and integrated factory planning. The paper presents a new approach for the continuously integrated product design, factory and process planning, through a service-oriented architecture for the implementation of digital factory tools. A first prototype of the digital fa...
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
System Dynamics (SD) model is ideal for strategic analysis as it encompasses all the behaviours of a system and how the behaviours are influenced by...Markov Chain Models Wang describes Markov chain theory as a mathematical tool used to investigate dynamic behaviours of a system in a discrete-time... MODELLING APPROACH TO MILITARY END STRENGTH PLANNING by Benjamin K. Grossi December 2016 Thesis Advisor: Kenneth Doerr Second Reader
Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services
Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando
2013-01-01
Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.
DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach
DEFF Research Database (Denmark)
Akhter, F.; Macpherson, D.E.; Harrison, G.P.
2015-01-01
In this paper, a combinational AC/DC power flow approach is proposed for the solution of the combined AC/DC network. The unified power flow approach is extended to include DC voltage droop control. In the VSC based MTDC grids, DC droop control is regarded as more advantageous in terms...... of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....
Directory of Open Access Journals (Sweden)
Dzobko Iryna P.
2016-02-01
Full Text Available The formation of a methodological approach to evaluating management of the state of enterprise flow processes has been considered. Proceeding from the developed and presented in literary sources theoretical propositions on organization of management of enterprise flow processes, the hypothesis of the study is correlation of quantitative and qualitative evaluations of management effectiveness and formation of the integral index on their basis. The article presents stages of implementation of a methodological approach to evaluating the state of management of enterprise flow processes, which implies indicating the components, their characteristics and methods of research. The composition of indicators, on the basis of which it is possible to evaluate effectiveness of management of enterprise flow processes, has been determined. Grouping of such indicators based on the flow nature of enterprise processes has been performed. The grouping of indicators is justified by a pairwise determination of canonical correlations between the selected groups (the obtained high correlation coefficients confirmed the author’s systematization of indicators. It is shown that a specificity of the formation of a methodological approach to evaluating the state of management of enterprise flow processes requires expansion in the direction of aggregation of the results and determination of factors that influence effectiveness of flow processes management. The article carries out such aggregation using the factor analysis. Distribution of a set of objects into different classes according to the results of the cluster analysis has been presented. To obtain an integral estimation of effectiveness of flow processes management, the taxonomic index of a multidimensional object has been built. A peculiarity of the formed methodological approach to evaluating the state of management of enterprise flow processes is in the matrix correlation of integral indicators calculated on
Directory of Open Access Journals (Sweden)
V. Ramanujachari
1992-10-01
Full Text Available The dispersion of particles in the presence of Turbulent gas flow is studied theoretically using a stochastic separated flow model and the results compared with the available experimental data. As the particle loading in the jet is of the order of 0.1-0.4 per cent, the particles are assumed to have negligible effect on the mean and the turbulent gas phase properties (one-way coupling. The particle-turbulent eddy interactions are calculated by paying attention to the energy containing eddies, characterised by the integral length scale. The fluctuating velocities are sampled randomly from Gaussian distribution, and the particle trajectories are obtained using a procedure similar to random-walk computation. A large number of particle trajectories are averaged to obtain the statistical nature of the turbulent gas-particle jet. It is seen that the particles with less inertia, which are characterised by the Stokes number, tend to diffuse more. The turbulent diffusivities of the particles are in agreement with the available experimental data, when the time-averaged velocities of gas and particles are the same, obtained by the stochastic separated flow model.
Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach
Amor, Ben K.
2004-01-01
This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be invalu
Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach
Amor, Ben K.
2004-01-01
This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be
Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach
Amor, Ben K.
2004-01-01
This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be invalu
Directional synthetic aperture flow imaging using a dual stage beamformer approach
DEFF Research Database (Denmark)
Li, Ye; Jensen, Jørgen Arendt
2011-01-01
A new method for directional synthetic aperture flow imaging using a dual stage beamformer approach is presented. The velocity estimation is angle independent and the amount of calculations is reduced compared to full synthetic aperture, but still maintains all the advantages at the same time....... In the second stage, focal points are considered as virtual sources and data is beamformed along the flow direction. Then the velocities are estimated by finding the spatial shift between two signals. In the experimental measurements the angle between the transmit beam and flow vessel was 70 and a laminar flow...... with a parabolic profile was generated by a flow rig. The flow with a peak velocity of 0.1 m/s was sampled at a pulse repetition frequency of 4 kHz. The signals were transmitted and received by the experimental scanner SARUS (Synthetic Aperture Realtime Ultrasound System). A relative standard deviation of 2...
On the Hamiltonian approach: Applications to geophysical flows
Directory of Open Access Journals (Sweden)
V. Goncharov
1998-01-01
Full Text Available This paper presents developments of the Harniltonian Approach to problems of fluid dynamics, and also considers some specific applications of the general method to hydrodynamical models. Nonlinear gauge transformations are found to result in a reduction to a minimum number of degrees of freedom, i.e. the number of pairs of canonically conjugated variables used in a given hydrodynamical system. It is shown that any conservative hydrodynamic model with additional fields which are in involution may be always reduced to the canonical Hamiltonian system with three degrees of freedom only. These gauge transformations are associated with the law of helicity conservation. Constraints imposed on the corresponding Clebsch representation are determined for some particular cases, such as, for example. when fluid motions develop in the absence of helicity. For a long time the process of the introduction of canonical variables into hydrodynamics has remained more of an intuitive foresight than a logical finding. The special attention is allocated to the problem of the elaboration of the corresponding regular procedure. The Harniltonian Approach is applied to geophysical models including incompressible (3D and 2D fluid motion models in curvilinear and lagrangian coordinates. The problems of the canonical description of the Rossby waves on a rotating sphere and of the evolution of a system consisting of N singular vortices are investigated.
A SPATIOTEMPORAL APPROACH FOR HIGH RESOLUTION TRAFFIC FLOW IMPUTATION
Energy Technology Data Exchange (ETDEWEB)
Han, Lee [University of Tennessee, Knoxville (UTK); Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL
2016-01-01
Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data collection technologies have been evolving dramatically. The emergence of innovative data collection technologies such as Remote Traffic Microwave Sensor (RTMS), Bluetooth sensor, GPS-based Floating Car method, automated license plate recognition (ALPR) (1), etc., creates an explosion of traffic data, which brings transportation engineering into the new era of Big Data. However, despite the advance of technologies, the missing data issue is still inevitable and has posed great challenges for research such as traffic forecasting, real-time incident detection and management, dynamic route guidance, and massive evacuation optimization, because the degree of success of these endeavors depends on the timely availability of relatively complete and reasonably accurate traffic data. A thorough literature review suggests most current imputation models, if not all, focus largely on the temporal nature of the traffic data and fail to consider the fact that traffic stream characteristics at a certain location are closely related to those at neighboring locations and utilize these correlations for data imputation. To this end, this paper presents a Kriging based spatiotemporal data imputation approach that is able to fully utilize the spatiotemporal information underlying in traffic data. Imputation performance of the proposed approach was tested using simulated scenarios and achieved stable imputation accuracy. Moreover, the proposed Kriging imputation model is more flexible compared to current models.
Stanisavljevic, Nemanja; Brunner, Paul H
2014-08-01
The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management.
Directory of Open Access Journals (Sweden)
L. M. Stancanelli
2014-11-01
Full Text Available A detailed comparison between the performances of two different approaches to debris flow modelling has been carried out. In particular, the results of a mono-phase Bingham model (FLO-2D and these of a two phase model (TRENT-2D obtained from a blind test have been compared. As a benchmark test the catastrophic event of 1 October 2009 which struck Sicily causing several fatalities and damages has been chosen. The predicted temporal evolution of several parameters of the debris flow (as the flow depths and the propagation velocities has been analyzed in order to investigate the advantages and disadvantages of the two models in reproducing the global dynamics of the event. Analysis between the models results with survey data have been carried out, not only for the determination of statistical indicators of prediction accuracy, but also for the application of the Receiver Operator Characteristic (ROC approach. Provided that the proper rheological parameters and boundary conditions are assigned, both models seem capable of reproducing the inundation areas in a fairly good way. However, the main differences in the application rely in the choice of such rheological parameters. Indeed, within the more user friendly FLO-2D model the tuning of the parameters must be done empirically, with no evidence of the physics of the phenomena. On the other hand, for the TRENT-2D the parameters are physically based and can be estimated from the properties of the solid material, thus reproducing more reliable results. A second important difference between the two models is that in the first method the debris flow is treated as homogeneous flow, in which the total mass is kept constant from initiation in the upper part of the basin up to the deposition on debris fan. On the contrary, the second approach is suite to reproduce the erosion and deposition processes and the displaced mass can be directly related to the rainfall event. Application of both models in an highly
Stancanelli, L. M.; Foti, E.
2015-04-01
A detailed comparison between the performances of two different approaches to debris flow modelling was carried out. In particular, the results of a mono-phase Bingham model (FLO-2D) and that of a two-phase model (TRENT-2D) obtained from a blind test were compared. As a benchmark test the catastrophic event of 1 October 2009 which struck Sicily causing several fatalities and damage was chosen. The predicted temporal evolution of several parameters of the debris flow (such as flow depth and propagation velocity) was analysed in order to investigate the advantages and disadvantages of the two models in reproducing the global dynamics of the event. An analysis between the models' results with survey data have been carried out, not only for the determination of statistical indicators of prediction accuracy, but also for the application of the Receiver Operator Characteristic (ROC) approach. Provided that the proper rheological parameters and boundary conditions are assigned, both models seem capable of reproducing the inundation areas in a reasonably accurate way. However, the main differences in the application rely on the choice of such rheological parameters. Indeed, within the more user-friendly FLO-2D model the tuning of the parameters must be done empirically, with no evidence of the physics of the phenomena. On the other hand, for the TRENT-2D the parameters are physically based and can be estimated from the properties of the solid material, thus reproducing more reliable results. A second important difference between the two models is that in the first method the debris flow is treated as a homogeneous flow, in which the total mass is kept constant from its initiation in the upper part of the basin to the deposition in a debris fan. In contrast, the second approach is suited to reproduce the erosion and deposition processes and the displaced mass can be directly related to the rainfall event. Application of both models in a highly urbanized area reveals the
Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations
Pietroni, Massimo
2008-01-01
Nonlinear effects are crucial in order to compute the cosmological matter power spectrum to the accuracy required by future generation surveys. Here, a new approach is presented, in which the power spectrum and the bispectrum are obtained -at any redshift and for any momentum scale- by integrating a coupled system of differential equations. The solution of the equations corresponds, in perturbation theory, to the summation of an infinite class of corrections. Compared to other resummation frameworks, the scheme discussed here is particularly suited to cosmologies other than LambdaCDM, such as those based on modifications of gravity and those containing massive neutrinos. As a first application, we compute the Baryonic Acoustic Oscillation feature of the power spectrum, and compare the results with perturbation theory, the halo model, and N-body simulations. The density-velocity and velocity-velocity power spectra are also computed, showing that they are much less contaminated by nonlinearities than the densit...
Shiau, Jenq-Tzong; Wu, Fu-Chun
2010-08-01
Environmental flow schemes may be implemented through active or restrictive strategies. The former may be applied via reservoir releases, and the latter can be executed by reducing water demands. We present a dual active-restrictive approach to devising the optimal reservoir operation rules that aim to secure off-stream water supplies while maximizing environmental benefits. For the active part, a multicomponent environmental flow target (including the minimum and monthly flows) is incorporated in the operation rules. For the restrictive counterpart, we use a novel demands partitioning and prioritizing (DPP) approach to reallocating the demands of various sectors. The DPP approach partitions the existing off-stream demand and newly incorporated environmental demand and reassembles the two as the first- and second-priority demands. Water is reallocated to each demand according to the ratios derived from the prioritized demands. The proposed approach is coupled with a multicriteria optimization framework to seek the optimal operation rules for the existing Feitsui Reservoir system (Taiwan) under various scenarios. The best overall performance is achieved by an optimal dual strategy whose operational parameters are all determined by optimization. The optimal environmental flow target may well be a top-priority constant base flow rather than the variable quantities. The active strategy would outperform the restrictive one. For the former, a top-priority base flow target is essential; for the latter, the off-stream demand can become vanishingly small in compensation for the eliminated base flow target, thus promoting the monthly flow target as nearly the top-priority demand. For either the active or restrictive strategy, a prioritized environmental flow demand would provide a path toward the optimal overall performance. A significantly improved overall performance over the existing operation rules is unlikely if the active and restrictive parameters are both favorable
Examining the Bernstein global optimization approach to optimal power flow problem
Patil, Bhagyesh V.; Sampath, L. P. M. I.; Krishnan, Ashok; Ling, K. V.; Gooi, H. B.
2016-10-01
This work addresses a nonconvex optimal power flow problem (OPF). We introduce a `new approach' in the context of OPF problem based on the Bernstein polynomials. The applicability of the approach is studied on a real-world 3-bus power system. The numerical results obtained with this new approach for a 3-bus system reveal a satisfactory improvement in terms of optimality. The results are found to be competent with generic global optimization solvers BARON and COUENNE.
Modeling of annular two-phase flow using a unified CFD approach
Energy Technology Data Exchange (ETDEWEB)
Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se
2016-07-15
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
A Mixed Approach for Modeling Blood Flow in Brain Microcirculation
Peyrounette, M.; Sylvie, L.; Davit, Y.; Quintard, M.
2014-12-01
We have previously demonstrated [1] that the vascular system of the healthy human brain cortex is a superposition of two structural components, each corresponding to a different spatial scale. At small-scale, the vascular network has a capillary structure, which is homogeneous and space-filling over a cut-off length. At larger scale, veins and arteries conform to a quasi-fractal branched structure. This structural duality is consistent with the functional duality of the vasculature, i.e. distribution and exchange. From a modeling perspective, this can be viewed as the superposition of: (a) a continuum model describing slow transport in the small-scale capillary network, characterized by a representative elementary volume and effective properties; and (b) a discrete network approach [2] describing fast transport in the arterial and venous network, which cannot be homogenized because of its fractal nature. This problematic is analogous to modeling problems encountered in geological media, e.g, in petroleum engineering, where fast conducting channels (wells or fractures) are embedded in a porous medium (reservoir rock). An efficient method to reduce the computational cost of fractures/continuum simulations is to use relatively large grid blocks for the continuum model. However, this also makes it difficult to accurately couple both structural components. In this work, we solve this issue by adapting the "well model" concept used in petroleum engineering [3] to brain specific 3-D situations. We obtain a unique linear system of equations describing the discrete network, the continuum and the well model coupling. Results are presented for realistic geometries and compared with a non-homogenized small-scale network model of an idealized periodic capillary network of known permeability. [1] Lorthois & Cassot, J. Theor. Biol. 262, 614-633, 2010. [2] Lorthois et al., Neuroimage 54 : 1031-1042, 2011. [3] Peaceman, SPE J. 18, 183-194, 1978.
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commercially available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Kaisheng Zhang; Mei Wang; Bangyang Wei; Daniel(Jian) Sun
2016-01-01
Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and...
Tandem cylinder flow and noise predictions using a hybrid RANS/LES approach
M. Weinmann; Sandberg, R.D.; Doolan, C.
2014-01-01
The performance of a novel hybrid RANS/LES methodology for accurate flow and noise predictions of the NASA Tandem Cylinder Experiment is investigated. The proposed approach, the modified Flow Simulation Methodology (FSM), is based on scaling the turbulence viscosity and the turbulence kinetic energy dissipation rate with a damping function. This damping function consists of three individual components, a function based on the Kolmogorov length-scale ensuring correct behaviour in the direct nu...
Kaisheng Zhang; Mei Wang; Bangyang Wei; Daniel (Jian) Sun
2016-01-01
Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and...
Glaze, L. S.; Baloga, S. M.
2014-01-01
Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth (e.g., Figure 1) indicate that the emplacement process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. Thus, interpretation of emplacement conditions for pahoehoe lava flows on Mars requires fundamentally different models. A new model that implements a simulation approach has recently been developed that allows exploration of a variety of key influences on pahoehoe lobe emplacement (e.g., source shape, confinement, slope). One important factor that has an impact on the final topographic shape and morphology of a pahoehoe lobe is the volumetric flow rate of lava, where cooling of lava on the lobe surface influences the likelihood of subsequent breakouts.
Arbitrary Lagrangian-Eulerian approach in reduced order modeling of a flow with a moving boundary
Stankiewicz, W.; Roszak, R.; Morzyński, M.
2013-06-01
Flow-induced deflections of aircraft structures result in oscillations that might turn into such a dangerous phenomena like flutter or buffeting. In this paper the design of an aeroelastic system consisting of Reduced Order Model (ROM) of the flow with a moving boundary is presented. The model is based on Galerkin projection of governing equation onto space spanned by modes obtained from high-fidelity computations. The motion of the boundary and mesh is defined in Arbitrary Lagrangian-Eulerian (ALE) approach and results in additional convective term in Galerkin system. The developed system is demonstrated on the example of a flow around an oscillating wing.
Finite element simulation of internal flows with heat transfer using a velocity correction approach
Indian Academy of Sciences (India)
B S Varaprasad Patnaik; Y T K Gowda; M S Ravisankar; P A Aswatha Narayana; K N Seetharamu
2001-06-01
This paper enumerates finite-element based prediction of internal flow problems, with heat transfer. The present numerical simulations employ a velocity correction algorithm, with a Galerkin weighted residual formulation. Two problems each in laminar and turbulent flow regimes are investigated, by solving full Navier-Stokes equations. Flow over a backward-facing step is studied with extensive validations. The robustness of the algorithm is demonstrated by solving a very complex problem viz. a disk and doughnut baffled heat exchanger, which has several obstructions in its flow path. The effect of wall conductivity in turbulent heat transfer is also studied by performing a conjugate analysis. Temporal evolution of flow in a channel due to circular, square and elliptic obstructions is investigated, to simulate the vortex dynamics. Flow past an in-line tube bank of a heat exchanger shell is numerically studied. Resulting heat and fluid flow patterns are analysed. Important design parameters of interest such as the Nusselt number, Strouhal number, skin friction coefficient, pressure drop etc. are obtained. It is successfully demonstrated that the velocity correction approach with a Galerkin weighted residual formulation is able to effectively simulate a wide range of fluid flow features.
Multi-compartment approach to identify minimal flow and maximal recreational use of a lowland river
Pusch, Martin; Lorenz, Stefan
2013-04-01
Most approaches to establish a minimum flow rate for river sections subjected to water abstraction focus on flow requirements of fish and benthic invertebrates. However, artificial reduction of river flow will always affect additional key ecosystem features, as sediment properties and the metabolism of matter in these ecosystems as well, and may even influence adjacent floodplains. Thus, significant effects e.g. on the dissolved oxygen content of river water, on habitat conditions in the benthic zone, and on water levels in the floodplain are to be expected. Thus, we chose a multiple compartment method to identify minimum flow requirements in a lowland River in northern Germany (Spree River), selecting the minimal required flow level out of all compartments studied. Results showed that minimal flow levels necessary to keep key ecosystem features at a 'good' state depended significantly on actual water quality and on river channel morphology. Thereby, water quality of the Spree is potentially influenced by recreational boating activity, which causes mussels to stop filter-feeding, and thus impedes self-purification. Disturbance of mussel feeding was shown to directly depend on boat type and speed, with substantial differences among mussel species. Thus, a maximal recreational boating intensity could be derived that does not significantly affect self purification. We conclude that minimal flow levels should be identified not only based on flow preferences of target species, but also considering channel morphology, ecological functions, and the intensity of other human uses of the river section.
A new approach to flow through a region bounded by two ellipses of the same ellipticity
Lal, K.; Chorlton, F.
1981-05-01
A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.
A fully automated flow-based approach for accelerated peptide synthesis.
Mijalis, Alexander J; Thomas, Dale A; Simon, Mark D; Adamo, Andrea; Beaumont, Ryan; Jensen, Klavs F; Pentelute, Bradley L
2017-05-01
Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.
Directory of Open Access Journals (Sweden)
Taha Sochi
2015-01-01
Full Text Available We use a generic and general variational method to obtain solutions to the flow of generalized Newtonian fluids through circular pipes and plane slits. The new method is not based on the use of the Euler-Lagrange variational principle and hence it is totally independent of our previous approach which is based on this principle. Instead, the method applies a very generic and general optimization approach which can be justified by the Dirichlet principle although this is not the only possible theoretical justification. The results that were obtained from the new method using nine types of fluid are in total agreement, within certain restrictions, with the results obtained from the traditional methods of fluid mechanics as well as the results obtained from the previous variational approach. In addition to being a useful method in its own for resolving the flow field in circular pipes and plane slits, the new variational method lends more support to the old variational method as well as for the use of variational principles in general to resolve the flow of generalized Newtonian fluids and obtain all the quantities of the flow field which include shear stress, local viscosity, rate of strain, speed profile, and volumetric flow rate.
A Vocabulary Approach to Partial Streamline Matching and Exploratory Flow Visualization.
Tao, Jun; Wang, Chaoli; Shene, Ching-Kuang; Shaw, Raymond A
2016-05-01
Measuring the similarity of integral curves is fundamental to many important flow data analysis and visualization tasks such as feature detection, pattern querying, streamline clustering, and hierarchical exploration. In this paper, we introduce FlowString, a novel vocabulary approach that extracts shape invariant features from streamlines and utilizes a string-based method for exploratory streamline analysis and visualization. Our solution first resamples streamlines by considering their local feature scales. We then classify resampled points along streamlines based on the shape similarity around their local neighborhoods. We encode each streamline into a string of well-selected shape characters, from which we construct meaningful words for querying and retrieval. A unique feature of our approach is that it captures intrinsic streamline similarity that is invariant under translation, rotation and scaling. We design an intuitive interface and user interactions to support flexible querying, allowing exact and approximate searches for partial streamline matching. Users can perform queries at either the character level or the word level, and define their own characters or words conveniently for customized search. We demonstrate the effectiveness of FlowString with several flow field data sets of different sizes and characteristics. We also extend FlowString to handle multiple data sets and perform an empirical expert evaluation to confirm the usefulness of this approach.
Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach
Energy Technology Data Exchange (ETDEWEB)
Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson
2006-08-03
Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.
Chigullapalli, Sruti
Micro-electro-mechanical systems (MEMS) are widely used in automotive, communications and consumer electronics applications with microactuators, micro gyroscopes and microaccelerometers being just a few examples. However, in areas where high reliability is critical, such as in aerospace and defense applications, very few MEMS technologies have been adopted so far. Further development of high frequency microsystems such as resonators, RF MEMS, microturbines and pulsed-detonation microengines require improved understanding of unsteady gas dynamics at the micro scale. Accurate computational simulation of such flows demands new approaches beyond the conventional formulations based on the macroscopic constitutive laws. This is due to the breakdown of the continuum hypothesis in the presence of significant non-equilibrium and rarefaction because of large gradients and small scales, respectively. More generally, the motion of molecules in a gas is described by the kinetic Boltzmann equation which is valid for arbitrary Knudsen numbers. However, due to the multidimensionality of the phase space and the complex non-linearity of the collision term, numerical solution of the Boltzmann equation is challenging for practical problems. In this thesis a fully deterministic, as opposed to a statistical, finite volume based three-dimensional solution of Boltzmann ES-BGK model kinetic equation is formulated to enable simulations of unsteady rarefied flows. The main goal of this research is to develop an unsteady rarefied solver integrated with finite volume method (FVM) solver in MEMOSA (MEMS Overall Simulation Administrator) developed by PRISM: NNSA center for Prediction of Reliability, Integrity and Survivability of Microsystems (PRISM) at Purdue and apply it to study micro-scale gas damping. Formulation and verification of finite volume method for unsteady rarefied flow solver based on Boltzmann-ESBGK equations in arbitrary three-dimensional geometries are presented. The solver is
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.
2003-11-03
This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.
Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow
Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan
2012-01-01
In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…
Directory of Open Access Journals (Sweden)
Carmignani Luca
2015-01-01
Full Text Available Opposed-flow flame spread over solid fuels is a fundamental area of research in fire science. Typically combustion wind tunnels are used to generate the opposing flow of oxidizer against which a laminar flame spread occurs along the fuel samples. The spreading flame is generally embedded in a laminar boundary layer, which interacts with the strong buoyancy-induced flow to affect the mechanism of flame spread. In this work, two different approaches for creating the opposed-flow are compared. In the first approach, a vertical combustion tunnel is used where a thin fuel sample, thin acrylic or ashless filter paper, is held vertically along the axis of the test-section with the airflow controlled by controlling the duty cycles of four fans. As the sample is ignited, a flame spreads downward in a steady manner along a developing boundary layer. In the second approach, the sample is held in a movable cart placed in an eight-meter tall vertical chamber filled with air. As the sample is ignited, the cart is moved downward (through a remote-controlled mechanism at a prescribed velocity. The results from the two approaches are compared to establish the boundary layer effect on flame spread over thin fuels.
Study of the parabolic and elliptic approaches validities for a turbulent co-flowing jet
Directory of Open Access Journals (Sweden)
Mahmoud Houda
2012-01-01
Full Text Available An axisymmetric turbulent jet discharged in a co-flowing stream was studied with the aid of parabolic and elliptic approaches. The simulations were performed with two in-house codes. Detailed comparisons of data show good agreement with the corresponding experiments; and different behaviors of jet dilution were found in initial region at different ranges of velocities ratios. It has been found that the two approaches give practically the same results for the velocities ratios Ru ≤ 1.5. Further from this value, the elliptic approach highlights the appearance of the fall velocity zone and that’s due to the presence of a trough low pressure. This fall velocity has not been detected by the parabolic approach and that’s due to the jet entrainment by the ambient flow. The intensity of this entrainment is directly related to the difference between the primary (jet and the secondary flow (co-flow. In fact, by increasing the velocities ratios Ru, the sucked flux by the outer stream becomes more important; the fall velocity intensifies and changes into a recirculation zone for Ru ≥ 5.
Djelic, Marina; Mazic, Sanja; Zikic, Dejan
2013-01-01
In the frame of a laboratory training course for medicine students, a new approach for laboratory exercises has been applied to teach the phenomena of circulation. The exercise program included measurements of radial artery blood flow waveform for different age groups using a noninvasive optical sensor. Arterial wave reflection was identified by…
Carmignani, Luca; Celniker, Greg; Bussett, Kyle; Paolini, Christopher; Bhattacharjee, Subrata
2015-05-01
Opposed-flow flame spread over solid fuels is a fundamental area of research in fire science. Typically combustion wind tunnels are used to generate the opposing flow of oxidizer against which a laminar flame spread occurs along the fuel samples. The spreading flame is generally embedded in a laminar boundary layer, which interacts with the strong buoyancy-induced flow to affect the mechanism of flame spread. In this work, two different approaches for creating the opposed-flow are compared. In the first approach, a vertical combustion tunnel is used where a thin fuel sample, thin acrylic or ashless filter paper, is held vertically along the axis of the test-section with the airflow controlled by controlling the duty cycles of four fans. As the sample is ignited, a flame spreads downward in a steady manner along a developing boundary layer. In the second approach, the sample is held in a movable cart placed in an eight-meter tall vertical chamber filled with air. As the sample is ignited, the cart is moved downward (through a remote-controlled mechanism) at a prescribed velocity. The results from the two approaches are compared to establish the boundary layer effect on flame spread over thin fuels.
Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow
Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan
2012-01-01
In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…
Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control
The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...
SERVICE-ORIENTED APPROACH FOR OPTIMAL ROUTING OF INFORMATION FLOWS IN MULTISERVICE NETWORKS
Directory of Open Access Journals (Sweden)
N. I. Listopad
2015-01-01
Full Text Available New approach for optimal routing of information flows is developed based on service-oriented architecture. To find the shortest path it’s require to take into account the QoS-parameters such as delay, jitter, bandwidth, lost of the packets and cost of telecommunication resources.
Mode decomposition methods for flows in high-contrast porous media. A global approach
Ghommem, Mehdi
2014-01-01
We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.
Flow equation approach to one-body and many-body localization
Quito, Victor; Bhattacharjee, Paraj; Pekker, David; Refael, Gil
2014-03-01
We study one-body and many-body localization using the flow equation technique applied to spin-1/2 Hamiltonians. This technique, first introduced by Wegner, allows us to exact diagonalize interacting systems by solving a set of first-order differential equations for coupling constants. Besides, by the flow of individual operators we also compute physical properties, such as correlation and localization lengths, by looking at the flow of probability distributions of couplings in the Hilbert space. As a first example, we analyze the one-body localization problem written in terms of spins, the disordered XY model with a random transverse field. We compare the results obtained in the flow equation approach with the diagonalization in the fermionic language. For the many-body problem, we investigate the physical properties of the disordered XXZ Hamiltonian with a random transverse field in the z-direction.
Delay, Frederick; Porel, Gilles; Chatelier, Marion
2013-07-01
We present a modeling exercise of solute transport and biodegradation in a coarse porous medium widely colonized by a biofilm phase. Tracer tests in large laboratory columns using both conservative (fluorescein) and biodegradable (nitrate) solutes are simulated by means of a dual flowing continuum approach. The latter clearly distinguishes concentrations in a flowing porous phase from concentrations conveyed in the biofilm. With this conceptual setting, it becomes possible to simulate the sharp front of concentrations at early times and the flat tail of low concentrations at late times observed on the experimental breakthrough curves. Thanks to the separation of flow in two phases at different velocities, dispersion coefficients in both flowing phases keep reasonable values with some physical meaning. This is not the case with simpler models based on a single continuum (eventually concealing dead-ends), for which inferred dispersivity may reach the unphysical value of twice the size of the columns. We also show that the behavior of the dual flowing continuum is mainly controlled by the relative fractions of flow passing in each phase and the rate of mass transfer between phases. These parameters also condition the efficiency of nitrate degradation, the degradation rate in a well-seeded medium being a weakly sensitive parameter. Even though the concept of dual flowing continuum appears promising for simulating transport in complex porous media, its inversion onto experimental data really benefits from attempts with simpler models providing a rough pre-evaluation of parameters such as porosity and mean fluid velocity in the system.
River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
Sivakumar, B.; Jayawardena, A. W.; Fernando, T. M. K. G.
2002-08-01
The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand. The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach.
Linking river flow regimes to riparian plant guilds: a community-wide modeling approach.
Lytle, David A; Merritt, David M; Tonkin, Jonathan D; Olden, Julian D; Reynolds, Lindsay V
2017-06-01
Modeling riparian plant dynamics along rivers is complicated by the fact that plants have different edaphic and hydrologic requirements at different life stages. With intensifying human demands for water and continued human alteration of rivers, there is a growing need for predicting responses of vegetation to flow alteration, including responses related to climate change and river flow management. We developed a coupled structured population model that combines stage-specific responses of plant guilds with specific attributes of river hydrologic regime. The model uses information on the vital rates of guilds as they relate to different hydrologic conditions (flood, drought, and baseflow), but deliberately omits biotic interactions from the structure (interaction neutral). Our intent was to (1) consolidate key vital rates concerning plant population dynamics and to incorporate these data into a quantitative framework, (2) determine whether complex plant stand dynamics, including biotic interactions, can be predicted from basic vital rates and river hydrology, and (3) project how altered flow regimes might affect riparian communities. We illustrated the approach using five flow-response guilds that encompass much of the river floodplain community: hydroriparian tree, xeroriparian shrub, hydroriparian shrub, mesoriparian meadow, and desert shrub. We also developed novel network-based tools for predicting community-wide effects of climate-driven shifts and deliberately altered flow regimes. The model recovered known patterns of hydroriparian tree vs. xeroriparian shrub dominance, including the relative proportion of these two guilds as a function of river flow modification. By simulating flow alteration scenarios ranging from increased drought to shifts in flood timing, the model predicted that mature hydroriparian forest should be most abundant near the observed natural flow regime. Multiguild sensitivity analysis identified substantial network connectivity (many
Zacny, K.; Nagihara, S.; Hedlund, M.; Paulsen, G.; Shasho, J.; Mumm, E.; Kumar, N.; Szwarc, T.; Chu, P.; Craft, J.; Taylor, P.; Milam, M.
2013-11-01
In this paper, the development of heat flow probes for measuring the geothermal gradient and conductivity of lunar regolith are presented. These two measurements are the required information for determining the heat flow of a planetary body. Considering the Moon as an example, heat flow properties are very important information for studying the radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the interior. In order to obtain the best measurements, the sensors must be extended to a depth of at least 3 m, i.e. beyond the depth of significant thermal cycles. Two approaches to heat flow deployment and measurement are discussed in this paper: a percussive approach and a pneumatic approach. The percussive approach utilizes a high frequency hammer to drive a cone penetrometer into the lunar simulant. Ring-like thermal sensors (heaters and temperature sensors) on the penetrometer rod are deployed into the simulant every 30 cm as the penetrometer penetrates to the required 3 m depth. Once the target depth has been achieved, the deployment rod is removed from the simulant, eliminating any thermal path to the lander. The pneumatic approach relies on pressurized gas to excavate, using a cone-shaped nozzle to penetrate the simulant. The nozzle is attached to a coiled stem with thermal sensors embedded along the length of the stem. As the simulant is being lofted out of the hole by the escaping gas, the stem is progressively reeled out from a spool, thus moving the cone deeper into the hole. Thermal conductivity is measured using a needle probe attached to the end of the cone. Breadboard prototypes of these two heat flow probe systems have been constructed and successfully tested under lunar-like conditions to approximately 70 cm, which was the maximum possible depth allowed by the size of the test bin and the chamber.
Comparison of two inlet boundary approaches in numerical simulation of car ventilation outlet flow
Directory of Open Access Journals (Sweden)
Talanda Tomáš
2016-01-01
Full Text Available The paper is concerned with the comparison of two inlet boundary approaches of numerical simulations. The first approach is based on the simulation of a sufficiently long duct upstream the area of interest with known volumetric flow rate. The second approach rests on the experimental measurement of the section closer to the area of interest. The experimental measurement provides velocity profile and in addition turbulent intensity compared to the first approach where only a velocity profile can be computed according to known volumetric flow rate. A simplified model of car ventilation outlet was chosen as a test case. The model consists of circular and rectangular duct, area of interest (closing flap, vertical slats and horizontal slats and outlet box. We have compared the two mentioned inlet boundary approaches for two distinct values of volumetric flow rate for which the experimental data of the section upstream of the area of interest are available. The velocity and the turbulent kinetic energy profiles downstream of the area of interest were chosen as comparative characteristics.
Mott Lacroix, Kelly E.; Xiu, Brittany C.; Megdal, Sharon B.
2016-04-01
Despite increased understanding of the science of environmental flows, identification and implementation of effective environmental flow policies remains elusive. Perhaps the greatest barrier to implementing flow policies is the framework for water management. An alternative management approach is needed when legal rights for environmental flows do not exist, or are ineffective at protecting ecosystems. The research presented here, conducted in the U.S. state of Arizona, provides an empirical example of engagement to promote social learning as an approach to finding ways to provide water for the environment where legal rights for environmental flows are inadequate. Based on our engagement process we propose that identifying and then building common ground require attention to the process of analyzing qualitative data and the methods for displaying complex information, two aspects not frequently discussed in the social learning or stakeholder engagement literature. The results and methods from this study can help communities develop an engagement process that will find and build common ground, increase stakeholder involvement, and identify innovative solutions to provide water for the environment that reflect the concerns of current water users.
Energy Technology Data Exchange (ETDEWEB)
Xu, Tianfu; Pruess, Karsten
2000-08-08
Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).
A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System
Directory of Open Access Journals (Sweden)
Ben-Ran Fu
2016-09-01
Full Text Available This study explored effects of off-design heat source temperature (TW,in or flow rate (mW on heat transfer characteristics and performance of an organic Rankine cycle system by controlling the flow rate of working fluid R245fa (i.e., the operation flow rate of R245fa was controlled to ensure that R245fa reached saturation liquid and vapor states at the outlets of the preheater and evaporator, respectively. The results showed that the operation flow rate of R245fa increased with TW,in or mW; higher TW,in or mW yielded better heat transfer performance of the designed preheater and required higher heat capacity of the evaporator; heat transfer characteristics of preheater and evaporator differed for off-design TW,in and mW; and net power output increased with TW,in or mW. The results further indicated that the control strategy should be different for various off-design conditions. Regarding maximum net power output, the flow rate control approach is optimal when TW,in or mW exceeds the design point, but the pressure control approach is better when TW,in or mW is lower than the design point.
A three-pillar approach to assessing climate impacts on low flows
Directory of Open Access Journals (Sweden)
G. Laaha
2015-12-01
Full Text Available The objective of this paper is to present a new strategy for assessing climate impacts on low flows and droughts. The strategy is termed a three-pillar approach as it combines different sources of information. The first pillar, trend extrapolation, exploits the temporal patterns of observed low flows and extends them into the future. The second pillar, rainfall–runoff projections uses precipitation and temperature scenarios from climate models as an input to rainfall–runoff models to project future low flows. The third pillar, stochastic projections, exploits the temporal patterns of observed precipitation and air temperature and extends them into the future to drive rainfall–runoff projections. These pieces of information are combined by expert judgement based on a synoptic view of data and model outputs, taking the respective uncertainties of the methods into account. The viability of the approach is demonstrated for four example catchments from Austria that represent typical climate conditions in Central Europe. The projections differ in terms of their signs and magnitudes. The degree to which the methods agree depends on the regional climate and the dominant low flow seasonality. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistent projections of increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the South and Southeast, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. These results suggest that conclusions drawn from only one pillar of information would be highly uncertain. The three-pillar approach offers a systematic framework of combining different sources of information aiming at more robust projections than obtained from each pillar alone.
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of
Research on vibration characteristics of L-shaped plate using a mobility power flow approach
Institute of Scientific and Technical Information of China (English)
CHEN Xiao-li; SHENG Mei-ping
2007-01-01
L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided into two substructures to simplify analysis. The coupled bending moment was then deduced by applying a continuous vibration property on the common edge. Next, the response on any point of the plate and the input and transmitted power flow formulas were calculated. Numerical simulations showed the distribution of the coupled bending moment and the response of the whole structure. The validity of this method was verified by the SEA approach.
Energy Technology Data Exchange (ETDEWEB)
Schaub, Georg [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Engler-Bunte-Institut; Turek, Thomas [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Chemische Verfahrenstechnik
2011-07-01
The book deals with the global flows of energy and materials, and changes caused by human activities. Based on these facts, the limitations of anthropogenic energy and material flows and the resulting consequences for the development of human societies are discussed. Different scenarios for lifestyle patterns are correlated with the world's future development of energy supply and climate. The book provides a process engineering approach to the Earth system and global development. It requires basic understanding of mathematics, physics, chemistry and biology, and provides an insight into the complex matter for readers ranging from undergraduate students to experts. (orig.)
A Fundamental Approach to the Simulation of Flow and Dispersion in Fractured Media
Energy Technology Data Exchange (ETDEWEB)
Miller, J.D.
1983-12-15
Fracture systems may be generalized in terms of number and orientation of sets of parallel fractures and the distribution of length, width, thickness and separation. Borehole measurements may be used to particularize these parameters for a specific site. Global flow and dispersion in an aquifer occur in the interconnected fractures and may be related to specific fracture elements. A fluid dynamics code named SALE has been used to solve the Navier-Stokes equations for laminar flow in these elemental geometries. A marker particle calculation has been added to characterize longitudinal dispersion due to the velocity profile across the fracture and lateral dispersion due to flow disturbances at junctions. Local flow and dispersion in the matrix occur in the finer fracture structure and are evaluated using porous media approaches. These results or models are integrated in a 2D isothermal reservoir simulator named FRACSL. Discrete fractures are superimposed on the edges or diagnoals of rectangular grid elements. Water may flow from node to node through the matrix or through the fracture. The heads are found by iterating for the distribution which conserves the appropriate local mass. Marker particles are used to monitor the tracer dispersion due to motion in the fractures, in the matrix and between the two. Results are given showing flow and dispersion in an orthogonal junction and in a sample fractured reservoir.
An Efficient Multi-Scale Modelling Approach for ssDNA Motion in Fluid Flow
Institute of Scientific and Technical Information of China (English)
M.Benke; E.Shapiro; D.Drikakis
2008-01-01
The paper presents a multi-scale modelling approach for simulating macromolecules in fluid flows. Macromolecule transport at low number densities is frequently encountered in biomedical devices, such as separators, detection and analysis systems. Accurate modelling of this process is challenging due to the wide range of physical scales involved. The continuum approach is not valid for low solute concentrations, but the large timescales of the fluid flow make purely molecular simulations prohibitively expensive. A promising multi-scale modelling strategy is provided by the meta-modelling approach considered in this paper. Meta-models are based on the coupled solution of fluid flow equations and equations of motion for a simplified mechanical model of macromolecules. The approach enables simulation of individual macromolecules at macroscopic time scales. Meta-models often rely on particle-corrector algorithms, which impose length constraints on the mechanical model. Lack of robustness of the particle-corrector algorithm employed can lead to slow convergence and numerical instability. A new FAst Linear COrrector (FALCO) algorithm is introduced in this paper, which significantly improves computational efficiency in comparison with the widely used SHAKE algorithm. Validation of the new particle corrector against a simple analytic solution is performed and improved convergence is demonstrated for ssDNA motion in a lid-driven micro-cavity.
Spear, Timothy T; Nishimura, Michael I; Simms, Patricia E
2017-08-01
Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets. © Society
LPMLE3: A novel 1-D approach to study water flow in streambeds using heat as a tracer
Schneidewind, U.; Berkel, van M.; Anibas, C.; van der Steen, G.; Schmidt, C.; Joris, I.; Seuntjens, P.; Batelaan, O.; Zwart, Heiko J.
We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it
A time delay artificial neural network approach for flow routing in a river system
Directory of Open Access Journals (Sweden)
M. J. Diamantopoulou
2006-09-01
Full Text Available River flow routing provides basic information on a wide range of problems related to the design and operation of river systems. In this paper, three layer cascade correlation Time Delay Artificial Neural Network (TDANN models have been developed to forecast the one day ahead daily flow at Ilarionas station on the Aliakmon river, in Northern Greece. The networks are time lagged feed-formatted with delayed memory processing elements at the input layer. The network topology is using multiple inputs, which include the time lagged daily flow values further up at Siatista station on the Aliakmon river and at Grevena station on the Venetikos river, which is a tributary to the Aliakmon river and a single output, which are the daily flow values at Ilarionas station. The choice of the input variables introduced to the input layer was based on the cross-correlation. The use of cross-correlation between the ith input series and the output provides a short cut to the problem of the delayed memory determination. Kalman's learning rule was used to modify the artificial neural network weights. The networks are designed by putting weights between neurons, by using the hyperbolic-tangent function for training. The number of nodes in the hidden layer was determined based on the maximum value of the correlation coefficient. The results show a good performance of the TDANN approach for forecasting the daily flow values, at Ilarionas station and demonstrate its adequacy and potential for river flow routing. The TDANN approach introduced in this study is sufficiently general and has great potential to be applicable to many hydrological and environmental applications.
Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples
DEFF Research Database (Denmark)
Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat
2005-01-01
In the recent decades, batchwise equilibrium-based single or sequential extraction schemes have been consolidated as analytical tools for fractionation analyses to assess the ecotoxicological significance of metal ions in solid environmental samples. However, taking into account that naturally...... occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. The present review details the state-of-the-art and the fundamental...... generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...
Investigation of the thermal mixing in a T-junction flow with different SRS approaches
Energy Technology Data Exchange (ETDEWEB)
Gritskevich, M.S., E-mail: gritskevich@ymail.com [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation); Garbaruk, A.V. [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation); Frank, Th.; Menter, F.R. [Software Development Department, ANSYS, 83714 Otterfing (Germany)
2014-11-15
Highlights: • Global (SAS, DDES) and zonal (ELES-WMLES) models are compared for the T-junction flow. • All the models accurately predict mean, RMS, and spectral quantities. • ELES-WMLES approach yields very good results independent of the advection scheme. • SAS and the DDES models are slightly less accurate. • SAS depends on the advection scheme. - Abstract: An investigation of different turbulence Scale-Resolving Simulation (SRS) modeling approaches for the flow in a T-junction has been conducted using the Scale-Adaptive Simulation (SAS), the Delayed Detached Eddy Simulation (DDES) and the Embedded Large Eddy Simulation (ELES) methods. The results show that all models are able to accurately predict mean and RMS velocity profiles and velocity spectra, when are used in combination with a low dissipation advection scheme. However, when a slightly more dissipative scheme is used, the SAS model yields less accurate results, indicating that this flow does not produce a strong enough flow instability to allow the safe application of this model. The DDES and the ELES models show less sensitivity to the numerical setting compared to the SAS model. The main goal of the study is the accurate prediction of heat transfer on the walls in the mixing zone. In that respect, the ELES method produces the most consistent agreement with the experimental data.
A "horizon adapted" approach to the study of relativistic accretion flows onto rotating black holes
Font, J A; Papadopoulos, P P; Font, José A.; Ibanez, José M.; Papadopoulos, Philippos
1998-01-01
We present a new geometrical approach to the study of accretion flows onto rotating (Kerr) black holes. Instead of Boyer-Lindquist coordinates, the standard choice in all existing numerical simulations in the literature, we employ the simplest example of a horizon adapted coordinate system, the Kerr-Schild coordinates. This choice eliminates boundary ambiguities and unphysical divergent behavior at the event horizon. Computations of Bondi-Hoyle accretion onto extreme Kerr black holes, performed here for the first time, demonstrate the key advantages of this procedure. We argue it offers the best approach to the numerical study of the, observationally, increasingly more accesible relativistic inner region around black holes.
A new approach in cascade flow analysis using the finite element method
Baskharone, E.; Hamed, A.
1980-01-01
A new approach in analyzing the potential flow past cascades and single airfoils using the finite element method is developed. In this analysis the circulation around the airfoil is not externally imposed but is directly computed in the numerical solution. Different finite element discretization patterns, orders of piecewise approximation, and grid sizes are used in the solution. The results obtained are compared with existing experimental measurements and exact solutions in cascades and single airfoils.
A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.
Lee, I; Sikora, R; Shaw, M J
1997-01-01
Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.
Study of downward annular pipe flow using combined laser-based approaches
An, Jae Sik; Cherdantsev, Andrey; Zadrazil, Ivan; Matar, Omar; Markides, Christos
2016-11-01
In downward annular flow, the liquid phase flows as a film along the pipe wall and the gas flows in the core of the pipe. The liquid free-surface is covered by a complex multiscale system of waves. The interaction dynamics of the interfacial waves with each other and with the gas stream exert a significant influence on the pressure drop, heat transfer and mass interchange between the phases. The complexity of the interface requires the application of measurement techniques with high spatiotemporal resolution. In this work, two approaches based on the principle of laser-induced fluorescence, namely planar LIF and brightness-based LIF, are applied simultaneously to study interfacial phenomena in these flows, while simultaneous LIF and PIV are used to obtain velocity field information in the liquid phase underneath the waves. Sources of measurement bias are then analysed: total internal reflection at the out-of-plane interface; steep longitudinal slopes and transverse wave curvature; presence of gas bubbles in the liquid film. Although each method has its own limitations, a combined technique can provide reliable spatiotemporal measurements of film thickness to accompany the velocity information. Finally, flow development is studied in a moving frame of reference over long lengths. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
A computational approach to modeling cellular-scale blood flow in complex geometry
Balogh, Peter; Bagchi, Prosenjit
2017-04-01
We present a computational methodology for modeling cellular-scale blood flow in arbitrary and highly complex geometry. Our approach is based on immersed-boundary methods, which allow modeling flows in arbitrary geometry while resolving the large deformation and dynamics of every blood cell with high fidelity. The present methodology seamlessly integrates different modeling components dealing with stationary rigid boundaries of complex shape, moving rigid bodies, and highly deformable interfaces governed by nonlinear elasticity. Thus it enables us to simulate 'whole' blood suspensions flowing through physiologically realistic microvascular networks that are characterized by multiple bifurcating and merging vessels, as well as geometrically complex lab-on-chip devices. The focus of the present work is on the development of a versatile numerical technique that is able to consider deformable cells and rigid bodies flowing in three-dimensional arbitrarily complex geometries over a diverse range of scenarios. After describing the methodology, a series of validation studies are presented against analytical theory, experimental data, and previous numerical results. Then, the capability of the methodology is demonstrated by simulating flows of deformable blood cells and heterogeneous cell suspensions in both physiologically realistic microvascular networks and geometrically intricate microfluidic devices. It is shown that the methodology can predict several complex microhemodynamic phenomena observed in vascular networks and microfluidic devices. The present methodology is robust and versatile, and has the potential to scale up to very large microvascular networks at organ levels.
Time resolved flow quantification with MRI using phase methods: a linear systems approach.
Peeters, F; Luypaert, R; Eisendrath, H; Osteaux, M
1995-03-01
Phase-related unsteady (pulsatile) flow effects in MRI have been studied by means of linear response theory. These flow effects can be described in the frequency domain: the influence of the gradients on the phase shift is described by a transfer function, the spectrum of the gradient being the determining factor. An analysis of this transfer function is shown to provide information about the process of flow encoding: instant of encoding, induced distortions and how they are related to the gradient waveform. The connection with the traditional description in terms of the gradient moment expansion has also been investigated and clarified. This approach was applied to study the response of two time-resolved flow quantification techniques (Fourier flow method and phase mapping) by analyzing their amplitude and phase transfer functions. By simulation it is shown that a better interpretation of the measured velocity waveform is obtained and that Fourier analysis in combination with a correction by the inverse transfer function results in an accurate reconstruction of the velocity waveform studied.
Astrium Approach For Plume Flow And Impingement Of 10 N Bipropellant Thruster
Theroude, Christophe; Scremin, G.; Wartelski, Matias
2011-05-01
Plume impingement on spacecraft surfaces due to chemical propulsion is a major concern during satellite operations. Indeed, thrusters plume induces disturbing forces and torques, contamination as well as thermal fluxes on sensitive surfaces. These effects, that have to be accurately predicted, influence the satellite design: thrusters orientation, MLI design, instruments protections, etc. In order to implement an efficient process of analysis, Astrium uses a two steps approach: first the thruster undisturbed flow field is computed, then the impingement on spacecraft surfaces is evaluated. In this paper, Plumflow, the Astrium Satellites software for undisturbed thrusters’ plume computation, is presented. This software is made of several modules in order to accurately compute the flow field in the different parts of the plume. A first module computes the chemistry in the chamber, then Navier-Stokes equations are solved inside the nozzle where the flow is continuous. After that a DSMC code is used for the transitional regime near the thruster lip and finally an hybrid TPMC/source-flow method computes the free molecular far flow field. The studied case is the Astrium GmbH 10 N bipropellant thruster. Some comparisons are presented between Plumflow and Professor G.A. Bird DSMC software DS2V and with DLR experimental data. These comparisons have shown very satisfactory results. Finally, aiming at computing plume impingement, the plume flow field generated with Plumflow has been interfaced with Professor G.A. Bird 3D DSMC software DS3V. The plume impingement simulation is performed by introducing the undisturbed flow field at a boundary of DS3V computational domain. It allows us to evaluate thermal flux distribution due to Astrium 10 N thruster on a plate adjacent to the thruster and to compare with the Astrium plume impingement software.
An integrated approach to study of strata behaviour and gas flow dynamics and its application
Institute of Scientific and Technical Information of China (English)
Hua Guo; Liang Yuan
2015-01-01
This paper presents an advanced and integrated research approach to longwall mining-induced strata move-ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for co-extraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goaf gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas flow investigations. This integrated approach has resulted in significant insights into the complex dynamic interaction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the findings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.
Directory of Open Access Journals (Sweden)
Kaisheng Zhang
2016-12-01
Full Text Available Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and base stations (BS. With the hybrid model, the Log Distance Path Loss (LDPL model was used to estimate the pedestrian density from raw network data, and retrieve information with the Gaussian Progress (GP through supervised learning. Temporal-spatial prediction of the pedestrian data was carried out with Machine Learning (ML approaches. Finally, a case study of a real Central Business District (CBD scenario in Shanghai, China using records of millions of cell phone users was conducted. The results showed that the new approach significantly increases the utility and capacity of the mobile network. A more reasonable overcrowding detection and alert system can be developed to improve safety in subway lines and other hotspot landmark areas, such as the Bundle, People’s Square or Disneyland, where a large passenger flow generally exists.
Mode decomposition methods for flows in high-contrast porous media. Global-local approach
Ghommem, Mehdi
2013-11-01
In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.
Influence of Underhood Flow on Engine Cooling Using 1-D And 3-D Approach
Directory of Open Access Journals (Sweden)
Bolehovský Ondřej
2015-12-01
Full Text Available This work deals with numerical simulation of complete cooling system of internal combustion engine (GT-SUITE, which also involves the simulation of flow in underhood using the computationally undemanding simulation. A detailed model of the internal combustion engine is extended to a cooling circuit model which is then coupled to a simplified underhood model which is created with the help of GT-COOL application as a 3-D model and afterwards transferred to a 1-D form. The approaches, one using 1-D solution of arrangement of the heat exchangers and the other 3-D approach using the underhood model, were investigated in two steady states corresponding to various vehicle speeds and engine load. These simulations have shown the inappropriateness of 1-D approach when solving the flow in the heat exchangers in the underhood and helped to explore a relatively undemanding method of flow simulation in the underhood, which enables to detect the interaction between the models of the cooling system and the internal combustion engine and the issue of arrangement of the heat exchangers in the underhood.
Directory of Open Access Journals (Sweden)
Zhi-Feng Yao
2016-01-01
Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.
Guo, Hao; Tian, Yimei; Shen, Hailiang; Wang, Yi; Kang, Mengxin
A design approach for determining the optimal flow pattern in a landscape lake is proposed based on FLUENT simulation, multiple objective optimization, and parallel computing. This paper formulates the design into a multi-objective optimization problem, with lake circulation effects and operation cost as two objectives, and solves the optimization problem with non-dominated sorting genetic algorithm II. The lake flow pattern is modelled in FLUENT. The parallelization aims at multiple FLUENT instance runs, which is different from the FLUENT internal parallel solver. This approach: (1) proposes lake flow pattern metrics, i.e. weighted average water flow velocity, water volume percentage of low flow velocity, and variance of flow velocity, (2) defines user defined functions for boundary setting, objective and constraints calculation, and (3) parallels the execution of multiple FLUENT instances runs to significantly reduce the optimization wall-clock time. The proposed approach is demonstrated through a case study for Meijiang Lake in Tianjin, China.
A general approach for modeling the motion of rigid and deformable ellipsoids in ductile flows
Jiang, Dazhi
2012-01-01
A general approach for modeling the motion of rigid or deformable objects in viscous flows is presented. It is shown that the rotation of a 3D object in a viscous fluid, regardless of the mechanical property and shape of the object, is defined by a common and simple differential equation, dQ/dt=-Θ˜Q, where Q is a matrix defined by the orientation of the object and Θ˜ is the angular velocity tensor of the object. The difference between individual cases lies only in the formulation for the angular velocity. Thus the above equation, together with Jeffery's theory for the angular velocity of rigid ellipsoids, describes the motion of rigid ellipsoids in viscous flows. The same equation, together with Eshelby's theory for the angular velocity of deformable ellipsoids, describes the motion of deformable ellipsoids in viscous flows. Both problems are solved here numerically by a general approach that is much simpler conceptually and more economic computationally, compared to previous approaches that consider the problems separately and require numerical solutions to coupled differential equations about Euler angles or spherical (polar coordinate) angles. A Runge-Kutta approximation is constructed for solving the above general differential equation. Singular cases of Eshelby's equations when the object is spheroidal or spherical are handled in this paper in a much simpler way than in previous work. The computational procedure can be readily implemented in any modern mathematics application that handles matrix operations. Four MathCad Worksheets are provided for modeling the motion of a single rigid or deformable ellipsoid immersed in viscous fluids, as well as the evolution of a system of noninteracting rigid or deformable ellipsoids embedded in viscous flows.
Variations in the Flow Approach to CFCLP-TC for Multiobjective Supply Chain Design
Directory of Open Access Journals (Sweden)
Minor P. Hertwin
2014-01-01
Full Text Available We review the problem for the design of supply chains called Capacitated Fixed Cost Facility Location Problem with Transportation Choices (CFCLP-TC. The problem is based on a production network of two echelons with multiple plants, a set of potential distribution centers, and customers. The problem is formulated as an optimization model with two objective functions based on time and cost. This paper proposes three changes to the original model to compare the sets of efficient solutions and the computational time required to obtain them. The main contribution of this paper is to extend the existing literature by incorporating approaches for the supply of product to customers through multiple sources, the direct flow between plants and customers, without this necessarily implying removing the distribution centers, and the product flow between distribution centers. From these approaches, we generate mathematical programming models and propose to solve through the epsilon-constraint approach for generating Pareto fronts and thus compare each of these approaches with the original model. The models are implemented in GAMS and solved with CPLEX.
Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime
Wu, Ka Ling; Porté-Agel, Fernando
2017-04-01
Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully
A velocity tracking approach for the data assimilation problem in blood flow simulations.
Tiago, J; Guerra, T; Sequeira, A
2016-11-24
Several advances have been made in data assimilation techniques applied to blood flow modeling. Typically, idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present a general approach, on the basis of a Dirichlet boundary control problem, that may potentially be used in different parts of the arterial system. The relevance of this method appears when computational reconstructions of the 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, because of computational costs. On the basis of taking a fully unknown velocity profile as the control, the approach uses a discretize then optimize methodology to solve the control problem numerically. The methodology is applied to a realistic 3D geometry representing a brain aneurysm. The results show that this data assimilation approach may be preferable to a pressure control strategy and that it can significantly improve the accuracy associated to typical solutions obtained using idealized velocity profiles.
Review of numerical models of cavitating flows with the use of the homogeneous approach
Directory of Open Access Journals (Sweden)
Niedźwiedzka Agnieszka
2016-06-01
Full Text Available The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
Institute of Scientific and Technical Information of China (English)
高文; 陈熙霖
1997-01-01
The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2016-07-20
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert
2009-08-01
This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.
An Aerial-Image Dense Matching Approach Based on Optical Flow Field
Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke
2016-06-01
Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.
Review of numerical models of cavitating flows with the use of the homogeneous approach
Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech
2016-06-01
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
Isothermal study of effusion cooling flows using a large eddy simulation approach
Institute of Scientific and Technical Information of China (English)
W.P.Bennett; Z.Yang; J.J. McGuirk
2009-01-01
An isothermal numerical study of effusion cooling flow is conducted using a large eddy simulation (LES) approach. Two main types of cooling are considered, namely tangential film cooling and oblique patch effusion cooling. To represent tangential film cooling, a simplified model of a plane turbulent wall jet along a flat plate in quiescent surrounding fluid is considered. In contrast to a classic turbulent boundary layer flow, the plane turbulent wall jet possesses an outer free shear flow region, an inner near wall region and an interaction region, characterised by substantial levels of turbulent shear stress transport. These shear stress characteristics hold significant implications for RANS modelling, implications that also apply to more complex tangential film cooling flows with non-zero free stream velocities. The LES technique used in the current study provides a satisfactory overall prediction of the plane turbulent wall jet flow, including the initial transition region, and the characteristic separation of the zero turbulent shear stress and zero shear strain locations.Oblique effusion patch cooling is modelled using a staggered array of 12 rows of effusion holes, drilled at 30° to the flat plate surface. The effusion holes connect two channels separated by the flat plate. Specifically, these comprise of a channel representing the combustion chamber flow and a cooling air supply channel. A difference in pressure between the two channels forces air from the cooling supply side, through the effusion holes, and into the combustion chamber side. Air from successive effusion rows coalesces to form an aerodynamic film between the combustion chamber main flow and the flat plate. In practical applications, this film is used to separate the hot combustion gases from the combustion chamber liner. The numerical model is shown to be capable of accurately predicting the injection, penetration, downstream decay, and coalescence of the effusion jets. In addition, the
Droplet in micro-channels: A numerical approach using an adaptive two phase flow solver
Fullana, Jose-Maria; Popinet, Stéphane; Josserand, Christophe
2015-01-01
We propose a numerical approach to study the mechanics of a flowing bubble in a constraint micro channel. Using an open source two phase flow solver (Gerris, gfs.sourceforge.net) we compute solutions of the bubble dynamics (i.e. shape and terminal velocity) induced by the interaction between the bubble movement, the Laplace pressure variation, and the lubrication film near the channel wall. Quantitative and qualitative results are presented and compared against both theory and experimental data for small Capillary numbers. We discuss the technical issues of explicit integration methods on small Capillary numbers computations, and the possibility of adding Van der Walls forces to give a more precise picture of the Droplet-based microfluidic problem.
Energy Technology Data Exchange (ETDEWEB)
Nanda, J.; Lai, L.L.; Ma, J.T.; Rajkumar, N. [City University, London (United Kingdom). Energy Systems Group; Nanda, A. [Joslyn High Voltage Corp., Chicago, IL (United States); Prasad, M. [ABB, Neww Delhi (India)
1999-11-01
This paper presents a novel approach to powerful, effective and computationally efficient algorithms for formulation and evaluation of transmission loss and line flow through efficient loss coefficients and distribution factors, respectively, which are uniquely suitable for real term application. These loss coefficients and distribution factors are generated extremely elegantly and efficiently from the hidden treasures of an available load flow solution with trivial computational burden. Results on few IEEE Test systems are extremely exciting which reveal that the loss coefficients evaluated at the normal operating conditions are quite robust and for all practical purposes need not be re-evaluated for wide changes in system operating conditions for evaluation of transmission loss or economic load dispatch solution. (author)
A hybrid least squares support vector machines and GMDH approach for river flow forecasting
Samsudin, R.; Saad, P.; Shabri, A.
2010-06-01
This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.
Exact Solutions for Stokes' Flow of a Non-Newtonian Nanofluid Model: A Lie Similarity Approach
Aziz, Taha; Aziz, A.; Khalique, C. M.
2016-07-01
The fully developed time-dependent flow of an incompressible, thermodynamically compatible non-Newtonian third-grade nanofluid is investigated. The classical Stokes model is considered in which the flow is generated due to the motion of the plate in its own plane with an impulsive velocity. The Lie symmetry approach is utilised to convert the governing nonlinear partial differential equation into different linear and nonlinear ordinary differential equations. The reduced ordinary differential equations are then solved by using the compatibility and generalised group method. Exact solutions for the model equation are deduced in the form of closed-form exponential functions which are not available in the literature before. In addition, we also derived the conservation laws associated with the governing model. Finally, the physical features of the pertinent parameters are discussed in detail through several graphs.
Energy Technology Data Exchange (ETDEWEB)
Ababou, R.
1991-08-01
This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.
A new approach to wall modeling in LES of incompressible flow via function enrichment
Krank, Benjamin
2015-01-01
A novel approach to wall modeling for the incompressible Navier-Stokes equations including flows of moderate and large Reynolds numbers is presented. The basic idea is that a problem-tailored function space allows prediction of turbulent boundary layer gradients with very coarse meshes. The proposed function space consists of a standard polynomial function space plus an enrichment, which is constructed using Spalding's law-of-the-wall. The enrichment function is not enforced but "allowed" in a consistent way and the overall methodology is much more general and also enables other enrichment functions. The proposed method is closely related to detached-eddy simulation as near-wall turbulence is modeled statistically and large eddies are resolved in the bulk flow. Interpreted in terms of a three-scale separation within the variational multiscale method, the standard scale resolves large eddies and the enrichment scale represents boundary layer turbulence in an averaged sense. The potential of the scheme is shown...
Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.
2017-03-01
In the present paper, the optical wavelength dependence on the photoacoustic (PA) assessment of the pulsatile blood flow was investigated by means of the experimental and theoretical approaches analyzing PA radiofrequency spectral parameters such as the spectral slope (SS) and mid-band fit (MBF). For the experimental approach, the pulsatile flow of human whole blood at 60 bpm was imaged using the VevoLAZR system (40-MHz-linear-array probe, 700-900 nm illuminations). For the theoretical approach, a Monte Carlo simulation for the light transmit into a layered tissue phantom and a Green's function based method for the PA wave generation was implemented for illumination wavelengths of 700, 750, 800, 850 and 900 nm. The SS and MBF for the experimental results were compared to theoretical ones as a function of the illumination wavelength. The MBF increased with the optical wavelength in both theory and experiments. This was expected because the MBF is representative of the PA magnitude, and the PA signal from red blood cell (RBC) is dependent on the molar extinction coefficient of oxyhemoglobin. On the other hand, the SS decreased with the wavelength, even though the RBC size (absorber size which is related to the SS) cannot depend on the illumination wavelength. This conflicting result can be interpreted by means of the changes of the fluence pattern for different illumination wavelengths. The SS decrease with the increasing illumination wavelength should be further investigated.
Moortgat, Joachim
2013-01-01
Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical dis...
Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili
2009-06-01
In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.
A three-pillar approach to assessing climate impacts on low flows
Laaha, Gregor; Parajka, Juraj; Viglione, Alberto; Koffler, Daniel; Haslinger, Klaus; Schöner, Wolfgang; Zehetgruber, Judith; Blöschl, Günter
2016-09-01
The objective of this paper is to present a framework for assessing climate impacts on future low flows that combines different sources of information, termed pillars. To illustrate the framework three pillars are chosen: (a) extrapolation of observed low-flow trends into the future, (b) rainfall-runoff projections based on climate scenarios and (c) extrapolation of changing stochastic rainfall characteristics into the future combined with rainfall-runoff modelling. Alternative pillars could be included in the overall framework. The three pillars are combined by expert judgement based on a synoptic view of data, model outputs and process reasoning. The consistency/inconsistency between the pillars is considered an indicator of the certainty/uncertainty of the projections. The viability of the framework is illustrated for four example catchments from Austria that represent typical climate conditions in central Europe. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistently increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the south and south-east, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. The process reasons for the consistencies/inconsistencies are discussed. For an Alpine region such as Austria the key to understanding low flows is whether they are controlled by freezing and snowmelt processes, or by the summer moisture deficit associated with evaporation. It is argued that the three-pillar approach offers a systematic framework of combining different sources of information aimed at more robust projections than that obtained from each pillar alone.
Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding
Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael
2017-04-01
Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.
Computing 3-D steady supersonic flow via a new Lagrangian approach
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Directory of Open Access Journals (Sweden)
S. T. Jaya Christa
2006-06-01
Full Text Available This paper deals with the optimal location and parameters of Unified Power Flow Controllers (UPFCs in electrical power systems, using particle swarm optimization (PSO. The objective is to maximize the transmission system loadability subject to the transmission line capacity limits and specified bus voltage levels. Using the proposed method, the location of UPFCs and their parameters are optimized simultaneously. PSO is used to solve the above non-linear programming problem for better accuracy. The proposed approach is examined and tested on IEEE 30-bus system and IEEE 118-bus system. The results obtained are quite promising for the power system operation environment
Complex approach to the organization of external information flows of tourism enterprise
Directory of Open Access Journals (Sweden)
E.N. Ivanova
2015-12-01
Full Text Available The aim of the article. The aim of the article is to provide the basis of the complex approach to the organization of external information flows at tourism enterprises in order to improve the management of these information flows. The results of the analysis. The complex approach of improvement of the information flows management at tourism enterprises basing on the complex of information signals and organization of feedback between consumers and tourism enterprises is proposed. Application of the theory of market signals (signaling for implementation of the complex approach is substantiated by the fact that an enterprise should generate and extend external outgoing information flows that would contribute to the provision of additional opportunities for the increase tourism products and services output, establishment of partnership and customers attraction. Informational signals as external information flows and activation of informational signaling ensure the informational connection between customers and tourism enterprises in order to stimulate the demand on the services of tourism enterprises and accordingly, their stable competitive position in the market; consideration and formation of demand, as the customers, which are maximum informed on the opportunities of tourism enterprises and the components of an tourism product, may describe their needs in the most accurate way. However, the usage of particular informational signals does not give such opportunities to a tourism enterprise. The necessity to use the complex of informational signals by tourism enterprises was demonstrated through the game theory. If a tourism enterprise does not perform informational signaling, then the sales of tourism products become complicated. The probability of attraction of loyal customers (in accordance to the given goal is not significant, as the choice of a tourism enterprise by a customer has a random character. Therefore, a customer attends another
Directory of Open Access Journals (Sweden)
Zhiyin Yang
2014-12-01
Full Text Available A complex flow field is created when a vertical/short take-off and landing aircraft is operating near ground. One major concern for this kind of aircraft in ground effect is the possibility of ingestion of hot gases from the jet engine exhausts back into the engine, known as hot gas ingestion, which can increase the intake air temperature and also reduce the oxygen content in the intake air, potentially leading to compressor stall, low combustion efficiency and causing a dramatic loss of lift. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Accurate prediction of this complicated flow field under the Reynolds averaged Navier–Stokes (RANS approach (current practise in industry is a great challenge as previous studies suggest that some important flow features cannot be captured by the Steady-RANS (SRANS approach even with a second-order Reynolds stress model (RSM. This paper presents a numerical study of this flow using the Unsteady-RANS (URANS approach with a RSM and the results clearly indicate that the URANS approach is superior than the SRANS approach but still the predictions of Reynolds stress are not accurate enough.
National Aeronautics and Space Administration — We propose the development of a high fidelity computational approach for unsteady calculations of strongly separated non-equilibrium high-enthalpy hypersonic flows....
State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)
An implicit wetting and drying approach for non-hydrostatic flows in high aspect ratio domains
Candy, Adam S
2013-01-01
A wetting and drying approach for free surface flows governed by the three-dimensional, non-hydrostatic Navier-Stokes equations in high aspect ratio domains is developed. This has application in the modelling of inundation processes in geophysical domains, where dynamics takes place over a large horizontal extent relative to vertical resolution, such as in the evolution of a tsunami, or an urban fluvial flooding scenario. The approach is novel in that it solves for three dimensional dynamics in these very high aspect ratio domains, to include non-hydrostatic effects and accurately model dispersive processes. These become important in shallow regions with steep gradients, a particularly acute problem where man-made structures exist such as buildings or flood defences in an urban environment. It is implicit in time to allow efficient time integration over a range of mesh element sizes. Specific regularisation methods are introduced to improve conditioning of the full three-dimensional pressure Poisson problem i...
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
Energy Technology Data Exchange (ETDEWEB)
Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2016-02-15
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD
Directory of Open Access Journals (Sweden)
W. Yuan
2016-06-01
Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.
Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M.; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel
2016-01-01
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds. PMID:27966592
Modeling Air Bubble Transport in Hydraulic Jump Flows using Population Balance Approach
Directory of Open Access Journals (Sweden)
Min Xiang
2016-01-01
Full Text Available This paper proposed a numerical model aiming at coupling the MUltiple-SIze-Group (MUSIG with the semiempirical air entrainment model based on the Euler-Euler two-fluid framework to handle the bubble transport in hydraulic jump flows. The internal flow structure including the recirculation region, the shear layer region and the jet region was accurately predicted. The flow parameters such as the water velocity and void fraction distributions were examined and compared with the experimental data, validating the effectiveness of the numerical model. Prediction of the Sauter mean bubble diameter distributions by the population balance approach at different axial locations confirmed the dominance of breakage due to the high turbulent intensity in the shear layer region which led to the generation of small gas bubbles at high void fraction. Comparison between different cases indicates that high Froude number not only give rise to longer recirculation region and higher void fraction due to larger air entrainment rate, but also generate larger bubble number density and smaller bubble size because of the stronger turbulence intensity in the same axial position.
Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel
2016-12-14
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.
Directed flow in heavy-ion collisions from PHSD transport approach
Energy Technology Data Exchange (ETDEWEB)
Cassing, Wolfgang; Konchakovski, Volodya; Palmese, Alessia [Institute for Theoretical Physics, Justus-Liebig-Universitaet, Giessen (Germany)
2015-07-01
We study the proton and kaon directed and elliptic flows for Au+Au collisions at AGS energies (E{sub Lab}=2-8 AGeV) and low SPS energies up to √(s{sub NN})=7.7 GeV within the Parton-Hadron-String-Dynamics (PHSD/HSD) transport models. PHSD is a microscopic off-shell transport approach, which successfully describes heavy-ion collisions in a wide range of energies, and HSD represents the hadronic sector of PHSD. We compare our results with data from the E895 and STAR Collaborations and we investigate the sensitivity of the flow observables with respect to momentum-dependent hadronic potentials. This analysis can provide important information on these potentials, since they are known from the G-matrix theory approximately up to twice nuclear matter density and consequently extrapolations at higher baryon densities and large momenta have to been probed. We also explore the possibility that the flow observables are influenced by chiral symmetry restoration, that is expected to occur at high density and/or temperature.
Institute of Scientific and Technical Information of China (English)
WANG Liang; FU Song
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Use split-flow approach to speed patients to needed care, eliminate inefficiencies and duplication.
2013-05-01
To address time and space challenges in the midst of surging demand, the ED at St. Mary Medical Center in Langhorne, PA, turned to the split-flow model, an evidence-based practice that relies heavily on the queuing theory to improve patient throughput. In less than one year, the approach has enabled administrators to reduce door-to-physician times from an average of 47 minutes to 23.5 minutes, and overall length-of-stay in the ED for discharged patients has been slashed by 21 minutes. Under the split-flow system implemented at St. Mary, an expedited triage/assessment process directs patients to prompt care, pediatric care, acute care, or an expedited treatment area (ETA) where patients will undergo further testing or procedures. This initial assessment typically takes about three minutes. Patients sent to the ETA remain there for no longer than 30 minutes.They may then be moved to a holding area while awaiting test results. Patients are constantly moving in the split-flow model, so it is important to pay close attention to handoffs. Patients will begin the process with one nurse and finish with another.
A Sum-of-Squares approach to feedback control of laminar wake flows
Lasagna, Davide; Tutty, Owen R; Chernyshenko, Sergei
2016-01-01
A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squar...
Han, Zheng; Chen, Guangqi; Li, Yange; Wang, Wei; Zhang, Hong
2015-07-01
The estimation of debris-flow velocity in a cross-section is of primary importance due to its correlation to impact force, run up and superelevation. However, previous methods sometimes neglect the observed asymmetric velocity distribution, and consequently underestimate the debris-flow velocity. This paper presents a new approach for exploring the debris-flow velocity distribution in a cross-section. The presented approach uses an iteration algorithm based on the Riemann integral method to search an approximate solution to the unknown flow surface. The established laws for vertical velocity profile are compared and subsequently integrated to analyze the velocity distribution in the cross-section. The major benefit of the presented approach is that natural channels typically with irregular beds and superelevations can be taken into account, and the resulting approximation by the approach well replicates the direct integral solution. The approach is programmed in MATLAB environment, and the code is open to the public. A well-documented debris-flow event in Sichuan Province, China, is used to demonstrate the presented approach. Results show that the solutions of the flow surface and the mean velocity well reproduce the investigated results. Discussion regarding the model sensitivity and the source of errors concludes the paper.
Regional Balance Model of Financial Flows through Sectoral Approaches System of National Accounts
Directory of Open Access Journals (Sweden)
Ekaterina Aleksandrovna Zaharchuk
2017-03-01
Full Text Available The main purpose of the study, the results of which are reflected in this article, is the theoretical and methodological substantiation of possibilities to build a regional balance model of financial flows consistent with the principles of the construction of the System of National Accounts (SNA. The paper summarizes the international experience of building regional accounts in the SNA as well as reflects the advantages and disadvantages of the existing techniques for constructing Social Accounting Matrix. The authors have proposed an approach to build the regional balance model of financial flows, which is based on the disaggregated tables of the formation, distribution and use of the added value of territory in the framework of institutional sectors of SNA (corporations, public administration, households. Within the problem resolution of the transition of value added from industries to sectors, the authors have offered an approach to the accounting of development, distribution and use of value added within the institutional sectors of the territories. The methods of calculation are based on the publicly available information base of statistics agencies and federal services. The authors provide the scheme of the interrelations of the indicators of the regional balance model of financial flows. It allows to coordinate mutually the movement of regional resources by the sectors of «corporation», «public administration» and «households» among themselves, and cash flows of the region — by the sectors and directions of use. As a result, they form a single account of the formation and distribution of territorial financial resources, which is a regional balance model of financial flows. This matrix shows the distribution of financial resources by income sources and sectors, where the components of the formation (compensation, taxes and gross profit, distribution (transfers and payments and use (final consumption, accumulation of value added are
Regelink, I.C.; Weng, L.P.; Koopmans, G.F.; Riemsdijk, van W.H.
2013-01-01
Iron-(hydr)oxide nanoparticles are important for the sequestration of organic carbon because of their small size and consequently large specific surface area. Therefore, there is an increasing interest in analytical techniques such as asymmetric flow field-flow fractionation (AF4) that allow for a d
Energy Technology Data Exchange (ETDEWEB)
Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)], E-mail: se@nuke.hacettepe.edu.tr; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)
2009-03-15
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.
An adaptive level set approach for incompressible two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Sussman, M.; Almgren, A.S.; Bell, J.B. [and others
1997-04-01
In Sussman, Smereka and Osher, a numerical method using the level set approach was formulated for solving incompressible two-phase flow with surface tension. In the level set approach, the interface is represented as the zero level set of a smooth function; this has the effect of replacing the advection of density, which has steep gradients at the interface, with the advection of the level set function, which is smooth. In addition, the interface can merge or break up with no special treatment. The authors maintain the level set function as the signed distance from the interface in order to robustly compute flows with high density ratios and stiff surface tension effects. In this work, they couple the level set scheme to an adaptive projection method for the incompressible Navier-Stokes equations, in order to achieve higher resolution of the interface with a minimum of additional expense. They present two-dimensional axisymmetric and fully three-dimensional results of air bubble and water drop computations.
Directory of Open Access Journals (Sweden)
Hund-Der Yeh
2014-01-01
Full Text Available Simultaneous identification of the source location and release history in aquifers is complicated and time-consuming if the release of groundwater contaminant source varies in time. This paper presents an approach called SATSO-GWT to solve complicated source release problems which contain the unknowns of three location coordinates and several irregular release periods and concentrations. The SATSO-GWT combines with ordinal optimization algorithm (OOA, roulette wheel approach, and a source identification algorithm called SATS-GWT. The SATS-GWT was developed based on simulated annealing, tabu search, and three-dimensional groundwater flow and solute transport model MD2K-GWT. The OOA and roulette wheel method are utilized mainly to reduce the size of feasible solution domain and accelerate the identification of the source information. A hypothetic site with one contaminant source location and two release periods is designed to assess the applicability of the present approach. The results indicate that the performance of SATSO-GWT is superior to that of SATS-GWT. In addition, the present approach works very effectively in dealing with the cases which have different initial guesses of source location and measurement errors in the monitoring points as well as problems with large suspicious areas and several source release periods and concentrations.
Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling
Directory of Open Access Journals (Sweden)
G. Delmonaco
2003-01-01
Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering
Energy Technology Data Exchange (ETDEWEB)
Tamada, Takashi (Okayama Univ. (Japan). School of Medicine)
1992-06-01
To evaluate a proliferative activity of post-irradiated malignant cells, we studied the kinetics of HeLa cells using immunohistochemical approach and flow cytometry. HeLa cells were stained with two proliferation-associated monoclonal antibodies, Ki-67 and anti-DNA polymerase {alpha} antibody. Nucleoli of non-irradiated cells were granularly stained with Ki-67. After irradiation, only the center of nuclei was diffusely stained with Ki-67. One hundred forty-four hours after low-dose irradiation, the staining patterns became the same as the control. On the other hand, after high-dose irradiation, the center of nuclei was weakly stained. DNA polymerase {alpha} was diffusely labelled with nuclei of the control. It was located around the border of nuclei of low-dose irradiated cells like a ring. But after high-dose irradiation, it was granularly distributed in the periphery of nuclei. FITC conjugated Ki-67/PI two parameter analysis was done by a single laser flow cytometer. Twenty-four hours after irradiation, DNA-histograms showed the accumulation to G{sub 2}/M phase and the increase of DNA content of G{sub 2}/M cells, as exposure dose was increased. Two parameter analysis showed the increase of FITC uptake of G{sub 2}/M phase as dose increased. These changes of flow cytometry were remarkably observed after 24 hours' incubation. It was shown that the difference of Ki-67 antigen and DNA polymerase {alpha} appearance depended on the irradiation dose. These findings suggest that immunohistochemical staining with Ki-67 or anti-DNA polymerase {alpha} antibody and flow cytometry using Ki-67 are available to evaluate cell damages after irradiation. (author).
Directory of Open Access Journals (Sweden)
Xu-Jing Wang
Full Text Available The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integrated into N. tabacum, using Agrobacterium tumefaciens-mediated transformation. EPSPSn-In encodes the first 295 aa of the herbicide resistance gene 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS fused with the first 123 aa of the Ssp DnaE intein (In, whereas Ic-EPSPSc encodes the 36 C-terminal aa of the Ssp DnaE intein (Ic fused to the rest of EPSPS C terminus peptide sequences. Both EPSPSn-In and Ic-EPSPSc constructs were introduced into the same N. tabacum genome by genetic crossing. Hybrids displayed resistance to the herbicide N-(phosphonomethyl-glycine (glyphosate. Western blot analysis of protein extracts from hybrid plants identified full-length EPSPS. Furthermore, all hybrid seeds germinated and grew normally on glyphosate selective medium. The 6-8 leaf hybrid plants showed tolerance of 2000 ppm glyphosate in field spraying. These results indicated that functional EPSPS protein was reassembled in vivo by intein-mediated trans-splicing in 100% of plants. In order to evaluate the effect of the gene splitting technique for containment of transgene flow, backcrossing experiments were carried out between hybrids, in which the foreign genes EPSPSn-In and Ic-EPSPSc were inserted into different chromosomes, and non-transgenic plants NC89. Among the 2812 backcrossing progeny, about 25% (664 plantlets displayed glyphosate resistance. These data indicated that transgene flow could be reduced by 75%. Overall, our findings provide a new and highly effective approach for biological containment of transgene flow.
A novel approach for connecting temporal-ontologies with blood flow simulations.
Weichert, F; Mertens, C; Walczak, L; Kern-Isberner, G; Wagner, M
2013-06-01
In this paper an approach for developing a temporal domain ontology for biomedical simulations is introduced. The ideas are presented in the context of simulations of blood flow in aneurysms using the Lattice Boltzmann Method. The advantages in using ontologies are manyfold: On the one hand, ontologies having been proven to be able to provide medical special knowledge e.g., key parameters for simulations. On the other hand, based on a set of rules and the usage of a reasoner, a system for checking the plausibility as well as tracking the outcome of medical simulations can be constructed. Likewise, results of simulations including data derived from them can be stored and communicated in a way that can be understood by computers. Later on, this set of results can be analyzed. At the same time, the ontologies provide a way to exchange knowledge between researchers. Lastly, this approach can be seen as a black-box abstraction of the internals of the simulation for the biomedical researcher as well. This approach is able to provide the complete parameter sets for simulations, part of the corresponding results and part of their analysis as well as e.g., geometry and boundary conditions. These inputs can be transferred to different simulation methods for comparison. Variations on the provided parameters can be automatically used to drive these simulations. Using a rule base, unphysical inputs or outputs of the simulation can be detected and communicated to the physician in a suitable and familiar way. An example for an instantiation of the blood flow simulation ontology and exemplary rules for plausibility checking are given.
Yao, Weigang; Liou, Meng-Sing
2016-08-01
To preserve nonlinearity of a full-order system over a range of parameters of interest, we propose an accurate and robust nonlinear modeling approach by assembling a set of piecewise linear local solutions expanded about some sampling states. The work by Rewienski and White [1] on micromachined devices inspired our use of piecewise linear local solutions to study nonlinear unsteady aerodynamics. These local approximations are assembled via nonlinear weights of radial basis functions. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving with different pitching motions, specifically AGARD's CT2 and CT5 problems [27], in which the flows exhibit different nonlinear behaviors. Furthermore, application of the developed aerodynamic model to a two-dimensional aero-elastic system proves the approach is capable of predicting limit cycle oscillations (LCOs) by using AGARD's CT6 [28] as a benchmark test. All results, based on inviscid solutions, confirm that our nonlinear model is stable and accurate, against the full model solutions and measurements, and for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robust for inputs that considerably depart from the base trajectory in form and magnitude. This modeling provides a very efficient way for predicting unsteady flowfields with varying parameters because it needs only a tiny fraction of the cost of a full-order modeling for each new condition-the more cases studied, the more savings rendered. Hence, the present approach is especially useful for parametric studies, such as in the case of design optimization and exploration of flow phenomena.
Dartevelle, SéBastien
2004-08-01
Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).
Tardiole Kuehne, Bruno; Estrella, Julio Cezar; Nunes, Luiz Henrique; Martins de Oliveira, Edvard; Hideo Nakamura, Luis; Gomes Ferreira, Carlos Henrique; Carlucci Santana, Regina Helena; Reiff-Marganiec, Stephan; Santana, Marcos José
2015-01-01
This paper proposes a system named AWSCS (Automatic Web Service Composition System) to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.
Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.
2016-01-01
The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844
Directory of Open Access Journals (Sweden)
Cidália Pina-Vaz
2016-08-01
Full Text Available The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computa-tional analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem or doripenem and killing kinetic curves performed with and without reinforments of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3, a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incuba-tion. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for car-bapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable.
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam Omar
2012-06-17
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
A Stochastic Flows Approach for Asset Allocation with Hidden Economic Environment
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2015-01-01
Full Text Available An optimal asset allocation problem for a quite general class of utility functions is discussed in a simple two-state Markovian regime-switching model, where the appreciation rate of a risky share changes over time according to the state of a hidden economy. As usual, standard filtering theory is used to transform a financial model with hidden information into one with complete information, where a martingale approach is applied to discuss the optimal asset allocation problem. Using a martingale representation coupled with stochastic flows of diffeomorphisms for the filtering equation, the integrand in the martingale representation is identified which gives rise to an optimal portfolio strategy under some differentiability conditions.
A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles
Casagrande, Marcus V. S.; Alves, José L. D.; Silva, Carlos E.; Alves, Fábio T.; Elias, Renato N.; Coutinho, Alvaro L. G. A.
2017-04-01
In this work we address a contribution to the study of particle laden fluid flows in scales smaller than TFM (two-fluid models). The hybrid model is based on a Lagrangian-Eulerian approach. A Lagrangian description is used for the particle system employing the discrete element method (DEM), while a fixed Eulerian mesh is used for the fluid phase modeled by the finite element method (FEM). The resulting coupled DEM-FEM model is integrated in time with a subcycling scheme. The aforementioned scheme is applied in the simulation of a seabed current to analyze which mechanisms lead to the emergence of bedload transport and sediment suspension, and also quantify the effective viscosity of the seabed in comparison with the ideal no-slip wall condition. A simulation of a salt plume falling in a fluid column is performed, comparing the main characteristics of the system with an experiment.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.
2017-02-01
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
DEFF Research Database (Denmark)
Miró, Manuel; Hartwell, Supaporn Kradtap; Jakmunee, Jaroon
2008-01-01
Solid-phase extraction (SPE) is the most versatile sample-processing method for removal of interfering species and/or analyte enrichment. Although significant advances have been made over the past two decades in automating the entire analytical protocol involving SPE via flow-injection approaches......,on-line SPE assays performed in permanent mode lack sufficient reliability as a consequence of progressively tighter packing of the bead reactor, contamination of the solid surfaces and potential leakage of functional moieties. This article overviews the current state-of-the-art of an appealing tool...... chemical-derivatization reactions, and it pinpoints the most common instrumental detection techniques utilized. We present and discuss in detail relevant environmental and bioanalytical applications reported in the past few years....
Egolf, T. A.; Landgrebe, A. J.
1982-01-01
A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
A mesoscopic approach on stability and phase transition between different traffic flow states
Qian, Wei-Liang; Lin, Kai; Machado, Romuel F; Hama, Yogiro
2015-01-01
It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evoltuion of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examing closely the physical properties and mathematical constraints of the phase transitons therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connection to the instability and phase transitions. In addition to the one-dimensional configuration space, we generalize our discussion to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce main features of the observed fundamental diagram including the inverse-$\\lambda$ shape and the...
A triple-continuum approach for modeling flow and transportprocesses in fractured rock
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S; Zellmer, K .E.
2001-08-31
This paper presents a triple-continuum conceptual model forsimulating flow and transport processes in fractured rock. Field datacollected from the unsaturated zone of Yucca Mountain, a repository siteof high-level nuclear waste, show a large number of small-scalefractures. The effect of these small fractures has not been considered inprevious modeling investigations within the context of a continuumapproach. A new triple-continuum model (consisting of matrix,small-fracture, and large-fracture continua) has been developed toinvestigate the effect of these small fractures. This paper derives themodel formulation and discusses the basic triple-continuum behavior offlow and transport processes under different conditions, using bothanalytical solutions and numerical approaches. The simulation resultsfrom the site-scale model of the unsaturated zone of Yucca Mountainindicate that these small fractures may have an important effect onradionuclide transport within the mountain
Valdarnini, R
2016-01-01
In this paper we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular we consider the Gresho-Chan vortex problem, the growth of Kelvin-Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disc problem. We compare simulation results for the different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral prope...
Directory of Open Access Journals (Sweden)
Warid Warid
Full Text Available This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF formulation was converted into a crisp OPF in a successive linear programming (SLP framework and solved using an efficient interior point method (IPM. To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets
Bose, Subhonmesh
Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.
Shear viscosity of QGP and the anisotropic flows within an event by event transport approach
Directory of Open Access Journals (Sweden)
Plumari S.
2016-01-01
Full Text Available We have employed a relativistic kinetic transport approach that incorporates initial state fluctuations to study the effect of a temperature dependent shear viscosity to entropy density ratio η/s(T on the build-up of the anisotropic flows υn(pT. We find that at LHC energies and for ultra-central collisions (0 – 0.2% the υn(pT have a stronger sensitivity to the T dependence of η/s in the QGP phase and this sensitivity increases with the order of the harmonic n. Moreover we have studied the correlation between the initial spatial anisotropies ϵn and the final flow coefficients 〈υn〉 for different centralities and for the two beam energies. The study shows that at LHC energies there is more correlation than at RHIC energies. In particular at LHC energies and for ultra-central collisions the linear correlation coefficient C(ϵn, υn ≈ 1 for n = 2, 3, 4 and 5 suggesting that the 〈υn〉 are strongly related to the initial value of ϵn.
Granular flow in static mixers by coupled DEM/CFD approach
Directory of Open Access Journals (Sweden)
Pezo Lato
2016-01-01
Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055
Fluid migration in the subduction zone: a coupled fluid flow approach
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
Ghosh, Sayari; Chakraborty, Ishita; Chakraborty, Monojit; Mukhopadhyay, Ashis; Mishra, Raghwendra; Sarkar, Debasish
2016-04-01
Erythrocyte morphology is gaining importance as a powerful pathological index in identifying the severity of any blood related disease. However, the existing technique of quantitative microscopy is highly time consuming and prone to personalized bias. On the other hand, relatively unexplored, complementary technique based on flow cytometry has not been standardized till date, particularly due to the lack of a proper morphological scoring scale. In this article, we have presented a new approach to formulate a non-empirical scoring scale based on membrane roughness (R(rms)) data obtained from atomic force microscopy. Subsequently, the respective morphological quantifier of the whole erythrocyte population, commonly known as morphological index, was expressed as a function of highest correlated statistical parameters of scattered signal profiles generated by flow cytometry. Feed forward artificial neural network model with multilayer perceptron architecture was used to develop the intended functional form. High correlation coefficient (R(2) = 0.95), even for model-formulation exclusive samples, clearly indicates the universal validity of the proposed model. Moreover, a direct pathological application of the proposed model has been illustrated in relation to patients, diagnosed to be suffering from a wide variety of cancer.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network.
Flores, Joaquín; Alastruey, Jordi; Corvera Poiré, Eugenia
2016-10-01
Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy's model and for which a full analytical solution exists in frequency domain. We assess the accuracy of this formulation in a series of benchmark test cases for which computational 1-D and 3-D solutions are available. Accordingly, we calculate blood flow and pressure waves, and velocity profiles in the human common carotid artery, upper thoracic aorta, aortic bifurcation, and a 20-artery model of the aorta and its larger branches. Our analytical solution is in good agreement with the available solutions and reproduces the main features of pulse waveforms in networks of large arteries under normal physiological conditions. Our model reduces computational time and provides a new approach for studying arterial pulse wave mechanics; e.g., the analyticity of our model allows for a direct identification of the role played by physical properties of the cardiovascular system on the pressure waves.
Liu, Shun; Xu, Jinglei; Yu, Kaikai
2017-06-01
This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.
Energy Technology Data Exchange (ETDEWEB)
Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.
2010-03-15
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
Inverse modeling of dynamic nonequilibrium in water flow with an effective approach
Diamantopoulos, E.; Iden, S. C.; Durner, W.
2012-03-01
Observations of water flow in unsaturated soils often show "dynamic effects," indicated by nonequilibrium between water contents and water potential, a phenomenon that cannot be modeled with the Richards equation. The objective of this article is to formulate an effective process description of dynamic nonequilibrium flow in variably saturated soil which is both flexible enough to match experimental observations and as parsimonious as possible to allow unique parameter estimation by inverse modeling. In the conceptual model, water content is partitioned into two fractions. Water in one fraction is in equilibrium with the pressure head, whereas water in the second fraction is in nonequilibrium, described by the kinetic equilibration approach of Ross and Smettem (2000). Between the two fractions an instantaneous equilibration of the pressure head is assumed. The new model, termed the dual-fraction nonequilibrium model, requires only one additional parameter compared to the nonequilibrium approach of Ross and Smettem. We tested the model with experimental data from multistep outflow experiments conducted on two soils and compared it to the Richards equation, the nonequilibrium model of Ross and Smettem, and the dual-porosity model of Philip (1968). The experimental data were evaluated by inverse modeling using a robust Markov chain Monte Carlo sampler. The results show that the proposed model is superior to the Richards equation and the Ross and Smettem model in describing dynamic nonequilibrium effects occurring in multistep outflow experiments. The three popular model selection criteria (Akaike information criterion, Bayesian information criterion, and deviance information criterion) all favored the new model because of its smaller number of parameters.
In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study
Directory of Open Access Journals (Sweden)
Mallette Natasha
2009-12-01
Full Text Available Abstract Background Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA. The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. Results The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. Conclusion The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an
Calhoun, Ronald; Gouveia, Frank; Shinn, Joseph; Chan, Stevens; Stevens, Dave; Lee, Robert; Leone, John
2004-05-01
An experiment investigating flow around a single complex building was performed in 2000. Sonic anemometers were placed around the building, and two-dimensional wind velocities were recorded. An energy-budget and wind-measuring station was located upstream to provide stability and inflow conditions. In general, the sonic anemometers were located in a horizontal plane around the building at a height of 2.6 m above the ground. However, at the upwind wind station, two levels of the wind were measured. The resulting database can be sampled to produce mean wind fields associated with specific wind directions such as 210°, 225°, and 240°. The data are available generally and should be useful for testing computational fluid dynamical models for flow around a building. An in-house Reynolds-averaged Navier Stokes approach was used to compare with the mean wind fields for the predominant wind directions. The numerical model assumed neutral flow and included effects from a complex array of trees in the vicinity of the building. Two kinds of comparisons are presented: 1) direct experimental versus modeled vector comparisons and 2) a numerical metric approach that focuses on wind magnitude and direction errors. The numerical evaluation generally corroborates the vector-to-vector inspection, showing reasonable agreement for the mean wind fields around the building. However, regions with special challenges for the model were identified. In particular, recirculation regions were especially difficult for the model to capture correctly. In the 240° case, there is a tendency for the model to exaggerate the turning effect in the wind caused by the effect of the building. Two different kinds of simulations were performed: 1) predictive calculations with a reasonable but not high-fidelity representation of the building's architectural complexity and 2) postexperiment calculations in which a large number of architectural features were well represented. Although qualitative evidence
Real-Time and Resilient Intrusion Detection: A Flow-Based Approach
Hofstede, Rick; Pras, Aiko
2012-01-01
Flow-based intrusion detection will play an important role in high-speed networks, due to the stringent performance requirements of packet-based solutions. Flow monitoring technologies, such as NetFlow or IPFIX, aggregate individual packets into flows, requiring new intrusion detection algorithms to
Gaske, Dan
1992-01-01
Provides a graphical framework for presenting interactions among current account flows, capital account flows, and exchange rates. Suggests that the two type of flows must be considered separately in discussions of foreign exchange equilibrium and balance of payments flows. Supplies sample graphs and instructions for applying the framework to real…
Gaske, Dan
1992-01-01
Provides a graphical framework for presenting interactions among current account flows, capital account flows, and exchange rates. Suggests that the two type of flows must be considered separately in discussions of foreign exchange equilibrium and balance of payments flows. Supplies sample graphs and instructions for applying the framework to real…
Kuniansky, Eve L.
2016-09-22
been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other
Directory of Open Access Journals (Sweden)
Xiangmin Guan
2015-01-01
Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.
Comparison of two different approaches for the control of convectively unstable flows
Juillet, Fabien; Schmid, Peter; McKeon, Beverley; Huerre, Patrick
2011-11-01
The probably most widely used control strategy in the literature is based on the Linear Quadratic Gaussian (LQG) framework. However, this approach seems to be difficult to apply to some fluid systems. In particular, due to their high sensitivity to external noise, amplifier flows are hard to control and the classical LQG compensator may be unable to describe the noise with sufficient accuracy. Another strategy aims at directly measuring these noise sources through a sensor called ``spy.'' The LQG and the spy approaches will be presented and compared using the Ginzburg-Landau equation as a model. It will be shown that the use of a spy is particularly relevant for convectively unstable systems. In addition, the ability of Subspace Identification Methods to provide satisfactory models is demonstrated. Finally, the findings from the Ginzburg-Landau investigation are generalized and applied to a more realistic system, namely a backward-facing step at Re = 350 . Support from Ecole Polytechnique and the Partner University Fund (PUF) is gratefully acknowledged.
Su, Kuan-Hao; Yen, Tzu-Chen; Fang, Yu-Hua Dean
2013-10-01
The aim of this study is to develop and evaluate a novel direct reconstruction method to improve the signal-to-noise ratio (SNR) of parametric images in dynamic positron-emission tomography (PET), especially for applications in myocardial perfusion studies. Simulation studies were used to test the performance in SNR and computational efficiency for different methods. The NCAT phantom was used to generate simulated dynamic data. Noise realization was performed in the sinogram domain and repeated for 30 times with four different noise levels by varying the injection dose (ID) from standard ID to 1/8 of it. The parametric images were calculated by (1) three direct methods that compute the kinetic parameters from the sinogram and (2) an indirect method, which computes the kinetic parameter with pixel-by-pixel curve fitting in image space using weighted least-squares. The first direct reconstruction maximizes the likelihood function using trust-region-reflective (TRR) algorithm. The second approach uses tabulated parameter sets to generate precomputed time-activity curves for maximizing the likelihood functions. The third approach, as a newly proposed method, assumes separable complete data to derive the M-step for maximizing the likelihood. The proposed method with the separable complete data performs similarly to the other two direct reconstruction methods in terms of the SNR, providing a 5%-10% improvement as compared to the indirect parametric reconstruction under the standard ID. The improvement of SNR becomes more obvious as the noise level increases, reaching more than 30% improvement under 1/8 ID. Advantage of the proposed method lies in the computation efficiency by shortening the time requirement to 25% of the indirect approach and 3%-6% of other direct reconstruction methods. With results provided from this simulation study, direct reconstruction of myocardial blood flow shows a high potential for improving the parametric image quality for clinical use.
Minimal sensor count approach to fuzzy logic rotary blood pump flow control.
Casas, Fernando; Ahmed, Nisar; Reeves, Andrew
2007-01-01
A rotary blood pump fuzzy logic flow controller without flow sensors was developed and tested in vitro. The controller, implemented in LabView, was set to maintain a flow set point in the presence of external pressure disturbances. Flow was estimated as a function of measured pump's delta P and speed, using a steady-state, nonlinear approximation. The fuzzy controller used the pump's flow estimate and delta P as feedback variables. The defuzzified control output manipulated the pump speed. Membership functions included flow error, delta P, and pump speed. Experimental runs in a mock loop (water/glycerin 3.5 cPs, 37 degrees C), using the estimated flow, were compared with those using a Transonic flow meter for nine conditions of flow and delta P (4 to 6 L/min, 150 to 350 mm Hg). Pressure disturbances generated by a servo pinch valve ranged from +/-23 to +/-47 mm Hg. Results indicated that the fuzzy controller ably regulated the flow set point to within +/-10% of the baseline even under large swings in pressure. There was no difference in controller performance between the ultrasonic flow measurement and the estimated flow calculation scenarios. These tests demonstrated that the fuzzy controller is capable of rejecting disturbances and regulating flow to acceptable limits while using a flow estimate.
Sermsri, Wimut; Jarujamrus, Purim; Shiowatana, Juwadee; Siripinyanond, Atitaya
2010-04-01
Flow field-flow fractionation (FlFFF) was used for size characterization of gold nanoparticles. The measured particle sizes obtained from FlFFF for the commercial 10 nm gold nanoparticle standard and the gold nanoparticles synthesized in the laboratory were in good agreement with those measured by transmission electron microscopy (TEM). Further, the capability of alpha-tocopherol to induce enlargement of gold nanoparticles by catalysis of the reduction of AuCl(4)(-) by citrate was observed by monitoring the changes in particle size of gold nanoparticles using FlFFF. The effects of alpha-tocopherol and incubation time on enlargement of the gold nanoparticles were examined. Higher concentrations of alpha-tocopherol resulted in larger nanoparticles. At fixed alpha-tocopherol concentration, larger nanoparticles were formed at longer incubation times.
Modelling transverse turbulent mixing in a shallow flow by using an eddy viscosity approach
Gualtieri, C.
2009-04-01
The mixing of contaminants in streams and rivers is a significant problem in environmental fluid mechanics and rivers engineering since to understand the impact and the fate of pollutants in these water bodies is a primary goal of water quality management. Since most rivers have a high aspect ratio, that is the width to depth ratio, discharged pollutants become vertically mixed within a short distance from the source and vertical mixing is only important in the so-called near-field. As a rule of thumb, neutrally buoyant solute becomes fully mixed vertically within 50-75 depths from the source. Notably, vertical mixing analysis relies on well-known theoretical basis, that is Prandtl mixing length model, which assumes the hypothesis of plane turbulent shear flow and provides theoretical predictions of the vertical turbulent diffusivity which closely match experimental results. In the mid-field, the vertical concentration gradients are negligible and both subsequent transverse and longitudinal changes of the depth-averaged concentrations of the pollutants should be addressed. In the literature, for the application of one-dimensional water quality models the majority of research efforts were devoted to estimate the rate of longitudinal mixing of a contaminant, that is the development of a plume resulting from a temporally varying pollutant source once it has become cross-sectionally well-mixed, in the far-field. Although transverse mixing is a significant process in river engineering when dealing with the discharge of pollutants from point sources or the mixing of tributary inflows, no theoretical basis exists for the prediction of its rate, which is indeed based upon the results of experimental works carried on in laboratory channels or in streams and rivers. Turbulence models based on the eddy viscosity approach, such as the k-É model, k-? and their variation are the most widely used turbulence models and this is largely due to their ease in implementation
Valdarnini, R.
2016-11-01
In this paper, we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular, we consider the Gresho-Chan vortex problem, the growth of Kelvin-Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disk problem. We compare simulation results for the different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral properties of the particle distribution, in a way similar to what was done in other works. We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in all of the tests considered. In fact, in terms of accuracy, we find good agreement between the simulation results of the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that the proposed method can be successfully applied for many astrophysical problems in which the presence of subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes with other numerical methods.
An Evolutionary Approach to the Delineation of Functional Areas Based on Travel-to-work Flows
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This paper presents a new approach to the delineation of local labor markets based on evolutionary computation. The aim of the exercise is the division of a given territory into functional regions based on travel-to-work flows. Such regions are defined so that a high degree of inter-regional separation and of intra-regional integration in both cases in terms of commuting flows is guaranteed.Additional requirements include the absence of overlap between delineated regions and the exhaustive coverage of the whole territory.The procedure is based on the maximization of a fitness function that measures aggregate intra-region interaction under constraints of inter-region separation and minimum size. In the experimentation stage, two variations of the fitness function are used, and the process is also applied as a final stage for the optimization of the results from one of the most successful existing methods, which are used by the British authorities for the delineation of travel-to-work areas (TTWAs). The empirical exercise is conducted using real data for a sufficiently large territory that is considered to be representative given the density and variety of travel-to-work patterns that it embraces. The paper includes the quantitative comparison with alternative traditional methods, the assessment of the performance of the set of operators which has been specifically designed to handle the regionalization problem and the evaluation of the convergence process. The robustness of the solutions, something crucial in a research and policy-making context, is also discussed in the paper.
Evaluation Of Two Phase Flow Characteristics In A Pipeline Homogenous Model Approach
Directory of Open Access Journals (Sweden)
Okoye Obuora A.
2015-08-01
Full Text Available The motion of a multi-fluid flow is of interest in the oil and gas industry. The flow characteristics aid or impede production rate. This study analyses two phase fluid flow characteristics consisting of crude oil and natural gas in straight pipes of the same internal diameter using homogenous model. Flow values were obtained from a Niger Delta flow station and predetermined experimental flow equations were used to determine the pressure drop in order to comprehend the flow characteristics in the pipeline. An average total pressure loss amp8710PT of 0.075 MPa was obtained in the laminar flow category at 0.006228 MPam and an average total pressure amp8710PT of 27.896 MPa in turbulent flow category at 2.325 MPam in a pipe length of 12 metres. Graphs were plotted to show the influence of the calculated flow parameters on the fluid flow. The graphs aided in depicting the flow regimes in the pipeline. These are universally dominant parameters in the oil and gas industry as they significantly impact on the transportation of crude oil from oil wells or reservoirs to the process plants. These results may be used as a baseline and guide to compare realistic measurements in similar flows.
Mirus, Benjamin B.; Nimmo, J.R.
2013-01-01
The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.
Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V
2017-02-01
The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.
Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport
Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.
2016-12-01
Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between
Dynamic effects in multiphase flow: A pore-scale network approach
Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.
2005-01-01
Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship
Dynamic effects in multiphase flow: A pore-scale network approach
Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.
2005-01-01
Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship th
Unified Kinetic Approach for Simulation of Gas Flows in Rarefied and Continuum Regimes
2007-06-01
a low-speed flow induced by temperature gradients. The nonuniform boundary temperature distribution can induce flows in reactor : a significant flow...Rotational Spectrum and Molecular Interaction Potential, ibid R. R. Arslanbekov and V. I. Kolobov, Simulation of Low Pressure Plasma Processing Reactors ... Microchannel flow in the slip regime: gas-kinetic BGK—Burnett solutions, J. Fluid Mech. 513, 87 (2004) 59 R.L.Bayut, PhD thesis, MIT 1999 60
A new approach to incorporating environmental flow requirements in water allocation modeling
Meijer, K.S.; Krogt, W.N.M.; Beek, van E.
2012-01-01
The condition of river, wetland and estuarine ecosystems is largely determined by the prevailing flow regime. The flow regime can be described by the magnitude, frequency, timing, duration and rate of change of both intra-annual and inter-annual events. The required flow regime, necessary to maintai
A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.
2014-12-16
Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.
Energy Technology Data Exchange (ETDEWEB)
Ramazani, A., E-mail: ali.ramazani@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany); Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany)
2013-01-10
A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor {sigma}{sub 3D}/{sigma}{sub 2D} has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik
2014-10-21
Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.
Bayesian and variational Bayesian approaches for flows in heterogeneous random media
Yang, Keren; Guha, Nilabja; Efendiev, Yalchin; Mallick, Bani K.
2017-09-01
In this paper, we study porous media flows in heterogeneous stochastic media. We propose an efficient forward simulation technique that is tailored for variational Bayesian inversion. As a starting point, the proposed forward simulation technique decomposes the solution into the sum of separable functions (with respect to randomness and the space), where each term is calculated based on a variational approach. This is similar to Proper Generalized Decomposition (PGD). Next, we apply a multiscale technique to solve for each term (as in [1]) and, further, decompose the random function into 1D fields. As a result, our proposed method provides an approximation hierarchy for the solution as we increase the number of terms in the expansion and, also, increase the spatial resolution of each term. We use the hierarchical solution distributions in a variational Bayesian approximation to perform uncertainty quantification in the inverse problem. We conduct a detailed numerical study to explore the performance of the proposed uncertainty quantification technique and show the theoretical posterior concentration.
Vibration transmission through periodic structures using a mobility power flow approach
Cuschieri, J. M.
1990-01-01
The transmission of vibrational power (time averaged) through multiple coupled (periodic) structures is examined. The analysis is performed in the frequency domain and the coupling between the sub-elements of the periodic structure is expressed in terms of structural mobility functions for the junction points and between the junction points of the sub-elements. Equal length spans between stiffeners or supports of the periodic structure are considered. Through the use of the mobility power flow approach, the influence of sub-element and junction parameters, including damping at the joints, can be investigated. The results from the analysis can be in the form of either structural intensity or alternatively structural power content for each of the sub-elements. The examples discussed are for a thin, perfectly periodic beam with a finite number of spans with different types of stiffeners and/or supports between the spans. The excitation of the structure is by a point load located midway along the first span.
Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin
2016-07-01
Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.
Ianoul, Anatoli I.; Fleury, Fabrice; Duval, Olivier; Jardillier, Jean-Claude; Alix, Alain J.; Nabiev, Igor R.
1999-04-01
Surface-Enhanced Raman Scattering (SERS) spectroscopy and Flow Linear Dichroism (FLD) technique have been employed to study the anticancer agent fagaronine and its derivative ethoxidine - double inhibitors of DNA topoisomerases I and II. Cooperative use of two methods permitted (i) to determine the molecular determinants of the drug-DNA interactions; (ii) to monitor in real time the process of topo I inhibition by these anticancer agents. FLD technique allowed us to identify the mode of drug interactions with the DNA as a 'major groove intercalation' and to determine orientation of the drugs chromophores within the complexes. Using SERS spectroscopy we have determined the drugs molecular determinants interacting with the DNA. FLD was also used for real time monitoring of the process of sc DNA relaxation by topo I and of inhibition of relaxation with the pharmaceuticals. Ethoxidine was found to exhibit the same activity of inhibition of sc DNA relaxation as fagaronine at the 10-fold less concentration. The proposed SERS-FLD combined approach demonstrates the new perspectives for screening new pharmaceuticals due to its relative simplicity and low expense, high sensitivity and selectivity, and, finally, possibility of real-time monitoring of the structure-function correlation within the series of drug derivatives.
Fluid structure interaction between rods and a cross flow - Numerical approach
Energy Technology Data Exchange (ETDEWEB)
Simoneau, Jan-patrice, E-mail: jan-patrice.simoneau@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Sageaux, Thomas, E-mail: thomas.sageaux@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Moussallam, Nadim, E-mail: nadim.moussallam@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Bernard, Olivier, E-mail: olivier.bernard1@areva.com [Areva, 1, Place J. Millet, F 92084 Paris la Defense (France)
2011-11-15
This paper presents a full coupled approach between fluid dynamics and structure analysis. It is conducted in order to further improve the assessment of fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generators and other heat exchangers tubes, fast breeder fuel assemblies. The coupling is obtained by implementing a beam mechanical model in user routines of the CFD code Star-CD, and thanks to a moving grid procedure. The configurations considered are rods in a cross flow. The model is first validated on a single rod case. The lock-in effect is pointed out and both amplitude and frequency responses of the single rod are positively compared to experimental data. Secondly, the mutual influence of two rods, either in-line or parallely set, is investigated. Different behaviors, bounded by critical distances between the rods are highlighted. Finally, the stability of a 3 Multiplication-Sign 3 bundle is calculated for different impinging velocities. Stable and unstable areas are found when varying the impinging velocity. Above a limit, the vibrations amplify up to a contact between rods, this bound is found slightly greater than literature values for close configurations. It is therefore expected that further calculations, with model refinements, will bring valuable informations about bundle stability.
Modeling Mixed Bicycle Traffic Flow: A Comparative Study on the Cellular Automata Approach
Directory of Open Access Journals (Sweden)
Dan Zhou
2015-01-01
Full Text Available Simulation, as a powerful tool for evaluating transportation systems, has been widely used in transportation planning, management, and operations. Most of the simulation models are focused on motorized vehicles, and the modeling of nonmotorized vehicles is ignored. The cellular automata (CA model is a very important simulation approach and is widely used for motorized vehicle traffic. The Nagel-Schreckenberg (NS CA model and the multivalue CA (M-CA model are two categories of CA model that have been used in previous studies on bicycle traffic flow. This paper improves on these two CA models and also compares their characteristics. It introduces a two-lane NS CA model and M-CA model for both regular bicycles (RBs and electric bicycles (EBs. In the research for this paper, many cases, featuring different values for the slowing down probability, lane-changing probability, and proportion of EBs, were simulated, while the fundamental diagrams and capacities of the proposed models were analyzed and compared between the two models. Field data were collected for the evaluation of the two models. The results show that the M-CA model exhibits more stable performance than the two-lane NS model and provides results that are closer to real bicycle traffic.
DEFF Research Database (Denmark)
Obro, Nina Friesgaard; Madsen, Hans O.; Ryder, Lars Peter;
2011-01-01
defined cell populations with subsequent analyses of leukemia-associated cytogenetic and molecular marker. The approaches described here optimize the use of the same tube of unfixed, antibody-stained BM cells for flow-sorting of small cell populations and subsequent exploratory FISH and PCR-based analyses....
Bloxham, Matthew Jon
A flow control scheme using endwall suction and vortex generator jet (VGJ) blowing was employed in an effort to reduce the turbine passage losses associated with the endwall flow field and midspan separation. Unsteady midspan control at low Re had a significant impact on the wake area-average total pressure losses, decreasing the losses by 54%. Initially, the focus of the endwall control was the horseshoe vortex system. The addition of leading edge endwall suction resulted in an area-average total pressure loss reduction of 57%. The minimal additional gains achieved with leading edge endwall suction showed that the horseshoe vortex was a secondary contributor to endwall loss production (primary contributor-passage vortex). A similar flow control strategy was then employed with an emphasis on passage vortex (PV) control. During the design, a theoretical model was used that effectively predicted the trajectory of the passage vortex. The model required inviscid results obtained from two-dimensional CFD. It was used in the design of two flow control approaches, the removal and redirection approaches. The emphasis of the removal approach was the direct application of flow control on the endwall below the passage vortex trajectory. The redirection approach attempted to alter the trajectory of the PV by removing boundary layer fluid through judiciously placed suction holes. Suction hole positions were chosen using a potential flow model that emphasized the alignment of the endwall flow field with inviscid streamlines. Model results were validated using flow visualization and particle image velocimetry (PIV) in a linear turbine cascade comprised of the highly-loaded L1A blade profile. Detailed wake total pressure losses were measured while matching the suction and VGJ massflow rates, for the removal and redirection approaches at ReCx=25000 and blowing ratio, B, of 2. When compared with the no control results, the addition of steady VGJs and endwall suction reduced the wake
DEFF Research Database (Denmark)
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter
2014-01-01
Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing for consider......Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing...... of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global level by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products...
Energy Technology Data Exchange (ETDEWEB)
Vural, A. Mete [Department of Electrical and Electronics Engineering, University of Gaziantep, Gaziantep 27310 (Turkey); Tuemay, Mehmet [Department of Electrical and Electronics Engineering, Cukurova University, Adana 01330 (Turkey)
2007-10-15
This paper is focused on the mathematical modeling of unified power flow controller (UPFC), which is an advanced and versatile member of flexible ac transmission systems (FACTS). The proposed model is for the implementation of the device in conventional Newton-Raphson (NR) power flow algorithm and in power system analysis software package (PSASP). The model, derived from two-voltage source representation, is presented and analyzed in detail. The model represents a more robust and feasible alternative to others, because it is able to take operational losses of UPFC into account. A program in Fortran-77 language has been written in order to extend conventional NR algorithm based on proposed model. The model has also been adapted into PSASP by means of user-defined modeling technique. Different computer simulation studies performed on IEEE 14-bus and IEEE 30-bus test systems are presented in the paper to test and compare the two approaches. A robust and reliable convergence of the power flow studies is guaranteed by implementing the two approaches with high convergence speeds. UPFC can be theoretically located anywhere along a transmission line. In this respect, also the effects of UPFC allocation on power system operation have been investigated in detail. (author)
Kebede, Seifu; Admasu, Girum; Travi, Yves
2011-03-01
The isotope balance approach, which used (18)O content of waters, has been used as an independent tool to estimate inflow to Lake Tana of surface water flows from ungauged catchment of Lake Tana (50% of the total area) and evaporative water loss in the vast plains adjoining the lake. Sensitivity analysis has been conducted to investigate the effects of changes in the input parameters on the estimated flux. Surface water inflow from ungauged catchment is determined to be in the order of 1.698×10(9) m(3)a(-1). Unaccounted water loss from the lake has been estimated at 454×10(6) m(3)a(-1) (equivalent to 5% of the total via surface water). Since the lake is water tight to groundwater outflow, the major error introduced into the water balance computation is related to evaporative water loss in water from the flood plains. If drained, the water which is lost to evaporation can be used as an additional water resource for socio-economic development in the region (tourism, agriculture, hydropower, and navigation). Hydrological processes taking place in the vast flood plains of Lake Tana (origin of salinity, groundwater surface water interaction, origin of flood plain waters) have been investigated using isotopes of water and geochemistry as tracers. The salinity of shallow groundwaters in the flood plains is related to dissolution of salts accumulated in sediments covering former evaporation pools and migration of trace salt during recharge. The waters in the flood plains originate from local rainfall and river overflows and the effect of backwater flow from the lake is excluded. Minimum linkage exists between the surface waters in the flood plains and shallow groundwaters in alluvio lacustrine sediments suggesting the disappearance of flood waters following the rainy season, which is related to complete evaporation or drainage than seepage to the subsurface. There is no groundwater outflow from the lake. Inflow of groundwater cannot be ruled out. Discharge of groundwater
Energy Technology Data Exchange (ETDEWEB)
Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory
2012-06-07
Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth
Fuse, Shinichiro; Mifune, Yuto; Nakamura, Hiroyuki; Tanaka, Hiroshi
2016-11-01
Feglymycin is a naturally occurring, anti-HIV and antimicrobial 13-mer peptide that includes highly racemizable 3,5-dihydroxyphenylglycines (Dpgs). Here we describe the total synthesis of feglymycin based on a linear/convergent hybrid approach. Our originally developed micro-flow amide bond formation enabled highly racemizable peptide chain elongation based on a linear approach that was previously considered impossible. Our developed approach will enable the practical preparation of biologically active oligopeptides that contain highly racemizable amino acids, which are attractive drug candidates.
Fischer, Thomas; Küfmann, Carola; Haas, Florian; Baume, Otfried; Becht, Michael
2013-04-01
The high mountain systems of Central Asia (Hindukush, Pamir and Tien Shan) are dominated by continental-climatic conditions. Nevertheless, westerly maritime air circulation and convective rainfalls during the summer season result in high rainfall intensities. In combination with a high availability of unconsolidated material rainfall triggered debris flows are prominent and intensive geomorphologic processes in these mountain areas. The presented study aims to figure out a regional based modeling approach for rainfall-induced debris flow processes based on combination of a disposition model for debris flow starting zones with process-flow models. The investigation area has a size of about 700 square kilometers and is situated in the Northern Tien Shan mountains in SE Kazakhstan (investigation areas: valleys of Prochadnaja, Big Almatinka, Little Almatinka and Left Talgar). The area is characterized by mountain forest zone, alpine meadows and high-alpine glaciated areas with the highest peaks at 4500m. In a first step the disposition (point of process triggering) of actual debris flows was analyzed. Due to different triggering mechanisms, the processes were divided into channel-type and slope-type debris flows. Detailed mapping of actual debris flows initiation areas and a GIS-based geostatistical disposition analysis are used to identify the main geofactor-variables and geofactor combinations which enhance the triggering of rainfall-induced debris flows. It can be shown that both, longtime variable geofactors (such as local geomorphology and hydrology) plays a significant role for triggering debris flows, as well as mid- and short time variable geofactors. Especially actual permafrost distribution and degradation plus glacier retreat comes into the focus of interest. This is most notably for rainfall induced slope-type debris flows which primarily are triggered in the discontinuous and continuous permafrost areas eroding younger unconsolidated material from actual
Parametric distribution approach for flow availability in small hydro potential analysis
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
CFA2: a Context-Free Approach to Control-Flow Analysis
Vardoulakis, Dimitrios
2011-01-01
In a functional language, the dominant control-flow mechanism is function call and return. Most higher-order flow analyses, including k-CFA, do not handle call and return well: they remember only a bounded number of pending calls because they approximate programs with control-flow graphs. Call/return mismatch introduces precision-degrading spurious control-flow paths and increases the analysis time. We describe CFA2, the first flow analysis with precise call/return matching in the presence of higher-order functions and tail calls. We formulate CFA2 as an abstract interpretation of programs in continuation-passing style and describe a sound and complete summarization algorithm for our abstract semantics. A preliminary evaluation shows that CFA2 gives more accurate data-flow information than 0CFA and 1CFA.
DEFF Research Database (Denmark)
Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja
2015-01-01
information flows between activities in complex engineering design projects; 2) we show how the network of information flows in a large-scale engineering project evolved over time and how network analysis yields several managerial insights; and 3) we provide a useful new representation of the engineering...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according......The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...
A NEW APPROACH TO THE NONLINEAR STABILITY OF PARALLEL SHEAR FLOWS
Institute of Scientific and Technical Information of China (English)
XU Lan-xi; HUANG Yong-nian
2005-01-01
Lyapunov's second method was used to study the nonlinear stability of parallel shear flows for stress-free boundaries. By introducing an energy functional, it was shown that the plane Couette and plane Poiseuille flows are conditionally and asymptotically stable for all Reynolds numbers. In particular, to two-dimensional perturbations, by defining new energy functionals the unconditional stability of the basic flows was proved.
Huang, D; Chernyshenko, S; Goulart, P; Lasagna, D; Tutty, O; Fuentes, F
2015-11-08
With the goal of providing the first example of application of a recently proposed method, thus demonstrating its ability to give results in principle, global stability of a version of the rotating Couette flow is examined. The flow depends on the Reynolds number and a parameter characterizing the magnitude of the Coriolis force. By converting the original Navier-Stokes equations to a finite-dimensional uncertain dynamical system using a partial Galerkin expansion, high-degree polynomial Lyapunov functionals were found by sum-of-squares of polynomials optimization. It is demonstrated that the proposed method allows obtaining the exact global stability limit for this flow in a range of values of the parameter characterizing the Coriolis force. Outside this range a lower bound for the global stability limit was obtained, which is still better than the energy stability limit. In the course of the study, several results meaningful in the context of the method used were also obtained. Overall, the results obtained demonstrate the applicability of the recently proposed approach to global stability of the fluid flows. To the best of our knowledge, it is the first case in which global stability of a fluid flow has been proved by a generic method for the value of a Reynolds number greater than that which could be achieved with the energy stability approach.
A physical approach of the short-term wind power prediction based on CFD pre-calculated flow fields
Institute of Scientific and Technical Information of China (English)
LI Li; LIU Yong-qian; YANG Yong-ping; HAN Shuang; WANG Yi-mei
2013-01-01
A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper.The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions,and a database is established containing the important parameters including the inflow wind conditions,the flow fields and the corresponding wind power for each wind turbine.The power is predicted via the database by taking the Numerical Weather Prediction (NWP)wind as the input data.In order to evaluate the approach,the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010.Compared with the measured power,the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2％ and the annual MAE of 10.80％.A good performance is shown in predicting the wind power's changing trend.This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms.At the same time,it does not take much computation time while it captures the local air flows more precisely by the CFD model.So it is especially practical for engineering projects.
Shih, Tsan-Hsing; Liu, Nan-Suey
2008-01-01
This paper describes an approach which aims at bridging the gap between the traditional Reynolds-averaged Navier-Stokes (RANS) approach and the traditional large eddy simulation (LES) approach. It has the characteristics of the very large eddy simulation (VLES) and we call this approach the partially-resolved numerical simulation (PRNS). Systematic simulations using the National Combustion Code (NCC) have been carried out for fully developed turbulent pipe flows at different Reynolds numbers to evaluate the PRNS approach. Also presented are the sample results of two demonstration cases: nonreacting flow in a single injector flame tube and reacting flow in a Lean Direct Injection (LDI) hydrogen combustor.
Directory of Open Access Journals (Sweden)
W. Shao
2014-11-01
Full Text Available The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix domain coupled to a preferential flow domain. The second part is a~soil mechanics model and is used to compute the spatial and temporal distribution of the local factor of safety based on the water pressure distribution computed with the subsurface flow model. Two types of rainfall events were considered: long duration, low-intensity rainfall, and short duration, high-intensity rainfall. The effect of preferential flow on slope stability is assessed through comparison of the failure area when subsurface flow is simulated with the dual-permeability model as compared to a single-permeability model (no preferential flow. For the low-intensity rainfall case, preferential flow has a positive effect on the slope stability as it drains the water from the matrix domain resulting in a smaller failure area. For the high-intensity rainfall case, preferential flow has a negative effect on the slope stability as the majority of rainfall infiltrates into the preferential flow domain when rainfall intensity exceeds the infiltration capacity of the matrix domain, resulting in larger water pressure and a larger failure area.
DEFF Research Database (Denmark)
Obro, Nina Friesgaard; Madsen, Hans Ole; Ryder, Lars Peter
2011-01-01
defined cell populations with subsequent analyses of leukemia-associated cytogenetic and molecular marker. The approaches described here optimize the use of the same tube of unfixed, antibody-stained BM cells for flow-sorting of small cell populations and subsequent exploratory FISH and PCR-based analyses.......Discordances between minimal residual disease estimates obtained by different methods are a problem in childhood acute lymphoblastic leukemia. We aimed to optimize methods allowing the biological exploration of such discrepancies, i.e. the combination of flow-sorting of small immunophenotypically...
Hafez, M.; Soliman, M.; White, S.
1992-01-01
A new formulation (including the choice of variables, their non-dimensionalization, and the form of the artificial viscosity) is proposed for the numerical solution of the full Navier-Stokes equations for compressible and incompressible flows with heat transfer. With the present approach, the same code can be used for constant as well as variable density flows. The changes of the density due to pressure and temperature variations are identified and it is shown that the low Mach number approximation is a special case. At zero Mach number, the density changes due to the temperature variation are accounted for, mainly through a body force term in the momentum equation. It is also shown that the Boussinesq approximation of the buoyancy effects in an incompressible flow is a special case. To demonstrate the new capability, three examples are tested. Flows in driven cavities with adiabatic and isothermal walls are simulated with the same code as well as incompressible and supersonic flows over a wall with and without a groove. Finally, viscous flow simulations of an oblique shock reflection from a flat plate are shown to be in good agreement with the solutions available in literature.
Gogoi, Bidyut B.
2016-07-01
We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.
de Jalon Diego, Garcia; de Jalon Silvestre, Garcia; Tanago Marta, Gonzalez
2015-04-01
In the last decades there has been a growing concern about water environmental costs. 'Polluter should pay' has been a phrase repeated in numerous policy-making processes. Water abstraction for Irrigation, Hydropower or water supply for Domestic or Industrial porpoises alters natural flow regimes impacting severely fluvial Ecosystems. The objective of this paper is to develop an evaluation of the marginal environmental costs for flow regulation. This approach is based on the idea 'who regulates flows should pay' and the amount to be paid should be proportional on the intensity, duration and frequency of the resulting regulated flows. The methodology proposed includes three separated steps: (i) estimating the natural flow regime of a river segment through studying the hydrologic conditions before the river is affected by a determined anthropogenic impact, (ii) assessing the hydrologic alteration of the river segment according to the estimated natural flow regime, and (iii) calculating marginal environmental costs of water supply. The three different case studies where the methodology was applied were the Esla River (Spain), the Upper River Tyne (England) and the Marna River (Norway).
A modelling approach to establish experimental parameters of a flow-through titration
Reijnders, H.F.R.; Staden, J.J. van; Eelderink, G.H.B; Griepink, B.
1980-01-01
A flow-through titrimeter with optical detection and the flow-through titration of sulphate have been studied by using control engineering methods. Qualitative chemical descriptions and systems analysis yield a model covering different precipitation rates of barium sulphate. The validity of the mode
Shao, W.; Bogaard, T.A.; Bakker, M.; Greco, R.
2014-01-01
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is use
Real-Time and Resilient Intrusion Detection: A Flow-Based Approach
Hofstede, Rick; Pras, Aiko
2012-01-01
Due to the demanding performance requirements of packet-based monitoring solutions on network equipment, flow-based intrusion detection systems will play an increasingly important role in current high-speed networks. The required technologies are already available and widely deployed: NetFlow and th
DEFF Research Database (Denmark)
Li, Ye; Jensen, Jørgen Arendt
2011-01-01
A dual stage beamformer method for synthetic aperture flow imaging has been developed. The motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. With the new method high resolution im...
Young, Michael E.; Haight, Michael J.
An analytic system for colleges that involves student flow calculation, an historical curriculum matrix, and departmental workload forecasts is examined. The conceptual base, uses of the data, technical issues, and implementation are covered. The student flow calculation uses enrollment trends to develop the probability of a student with a given…
A disaggregating approach to describe overland flow occurrence within a catchment
Vigiak, O.; Romanowicz, R.; van Loon, E.E.; Sterk, G.; Beven, K.J.
2006-01-01
A parametrically parsimonious, data-based model was built on observations at hillslope and catchment scale to simulate the distribution of overland flow within a small East African Highlands catchment (Kwalei, Tanzania). A rainfall-flow Data Based Mechanistic model identified catchment effective rai
Koppol, Anantha Padmanabha Rao
Flows of viscoelastic polymeric fluids are of great fundamental and practical interest as polymeric materials for commodity and value-added products are processed typically in a fluid state. The nonlinear coupling between fluid motion and microstructure, which results in highly non-Newtonian theology, memory/relaxation and normal stress development or tension along streamlines, greatly complicates the analysis, design and control of such flows. This has posed tremendous challenges to researchers engaged in developing first principles models and simulations that can accurately and robustly predict the dynamical behavior of polymeric flows. Despite this, the past two decades have witnessed several significant advances towards accomplishing this goal. Yet a problem of fundamental and great pragmatic interest has defied solution to years of ardent research by several groups, namely the relationship between friction drag and flow rate in inertialess flows of highly elastic polymer solutions in complex kinematics flows. First principles-based solution of this long-standing problem in non-Newtonian fluid mechanics is the goal of this research. To achieve our objective, it is essential to develop the capability to perform large-scale multiscale simulations, which integrate continuum-level finite element solvers for the conservation of mass and momentum with fast integrators of stochastic differential equations that describe the evolution of polymer configuration. Hence, in this research we have focused our attention on development of a parallel, multiscale simulation algorithm that is capable of robustly and efficiently simulating complex kinematics flows of dilute polymeric solutions using the first principles based bead-spring chain description of the polymer molecules. The fidelity and computational efficiency of the algorithm has been demonstrated via three benchmark flow problems, namely, the plane Couette flow, the Poiseuille flow and the 4:1:4 axisymmetric
Kaspi, Y.; Davighi, J. E.; Galanti, E.; Hubbard, W. B.
2016-09-01
The upcoming Juno and Cassini gravity measurements of Jupiter and Saturn, respectively, will allow probing the internal dynamics of these planets through accurate analysis of their gravity spectra. To date, two general approaches have been suggested for relating the flow velocities and gravity fields. In the first, barotropic potential surface models, which naturally take into account the oblateness of the planet, are used to calculate the gravity field. However, barotropicity restricts the flows to be constant along cylinders parallel to the rotation axis. The second approach, calculated in the reference frame of the rotating planet, assumes that due to the large scale and rapid rotation of these planets, the winds are to leading order in geostrophic balance. Therefore, thermal wind balance relates the wind shear to the density gradients. While this approach can take into account any internal flow structure, it is limited to only calculating the dynamical gravity contributions, and has traditionally assumed spherical symmetry. This study comes to relate the two approaches both from a theoretical perspective, showing that they are analytically identical in the barotropic limit, and numerically, through systematically comparing the different model solutions for the gravity harmonics. For the barotropic potential surface models we employ two independent solution methods - the potential-theory and Maclaurin spheroid methods. We find that despite the sphericity assumption, in the barotropic limit the thermal wind solutions match well the barotropic oblate potential-surface solutions.
A combined experimental-numerical approach for two-phase flow boiling in a minichannel
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2016-01-01
Full Text Available The paper addresses experimental and numerical modeling of the two-phase flows in an asymmetrically heated horizontal minichannel. Experimental measurements concerned flows of evaporating ethanol in a minichannel with rectangular cross section 1.8mm × 2 mm. In order to observe the flows, measuring system was designed and built. The system measured and recorded basic heat and flow parameters of flowing fluid, and the temperature of external surface of the heater by using infrared camera and recorded images of flow with high-speed camera. The second aim of the paper was to formulate appropriate flow boiling heat transfer model, which would minimises the use of experimentally determined constants. The procedure of calculating the temperature of the ethanol is coupled with concurrent process of determining the temperature distributions in the isolating foil and the heating surface. The two-dimensional temperature distributions in three subsequent domains were calculated with Trefftz method. Due to the Robin condition, heat transfer coefficient at the heating surface-ethanol interface was calculated based on the known temperature distributions of the foil and liquid. Additionally, the paper describes the relation between two sets of functions used in the calculation. Numerical calculations made by Trefftz method were performed with using experimental data.
Fratto, Brian E; Katz, Evgeny
2015-05-18
Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla
2010-02-01
Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.
A new approach for thermal performance calculation of cross-flow heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Navarro, H.A. [Universidade Estadual Paulista, Rio Claro (Brazil). Dpto. de Estatistica; Cabezas-Gomez, L. [Universidade de Sao Paulo, Sao Carlos (Brazil). Dpto. de Engenharia Mecanica
2005-08-01
A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units ({epsilon}-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided. (author)
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Stanko, Z.; Boyce, S. E.; Yeh, W. W. G.
2015-12-01
Model reduction techniques using proper orthogonal decomposition (POD) have been very effective in applications to confined groundwater flow models. These techniques consist of performing a projection of the solution of the full model onto a reduced basis. POD combined with the snapshot approach has been successfully applied to highly discretized linear models. In many cases, the reduced model is orders of magnitude smaller than the full model and runs 1,000 times faster. For nonlinear models, such as the unconfined groundwater flow, direct application of POD requires additional calls to the full model to generate additional snapshots. This is time consuming and increases the dimension of the reduced model. The discrete empirical interpolation method (DEIM) is a technique that avoids the additional full model calls and captures the dynamics of the nonlinear term while reducing the dimensions. Here, POD and DEIM are combined to reduce both the nonlinear unconfined groundwater flow and solute transport equations. To prove the concept, simple one-dimensional models are created for MODFLOW and MT3DMS separately. The dual approach is then tested on a density-dependent flow and transport simulation using the LMT package developed for MODFLOW. For each iteration of the nonlinear flow solver and the transport solver, the respective reduced models are solved instead. Numerical experiments show that significant reduction is obtainable before errors become too large. This method is well suited for a coastal aquifer seawater intrusion scenario, where nonlinearities only exist in small subregions of the model domain. A fine discretization can be utilized and POD will effectively eliminate unnecessary parameterization by projecting the full model system matrix onto a subspace with fewer column dimensions. DEIM can then reduce the row dimension of the original system by using only those state variable nodes with the most influence. This combined approach allows for full
A unified approach to fluid-flow, geomechanical, and seismic modelling
Yarushina, Viktoriya; Minakov, Alexander
2016-04-01
The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by
de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez
2016-06-01
The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.
Priede, J
2005-01-01
A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for s...
Flows in polymers, reinforced polymers and composites a multi-scale approach
Binetruy, Christophe; Keunings, Roland
2015-01-01
This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic...
Directory of Open Access Journals (Sweden)
Sushila
2013-09-01
Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.
Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
Benard, Nicolas; Perrault, Robert; Coisne, Damien
2006-08-01
In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.
Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography
Institute of Scientific and Technical Information of China (English)
王泽璞; 陈琪; 王雪瑶; 李志宏; 韩振兴
2012-01-01
Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography（ECT） technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows.
Directory of Open Access Journals (Sweden)
Marius Alexandru PANAIT
2014-06-01
Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.
Directory of Open Access Journals (Sweden)
Joel J. Carrillo-Rivera
2012-01-01
Full Text Available Problem statement: The interest in early hydrogeological studies was the aquifer unit, as it is the physical media that stores and permits groundwater transfers from the recharge zone to the discharge zone, making groundwater available to boreholes for water extraction. Approach: Recently, the aquifer concept has been complemented by the groundwater flow system theory, where groundwater may be defined by local, intermediate and regional flow systems. This implies that groundwater may travel from one aquifer unit to another aquifer unit (or more located above or below the former. Water in a local flow system takes months or several years to travel from the recharge to the discharge zone. These flows usually transfer the best natural quality water, so a reduction in precipitation would lessen recharge and diminish stored water, making them more vulnerable to contamination and variability in climatic conditions. Thus, there is a need to define local flows and to enhance actions to protect them from contamination and inefficient extraction. Results: In contrast to local flows, intermediate and regional flows travel from a region, or country, into another, with their recharge processes usually taking place in a zone located far away from the discharge zone (natural or by boreholes. There is a need of groundwater flow systems evaluation by means of an integrated wide system-view analysis of partial evidence represented by surface (soil and vegetation covers as well as hydraulic, isotopic and chemical groundwater characterization in the related geological media where the depth of actual basement rock is paramount as well as discharge areas. The flow system definition may assist in extraction management strategies to control related issues as subsidence, obtained the water quality change, desiccation of springs and water bodies, soil erosion, flooding response, contamination processes in recharge areas, among others; many of which could be efficiently
Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan
2016-12-01
Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/h is larger than 0.4.
Oliver, Todd; Ulerich, Rhys; Topalian, Victor; Malaya, Nick; Moser, Robert
2013-11-01
A discretization of the Navier-Stokes equations appropriate for efficient DNS of compressible, reacting, wall-bounded flows is developed and applied. The spatial discretization uses a Fourier-Galerkin/B-spline collocation approach. Because of the algebraic complexity of the constitutive models involved, a flux-based approach is used where the viscous terms are evaluated using repeated application of the first derivative operator. In such an approach, a filter is required to achieve appropriate dissipation at high wavenumbers. We formulate a new filter source operator based on the viscous operator. Temporal discretization is achieved using the SMR91 hybrid implicit/explicit scheme. The linear implicit operator is chosen to eliminate wall-normal acoustics from the CFL constraint while also decoupling the species equations from the remaining flow equations, which minimizes the cost of the required linear algebra. Results will be shown for a mildly supersonic, multispecies boundary layer case inspired by the flow over the ablating surface of a space capsule entering Earth's atmosphere. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Jomelli, Vincent; Pavlova, Irina; Eckert, Nicolas; Grancher, Delphine; Brunstein, Daniel
2015-12-01
How can debris flow occurrences be modelled at regional scale and take both environmental and climatic conditions into account? And, of the two, which has the most influence on debris flow activity? In this paper, we try to answer these questions with an innovative Bayesian hierarchical probabilistic model that simultaneously accounts for how debris flows respond to environmental and climatic variables. In it, full decomposition of space and time effects in occurrence probabilities is assumed, revealing an environmental and a climatic trend shared by all years/catchments, respectively, clearly distinguished from residual "random" effects. The resulting regional and annual occurrence probabilities evaluated as functions of the covariates make it possible to weight the respective contribution of the different terms and, more generally, to check the model performances at different spatio-temporal scales. After suitable validation, the model can be used to make predictions at undocumented sites and could be used in further studies for predictions under future climate conditions. Also, the Bayesian paradigm easily copes with missing data, thus making it possible to account for events that may have been missed during surveys. As a case study, we extract 124 debris flow event triggered between 1970 and 2005 in 27 catchments located in the French Alps from the French national natural hazard survey and model their variability of occurrence considering environmental and climatic predictors at the same time. We document the environmental characteristics of each debris flow catchment (morphometry, lithology, land cover, and the presence of permafrost). We also compute 15 climate variables including mean temperature and precipitation between May and October and the number of rainy days with daily cumulative rainfall greater than 10/15/20/25/30/40 mm day- 1. Application of our model shows that the combination of environmental and climatic predictors explained 77% of the overall
Unsteady Hartmann Two-Phase Flow: The Riemann-Sum Approximation Approach
Jha, B. K.; Babila, C. T.; Isa, S.
2016-12-01
We consider the time dependent Hartmann flow of a conducting fluid in a channel formed by two horizontal parallel plates of infinite extent, there being a layer of a non-conducting fluid between the conducting fluid and the upper channel wall. The flow formation of conducting and non-conducting fluids is coupled by equating the velocity and shear stress at the interface. The unsteady flow formation inside the channel is caused by a sudden change in the pressure gradient. The relevant partial differential equations capturing the present physical situation are transformed into ordinary differential equations using the Laplace transform technique. The ordinary differential equations are then solved analytically and the Riemann-sum approximation method is used to invert the Laplace domain into time domain. The solution obtained is validated by comparisons with the closed form solutions obtained for steady states which have been derived separately and also by the implicit finite difference method. The variation of velocity, mass flow rate and skin-friction on both plates for various physical parameters involved in the problem are reported and discussed with the help of line graphs. It was found that the effect of changes of the electric load parameter is to aid or oppose the flow as compared to the short-circuited case.
Kinetics-based phase change approach for VOF method applied to boiling flow
Cifani, Paolo; Geurts, Bernard; Kuerten, Hans
2014-11-01
Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.
Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka
2015-02-01
A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.
Estimation of turbulent channel flow based on the wall measurement with a statistical approach
Hasegawa, Yosuke; Suzuki, Takao
2016-11-01
A turbulent channel flow at Ret au = 100 with periodic boundary conditions is estimated with linear stochastic estimation only based on the wall measurement, i.e. the shear-stress in the streamwise and spanwise directions as well as the pressure over the entire wavenumbers. The results reveal that instantaneous measurement on the wall governs the success of the estimation in y+ feed the velocity components from the linear stochastic estimation via the body-force term into the Navier-Stokes system; however, the estimation slightly improves in the log layer, indicating some benefit of involving a dynamical system but over-suppression of turbulent kinetic energy beyond the viscous sublayer by the linear stochastic estimation. Motions inaccurately estimated in the buffer layer prevent from further reconstruction toward the centerline even if we relax the feedback forcing and let the flow evolve nonlinearly through the estimator. We also argue the inherent limitation of turbulent flow estimation based on the wall measurement.
Controlled reattachment in separated flows: a variational approach to recirculation length reduction
Boujo, E
2014-01-01
A variational technique is used to derive analytical expressions for the sensitivity of recirculation length to steady forcing in separated flows. Linear sensitivity analysis is applied to the two-dimensional steady flow past a circular cylinder for Reynolds numbers $40 \\leq Re \\leq 120$, both in the subcritical and supercritical regimes. Regions which are the most sensitive to volume forcing and wall blowing/suction are identified. Control configurations which reduce the recirculation length are designed based on the sensitivity information, in particular small cylinders used as control devices in the wake of the main cylinder, and fluid suction at the cylinder wall. Validation against full non-linear Navier-Stokes calculations shows excellent agreement for small-amplitude control. The linear stability properties of the controlled flow are systematically investigated. At moderate Reynolds numbers, we observe that regions where control reduces the recirculation length correspond to regions where it has a stab...
Flow rate estimation by optical coherence tomography using contrast dilution approach
Štohanzlová, Petra; Kolář, Radim
2015-07-01
This paper describes experiments and methodology for flow rate estimation using optical coherence tomography and dilution method in single fiber setup. The single fiber is created from custom made glass capillary and polypropylene hollow fiber. As a data source, measurements on single fiber phantom with continuous flow of carrier medium and bolus of Intralipid solution as a contrast agent were used using Thorlabs OCT OCS1300SS. The measured data were processed by methods of image processing, in order to precisely align the individual images in the sequence and extract dilution curves from the area inside the fiber. An experiment proved that optical coherence tomography can be used for flow rate estimation by the dilution method with precision around 7%.
Crowd Flow Modeling of Athletes in Mass Sports Events -- a Macroscopic Approach
Treiber, Martin
2014-01-01
We propose a macroscopic model in form of a dispersion-transport equation for non-congested flow of the athletes which is coupled to a kinematic-wave model for congested flow. The model takes into account the performance (i.e., free-flow speed distributions) of the athletes in the different starting groups. The model is calibrated and validated on data of the German $\\textit{Rennsteig Half Marathon 2012}$ and the Swedish $\\textit{Vasaloppet 2012}$ cross-country ski race. Simulations of the model allow the event managers to improve the organization by determining the optimum number of starting groups, the maximum size of each group, whether a wave start with a certain starting delay between the groups is necessary, or what will be the effects of changing the course. We apply the model to simulate a planned course change for the Rennsteig Half Marathon 2013, and determine whether critical congestions are likely to occur.
Institute of Scientific and Technical Information of China (English)
余永亮; 童秉纲; 马晖扬
2003-01-01
Numerous studies on the aerodynamics of insect wing flapping were carried out on different approaches of flight investigations, model experiments, and numerical simulations, but the theoretical modeling remains to be explored. In the present paper, an analytic approach is presented to model the flow interactions of wing flapping in air for small insects with the surrounding flow fields being highly unsteady and highly viscous. The model of wing flapping is a 2-D flat plate, which makes plunging and pitching oscillations as well as quick rotations reversing its positions of leading and trailing edges, respectively, during stroke reversals. It contains three simplified aerodynamic assumptions:(i) unsteady potential flow; (ii) discrete vortices shed from both leading and trailing edges of the wing; (iii) Kutta conditions applied at both edges. Then the problem is reduced to the solution of the unsteady Laplace equation, by using distributed singularities, i.e., sources/sinks, and vortices in the field. To validate the present physical model and analytic method proposed via benchmark examples, two elemental motions in wing flapping and a case of whole flapping cycles are analyzed,and the predicted results agree well with available experimental and numerical data. This verifies that the present analytical approach may give qualitatively correct and quantitatively reasonable results.Furthermore, the total fluid-dynamic force in the present method can be decomposed into three parts:one due to the added inertial (or mass) effect, the other and the third due to the induction of vortices shed from the leading- and the trailing-edge and their images respectively, and this helps to reveal the flow control mechanisms in insect wing flapping.
Institute of Scientific and Technical Information of China (English)
Harry X.ZHANG; Shaw L.YU
2008-01-01
One of the key challenges in the total max-imum daily load (TMDL) development process is how to define the critical condition for a receiving water-body. The main concern in using a continuous simu-lation approach is the absence of any guarantee that the most critical condition will be captured during the selected representative hydrologic period, given the scar-city of long-term continuous data. The objectives of this paper are to clearly address the critical condition in the TMDL development process and to compare continu-ous and evEnt-based approaches in defining critical con-dition during TMDL development for a waterbody impacted by both point and nonpoint source pollution. A practical, event-based critical flow-storm (CFS) approach was developed to explicitly addresses the crit-ical condition as a combination of a low stream flow and a storm event of a selected magnitude, both having cer-tain frequencies of occurrence. This paper illustrated the CFS concept and provided its theoretical basis using a derived analytical conceptual model. The CFS approach clearly defined a critical condition, obtained reasonable results and could be considered as an alternative method in TMDL development.
Bonelli, Francesco; Tuttafesta, Michele; Colonna, Gianpiero; Cutrone, Luigi; Pascazio, Giuseppe
2017-10-01
This paper describes the most advanced results obtained in the context of fluid dynamic simulations of high-enthalpy flows using detailed state-to-state air kinetics. Thermochemical non-equilibrium, typical of supersonic and hypersonic flows, was modeled by using both the accurate state-to-state approach and the multi-temperature model proposed by Park. The accuracy of the two thermochemical non-equilibrium models was assessed by comparing the results with experimental findings, showing better predictions provided by the state-to-state approach. To overcome the huge computational cost of the state-to-state model, a multiple-nodes GPU implementation, based on an MPI-CUDA approach, was employed and a comprehensive code performance analysis is presented. Both the pure MPI-CPU and the MPI-CUDA implementations exhibit excellent scalability performance. GPUs outperform CPUs computing especially when the state-to-state approach is employed, showing speed-ups, of the single GPU with respect to the single-core CPU, larger than 100 in both the case of one MPI process and multiple MPI process.
Huang, Rong-Hwa; Yang, Chang-Lin; Hsu, Chun-Ting
2015-12-01
Flow shop production system - compared to other economically important production systems - is popular in real manufacturing environments. This study focuses on the flow shop with multiprocessor scheduling problem (FSMP), and develops an improved particle swarm optimisation heuristic to solve it. Additionally, this study designs an integer programming model to perform effectiveness and robustness testing on the proposed heuristic. Experimental results demonstrate a 10% to 50% improvement in the effectiveness of the proposed heuristic in small-scale problem tests, and a 10% to 40% improvement in the robustness of the heuristic in large-scale problem tests, indicating extremely satisfactory performance.
Energy Technology Data Exchange (ETDEWEB)
Kurban, Adib Paulo Abdalla [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas; Bannwart, Antonio Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica
1990-12-31
The fully developed laminar flow of two immiscible liquids with both different viscosities and densities through a horizontal round pipe is studied. The interface between the fluids as well as their flow fields are determined by the use of a variational principle: the so called viscous dissipation principle: The results foreseen by this paper are in agreement with the physical observation (e.g. Southern and Ballman) that the more viscous fluid is total or partially encapsulated by the less viscous one. (author) 8 refs., 4 figs.
A comparison of four inverse approaches to groundwater flow and transport parameter identification
DEFF Research Database (Denmark)
Keidser, Allan; Rosbjerg, Dan
1991-01-01
of the log transmissivities are obtained by repeating the optimization of stage one. The formulated objective functions are minimized using Levenberg-Marquardt's algorithm. The models are applied to synthetic two-dimensional transport problems in steady state flow regimes. The "true" log transmissivity...
Enjoying New Ways to Work: An HRM-Process Approach to Study Flow
Peters, Pascale; Poutsma, Erik; van der Heijden, Beatrice; Bakker, Arnold B.; de Bruijn, Thomas
2014-01-01
This article investigates the relationships between human resource management practices associated with New Ways to Work (employee empowerment, home-based teleworking, and creating trust relationships) and work-related flow as experienced by employees (absorption, work enjoyment, and intrinsic work
Design and Analysis of Gas Turbine Blade by Potential Flow Approach
Directory of Open Access Journals (Sweden)
V. Vijaya Kumar,
2014-01-01
Full Text Available The design features of the turbine segment of the gas turbine have been taken from the “preliminary design of a power turbine for maximization of an existing turbojet engine”. It was observed that in the above design, after the rotor blades being designed they were analyzed only for the mechanical stresses. As the temperature has a significant effect on the overall stress in the rotor blades, a detailed study is carried out on the temperature effects to have a clear understanding of the combined mechanical and the thermal stresses. The first stage rotor blade of the gas turbine is analyzed for the mechanical axial and centrifugal forces. Knowing the fluid conditions at exit of the gas turbines, a value of static pressure was assumed at the turbine outlet. From this the corresponding enthalpy drop required in the power turbine is calculated. The peripheral speed of rotor and flows velocities is kept in the reasonable range so to minimize losses. In which the base profiles available and is analyzed later for flow conditions through any of the theoretical flow analysis methods such as “Potential flow Approach”
Game-Theoretic Approach for Solving Multiobjective Flow Problems on Networks
Directory of Open Access Journals (Sweden)
Maria A. Fonoberova
2005-10-01
Full Text Available The game-theoretic formulation of the multiobjective multicommodity flow problem is considered. The dynamic version of this problem is studied and an algorithm for its solving, based on the concept of multiobjective games, is proposed. Mathematics Subject Classification 2000: 90B10, 90C35, 90C27, 90C47.
Variational approach for the flow of Ree-Eyring and Casson fluids in pipes
Sochi, Taha
2014-01-01
The flow of Ree-Eyring and Casson non-Newtonian fluids is investigated using a variational principle to optimize the total stress. The variationally-obtained solutions are compared to the analytical solutions derived from the Weissenberg-Rabinowitsch-Mooney equation and the results are found to be identical within acceptable numerical errors and modeling approximations.
A TABU SEARCH APPROACH TOWARDS CONGESTION AND TOTAL FLOW MINIMIZATION IN OPTICAL NETWORKS
Institute of Scientific and Technical Information of China (English)
Valter BOLJUN(C)I(C); Darko SKORIN-KAPOV; Jadranka SKORIN-KAPOV
2004-01-01
This paper considers rearrangeable multihop lightwave networks whereby each network node is equipped with a number p of transmitters and receivers, and a spectrum of wavelengths is accessible by, and shared among, all nodes by using the Wavelength Division Multiplexing (WDM). Depending on input traffic flow, nodal transmitters and receivers can be re-tuned to create virtual connectivity best suited with respect to a given optimization criterion. We present an efficient heuristic algorithm that combines two criteria for optimization: throughput maximization, as well as total flow minimization. Throughput maximization criterion is equivalent to congestion minimization, while minimizing total flow under the assumption of having links with equal lengths implies minimization of the average number of hops. Taking into account lengths of the links (i.e. link costs proportional with distances), the total flow minimization becomes equivalent to the total delay minimization. Tabu search is implemented as a two-phase strategy dealing with diversification as well as intensification of search. Computational experiments include consecutive runs with different sets of weights associated with the two criteria. Results for a benchmark set of problems are presented.
Simulation of flow through nanochannels: a novel multi-scale approach
Jaeger, Frederike; Wray, Alex; Muller, Erich; Poesio, Pietro; Matar, Omar
2015-11-01
A novel method for the simulation of flow through nanochannels is proposed. We use molecular dynamics (MD) simulations to determine relations between the pressure, shear and bulk viscosities and the density, as well as the slip length for different fluid-wall combinations. These relations are then plugged into a steady, two-dimensional continuum-scale model that allows the simulation of a compressible (Lennard-Jones) fluid through channels. No restrictive assumptions are made on the nature of the fluid and its flow behaviour (e.g. fully-developed, parabolic velocity profiles for incompressible fluids). Direct comparisons between the MD and the continuum-scale predictions for the channel flow show good agreement. A major advantage of the proposed method is its computational efficiency, which allows for complex flow geometries to be studied whilst still retaining the accuracy of MD-based simulations. Furthermore, through the use of the statistical fluid associating theory (SAFT), more complex fluids can be modelled, providing a computational framework capable of representing realistic experimental set-ups. EPSRC through TSM-CDT (FJ), DPF (AWW), MEMPHIS (EP/K003976/1, OKM), MACIPH (EP/L020564/1, EAM, OKM); Royal Society International Exchange Scheme (PP, OKM).
Enjoying New Ways to Work: An HRM-Process Approach to Study Flow
Peters, Pascale; Poutsma, Erik; Heijden, van der Beatrice I.J.M.; Bakker, Arnold B.; Bruijn, de Thomas
2014-01-01
This article investigates the relationships between human resource management practices associated with New Ways to Work (employee empowerment, home-based teleworking, and creating trust relationships) and work-related flow as experienced by employees (absorption, work enjoyment, and intrinsic work
Directory of Open Access Journals (Sweden)
Wang Wei
2016-01-01
Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.
Capaccioni, Bruno; Nappi, Giovanni; Valentini, Laura
2001-07-01
Computer-assisted image analysis data of rock fabrics from two quaternary ignimbrites in the Vulsini and Cimini Volcanic Districts of Central Italy are interpreted in terms of transport and depositional mechanisms. Samples were collected vertically at m spaces up two sections through each deposit. The Orvieto-Bagnoregio ignimbrite (OBI) is a non-welded ignimbrite that shows both fluctuations in the mean particle orientation values of up to approximately ±60°, and large variations in the strength of particle iso-orientation with height. The circular frequency distributions of particle orientations are almost always anisotropic and unimodal, in line with a theoretical Von Mises distribution (the circular equivalent of a unimodal, log-normal distribution). In contrast, the welded Cimina ignimbrite (CI) shows vertical homogeneities in mean orientation values with height, and generally lower degrees of anisotropy. Such differences are interpreted as being the results of different depositional mechanisms: incremental deposition at the base of a density-stratified, partially turbulent flow for the OBI; deposition of a laminar mass flow for the CI. In the former case, during transport particles under solidus temperature are subjected to a frictional regime, particles gliding and dispersive pressures, which finally produce size-inverse grading and variable fabric development, depending on the residence time of particles at the basal shear conditions. In the latter case, elongated particles, supported in a laminar flowing viscous matrix, undergo periodic motions which tend to develop parallel-to-flow iso-orientation. Fabric data in the deposit suggest vertical constancy in the rheological properties of the flow, absence of rheological decoupling and (shearing pervasively during transport) a minor importance of plug horizons.
Adesemowo, Morakinyo; Shelton, John
2016-11-01
Previous experimental and numerical investigations involving lid-driven cavity flows with particle suspensions have primarily focused on particle tracking and the visualization of complex three-dimensional structures that compose the flow field. However, these particle suspensions and their resulting particle-particle interactions could also be viewed as a system of time-dependent perturbation equations to the steady-state Navier-Stokes equations and could affect both the stability and steady-state characteristics of the two-dimensional lid-driven cavity system. In this investigation, an Eulerian-Lagrangian approach to modeling particle suspensions in the lid-driven cavity is utilized in FV-CFD simulations to investigate the effect particle density, area fraction, and Reynolds number have on the two-dimensional flow characteristics of a laminar fluid. Observations have indicated that the development of the primary vortex in the lid-driven cavity varies according to the area fraction of particle suspensions in the system; transitioning from development via an adverse pressure gradient at the top-right corner of the cavity towards particle-laden behavior where particle-particle interactions dominate the development of the primary vortex. Dynamic responses were also observed for particle systems of less dense particles. Finally, a comparison between flows perturbed using disturbance velocities and from particle interactions was performed.
Meneveau, Charles; Johnson, Perry; Hamilton, Stephen; Burns, Randal
2016-11-01
An intrinsic property of turbulent flows is the exponential deformation of fluid elements along Lagrangian paths. The production of enstrophy by vorticity stretching follows from a similar mechanism in the Lagrangian view, though the alignment statistics differ and viscosity prevents unbounded growth. In this paper, the stretching properties of fluid elements and vorticity along Lagrangian paths are studied in a channel flow at Reτ = 1000 and compared with prior, known results from isotropic turbulence. To track Lagrangian paths in a public database containing Direct Numerical Simulation (DNS) results, the task-parallel approach previously employed in the isotropic database is extended to the case of flow in a bounded domain. It is shown that above 100 viscous units from the wall, stretching statistics are equal to their isotropic values, in support of the local isotropy hypothesis. Normalized by dissipation rate, the stretching in the buffer layer and below is less efficient due to less favorable alignment statistics. The Cramér function characterizing cumulative Lagrangian stretching statistics shows that overall the channel flow has about half of the stretching per unit dissipation compared with isotropic turbulence. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825, and by National Science Foundation Grants CBET-1507469, ACI-1261715, OCI-1244820 and by JHU IDIES.
Directory of Open Access Journals (Sweden)
Victor Torkiowei Biu
2015-01-01
Full Text Available This paper presents the numerical density derivative approach (another phase of numerical welltesting in which each fluid’s densities around the wellbore are measured and used to generate pressure equivalent for each phase using simplified pressure-density correlation, as well as new statistical derivative methods to determine each fluid phase’s permeabilities, and the average effective permeability for the system with a new empirical model. Also density related radial flow equations for each fluid phase are derived and semilog specialised plot of density versus Horner time is used to estimate k relative to each phase. Results from 2 examples of oil and gas condensate reservoirs show that the derivatives of the fluid phase pressure-densities equivalent display the same wellbore and reservoir fingerprint as the conventional bottom-hole pressure BPR method. It also indicates that the average effective kave ranges between 43 and 57 mD for scenarios (a to (d in Example 1.0 and 404 mD for scenarios (a to (b in Example 2.0 using the new fluid phase empirical model for K estimation. This is within the k value used in the simulation model and likewise that estimated from the conventional BPR method. Results also discovered that in all six scenarios investigated, the heavier fluid such as water and the weighted average pressure-density equivalent of all fluid gives exact effective k as the conventional BPR method. This approach provides an estimate of the possible fluid phase permeabilities and the % of each phase contribution to flow at a given point. Hence, at several dp' stabilisation points, the relative k can be generated.
DEFF Research Database (Denmark)
Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri
2016-01-01
components are dependent upon tape casting technology. One of the growing sciences in the processing of ceramics by tape casting is the use of fluid flow analysis to control and enhance the final tapes. The fluid dynamics analysis of the ceramic slurries during tape casting is an efficient mean to elucidate......Tape casting has been used to produce thin layers of ceramics that can be used as single layers or can be stacked and laminated into multilayered structures. Many startup products such as multilayered inductors, multilayered varistors, piezoelectrics, ceramic fuel cells and lithium ion battery...... the physical parameters crucial to the process. A review of the development of the tape casting process with particular focus on modelling the material flow is presented and in this context the current status is examined and future potential discussed....
A nonlinear optimization approach for UPFC power flow control and voltage security
Kalyani, Radha Padma
This dissertation provides a nonlinear optimization algorithm for the long term control of Unified Power Flow Controller (UPFC) to remove overloads and voltage violations by optimized control of power flows and voltages in the power network. It provides a control strategy for finding the long term control settings of one or more UPFCs by considering all the possible settings and all the (N-1) topologies of a power network. Also, a simple evolutionary algorithm (EA) has been proposed for the placement of more than one UPFC in large power systems. In this publication dissertation, Paper 1 proposes the algorithm and provides the mathematical and empirical evidence. Paper 2 focuses on comparing the proposed algorithm with Linear Programming (LP) based corrective method proposed in literature recently and mitigating cascading failures in larger power systems. EA for placement along with preliminary results of the nonlinear optimization is given in Paper 3.
FINITE ELEMENT GALERKIN APPROACH FOR A COMPUTATIONAL STUDY OF ARTERIAL FLOW
Institute of Scientific and Technical Information of China (English)
G.C.Sharma(G.C.夏玛); Madhu Jain(马德胡·珍); Anil Kumar(阿尼尔·克乌玛)
2001-01-01
A finite element solution for the Navier-Stokes equations for steady flow through a double branched two dimensional section of three dimensional model of canine aorta is obtained. The numerical technique involves transformation of the physical coordinates to a curvilinear boundary fitted coordinate system. The shear stress at the wall is calculated for Reynolds number of 1000 with branch to main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and it is observed that the results are very close to their solutions. This work in fact is an improvement of the work of Sharma and Kapoor (1995) in the sense that computations scheme is economic and Reynolds number is large.
Hayat, Tasawar; Ijaz Khan, Muhammad; Imtiaz, Maria; Alsaedi, Ahmed; Waqas, Muhammad
2016-10-01
A simple model of chemical reactions for two dimensional ferrofluid flows is constructed. The impact of magnetic dipole and mixed convection is further analyzed. Flow is caused by linear stretching of the sheet. Similarity transformation is adopted to convert the partial differential equations into ordinary differential equations and then solved by Euler's explicit method. The characteristics of sundry parameters on the velocity, temperature, and concentration fields are graphically elaborated. It is noted that the impact of magneto-thermomechanical interaction is to slow down the fluid motion. The skin friction coefficient enhances and affects the rate of heat transfer. For higher values of ferrohydrodynamics, the interaction velocity shows decreasing behavior. Further the Prandtl number on temperature has opposite behavior when compared with thermal radiation and ferrohydrodynamics interaction.
The design/analysis of flows through turbomachinery: A viscous/inviscid approach
Miller, D. P.; Reddy, D. R.
1991-01-01
The development of a design/analysis flow solver at NASA Lewis Research Center is discussed. The solver is axisymmetric and can be run inviscidly with assumed or calculated blockages, or with the viscous terms computed. The blade forces for each blade row are computed from blade-to-blade solutions, correlated data or force model, or from a full three dimensional solution. Codes currently under development can be separated into three distinct elements: the turbomachinery interactive grid generator energy distribution restart code (TIGGERC), the interactive blade element geometry generator (IBEGG), and the viscous/inviscid multi-blade-row average passage flow solver (VIADAC). Several experimental test cases were run to validate the VIADAC code. The tests, representative of typical axial turbomachinery duct axisymmetric wind tunnel body problems, were conducted on an SR7 Spinner axisymmetric body, a NASA Rotor 67 Fan test bed, and a transonic boatail body. The results show the computations to be in good agreement with test data.
DEFF Research Database (Denmark)
Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri
2016-01-01
Tape casting has been used to produce thin layers of ceramics that can be used as single layers or can be stacked and laminated into multilayered structures. Many startup products such as multilayered inductors, multilayered varistors, piezoelectrics, ceramic fuel cells and lithium ion battery...... components are dependent upon tape casting technology. One of the growing sciences in the processing of ceramics by tape casting is the use of fluid flow analysis to control and enhance the final tapes. The fluid dynamics analysis of the ceramic slurries during tape casting is an efficient mean to elucidate...... the physical parameters crucial to the process. A review of the development of the tape casting process with particular focus on modelling the material flow is presented and in this context the current status is examined and future potential discussed....
Algebraic approach to non-integrability of Bajer-Moffattʼs steady Stokes flow
Nishiyama, Takahiro
2014-12-01
Non-integrability of the streamline system of equations for a steady Stokes flow, which Bajer and Moffatt introduced by the name of stretch-twist-fold flow, is discussed by an algebraic method without assuming its closeness to an integrable system. In the author's previous paper, the non-existence of a real meromorphic first integral of the streamline system was proved on the basis of Ziglin's theory and the differential Galois theory, where a parameter was assumed not to belong to a set of exceptional values. In this paper, this assumption is proved to be removable by making further use of some results from the differential Galois theory. The road to this result is explained in the form of a recipe in order to make clear how the differential Galois theory is applied.
Abraham, Theodore P.
2011-11-01
Hypertrophic Cardiomyopathy (HCM) is the most common inherited heart disease and occurs in 1 in 500 persons worldwide regardless of race, age and gender. It is the most common cause of sudden death in the young and also causes heart failure and cardiac arrhythmias. The primary anatomic abnormality is thickening of certain walls, or sometimes global thickening of the left or right ventricle. The patterns of thickening along with increased ventricular stiffness lead to suboptimal ventricular filling and inefficient ejection of blood from the ventricle. Treatment for HCM can be medical or surgical. The choice of therapy is driven by the presence and severity of outflow obstruction. Flow analysis could provide sophisticated information about outflow and inflow ventricular dynamics. These flow dynamics features may enable better medical choices and provide information that would allow superior surgical planning. Associate Professor of Medicine & Director, Hypertrophic Cardiomyopathy Clinic
Liao, Fuyuan; Jan, Yih-Kuen
2012-06-01
This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (precurrence network approach can practically quantify the nonlinear dynamics of BFO.
Energy Technology Data Exchange (ETDEWEB)
Ko, Soon Heum [Linkoeping University, Linkoeping (Sweden); Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel [Louisiana State University, Baton Rouge (United States); Jha, Shantenu [Rutgers University, Piscataway (United States)
2014-01-15
Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.
A modified Muskingum routing approach for floodplain flows: theory and practice
O'Sullivan, J J; Ahilan, Sangaralingam; Bruen, Michael
2012-01-01
Hydrological or hydraulic flood routing methods can be used to predict the floodplain influences on a flood wave as it passes along a river reach. While hydraulic routing uses both the equation of continuity and the equation of momentum to describe the dynamics of river flows, the simpler data requirements of hydrological routing makes it useful for preliminary estimates of the time and shape of a flood wave at successive points along a river. This paper presents a modified linear Muskingum h...
Institute of Scientific and Technical Information of China (English)
Jing XU; Lan Hua ZHAO; Xin Guo WU; Hong Mei WANG; Ru Xiu CAI
2006-01-01
A highly sensitive stopped-flow spectrophotometry kinetic method was proposed forquantification phenoxyl radicals based on their accelerating effect on the oxidation of nicotinamide adenine dinucleotide (NADH). Phenoxyl radicals generated from as low as 1×10-8 mol/L 2,4-DCP can be readily detected with the proposed method and the detecting limit was 2.5×10-9mol/L.
An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows
Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang
2016-08-01
In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.
Yuan, Feng; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning
2015-01-01
Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind, such as mass flux and poloidal speed, and the mechanism of wind production. For this aim, we make use of a three dimensional GRMHD simulation of hot accretion flows around a Schwarzschild black hole. The simulation is designed so that the magnetic flux is not accumulated significantly around the black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Largrangian particles from simulation data. We find two types of real outflows, i.e., a quasi-relativistic jet close to the axis and a sub-relativistic wind subtending a much larger solid angle. Most of the wind originates from the surface layer of the accretion flow. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows $v_{\\rm p, wind}(r)\\approx 0.25 v_k(r)$. The mass flux ...
Approaches to myosin modelling in a two-phase flow model for cell motility
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
Numerical Modelling Approaches for Assessing Improvements to the Flow Circulation in a Small Lake
Directory of Open Access Journals (Sweden)
Cheng He
2011-01-01
Full Text Available Kamaniskeg Lake is a long, narrow, and deep small lake located in the northern part of Ontario, Canada. The goals of this paper were to examine various options to improve the water quality in the northern part of the lake by altering the local hydraulic flow conditions. Towards this end, a preliminary screening suggested that the flow circulation could be increased around a central island (Mask Island in the northern part of the lake by opening up an existing causeway connecting the mainland and central island. Three-dimensional (3D hydraulic and transport models were adopted in this paper to investigate the hydraulic conditions under various wind forces and causeway structures. The modelling results show that opening the causeway in a few places is unlikely to generate a large flow circulation around the central island. Full circulation only appears to be possible if the causeway is fully removed and a strong wind blows in a favourable direction. The possible reasons for existing water quality variations at the intake of a local WTP (water treatment plant are also explored in the paper.
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Biomimetic approaches for green tribology: from the lotus effect to blood flow control
Maani, Nazanin; Rayz, Vitaliy S.; Nosonovsky, Michael
2015-09-01
The research in Green tribology combines several areas including biomimetic tribomaterials and surfaces for controlled adhesion. Biomimetic surfaces mimic living nature and thus they are eco-friendly. The most famous biomimetic surface effect is the Lotus effect (reduction of water adhesion to a solid surface due to micro/nanostructuring of the solid surface). Several extensions of the Lotus effect have been discussed in the literature including the oleophobicity (repelling organic liquids such as oils), underwater oleophobicity to reduce fouling, and the shark skin effect (flow drag reduction due to specially oriented micro-riblets). Here we suggest a potentially important application of micro/nanostructured surfaces in the biomedical area: the micro/nanostructure controlled adhesion in blood flow. Blood is a suspension, and its adhesion properties are different from those of water and oil. For many cardiovascular applications, it is desirable to reduce stagnation and clotting of blood. Therefore, both the underwater oleophobicuity and shark-skin effect can be used. We discuss how computational fluid dynamics models can be used to investigate the structure-property relationships of surface pattern-controlled blood flow adhesion.
von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin
2016-04-01
Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predic...
Pioli, L.; Azzopardi, B. J.; Bonadonna, C.; Marchetti, E.; Ripepe, M.
2009-12-01
Open conduit basaltic volcanoes are characterized by frequent eruptions, usually consisting in mild Strombolian and Hawaiian explosions, alternating years to months of quiescence periods, with degassing activity from the central conduit. Recent improvements of thermal, video, radar and acoustic monitoring techniques have provided new powerful tools for the study of degassing processes and made available geophysical and geochemical datasets for many central volcanoes, such as Stromboli, Etna (Italy), Kilauea (Hawaii), Villarrica (Chile). These studies revealed that degassing is an unsteady, often pulsatory process, characterized by fluctuations in both intensity and composition of the emitted gases. Unambiguous interpretation of monitoring data of surface activity in terms of conduit dynamics and flow processes is, however, not possible, due to partial knowledge of the physical processes controlling the dynamics of two-phase flows in magmas. We performed a series of experiments to gain further insights on the dynamics of the gas-bubble rise in magmas within a cylindrical conduit, their ability to segregate and coalesce and the effect of these processes on the degassing dynamics. The experiments consisted in generating fluxes at variable intensities of air through stagnant water or glucose syrup in a bubble column apparatus 6.5 m high and with a diameter of 24 cm diameter. Glucose syrup and water are Newtonian liquids with viscosity ranging from 2.4 to 204.0 Pa*s and from 1.7 to 0.2 10 -3 Pa*s respectively, depending on temperature. Air was inserted at the base of the column through a variable number (1 to 25) of 5mm-diameter nozzles reaching surficial gas velocities of up to 0.5 m/s. The activity of the bubble column was monitored through temperature, pressure, void fraction and acoustic measurements and filmed by a high-speed camera with maximum resolution of 800x600 pixels. Pressure fluctuations, vesicularity and acoustic signal were then analyzed and correlated
2002-01-01
A simultaneous and fast method for the determination of total polyphenol index (t.p.i.) and total anthocyan index (t.a.i.) has been developed by a flow injection approach and a diode array spectrophotometer for monitoring at 280 nm and 520 nm, respectively. Linear ranges were obtained from 20 to 70 index units and from 20 to 500 mg l-1 for t.p.i. and t.a.i., respectively. The results provided by the proposed method agree with those obtained using the polyphenol index at 280 nm and the Riberea...
PARTICLE METHODS FOR COMPLEX FLOWS IN CHEMICAL ENGINEERING--THE PSEUDO-PARTICLE APPROACH
Institute of Scientific and Technical Information of China (English)
Wei GE; Jinghai LI
2005-01-01
The multi-scale structures of complex flows in chemical engineering have been great challenges to the design and scaling of such systems, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constituents and powerful tools of multi-scale models, owing to their physical fidelity and computational simplicity. Especially,pseudo-particle modeling (PPM, Ge & Li, 1996; Ge & Li, 2003) is most suitable for molecular scale flow prediction and exploration of the origin of multi-scale structures; macro-scale PPM (MaPPM, Ge & Li, 2001) and similar models are advantageous for meso-scale simulations of flows with complex and dynamic discontinuity, while the lattice Boltzmann model is more competent for homogeneous media in complex geometries; and meso-scale methods such as dissipative particle dynamics are unique tools for complex fluids of uncertain properties or flows with strong thermal fluctuations. All these methods are favorable for seamless interconnection of models for different scales.However, as PMs are not originally designed as either tools for complexity or constituents of multi-scale models, further improvements are expected. PPM is proposed for microscopic simulation of particle-fluid systems as a combination of molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC). The collision dynamics in PPM is identical to that of hard-sphere MD, so that mass, momentum and energy are conserved to machine accuracy. However, the collision detection procedure, which is most time-consuming and difficult to be parallelized for hard-sphere MD, has been greatly simplified to a procedure identical to that of soft-sphere MD. Actually, the physical model behind such a treatment is essentially different from MD and is more similar to DSMC, but an intrinsic difference is that in DSMC the collisions follow designed statistical rules that are reflection of the real physical processes only in very limited cases such as dilute gas.PPM is ideal
Besse, Nicolas; Frisch, Uriel
2017-04-01
The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.
Besse, Nicolas; Frisch, Uriel
2017-01-01
The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.
Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura
2015-10-01
The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%.
Bayazit, M.K.; Cao, E; Gavriilidis, A; Tang, J.
2016-01-01
In this work, a microwave promoted flow (MWPF) system to reproducibly synthesize self-assembled hierarchical hematite superstructures (Hem-SSs) using the sole precursor (Fe(NO3)3·9H2O) and single mode microwave under aqueous conditions was developed. The functional characterisation by XRD, (HR)TEM, XPS, UV-vis and Raman spectroscopy proved that highly crystalline ellipsoid Hem-SSs (∼180 nm × 140 nm) were produced, built from primary hematite nanoparticles, 5–10 nm in size using 0.05 mol L−1 p...
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Directory of Open Access Journals (Sweden)
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
Energy Technology Data Exchange (ETDEWEB)
Al-Awami, Ali T.; Abido, M.A. [Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Box 784 (Saudi Arabia); Abdel-Magid, Y.L. [Electrical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates)
2007-03-15
The use of the supplementary controllers of a unified power flow controller (UPFC) to damp low frequency oscillations in a weakly connected system is investigated. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. Individual designs of the UPFC controllers and power system stabilizer (PSS) using particle-swarm optimization (PSO) technique are discussed. The effectiveness of the proposed controllers on damping low frequency oscillations is tested through eigenvalue analysis and non-linear time simulation. (author)
An Exact Solution Approach for the Maximum Multicommodity K-splittable Flow Problem
DEFF Research Database (Denmark)
Gamst, Mette; Petersen, Bjørn
2009-01-01
This talk concerns the NP-hard Maximum Multicommodity k-splittable Flow Problem (MMCkFP) in which each commodity may use at most k paths between its origin and its destination. A new branch-and-cut-and-price algorithm is presented. The master problem is a two-index formulation of the MMCk......FP and the pricing problem is the shortest path problem with forbidden paths. A new branching strategy forcing and forbidding the use of certain paths is developed. The new branch-and-cut-and-price algorithm is computationally evaluated and compared to results from the literature. The new algorithm shows very...
Sound Generation by a Turbulent Flow in Musical Instruments - Multiphysics Simulation Approach -
Kobayashi, Taizo; Takahashi, Kin'ya; Mibu, Ryota; Aoyagi, Mutsumi
2007-01-01
Total computational costs of scientific simulations are analyzed between direct numerical simulations (DNS) and multiphysics simulations (MPS) for sound generation in musical instruments. In order to produce acoustic sound by a turbulent flow in a simple recorder-like instrument, compressible fluid dynamic calculations with a low Mach number are required around the edges and the resonator of the instrument in DNS, while incompressible fluid dynamic calculations coupled with dynamics of sound propagation based on the Lighthill's acoustic analogy are used in MPS. These strategies are evaluated not only from the viewpoint of computational performances but also from the theoretical points of view as tools for scientific simulations of complicated systems.
Estimating trade flows between Portuguese regions using an Input-output approach
Sargento, Ana Lúcia Marto; Ramos, Pedro Miguel Nogueira
2003-01-01
The paper we intend to present aims to estimate the trade flows existing between the seven Portuguese regions, considering 49 distinct commodities. This estimation is based on the construction of a multi-regional model that requires the elaboration of an Input-Output table for each one of the regions. These tables were achieved by using non-survey methods, having the Portuguese table as a starting point. However, it was possible to work, on a great part of the estimation procedure, with a con...
Carling, Paul; Kleinhans, Maarten; Leyland, Julian; Besozzi, Louison; Duranton, Pierre; Trieu, Hai; Teske, Roy
2014-01-01
Understanding of flow resistance of forested floodplains is essential for floodplain flow routing and floodplain reforestation projects. Although the flow resistance of grass-lined channels is well-known, flow retention due to flow-blocking by trees is poorly understood. Flow behaviour through tree-
Directory of Open Access Journals (Sweden)
Alan Nader Ackel Ghani
2015-04-01
Full Text Available This article analyzes the credit constraints, using the cash flow sensitivity approach, of private and listed companies between 2007 and 2010. According to this approach, the econometric results show that the credit constraints are the same for either private or listed companies. This paper seeks to contribute to the literature because the study of credit constraints of private companies based on cash flow sensitivity in Brazil has been rare.
Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.
Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin
2015-01-01
The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.
Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.
Directory of Open Access Journals (Sweden)
Simon Strübbe
Full Text Available The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.
Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability
Energy Technology Data Exchange (ETDEWEB)
Thomas, Donald M. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Inst. of Geophysics; Lienert, Barry R. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Inst. of Geophysics; Wallin, Erin L. [Univ. of Hawaii, Honolulu, HI (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2014-05-27
Our objectives for the current project were to develop an innovative inversion and analysis procedure for magnetotelluric field data and time variable self-potentials that will enable us to map not only the subsurface resistivity structure of a geothermal prospect but to also delineate the permeability distribution within the field. Hence, the ultimate objective were to provide better targeting information for exploratory and development drilling of a geothermal prospect. Field data were collected and analyzed from the Kilauea Summit, Kilauea East Rift Zone, and the Humuula Saddle between Mauna Loa and Mauna Kea volcanoes. All of these areas were known or suspected to have geothermal activity of varying intensities. Our results provided evidence for significant long-term coordinated changes in spontaneous potential that could be associated with subsurface flows, significant interferences were encountered that arose from surface environmental changes (rainfall, temperature) that rendered it nearly impossible to unequivocally distinguish between deep fluid flow changes and environmental effects. Further, the analysis of the inferred spontaneous potential changes in the context of depth of the signals, and hence, permeability horizons, were unable to be completed in the time available.
Energy Technology Data Exchange (ETDEWEB)
Xu, Tianfu; White, Stephen P.; Pruess, Karsten
1998-02-15
Pyrite (FeS{sub 2}) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply are typically small in comparison to pyrite inventory, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulators are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed.
A hybrid DEM/CFD approach for solid-liquid flows
Institute of Scientific and Technical Information of China (English)
QIU Liu-chao; WU Chuan-yu
2014-01-01
A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme. The motion of the solid phase is obtained by using the DEM, in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics. The two phases are coupled through the Newton’s third law of motion. To verify the proposed method, the sedi-mentation of a single spherical particle is simulated in water, and the results are compared with experimental results reported in the literature. In addition, the drafting, kissing, and tumbling (DKT) phenomenon between two particles in a liquid is modelled and rea-sonable results are obtained. Finally, the numerical simulation of the density-driven segregation of a binary particulate suspension in-volving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles.
Control of laminar wake flows using the Sum-of-Squares approach
Lasagna, Davide; Tutty, Owen; Huang, Deqing; Chernyshenko, Sergei
2015-11-01
A novel feedback control design methodology for finite-dimensional, reduced-order models of incompressible turbulent fluid flows, aiming at reduction of long-time averages of key quantities, is presented. The key enabler is a recent advance in control design for systems with polynomial dynamics, i.e. the discovery that the Sum-of-Squares decomposition of a non-negative polynomial, or the construction of one of such functions, can be computed via semidefinite programming techniques. Firstly, the theoretical difficulties of treating long-time averages are relaxed by abstracting the analysis to upper bounds of such averages. Then, the problems of estimation and optimisation via control design of these bounds are conveniently reformulated into constructing suitable non-negative polynomial functions, using Sum-of-Squares programming techniques. To showcase the methodology, linear and nonlinear polynomial-type state-feedback controllers are designed to reduce the fluctuations kinetic energy in the wake of a circular cylinder at Re = 100 , using rotary oscillations. A compact, reduced-order Galerkin model of the actuated wake is first derived using Proper Orthogonal Decomposition. Controllers are then designed and implemented in direct numerical simulations of the flow.
Ice Flows: A Game-based Learning approach to Science Communication
Le Brocq, Anne
2017-04-01
Game-based learning allows people to become immersed in an environment, and learn how the system functions and responds to change through playing a game. Science and gaming share a similar characteristic: they both involve learning and understanding the rules of the environment you are in, in order to achieve your objective. I will share experiences of developing and using the educational game "Ice Flows" for science communication. The game tasks the player with getting a penguin to its destination, through controlling the size of the ice sheet via ocean temperature and snowfall. Therefore, the game aims to educate the user about the environmental controls on the behaviour of the ice sheet, whilst they are enjoying playing a game with penguins. The game was funded by a NERC Large Grant entitled "Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica", so uses data from the Weddell Sea sector of the West Antarctic Ice Sheet to generate unique levels. The game will be easily expandable to other regions of Antarctica and beyond, with the ultimate aim of giving a full understanding to the user of different ice flow regimes across the planet.
ANALYSIS OF CAPITAL FLOW WITH GIS -- Two Approaches for Regional Investment in China
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
GIS technology has been mostly concerned with handling physical data and modeling physical environment. However, the requirements of GIS for handling socio-economic information in many cases are different from those concerning phenomena in the physical environment. Analysis of capital flow among regions requires the transitions both from economic values to physical landscape and from physical surface to economic explanation. Rapid growth of Chinese economy comes mainly from investment. There are two main ways for obtaining high growth of investment. One is government expenditure which usually invests in regional facility and amenity block, which is regarded as stimulus for attracting investment. The other is the creation of investing center and corresponding capital source areas, both of which need the central city with the highest growth rate of investment among regions. This paper presents the cluster areas of both government revenue and total investment, the potential situation of capital flow between central city Shanghai and its neighbor provinces by using " Classification" and " Interpolation" functions of ArcView GIS.
Directory of Open Access Journals (Sweden)
Yong-Cheol Kang
2013-10-01
Full Text Available This paper presents a novel probabilistic optimization algorithm for simultaneous active and reactive power dispatch in power systems with significant wind power integration. Two types of load and wind-speed uncertainties have been assumed that follow normal and Weibull distributions, respectively. A PV bus model for wind turbines and the wake effect for correlated wind speed are used to achieve accurate AC power flow analysis. The power dispatch algorithm for a wind-power integrated system is modeled as a probabilistic optimal power flow (P-OPF problem, which is operated through fixed power factor control to supply reactive power. The proposed P-OPF framework also considers emission information, which clearly reflects the impact of the energy source on the environment. The P-OPF was tested on a modified IEEE 118-bus system with two wind farms. The results show that the proposed technique provides better system operation performance evaluation, which is helpful in making decisions about power system optimal dispatch under conditions of uncertainty.
Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations
Energy Technology Data Exchange (ETDEWEB)
Ertekin; King, G.R.; Schwerer, F.C.
1983-10-01
A mathematical formulation, applicable to both numerical simulation and transient well analysis, describing the flow of gas in very tight (k < 0.1 md) porous media has been developed. Unique to this formulation is the dual-mechanism transport of gas. In this formulation gas is assumed to be traveling under the influence of two fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial-turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition, pressure and saturation dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The dynamic slippage derived from this formulation is found to be most applicable in reservoirs with permeabilities less than or equal to 0.01 md. The results from this study indicate that in reservoirs of this type, differences between recoveries after ten years of production using the dynamic slip described in this paper and constant slip approaches were as great as 10% depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30 can be expected.
Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault
2017-08-01
Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.
Ye, Zuyang; Liu, Hui-Hai; Jiang, Qinghui; Liu, Yanzhang; Cheng, Aiping
2017-02-01
A systematic method has been proposed to estimate the two-phase flow properties of horizontal fractures under normal deformation condition. Based on Gaussian aperture distributions and the assumption of local parallel plate model, a simple model was obtained in closed form to predict the capillary pressure-saturation relationships for both wetting and non-wetting phases. Three conceptual models were also developed to characterize the relative permeability behaviors. In order to investigate the effect of normal deformation on two-phase flow properties, the normal deformation could be represented with the maximum void space closure on the basis of penetration model. A rigorous successive random addition (SRA) method was used to generate the aperture-based fractures and a numerical approach based on invasion percolation (IP) model was employed to model capillary-dominated displacements between wetting and non-wetting phases. The proposed models were partially verified by a laboratory dataset and numerical calculations without consideration of deformation. Under large normal deformations, it was found that the macroscopic model is in better agreement with simulated observations. The simulation results demonstrated that the two-phase flow properties including the relationships between capillary pressure, relative permeability and saturation, phase interference, phase structures, residual-saturation-rated parameters and tortuosity factor, were highly sensitive to the spatial correlation of aperture distribution and normal deformation.
Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel
2013-09-01
Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. Copyright © 2013 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
Wei-Neng Chen; Jun Zhang
2012-01-01
Project scheduling under uncertainty is a challenging field of research that has attracted increasing attention.While most existing studies only consider the single-mode project scheduling problem under uncertainty,this paper aims to deal with a more realistic model called the stochastic multi-mode resource constrained project scheduling problem with discounted cash flows (S-MRCPSPDCF).In the model,activity durations and costs are given by random variables.The objective is to find an optimal baseline schedule so that the expected net present value (NPV) of cash flows is maximized.To solve the problem,an ant colony system (ACS) based approach is designed.The algorithm dispatches a group of ants to build baseline schedules iteratively using pheromones and an expected discounted cost (EDC) heuristic.Since it is impossible to evaluate the expected NPV directly due to the presence of random variables,the algorithm adopts the Monte Carlo (MC)simulation technique.As the ACS algorithm only uses the best-so-far solution to update pheromone values,it is found that a rough simulation with a small number of random scenarios is enough for evaluation.Thus the computational cost is reduced.Experimental results on 33 instances demonstrate the effectiveness of the proposed model and the ACS approach.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, M.J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study. ?? 2011.
Ganesh, Rajaraman; Charan, Harish
2016-07-01
Understanding vortical flows under external forcing in two dimensional (2D) fluids is a fundamental paradigm for structure formation in driven, dissipative systems. Considering Yukawa liquid as a prototype for strongly correlated or strongly coupled plasmas characterized by coupling strength (Γ, the ratio of average potential to kinetic energy per particle) and screening parameter (κ, ratio of mean inter-particle distance to shielding length), we address two important problems: 1. Onset of Rayleigh Benard convection cell (RBCC) in 2D Yukawa liquids subject to gravity and external temperature gradient 2. Onset of von Karman vortices in 2D Yukawa liquid under external pressure head, using large scale, first principles molecular dynamics simulations. For typical values of (Γ,κ), existence of a critical external temperature difference is demonstrated, beyond which RBCC are seen to set in. Beyond this critical external temperature difference, the strength of the maximum convective flow velocity is shown to exhibit a new, hitherto unsuspected linear relationship with external temperature difference and with a slope independent of (Γ,κ). The time taken for the transients to settle down to a steady state RBCC τ_s, is found to be maximum close to the above said critical external temperature difference and is seen to reduce with increasing external temperature difference. For the range of values of (Γ, κ) considered here, τ_s ≃ 10 000-20 000;ω^{-1}_{pd}, where ω_{pd} is dust plasma frequency. As Γ is increased to very high values, due to strong coupling effects, RBC cells are seen to be in a transient state without attaining a steady state for as long as 100 000;ω^{-1}_{pd}, even for a very high external temperature difference. In the second part, we address the existence of universal relation between Strouhal (St) and Rayleigh (Ry) numbers for Yukawa liquid using first principles based classical molecular dynamics. The flow past an obstacle is seen to indeed
Parkin, G.; Birkinshaw, S. J.; Younger, P. L.; Rao, Z.; Kirk, S.
2007-06-01
SummaryEvaluation of the impacts of groundwater abstractions on surface water systems is a necessary task in integrated water resources management. A range of hydrological, hydrogeological, and geomorphological factors influence the complex processes of interaction between groundwater and rivers. This paper presents an approach which uses numerical modeling of generic river-aquifer systems to represent the interaction processes, and neural networks to capture the impacts of the different controlling factors. The generic models describe hydrogeological settings representing most river-aquifer systems in England and Wales: high diffusivity (e.g. Chalk) and low diffusivity (e.g. Triassic Sandstone) aquifers with flow to rivers mediated by alluvial gravels; the same aquifers where they are in direct connection with the river; and shallow alluvial aquifers which are disconnected from regional aquifers. Numerical model simulations using the SHETRAN integrated catchment modeling system provided outputs including time-series and spatial variations in river flow depletion, and spatially distributed groundwater levels. Artificial neural network models were trained using input parameters describing the controlling factors and the outputs from the numerical model simulations, providing an efficient tool for representing the impacts of groundwater abstractions across a wide range of conditions. There are very few field data sets of accurately quantified river flow depletion as a result of groundwater abstraction under controlled conditions. One such data set from an experimental study carried out in 1967 on the Winterbourne stream in the Lambourne catchment over a Chalk aquifer was used successfully to test the modeling tool. This modeling approach provides a general methodology for rapid simulations of complex hydrogeological systems which preserves the physical consistency between multiple and diverse model outputs.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
Chemical and biological activity in open flows: A dynamical system approach
Energy Technology Data Exchange (ETDEWEB)
Tel, Tamas [Institute for Theoretical Physics, Eoetvoes University, P.O. Box 32, H-1518, Budapest (Hungary); Moura, Alessandro de [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Grebogi, Celso [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil) and Max-Plank-Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden (Germany)]. E-mail: grebogi@if.usp.br; Karolyi, Gyoergy [Center for Applied Mathematics and Computational Physics, and Department of Structural Mechanics, Budapest University of Technology and Economics, Mueegyetem rkp. 3, H-1521, Budapest (Hungary)
2005-07-01
Chemical and biological processes often take place in fluid flows. Many of them, like environmental or microfluidical ones, generate filamentary patterns which have a fractal structure, due to the presence of chaos in the underlying advection dynamics. In such cases, hydrodynamical stirring strongly couples to the reactivity of the advected species: the outcome of the reaction is then typically different from that of the same reaction taking place in a well-mixed environment. Here we review recent progress in this field, which became possible due to the application of methods taken from dynamical system theory. We place special emphasis on the derivation of effective rate equations which contain singular terms expressing the fact that the reaction takes place on a moving fractal catalyst, on the unstable foliation of the reaction free advection dynamics.
Russell, Philip J
2007-01-01
Medical imaging centers are an increasingly integral part of the medical services landscape in America. There are many instances in which owners and potential buyers of these enterprises want to ascertain the value of the businesses. There is an industry of professionals who provide expert valuation services for many types of businesses using various recognized alternative methods, some of which are more appropriate than others when valuing an imaging center. The federal government has prescribed parameters for all valuations if they lead to transactions in which fair market value is mandated, and it also expects transactions to adhere to more generalized laws relating to entities that provide services to Medicare patients. Radiologists who own, or who are contemplating ownership of, imaging center operations need to understand the principles of valuation, specifically the factors that are involved in a discounted cash flow determination of fair market value.
Velocity distribution of flow with submerged flexible vegetations based on mixing-length approach
Institute of Scientific and Technical Information of China (English)
Wen-xin HUAI; Jie HAN; Yu-hong ZENG; Xiang AN; Zhong-dong QIAN
2009-01-01
By choosing a PVC slice to simulate flexible vegetation, we carried out ex-periments in an open channel with submerged flexible vegetation. A 3D acoustic Doppler velocimeter (micro ADV) was used to measure local flow velocities and Reynolds stress. The results show that hydraulic characteristics in non-vegetation and vegetation layers are totally different. In a region above the vegetation, Reynolds stress distribution is linear, and the measured velocity profile is a classical logarithmic one. Based on the concept of new-riverbed, the river compression parameter representing the impact of vegetation on river is given, and a new assumption of mixing length expression is made. The formula for time-averaged velocity derived from the expression requires less parameters and simple calculation, and is useful in applications.
A dynamical systems' approach for the contact-line singularity in thin-film flows
Belgacem, Fethi Ben; Kuehn, Christian
2016-01-01
We are interested in a complete characterization of the contact-line singularity of thin-film flows for zero and nonzero contact angles. By treating the model problem of source-type self-similar solutions, we demonstrate that this singularity can be understood by the study of invariant manifolds of a suitable dynamical system. In particular, we prove regularity results for singular expansions near the contact line for a wide class of mobility exponents and for zero and nonzero dynamic contact angles. Key points are the reduction to center manifolds and identifying resonance conditions at equilibrium points. The results are extended to radially-symmetric source-type solutions in higher dimensions. Furthermore, we give dynamical systems' proofs for the existence and uniqueness of self-similar droplet solutions in the nonzero dynamic contact-angle case.
A different approach on the onset of separation in the flow around a circular cylinder
Malamataris, Nikolaos; Sarris, I.; Pazis, D.; Liakos, A.
2016-11-01
The onset of separation in the flow around a cylinder is revisited with new insight. The goal of the research is to compute the smallest Reynolds number where the separation actual occurs rather than computing small eddies and extrapolating to the value of the Reynolds number where separation may occur. To this purpose, an accurate home made code is designed with Galerkin finite elements. The computational domain is chosen as the laboratory experiments by Taneda. It is found that in all six different choices of Taneda's diameters of the cylinders he used, separation is not observed for Re research is the computation of the drag coefficient for Reynolds numbers starting from 1 .10-5 up to 40. In addition, the separation angle (point where vorticity changes sign) is computed for 6 . 14 research aims to be the most thorough work done on that subject so far.
On discontinuous Galerkin approach for atmospheric flow in the mesoscale with and without moisture
Directory of Open Access Journals (Sweden)
Dieter Schuster
2014-09-01
Full Text Available We present and discuss discontinuous Galerkin (DG schemes for dry and moist atmospheric flows in the mesoscale. We derive terrain-following coordinates on the sphere in strong-conservation form, which makes it possible to perform the computation on a Cartesian grid and yet conserves the momentum density on an f$f$-plane. A new DG model, i.e. DG-COSMO, is compared to the operational model COSMO of the Deutscher Wetterdienst (DWD. A simplified version of the suggested terrain-following coordinates is implemented in DG-COSMO and is compared against the DG dynamical core implemented within the DUNE framework, which uses unstructured grids to capture orography. Finally, a few idealised test cases, including 3d and moisture, are used for validation. In addition an estimate of efficiency for locally adaptive grids is derived for locally and non-locally occurring phenomena.
Transport between two fluids across their mutual flow interface: the streakline approach
Balasuriya, Sanjeeva
2016-01-01
Mixing between two different miscible fluids with a mutual interface must be initiated by fluid transporting across this fluid interface, caused for example by applying an unsteady velocity agitation. In general, there is no necessity for this physical flow barrier between the fluids to be associated with extremal or exponential attraction as might be revealed by applying Lagrangian coherent structures, finite-time Lyapunov exponents or other methods on the fluid velocity. It is shown that streaklines are key to understanding the breaking of the interface under velocity agitations, and a theory for locating the relevant streaklines is presented. Simulations of streaklines in a cross-channel mixer and a perturbed Kirchhoff's elliptic vortex are quantitatively compared to the theoretical results. A methodology for quantifying the unsteady advective transport between the two fluids using streaklines is presented.
Recurrence CFD - a novel approach to simulate multiphase flows with strongly separated time scales
Lichtenegger, Thomas
2016-01-01
Classical Computational Fluid Dynamics (CFD) of long-time processes with strongly separated time scales is computationally extremely demanding if not impossible. Consequently, the state-of-the-art description of such systems is not capable of real-time simulations or online process monitoring. In order to bridge this gap, we propose a new method suitable to decouple slow from fast degrees of freedom in many cases. Based on the recurrence statistics of unsteady flow fields, we deduce a recurrence process which enables the generic representation of pseudo-periodic motion at high spatial and temporal resolution. Based on these fields, passive scalars can be traced by recurrence CFD. While a first, Eulerian Model A solves a passive transport equation in a classical implicit finite-volume environment, a second, Lagrangian Model B propagates fluid particles obeying a stochastic differential equation explicitly. Finally, this new concept is tested by two multiphase processes - a lab scale oscillating bubble column a...
Flow Cytometry: A New Approach for Indirect Assessment of Sperm Protamine Deficiency
Directory of Open Access Journals (Sweden)
Marziyeh Tavalaee
2010-01-01
Full Text Available Background: Flow cytometry (FCM has been extensively used to study mammalian sperm in theareas of clinical andrology and reproductive toxicology. FCM provides a powerful advantage overmicroscopy technique in terms of rapid, accurate and reproducible technology for the quantification ofvarious cell characteristics, including chromatin status. During spermiogenesis, histones are replacedby protamines resulting in a very condensed structure of sperm chromatin. Infertile men have anincreased sperm histone: protamine ratio than fertile counterparts. Chromomycin A3 (CMA3 stainingrepresents a useful tool for assessing the packaging quality of sperm chromatin and allows indirectvisualization of protamine deficiency. Routinely, fluorescence microscope is used for evaluation ofprotamine deficiency by CMA3. Considering the advantages of FCM and increasing use of CMA3 inassessment of protamine deficiency in the literature and its possible use as a diagnostic test, the aim ofthis study is to standardize this procedure for routine laboratory analysis.Materials and Methods: Semen samples were collected from 85 infertile men who referred toIsfahan Fertility and Infertility Center. A portion of semen sample was used for routine semenanalysis according to WHO criteria and the remainder were evaluated to standardize CMA3 stainingprocedure for fixation, the number of sperm and duration of exposure to CMA3. The results werecompared with standard fluorescent microscopic procedure. Percentage CMA3 positive sperm werecompared between flow cytometry and standard fluorescent microscopic procedure.Results: Our results show that fixation, the number of sperm and duration of exposure to CMA3can affect on FCM outcomes. In addition we show that the samples can be fixed, stained withCMA3, stores and then assessed for FCM.Conclusion: The optimal conditions for FCM assessment of CMA3 are: fixation, concentration of0.25 mg/ml, sperm density of 2 million/ml and exposure for 60
Ezzedine, S. M.
2009-12-01
Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and
A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models
Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.
2016-12-01
Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.
Poker, Gilad; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2014-11-06
Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Drag phenomena within a torque converter driven automotive transmission - laminar flow approach
Alexa, O.; Marinescu, M.; Olaru, Gh; Costache, D.; Ilie, C. O.; Vinturis, V.
2015-11-01
When discussing a torque converter driven, automotive transmission with respect to the vehicle's coasting mode, automotive engineers have to take into account the slip between the converter's propeller and turbine. If the turbine isn't locked to the propellers during coasting process, drag phenomena within the converter's fluid occur and they have to be properly assessed when computing the coasting process dynamics. The best way to make the needed evaluation is to have a separate torque converter and test it on a test bench, if the data provided by the manufacturer, in this respect, weren't available. But there are several issues that could baffle this action. Among them, one could find the lack of information from the manufacturer, missing (bankrupted) manufacturer, classified information, old (out of date) products and so on. An even more challenging situation consists in dealing with a military special vehicle. Actually, the vehicle that would be subjected to the following topic is a military tracked, heavy vehicle (MBT) with a planetary driveline, driven by its engine via a hydraulic torque converter. In the attempt to assess its’ coasting dynamic performances, we faced the problem of the reverse rotation of the torque converter that strongly influences the general drag of the vehicle's motion. Hence, this paper tries to provide a method to determine the transmission overall drag considering the torque converter as being its main contributor. The method is based on the experimental research our team has performed in the last several months. Using high-quality software and adjacent mathematics while assuming a certain sort of flow type within the torque converter, we aimed at determining the parameter of interest of the flow. The method can be successfully used for all type of hydrodynamic components of the transmission under the condition of developing the necessary experimental research. As far as the test were concerned, they were the typical ones designed
Channelling information flows: a young researcher’s approach to knowledge management
Directory of Open Access Journals (Sweden)
Guilhem Chalancon
2014-07-01
Full Text Available As the volume of scientific literature continues to grow at an impressive pace, so too does the diversity of tools and approaches that are being proposed to track this knowledge. In the midst of such a vast ecosystem of journals and software, identifying meaningful innovation, as well as continuing to innovate, is essential to the emergence of powerful, flexible and easy-to-use ‘channels’ which researchers need to navigate the current scientific literature. In this article, the author uses the example of his own information consumption habits to suggest what he sees as the key components of such channels.
Review of modeling approaches for emergency department patient flow and crowding research.
Wiler, Jennifer L; Griffey, Richard T; Olsen, Tava
2011-12-01
Emergency department (ED) crowding is an international phenomenon that continues to challenge operational efficiency. Many statistical modeling approaches have been offered to describe, and at times predict, ED patient load and crowding. A number of formula-based equations, regression models, time-series analyses, queuing theory-based models, and discrete-event (or process) simulation (DES) models have been proposed. In this review, we compare and contrast these modeling methodologies, describe the fundamental assumptions each makes, and outline the potential applications and limitations for each with regard to usability in ED operations and in ED operations and crowding research. © 2011 by the Society for Academic Emergency Medicine.
Direct numerical simulation of a compressible multiphase flow through the fast Eulerian approach
Cerminara, Matteo; Ongaro, Tomaso Esposti; Salvetti, Maria Vittoria
2014-01-01
Our work is motivated by the analysis of ash plume dynamics, arising in the study of volcanic eruptions. Such phenomena are characterized by large Reynolds number (exceeding $10^7$) and a large number of polydispersed particles~[1]. Thus, the choice of the methodology to be used is straightforward: we need LES of a multiphase gas-particles flow. Since the simulation of the behavior of a large number of dispersed particles is very difficult with Lagrangian methods, we model the particles as a continuum, Eulerian fluid (dust), by using reduced models involving two fluids, as proposed in Ref.~[2,3,4]. Moreover, we need a robust numerical scheme to simultaneously treat compressibility, buoyancy effects and turbulent dispersal dynamics. We analyze the turbulence properties of such models in a homogeneous and isotropic setting, with the aim of formulating a LES model. In particular, we examine the development of freely decaying homogeneous and isotropic turbulence in subsonic regime (the r.m.s. Mach number either 0...
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
Camassa, R; Ortenzi, G
2015-01-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite 2D channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids' inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, and thence, in a non-trivial way, to the dispersionless non-linear Schr\\"odinger equation. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, it is shown that at first order the deformed system possesses an infinite sequence of constants of the motion, thus casting this system within the framework of comp...
A gaming approach to learning medical microbiology: students' experiences of flow.
Beylefeld, Adriana A; Struwig, Magdalena C
2007-11-01
There is a growing awareness in medical education of general skills(1) required for lifelong learning. Such skills are best achieved when students experience positive affective states while they are learning, as put forth by the Csikszentmihalyian theory of flow. This study describes how a quiz-type board game was used in the School of Medicine of the Faculty of Health Sciences at the University of the Free State to address students' negativity towards medical microbiology. The study population consisted of third-year medical students who had recently completed the Infections module of the undergraduate Learning Programme for Professional Medicine. Data gathered by means of two questionnaire surveys and direct observation showed that the game impacted positively on students' perceptions of and attitudes towards medical microbiology as a subject. A high perceived probability of the game contributing to the acquisition of general skills was recorded, since the experience of positive affect during the process of informal learning went hand-in-hand with heightened team effort and spontaneous communication. This article may be of value to health educators who wish to supplement formal teaching with informal learning so as to enhance not only the recall of factual knowledge, but also the advancement of general skills.
Hong, M. S.; Carmichael, G. R.
1983-01-01
A flow-through chemical reactor model is developed to describe the mass transfer and chemical processes that atmospheric gases undergo in clouds. The model includes the simultaneous absorption of SO2, NH3, O3, NO(x), HNO3, CO2 and H2O2, the accompanying dissociation and oxidation reactions in cloud water, considers electrical neutrality, and includes qualitative parameterization of cloud microphysics. The model is used to assess the importance of the oxidation reactions H2O2-S(IV), O3-S(IV), and S(IV)-Mn(2+) catalysis, and the effects of cloud parameters such as drop size, rain intensity, liquid water content, and updraft velocity. Both precipitating and nonprecipitating clouds are studied. Model results predict sulfate production rates varying from 3 percent/hr to 230 percent/hr. The actual rate is highly dependent on the chemical composition of the uptake air and the physical conditions of the cloud. Model results also show that both the H2O2 and the O3 oxidation reactions can be significant.
A generation-attraction model for renewable energy flows in Italy: A complex network approach
Valori, Luca; Giannuzzi, Giovanni Luca; Facchini, Angelo; Squartini, Tiziano; Garlaschelli, Diego; Basosi, Riccardo
2016-10-01
In recent years, in Italy, the trend of the electricity demand and the need to connect a large number of renewable energy power generators to the power-grid, developed a novel type of energy transmission/distribution infrastructure. The Italian Transmission System Operator (TSO) and the Distribution System Operator (DSO), worked on a new infrastructural model, based on electronic meters and information technology. In pursuing this objective it is crucial importance to understand how even more larger shares of renewable energy can be fully integrated, providing a constant and reliable energy background over space and time. This is particularly true for intermittent sources as photovoltaic installations due to the fine-grained distribution of them across the Country. In this work we use an over-simplified model to characterize the Italian power grid as a graph whose nodes are Italian municipalities and the edges cross the administrative boundaries between a selected municipality and its first neighbours, following a Delaunay triangulation. Our aim is to describe the power flow as a diffusion process over a network, and using open data on the solar irradiation at the ground level, we estimate the production of photovoltaic energy in each node. An attraction index was also defined using demographic data, in accordance with average per capita energy consumption data. The available energy on each node was calculated by finding the stationary state of a generation-attraction model.
An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.
Salama, Amgad; Sun, Shuyu; Bao, Kai
2016-03-01
In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
Institute of Scientific and Technical Information of China (English)
ZHANG Xin-hua; LONG Wen-fei; LEI Xiao-zhang; ZHANG Xiang-wei; XIE He-ping; WANG Jiang-ping
2007-01-01
This article mainly aims at developing an integrated 2-D numerical simulation model on inundation, sediment transportation and the morphological variations of floodplains due to high sediment-laden inundation flows. Due to the complexity of inner and outer boundaries and the arbitrary structures within the computational domain of floodplains, an unstructured Finite-Volume Method (FVM) based on an irregular polygon mesh was worked out so that the influences of complex boundaries can be integrated into the simulation. A case study was conducted in the Lower Yellow River Basin, in which a dike-break at the Huayuankou Hydrological Station was assumed to happen when a flood scale of 1982 was suffered in the region. The simulated spatial distribution of sediment deposition and erosion can be used to reasonably explain the natural phenomena of "suspended river" of the lower part of the Yellow River. It is concluded that the inundation process of water is similar to a variable-river-bed condition during the simulation because the sediment deposition and erosion are modified by new values at the end of each time step. The mass and momentum conservation were strictly followed during the simulation. Therefore, the prediction of floodplain evolutions by the integrated simulation model, proposed in this study, can be adequately and accurately given if the real condition of an floodplain can be obtained in detail.
A new approach to calibrate steady groundwater flow models with time series of head observations
Obergfell, C.; Bakker, M.; Maas, C.
2012-04-01
We developed a new method to calibrate aquifer parameters of steady-state well field models using measured time series of head fluctuations. Our method is an alternative to standard pumping tests and is based on time series analysis using parametric impulse response functions. First, the pumping influence is isolated from the overall groundwater fluctuation observed at monitoring wells around the well field, and response functions are determined for each individual well. Time series parameters are optimized using a quasi-Newton algorithm. For one monitoring well, time series model parameters are also optimized by means of SCEM-UA, a Markov Chain Monte Carlo algorithm, as a control on the validity of the parameters obtained by the faster quasi-Newton method. Subsequently, the drawdown corresponding to an average yearly pumping rate is calculated from the response functions determined by time series analysis. The drawdown values estimated with acceptable confidence intervals are used as calibration targets of a steady groundwater flow model. A case study is presented of the drinking water supply well field of Waalwijk (Netherlands). In this case study, a uniform aquifer transmissivity is optimized together with the conductance of ditches in the vicinity of the well field. Groundwater recharge or boundary heads do not have to be entered, which eliminates two import sources of uncertainty. The method constitutes a cost-efficient alternative to pumping tests and allows the determination of pumping influences without changes in well field operation.
Front propagation in steady cellular flows: A large-deviation approach
Tzella, Alexandra; Vanneste, Jacques
2012-11-01
We examine the speed of propagation of chemical fronts modelled by the Fisher-Kolmogorov-Petrovskii-Piskunov nonlinearity in steady cellular flows. A number of predictions have been previously derived assuming small molecular diffusivity (large Péclet number) and either very slow (small Damköhler number) or very fast (large Damköhler number) chemical reactions. Here, we employ the theory of large deviations to obtain a family of eigenvalue problems from whose solution the front speed is inferred. The matched-asymptotics solution of these eigenvalue problems in the limit of large Péclet number provides approximations for the front speed for a wide range of Damköhler numbers. Two distinguished regimes are identified; in both regimes the front speed is given by a non-trivial function of the Péclet and Damköhler numbers which we determine. Earlier results, characterised by power-law dependences on these numbers, are recovered as limiting cases. The theoretical results are illustrated by a number of numerical simulations. The authors acknowledge support from EPSRC grant EP/I028072/1.
Development of a novel flow cytometric approach to evaluate fish sperm chromatin using fixed samples
Jenkins, Jill A.
2013-01-01
The integrity of the paternal DNA is essential for the accurate transmission of genetic information, yet fertilization is not inhibited by chromatin breakage. Some methods are available for the sensitive detection of DNA damage and can be applied in studies of environmental toxicology, carcinogenesis, aging, and assisted reproduction techniques in both clinical and experimental settings. Because semen samples obtained from remote locations undergo chromatin damage prior to laboratory assessment, the present study was undertaken to evaluate treatments for effective chromatin staining in the development of a DNA fragmentation assay using fixed milt from yellow perch (Perca flavescens). Similar to the sperm chromatin structure assay (SCSA), susceptibility of nuclear DNA to acid-induced denaturation was measured by flow cytometry (FCM). Use of 10% buffered formalin for milt fixation allowed easier peak discrimination than 4% paraformaldehyde. The effects of time and temperature of incubation in 0.08 N HCl were evaluated in order to determine the ideal conditions for promoting DNA decondensation and making strand breaks more available for staining and detection by FCM. The best results were obtained with incubation at 37°C for 1 minute, followed by cold propidium iodide staining for 30 minutes.
Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach.
Miranda, José A; Gadêlha, Hermes; Dorsey, Alan T
2010-12-01
The zero surface tension fluid-fluid interface dynamics in a radial Hele-Shaw cell driven by both injection and rotation is studied by a conformal-mapping approach. The situation in which one of the fluids is inviscid and has negligible density is analyzed. When Coriolis force effects are ignored, exact solutions of the zero surface tension rotating Hele-Shaw problem with injection reveal suppression of cusp singularities for sufficiently high rotation rates. We study how the Coriolis force affects the time-dependent solutions of the problem, and the development of finite time singularities. By employing Richardson's harmonic moments approach we obtain conformal maps which describe the time evolution of the fluid boundary. Our results demonstrate that the inertial Coriolis contribution plays an important role in determining the time for cusp formation. Moreover, it introduces a phase drift that makes the evolving patterns rotate. The Coriolis force acts against centrifugal effects, promoting (inhibiting) cusp breakdown if the more viscous and dense fluid lies outside (inside) the interface. Despite the presence of Coriolis effects, the occurrence of finger bending events has not been detected in the exact solutions.
A Comparison of Model Reduction Approaches for Feedback Control Design of Thermal Flows in Buildings
Borggaard, Jeff; Ahuja, Sunil; Burns, John; Cliff, Eugene; Surana, Amit
2010-11-01
The application of distributed parameter control to spatiotemporal thermo-fluid systems requires the use of model reduction methods. The form of the optimal feedback control can inform design decisions, such as sensor and actuator selection and placement. A number of model reduction approaches for fluid systems have been put forward that are based on the proper orthogonal decomposition (POD). In this talk, we examine three approaches, the traditional POD-Galerkin model, the POD-Sensitivity model, and the Balanced-POD models. Our work is motivated by the building indoor environment control problem. Energy performance in building cooling and heating systems can be substantially improved by exploiting spatial temperature stratification and buoyancy that are prevalent in passive systems. We consider the control of airflow in a room with a passively cooled radiant ceiling and displacement ventilation provided near the room floor. For this problem, we approximate the full-order solution to compute the control gains, develop reduced-order models and associated controllers, and simulate the full-order closed-loop system for comparison with the reduced-order model-based control design.
Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.
2015-12-01
The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary
Darabi, Hamid; Torabi Haghighi, Ali; Fazel, Nasim; Klöve, Björn
2017-04-01
Land use and climate changes have important impacts on water resources such as river flow regimes and they are often complicated to separate at the watershed scale. To separate impact, we develop a scenario based approach using remote sensing and hydro-climatological data. Using the framework, we assess the on hydrological indices in Marboreh watershed (headwater of Dez River which modified by the most important hydropower plant in Iran). The analysis is based on data from three Landsat TM images (1988, 1998 and 2008), meteorological data (1983-2012) at Aligudarz station and hydrological data (1983-2012) at Doroud gauge station. To carry out the study, the QUAC module and supervised classification (ML algorithm) in the ENVI 5.1, the SWAT model and Mann-Kendall method were used for remote sensing, hydrological modeling and trend analysis respectively. To analyses the impact of land use and climate changes, the studied period was divided into three decades (1983-1992, 1993-2002 and 2003-2012). For all periods, the land use maps were assigned based on the middle year of each decade (1988, 1998 and 2008). Then, 10 hydrological indices related to high flow and low flow indices (HDI and LDI) were analyzed for seven scenarios which were created by combining predefined climatic periods and land use maps. Base on the RS analysis, the major alterations in land use including degradation of natural rangeland (-18.49%) and increasing farming land (+16.70%) and residential area (+0.80%) were assessed from 1988 to 2008. The Mann-Kendall test indicates a statistically decreasing trend in rainfall induced runoff and increasing trend in the temperature at the 5% and 1% significance levels, respectively. The results of this study clearly showed that in Marboreh watershed is influenced by climate variability impact on hydrological indices more than land use change. Also, the present study demonstrated that the low flow indices were affected more than high flow indices in both climate
Energy Technology Data Exchange (ETDEWEB)
Stotsky, A.; Eriksson, S. [Volvo Car Corporation, Gothenburg (Sweden). Engine Design and Development Dept.; Kolmanovsky, I. [Ford Motor Co., Dearborn, MI (United States)
2004-07-01
The performance of air charge estimation algorithms in spark ignition automotive engines can be enhanced using advanced estimation techniques available in the controls literature. This paper illustrates two approaches of this kind that can improve the cylinder flow estimation for gasoline engines without external exhaust gas recirculation (EGR). The first approach is based on an input observer, while the second approach relies on an adaptive estimator. Assuming that the cylinder flow is nominally estimated via a speed-density calculation, and that the uncertainty is additive to the volumetric efficiency, the straightforward application of an input observer provides an easy to implement algorithm that corrects the nominal air flow estimate. The experimental results that we report in the paper point to a sufficiently good transient behaviour of the estimator. The signal quality may deteriorate, however, for extremely fast transients. This motivates the development of an adaptive estimator that relies mostly on the feedforward speed-density calculation during transients, while during engine operation close to steady-state conditions, it relies mostly on the adaptation. In our derivation of the adaptive estimator, the uncertainty is modelled as an unknown parameter multiplying the intake manifold temperature. We use the tracking error between the measured and modelled intake manifold pressure together with an appropriately defined prediction error estimate to develop an adaptation algorithm with improved identifiability and convergence rate. A robustness enhancement, via a {sigma}-modification with the {sigma}-factor depending on the prediction error estimate, ensures that in transients the parameter estimate converges to a predetermined a priori value. In close to steady-state conditions, the {sigma}-modification is rendered inactive and the evolution of the parameter estimate is determined by both tracking error and prediction error estimate. Further enhancements are
Zhang, Xiaolei
2016-01-01
Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6um and SDSS i-band images. Corresponding molecular and atomic gas surface densities are derived from published CO(1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and density wave modes. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs (1972) approach. The curre...
Elliptic flow and nuclear modification factors of D-mesons at FAIR in a Hybrid-Langevin approach
Lang, Thomas; Steinheimer, Jan; Bleicher, Marcus
2013-01-01
The Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton and Ion Research (FAIR) will provide new possibilities for charm-quark ($D$-meson) observables in heavy-ion collisions at low collision energies and high baryon densities. To predict the collective flow and nuclear modification factors of charm quarks in this environment, we apply a Langevin approach for the transport of charm quarks in the UrQMD (hydrodynamics + Boltzmann) hybrid model. Due to the inclusion of event-by-event fluctuations and a full (3+1) dimensional hydrodynamical evolution, the UrQMD hybrid approach provides a realistic evolution of the matter produced in heavy-ion collisions. As drag and diffusion coefficients we use a resonance approach for elastic heavy-quark scattering and assume a decoupling temperature of the charm quarks from the hot medium of $130\\, \\MeV$. Hadronization of the charm quarks to $D$-mesons by coalescence is included. Since the initial charm-quark distribution at FAIR is unknown, we utilize ...
A modified Muskingum routing approach for floodplain flows: Theory and practice
O'Sullivan, J. J.; Ahilan, S.; Bruen, M.
2012-11-01
SummaryHydrological or hydraulic flood routing methods can be used to predict the floodplain influences on a flood wave as it passes along a river reach. While hydraulic routing uses both the equation of continuity and the equation of momentum to describe the dynamics of river flows, the simpler data requirements of hydrological routing makes it useful for preliminary estimates of the time and shape of a flood wave at successive points along a river. This paper presents a modified linear Muskingum hydrological routing method where the floodplain effects on flood peak attenuation and flood wave travel time are included in routing parameters. Developing the routing parameters initially involved routing hydrographs of different flood peak and duration through a 1-dimensional model of a generalised river reach in which a range of geometrical and resistance properties were varied. Comparison of upstream and simulated downstream hydrographs for each condition investigated, allowed the attenuation and travel time (storage constant, K, in standard Muskingum routing) of the flood wave to be estimated. Standard Muskingum routing was then used to develop downstream hydrographs for each K value together with assumed storage weighting factors (x) ranging from 0 to 0.5. Flood peak attenuations were again determined through comparison of the upstream and routed downstream hydrographs and with these, linear relationships between x and these attenuations were developed. Actual weighting factors, corresponding to storage constants, were subsequently determined using these relationships for all attenuations determined from the 1-dimensional model simulations. Using multi-variate regression analysis, the computed values of K and x were correlated to catchment and hydrograph properties and expressions for determining both K and x in terms of these properties were developed. The modified Muskingum routing method based on these regressed expressions for K and x was applied to a case
Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.
McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L
2016-03-01
Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
Beloglazova, N V; Shmelin, P S; Eremin, S A
2016-01-01
Three kinds of immunoassays for the determination of gentamicin in milk samples were developed and validated. First, a fast and easily-performed fluorescence polarization immunoassay was used for characterization of the employed polyclonal antibody. The calculated Kaff were (1.9±0.4)×10(9)М(-1) and (6.0±0.2)×10(6)М(-1) for the high- and low-affinity fractions respectively. The assay was characterized with a good sensitivity, the limit of detection being 5μgkg(-1). Two different kinds of detection labels, i.e. colloidal gold (CG) and quantum dots (QDs), were evaluated for use in lateral-flow format with respect to rapid visual on-site testing. The cut-off levels for both qualitative formats were selected based on the maximum level for gentamicin in milk established by the European Commission, 100μgkg(-1), resulting in a 10μgkg(-1) cut-off considering sample dilution. The intra-laboratory validation was performed with sterilized milk samples artificially spiked with gentamicin at concentrations less than, equal to, and greater than the cut-off level. It was shown that milk products could be analyzed without any sample preparation, except for dilution with the buffer solution. The rates of false-positive and false-negative results were below 5% for both labels. The different developed immunoassays were tested towards gentamicin determination in artificially-spiked and naturally contaminated milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach
McMahon, Kelton
2015-11-21
Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ13C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.
MultiPaths Revisited - A novel approach using OpenFlow-enabled devices
Al-Shabibi, Ali; Martin, Brian
2011-06-11
This thesis presents novel approaches enhancing the performance of computer networks using multipaths. Our enhancements take the form of congestion-aware routing protocols. We present three protocols called MultiRoute, Step-Route, and finally PathRoute. Each of these protocols leverage both local and remote congestion statistics and build different representations (or views) of the network congestion by using an innovative representation of congestion for router-router links. These congestion statistics are then distributed via an aggregation protocol to other routers in the network. For many years, multipath routing protocols have only been used in simple situations, such as Link Aggregation and/or networks where paths of equal cost (and therefore equal delay) exist. But, paths of unequal costs are often discarded to the benefit of shortest path only routing because it is known that paths of unequal length present different delays and therefore cause out of order packets which cause catastrophic network per...
Shiddiky, Muhammad J. A.; Vaidyanathan, Ramanathan; Rauf, Sakandar; Tay, Zhikai; Trau, Matt
2014-01-01
Early diagnosis of disease requires highly specific measurement of molecular biomarkers from femto to pico-molar concentrations in complex biological (e.g., serum, blood, etc.) samples to provide clinically useful information. While reaching this detection limit is challenging in itself, these samples contain numerous other non-target molecules, most of which have a tendency to adhere to solid surfaces via nonspecific interactions. Herein, we present an entirely new methodology to physically displace nonspecifically bound molecules from solid surfaces by utilizing a newly discovered ``tuneable force'', induced by an applied alternating electric field, which occurs within few nanometers of an electrode surface. This methodology thus offers a unique ability to shear-off loosely bound molecules from the solid/liquid interface. Via this approach, we achieved a 5-fold reduction in nonspecific adsorption of non-target protein molecules and a 1000-fold enhancement for the specific capture of HER2 protein in human serum.
Roszkowska, Elzbieta K.
1998-10-01
In the paper we develop a discrete dynamic model of concurrent cyclic processes and state two formal decision problems concerning testing the realizability of such system at its design phase and testing the safety (with respect to deadlocks) of control decisions undertaken on-line. We prove the NP-completeness of the problems and point out that such complexity clearly hinders a practical application of the optimal (i.e. the least-restrictive) approach proposed. Thus, we discuss a pragmatic solution for deadlock handling being a compromise between the restriction level of the algorithms required and their computational time-complexity. We introduce a satisfactory condition for realizability of the system and prove that in the cyclic systems which satisfy the condition we can employ deadlock avoidance algorithms developed for pipeline processes.
Shape and Topology Optimization in Stokes Flow with a Phase Field Approach
Energy Technology Data Exchange (ETDEWEB)
Garcke, Harald, E-mail: harald.garcke@mathematik.uni-regensburg.de; Hecht, Claudia, E-mail: claudia.hecht@mathematik.uni-regensburg.de [Universität Regensburg, Fakultät für Mathematik (Germany)
2016-02-15
In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions.
Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal
2017-03-01
Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.
Hu, Kun; Lo, Men-Tzung; Peng, Chung-Kang; Liu, Yanhui; Novak, Vera
2012-01-01
Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary
Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y
2016-10-01
This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the Kd approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because Kd,1 and k(-) were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected.
González-Rodríguez, J; Pérez-Juan, P; Luque de Castro, M D
2002-01-04
A simultaneous and fast method for the determination of total polyphenol index (t.p.i.) and total anthocyan index (t.a.i.) has been developed by a flow injection approach and a diode array spectrophotometer for monitoring at 280 and 520 nm, respectively. Linear ranges were obtained from 20 to 70 index units and from 20 to 500 mg l(-1) for the t.p.i. and t.a.i., respectively. The results provided by the proposed method agree with those obtained using the polyphenol index at 280 nm and the Ribereau-Gayon method for the determination of total anthocyans. The sample throughout was 25-30 samples per hour. Analytical features such as repeatability, reproducibility and detection and quantification limits as well as the results of a robustness study based on the Steiner-Younden procedure are also given.
New Approach to Study the Ignition Processes of Organic Coal-Water Fuels in an Oxidizer Flow
Directory of Open Access Journals (Sweden)
Valiullin T.R.
2016-01-01
Full Text Available To converge the conditions of organic water-coal fuel composition combustion in the typical power equipment we developed a new approach and installed an experimental setup, eliminating the traditional fixing the fuel droplets on the thermocouples or rods. Specialized cone-shaped chamber was used to implement the process of lingering of organic water-coal fuel droplets. Necessary and sufficient conditions for the lingering of organic water-coal fuel droplets were established. We determined the parameters of the system (droplet size of 0.4-0.6 mm, temperatures 823-903 K and the velocity of the oxidizer flow 1.5-6 m/s at which the droplets were consistently ignited in the process of lingering. Minimum temperatures and ignition delay times of organic water-coal fuel droplets based on brown coal, used motor, turbine, transformer oils, kerosene, gasoline and water were defined.
DEFF Research Database (Denmark)
Johannesson, Björn; Nyman, U.
2010-01-01
A numerical approach for moisture transport in porous materials like concrete is presented. The model considers mass balance equations for the vapour phase and the water phase in the material together with constitutive equations for the mass flows and for the exchange of mass between the two phases....... History-dependent sorption behaviour is introduced by considering scanning curves between the bounding desorption and absorption curves. The method, therefore, makes it possible to calculate equilibrium water contents for arbitrary relative humidity variations at every material point considered......-Raphson equilibrium iteration scheme within the time steps. Examples are presented illustrating the performance and potential of the model. Two different types of measurements on moisture content profiles in concrete are used to verify the relevance of the novel proposed model for moisture transport and sorption...
Feoktistova, V S; Vavilkova, T V; Sirotkina, O V; Boldueva, S A; Gaikovaia, L B; Leonova, I A; Laskovets, A B; Ermakov, A I
2015-04-01
The endothelium dysfunction takes leading place in pathogenesis of development of cardiovascular diseases. The circulating endothelium cells of peripheral blood can act as a direct cell marker of damage and remodeling of endothelium. The study was carried out to develop a new approach to diagnose of endothelium dysfunction by force of determination of number of circulating endothelium cells using flow cytometry technique and to apply determination of circulating endothelium cells for evaluation of risk of development of ischemic heart disease in women of young and middle age. The study embraced 62 female patients with angiography confirmed ischemic heart disease, exertional angina pectoris at the level of functional class I-II (mean age 51 ± 6 years) and 49 women without anamnesis of ischemic heart disease (mean age 52 ± 9 years). The occurrence of more than three circulating endothelium cells by 3 x 105 leukocytes in peripheral blood increases relative risk of development of ischemic heart disease up to 4 times in women of young and middle age and risk of development of acute myocardial infarction up to 8 times in women with ischemic heart disease. The study demonstrated possibility to apply flow cytometry technique to quantitatively specify circulating endothelium cells in peripheral blood and forecast risk of development of ischemic heart disease in women of young and middle age depending on level of circulating endothelium cells.
Yin, W.; Peyton, A. J.; Stefani, F.; Gerbeth, G.
2009-10-01
A completely contactless flow measurement technique based on the principle of EM induction measurements—contactless inductive flow tomography (CIFT)—has been previously reported by a team based at Forschungszentrum Dresden-Rossendorf (FZD). This technique is suited to the measurement of velocity fields in high conductivity liquids, and the possible applications range from monitoring metal casting and silicon crystal growth in industry to gaining insights into the working of the geodynamo. The forward problem, i.e. calculating the induced magnetic field from a known velocity profile, can be described as a linear relationship when the magnetic Reynolds number is small. Previously, an integral equation method was used to formulate the forward problem; however, although the sensitivity matrices were calculated, they were not explicitly expressed and computation involved the solution of an ill-conditioned system of equations using a so-called deflation method. In this paper, we present the derivation of the sensitivity matrix directly from electromagnetic field theory and the results are expressed very concisely as the cross product of two field vectors. A numerical method based on a finite difference method has also been developed to verify the formulation. It is believed that this approach provides a simple yet fast route to the forward solution of CIFT. Furthermore, a method for sensor design selection based on eigenvalue analysis is presented.
Kumar, Niraj; Borth, Nicole
2012-03-01
The performance of cell lines used for the production of biotherapeutic proteins typically depends on the number of cells in culture, their specific growth rate, their viability and the cell specific productivity (qP). Therefore both cell line development and process development are trying to (a) improve cell proliferation to reduce lag-phase and achieve high number of cells; (b) delay cell death to prolong the production phase and improve culture longevity; (c) and finally, increase qP. All of these factors, when combined in an optimised process, concur to increase the final titre and yield of the recombinant protein. As cellular performance is at the centre of any improvement, analysis methods that enable the characterisation of individual cells in their entirety can help in identifying cell types and culture conditions that perform exceptionally well. This observation of cells and their complexity is reflected by the term "cytomics" and flow cytometry is one of the methods used for this purpose. With its ability to analyse the distribution of physiological properties within a population and to isolate rare outliers with exceptional properties, flow cytometry ideally complements other methods used for optimisation, including media design and cell engineering. In the present review we describe approaches that could be used, directly or indirectly, to analyse and sort cellular phenotypes characterised by improved growth behaviour, reduced cell death or high qP and outline their potential use for cell line and process optimisation.
Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach
Balakrishnan, A.; Mueller, C.; Reinecke, H.
2013-12-01
A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.
A SURVEY ON THE ALGORITHMIC APPROACH USED IN ROUTING FOR PLACEMENT AND ROUTING FLOW
Directory of Open Access Journals (Sweden)
KOMAL
2014-06-01
Full Text Available Routing is one of the long-drawn-out processes after placement in VLSI design. The routing provides the path for nets on chip to interconnect the pins on the pads or blocks at the chip boundary. This paper provides a systematic insight of interconnect of nets in ‘Placement and Routing Flow’ based on various methods (global routing and detailed routing. Further, the work reported so far has been compared with a multiple techniques for multiple factors such as reduction in wire-length, short execution time, fast and accurate congestion, improvement in complexity, signal integrity and crosstalk. Here the methodologies adopts are the Routing congestion estimator algorithm, Ant Colony Optimization. Firefly Algorithm, Monotonic Staircase Routing and so on. It is also observed that Pattern Based Routing is much faster than the Maze Routing, and the improved parameters are there is no over-congestion and 100% routablity with Monotonic Staircase Channels. zero overflow by Simulated-Evolution(Sim-E, and Complexity improved by a Fuzzified Approach Towards Global Routing.
CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES
Directory of Open Access Journals (Sweden)
G. R. LAI
2015-08-01
Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.
Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Gerke, Horst H.
2012-08-01
In the absence of overland flow, shallow subsurface runoff is one of the most important mechanisms determining hydrological responses of headwater catchments to rainstorms. Subsurface runoff can be triggered by preferential flow of infiltrating water frequently occurring in heterogeneous and structured soils as a basically one-dimensional (1D) vertical process. Any attempt to include effects of preferential flow in hydrological hillslope studies is limited by the fact that the thickness of the permeable soil is mostly small compared to the length of the hillslope. The objective of this study is to describe preferential flow effects on hillslope-scale subsurface runoff by combining a 1D vertical dual-continuum approach with a 1D lateral flow equation. The 1D vertical flow of water in a variably saturated soil is described by a coupled set of Richards' equations and the 1D saturated lateral flow of water on less permeable bedrock by the diffusion wave equation. The numerical solution of the combined model was used to study rainfall-runoff events on the Tomsovska hillslope by comparing simulated runoff with observed trench discharge data. The dual-continuum model generated the observed rapid runoff response, which served as an input for the lateral flow model. The diffusion wave model parameters (i.e., length of the contributing hillslope, effective porosity, and effective hydraulic conductivity) indicate that the hillslope length that contributed to subsurface drainage is relatively short (in the range of 25-50 m). Significant transformation of the 1D vertical inflow signal by lateral flow is expected for longer hillslopes, smaller effective conductivities, and larger effective porosities. The physically-based combined modeling approach allows for a consistent description of both preferential flow in a 1D vertical soil profile and lateral subsurface hillslope flow in the simplest way.
A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics
Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.
2015-12-01
A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low
Institute of Scientific and Technical Information of China (English)
LI XiangYang; WANG YueFa; YU GengZhi; YANG Chao; MAO ZaiSha
2008-01-01
A volume-amending method is developed both to keep the level set function as an algebraic distance function and to preserve the bubble mass in a level set approach for incompressible two-phase flows with the significantly deformed free interface. After the traditional reinitialization procedure, a vol-ume-amending method is added for correcting the position of the interface according to mass loss/gain error until the mass error falls in the allowable range designated in advance. The level set approach with this volume-amending method incorporated has been validated by three test cases: the motion of a single axisymmetrical bubble or drop in liquid, the motion of a two-dimensional water drop falling through the air into a water pool, and the interactional motion of two buoyancy-driven three-dimensional deformable bubbles. The computational results with this volume-amending method in-corporated are in good agreement with the reported experimental data and the mass is well preserved in all cases.
A meshfree approach to non-Newtonian free surface ice flow: Application to the Haut Glacier d'Arolla
Ahlkrona, Josefin; Shcherbakov, Victor
2017-02-01
Numerical models of glacier and ice sheet dynamics traditionally employ finite difference or finite element methods. Although these are highly developed and mature methods, they suffer from some drawbacks, such as inability to handle complex geometries (finite differences) or a costly assembly procedure for nonlinear problems (finite elements). Additionally, they are mesh-based, and therefore moving domains become a challenge. In this paper, we introduce a novel meshfree approach based on a radial basis function (RBF) method. The meshfree nature of RBF methods enables efficient handling of moving margins and free ice surface. RBF methods are also accurate, easy to implement, and allow for reduction the computational cost associated with the linear system assembly, since stated in strong form. To demonstrate the global RBF method we model the velocity field of ice flow in the Haut Glacier d'Arolla, which is governed by the nonlinear Stokes equations. We test the method for different basal conditions and for a free moving surface. We also compare the global RBF method with its localized counterpart-the RBF partition of unity method (RBF-PUM)-that allows for a significant gain in the computational efficiency. Both RBF methods are compared with the classical finite element method in terms of accuracy and efficiency. We find that the RBF methods are more efficient than the finite element method and well suited for ice dynamics modeling, especially the partition of unity approach.
Institute of Scientific and Technical Information of China (English)
2008-01-01
A volume-amending method is developed both to keep the level set function as an algebraic distance function and to preserve the bubble mass in a level set approach for incompressible two-phase flows with the significantly deformed free interface. After the traditional reinitialization procedure, a vol-ume-amending method is added for correcting the position of the interface according to mass loss/gain error until the mass error falls in the allowable range designated in advance. The level set approach with this volume-amending method incorporated has been validated by three test cases: the motion of a single axisymmetrical bubble or drop in liquid, the motion of a two-dimensional water drop falling through the air into a water pool, and the interactional motion of two buoyancy-driven three- dimensional deformable bubbles. The computational results with this volume-amending method in-corporated are in good agreement with the reported experimental data and the mass is well preserved in all cases.
Chang, Chien-Chieh; Chen, Chia-Shyun
2002-06-01
A flowing partially penetrating well with infinitesimal well skin is a mixed boundary because a Cauchy condition is prescribed along the screen length and a Neumann condition of no flux is stipulated over the remaining unscreened part. An analytical approach based on the integral transform technique is developed to determine the Laplace domain solution for such a mixed boundary problem in a confined aquifer of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by substituting the Cauchy condition with a Neumann condition in terms of well bore flux that varies along the screen length and is time dependent. Despite the well bore flux being unknown a priori, the modified model containing this homogeneous Neumann boundary can be solved with the Laplace and the finite Fourier cosine transforms. To determine well bore flux, screen length is discretized into a finite number of segments, to which the Cauchy condition is reinstated. This reinstatement also restores the relation between the original model and the solutions obtained. For a given time, the numerical inversion of the Laplace domain solution yields the drawdown distributions, well bore flux, and the well discharge. This analytical approach provides an alternative for dealing with the mixed boundary problems, especially when aquifer thickness is assumed to be finite.
Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar
2013-01-01
Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U
Heitmuller, Franklin T; Raphelt, Nolan
2012-07-15
Instream-flow scientists embrace streamflow as the master variable driving aquatic and riparian ecosystems, and that natural flow variability is imperative for river conservation and restoration efforts. Sediment transport, which is critical for maintenance of physical habitats in rivers and floodplains, has received less direct attention from instream-flow practitioners. This article serves to highlight the roles of sediment-transport evaluations in modifying or verifying instream-flow prescriptions based on hydrology alone. Two examples of sediment-transport evaluations are discussed in relation to the Texas Senate Bill 3 Environmental Flows allocation process, a mandate to "develop environmental flow analyses and a recommended flow regime" that "maintain(s) the viability of the state's streams, rivers, and bay and estuary systems" using "reasonably available science". The first example provides an evaluation of effective discharge of suspended-sediment load of the lower Brazos River. The magnitude and frequency of effective discharge occurs between typical high-flow pulses and overbank flows, indicating that hydrologic and physical processes are not optimally coupled in some flow-regime models. The second example utilizes the Hydrology-Based Environmental Flow Regime (HEFR) model to prescribe instream flows for the lower Sabine River, and compares modeled bed-material loads for observed and HEFR-prescribed flow regimes. Results indicate that annual water and sediment yields are greatly reduced for the modeled flow regime. It should be noted, however, that different input variables to the HEFR model would have resulted in different computations of water and sediment yields, reinforcing that instream-flow practitioners should exercise great caution when applying rule-of-thumb procedures to generate flow prescriptions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R
2016-04-01
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and
Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling
Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.
2012-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.
Directory of Open Access Journals (Sweden)
Yu Wang
2016-04-01
Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.
Candy, A. S.
2017-04-01
A new approach to modelling free surface flows is developed that enables, for the first time, 3D consistent non-hydrostatic baroclinic physics that wets and drys in the large aspect ratio spatial domains that characterise geophysical systems. This is key in the integration of physical models to permit seamless simulation in a single consistent arbitrarily unstructured multiscale and multi-physics dynamical model. A high order continuum representation is achieved through a general Galerkin finite element formulation that guarantees local and global mass conservation, and consistent tracer advection. A flexible spatial discretisation permits conforming domain bounds and a variable spatial resolution, whilst atypical use of fully implicit time integration ensures computational efficiency. Notably this brings the natural inclusion of non-hydrostatic baroclinic physics and a consideration of vertical inertia to flood modelling in the full 3D domain. This has application in improving modelling of inundation processes in geophysical domains, where dynamics proceeds over a large range of horizontal extents relative to vertical resolution, such as in the evolution of a tsunami, or in urban environments containing complex geometric structures at a range of scales.
Yang, Y; Zhao, Y Q; Wang, S P; Guo, X C; Ren, Y X; Wang, L; Wang, X C
2011-01-01
This study examined a novel reuse of alum sludge, an inescapable by-product of drinking water treatment process when aluminium salt is added as a coagulant, as the main medium in a laboratory-scale multi-stage constructed wetland (CW) system for reject water treatment. Such reject water is a main concern in municipal wastewater treatment plant (MWWTP) for increasing the organic and nutrient loading. A 'tidal flow' strategy was employed to enhance the wetland aeration to stimulate organic matters (OM) and ammoniacal-nitrogen (N) oxidation while the 'step feed' operation was adopted to supply the necessary amount of carbon source for denitrification. The results reveal that alum sludge acting as P adsorbent can secure the P removal. Meanwhile, high removals of N and OM can also be obtained due to the active bacteria growth on the alum sludge surface. The results show that average removal efficiencies of 65.4 +/- 12.3% for chemical oxygen demand (COD), 67.8 +/- 9.2% for five-day biochemical oxygen demand (BOD5), 33.6 +/- 17.0% for N and 99.5 +/- 0.49% for P can be achieved over a period of 190 days. This indicates that novel reuse of alum sludge as medium in CW system can provide a promising approach for reject water treatment. Therefore, it will significantly reduce the amount of pollutant feedback through reject water recycling in a MWWTP.
Khayat, Roger E.; Genouvrier, Delphine
2001-05-01
An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities of the deforming free surface and thus can handle large deformations. A simple algorithm is developed for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several flow problems are presented to illustrate the utility of the approach, particularly as encountered in polymer processing and rheology. These problems illustrate the transient nature of the flow during the processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer, and the coating of a sphere. Surface tension effects are also explored. Copyright
Khatami, F.; Weide, van der E.T.A.; Hoeijmakers, H.W.M.
2015-01-01
In this paper a numerical simulation of unsteady sheet cavitation is presented as it occurs on an NACA-0015 hydrofoil. The computational approach is based on the Euler equations for unsteady compressible flow, using an equilibrium cavitation model of Schnerr, Schmidt, and Saurel. It was found that f
Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.
2007-01-01
In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo
Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.
2006-01-01
In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo
A New Chemical Additives Adding Equipment for Paper Machine Slurry Approach Flow Pipe%纸机中助留剂加入设备介绍
Institute of Scientific and Technical Information of China (English)
祁红影
2011-01-01
The traditional and new equipment for adding retention aid solution to the approach flow pipe was introduced, and their advantages and disadvantages were also compared in this paper.%主要介绍发传统助留剂加入设备和新型助留剂加入设备,并对比了它们的优缺点.
Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian
2016-08-01
In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.
Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter
2014-05-01
Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that
Jacquemart, M. F.; Meier, L.; Graf, C.; Morsdorf, F.
2015-12-01
We use globally unique datasets from paired laser profile scanners to measure debris-flow height, velocity and discharge in two well-known debris-flow channels in Switzerland. Since 2011, these scanners have been scanning passing debris flows at rates of up to 75 Hz, acquiring millions of cross-bed profiles. The profiles can be concatenated through time, generating unique 2.5D representations of passing debris flows. Applying a large-scale Particle Image Velocimetry (PIV) approach to these datasets has proven successful to measure surface flow velocities. Flow height can also be estimated from the laser scanners, and thus a discharge estimate can be given. To account for changes to the channel bed due to erosion and deposition during the debris flow, we compute two flow height estimates using a pre-event as well as a post-event channel geometry in order to visualize discharge variability.Velocity outliers need to be excluded to provide reliable estimates of peak discharge, and changes to the channel bed are assumed to be the largest source of uncertainty. However, the latter problem is inherent to all debris-flow discharge measurements, and we have found the new system to offer distinct advantages over the conventional system relying on geophones and a radar gauge. The wide scan angle of up to 190° renders the scanners insensitive to changes of the flow path, and the point density of roughly 20 points per meter offer unprecedented spatial coverage.In addition, the geometries of the cross-bed profiles have been analyzed, revealing distinct changes of cross-flow convexity between the front and the tail of the flows in several cases. This is assumed to indicate changes of debris-flow mixtures, but further research is needed to better understand this signal.We hope that our preliminary analysis and toolbox will facilitate working with these kinds of datasets so as to further improve debris-flow understanding, monitoring and modeling efforts in the future.
Westers, Theresia M.; van der Velden, Vincent H. J.; Alhan, Canan; Bekkema, Roelof; Bijkerk, Andre; Brooimans, Rik A.; Cali, Claudia; Drager, Angelika M.; de Haas, Valerie; Homburg, Christa; Kuiper-Kramer, P. (Ellen) A.; Leenders, Marije; Lommerse, Ingrid; Marvelde, Jeroen G. te; van der Molen-Sinke, Joke K.; Moshaver, Bijan; Mulder, Andre B.; Preijers, Frank W. M. B.; Schindhelm, Roger K.; van der Sluijs, Alita; van Wering, Elisabeth R.; Westra, August H.; van de Loosdrecht, Arjan A.; de Jong, A.
2012-01-01
Flow cytometry (FC) is recognized as an important tool in the diagnosis of myelodysplastic syndromes (MDS) especially when standard criteria fail. A working group within the Dutch Society of Cytometry aimed to implement FC in the diagnostic work-up of MDS. Hereto, guidelines for data acquisition, an
Gölitz, Philipp; Struffert, Tobias; Hoelter, Philip; Eyüpoglu, Ilker; Knossalla, Frauke; Doerfler, Arnd
2016-02-01
Our study aimed to evaluate the efficiency of flow-diverting stents (FDS) in treating unruptured, intradural dissecting aneurysms of the vertebral artery (VADAs). Additionally, the effect of FDS on the aneurysmal flow pattern was investigated by performing in vivo flow analysis using parametric color coding (PCC). We evaluated 11 patients with unruptured, intradural VADAs, treated with FDS. Pre- and postinterventional DSA-series were postprocessed by PCC, and time-density curves were calculated. The parameters aneurysmal inflow-velocity, outflow-velocity and relative time-to-peak (rTTP) were calculated. Pre- and postinterventional values were compared and correlated with the occlusion rate after six months. Follow-up DSA detected 10 aneurysms occluded, meaning an occlusion rate of 91%. No procedure-related morbidity and mortality was found. Flow analyses revealed a significant reduction of aneurysmal inflow- velocity and prolongation of rTTP after FDS deployment. Concerning aneurysm occlusion, the postinterventional outflow-velocity turned out to be a marginally statistically significant predictor. A definite threshold value (-0.7 density change/s) could be determined for the outflow-velocity that allows prediction of complete aneurysm occlusion with high sensitivity and specificity (100%). Using FDS can be considered an efficient and safe therapy option in treating unruptured, intradural VADA. From in vivo flow analyses the postinterventional aneurysmal outflow-velocity turned out to be a potential predictor for later complete aneurysm occlusion. Here, it might be possible to determine a threshold value that allows prediction of aneurysm occlusion with high specificity and sensitivity. As fast, applicable and easy-to-handle tool, PCC could be used for procedural monitoring and might contribute to further treatment optimization. © The Author(s) 2015.
Li, Na; Richoux, Romain; Perruchot, Marie-Hélène; Boutinaud, Marion; Mayol, Jean-François; Gagnaire, Valérie
2015-01-01
Flow cytometry has been used as a routine method to count somatic cells in milk, and to ascertain udder health and milk quality. However, few studies investigate the viability of somatic cells and even fewer at a subpopulation level to follow up how the cells can resist to various stresses that can be encountered during technological processes. To address this issue, a flow cytometry approach was used to simultaneously identify cell types of bovine milk using cell-specific antibodies and to measure the cell viability among the identified subpopulations by using a live/dead cell viability kit. Confirmation of the cell viability was performed by using conventional microscopy. Different physico-chemical treatments were carried out on standardized cell samples, such as heat treatment, various centrifugation rates and storage in milk or in PBS pH 7.4 for three days. Cytometry gating strategy was developed by using blood cell samples stored at 4°C in PBS and milk cell samples heat-treated at 80°C for 30 min as a control for the maximum (95.9%) and minimum (0.7%) values of cell viability respectively. Cell viability in the initial samples was 39.5% for all cells and varied for each cell population from 26.7% for PMNs, to 32.6% for macrophages, and 58.3% for lymphocytes. Regarding the physico-chemical treatments applied, somatic cells did not sustain heat treatment at 60°C and 80°C in contrast to changes in centrifugation rates, for which only the higher level, i.e. 5000×g led to a cell viability decrease, down to 9.4%, but no significant changes within the cell subpopulation distribution were observed. Finally, the somatic cells were better preserved in milk after 72h storage, in particular PMNs, that maintained a viability of 34.0 ± 2.9% compared to 4.9±1.9% in PBS, while there was almost no changes for macrophages (41.7 ± 5.7% in milk vs 31.2 ± 2.4% in PBS) and lymphocytes (25.3 ± 3.0% in milk vs 11.4 ± 3.1% in PBS). This study provides a new array to better
Sinha, Rajib; Laurenti, Rafael; Singh, Jagdeep; Malmström, Maria E.; Frostell, Björn
2016-01-01
In the past few decades, e-waste has emerged as one of the fastest growing and increasingly complex waste flows world-wide. Within e-waste, the life cycle of the mobile phone product system is particularly important because of: (1) the increasing quantities of mobile phones in this waste flow; and (2) the sustainability challenges associated with the emerging economies of reuse, refurbishment, and export of used mobile phones. This study examined the possibilities of closing the material flow...
Energy Technology Data Exchange (ETDEWEB)
Navarro, Martin; Fischer, Heidemarie; Seher, Holger; Weyand, Torben
2016-10-15
The simulation approaches for the two-phase flow in saline repositories using the code TOUGH2-GRS cover the following issues: simulation of gravitational flows in horizontal galleries without vertical discretization, homogenization approach for the simulation of the two-phase flow in converging partly backfilled galleries, qualification of the convergence approach implemented by GRS into the code TOUGH2-GRS, discretization effects during replacement of liquid by gas, consequences for the system analyses in the frame of the project ZIESEL.
Guillen, Ph.; Borrel, M.; Dormieux, M.
1990-10-01
A numerical scheme of the MUSCL type used for the numerical simulation of gas flow of different types around complex configurations is described. Approximate Riemann solvers of the Van Leer, Roc, and Osher types, developed for perfect gas flows are used. These solvers have been extended to non-reactive mixtures of two species and real gas flows by Abgrall, Montagne and Vinokur. The architecture of the code, dictated by constraints in geometrical considerations, computational aspects, the specific nature of the flow, and ergonomy, is described.
Energy Technology Data Exchange (ETDEWEB)
Nunn, A.J. [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising- Weihenstephan (Germany); Cieslik, S. [Institute for Environment and Sustainability, Joint Research Center, Ispra (Italy); Metzger, U. [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising- Weihenstephan (Germany); Wieser, G. [Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Dept. of Alpine Timberline Ecophysiology, Rennweg 1, A - 6020 Innsbruck (Austria); Matyssek, R., E-mail: matyssek@wzw.tum.d [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising- Weihenstephan (Germany)
2010-06-15
Stomatal O{sub 3} fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O{sub 3} flux was 33% of the total O{sub 3} flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O{sub 3} flux and reflected stomatal regulation rather than O{sub 3} exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O{sub 3} flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O{sub 3} risk assessment in forests from O{sub 3} exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O{sub 3} flux as 33% in total stand flux.
González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis
2015-01-01
The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimer's disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage.
Directory of Open Access Journals (Sweden)
Giuseppe Bonazzi
2016-03-01
Full Text Available The objective of this article is to develop and apply a specific discounting cash flow (DCF approach to evaluate investment in renovation to improve building quality, thus increasing energy efficiency. In this article, we develop and apply a specific net present value (NPV and an internal rate of return (IRR approach to quantify the value created for the owners of the building by the investment in renovation via energy-saving investments that produce positive externalities. The model has an applied interest because, in recent years, a lot of investments in real estate were made by owners in order to increase the green quality of the buildings, and several funds of public aid were provided by the government to stimulate these energy-saving investments. The model proposed here is applied to a case study of a 16-apartment building located in northern Italy considers the model attempts to quantify the initial investment value, the energy savings, the tax deduction of the initial investment and the terminal value of the investment as the increase in building value. The analysis shows that the model is consistent in evaluating investments to improve building quality, and investments within the context of the specific case study considered in the research have IRRs ranging from a minimum of 4.907% to a maximum of 12.980%. It could even be useful to consider a sample of cases to verify whether our results are representative of this specific case study. The model could represent a useful tool for consumers in evaluating their own investments in building renovation, from a stand-alone perspective and even by comparing them with other types of investment. The research could be developed in the future to quantify the social welfare generated by public spending via tax deductions to reduce the costs of investment in energy savings for buildings and could even be applied to new real estate projects in comparing different construction technologies and even
Directory of Open Access Journals (Sweden)
Medjahed Bendida
2014-04-01
Full Text Available The MUST wind tunnel data set served as a validation case for obstacle-resolving micro-scale models in the COST Action 732 “Quality Assurance and Improvement of Micro-Scale Meteorological Models”.The code used for the numerical simulation is code CHENSI, simulations carried out showed a certain degree of agreement between the experimental results and those of the numerical simulation, they highlight the need for proceeding to an experimental campaign but with more measurements and the need for having a good control of determining factors in the exploitation of its results. The aim is to explain the experimental data obtained by atmospheric wind on the physical model. The site company of Mock Urban Setting Test (MUST was selected to be simulated by the code CEN CHENSI developed by the team of Dynamique of l’atmosphere Habitee of LME/ECN. The code was based on (K- ε model of (Launder and Spalding. For the integration of the PDE (Potential Dimensional equations constitute the mathematical model, the finite volume method of (Ferziger and Peric was used within the decade disposition of unknowns MAC of (Harlow and Welck for the discretisation of PDE terms. The boundary conditions were imposed according to the wall laws (In ground and on buildings or within Dirichlet condition (Inlet boundary or of Newman (Outlet boundary or top limit. The numerical domain used was comparable to the one of the atmospheric wind experiences within a three-dimensional Cartesian mesh. Numerical results presented in this study for the mean flow field, turbulent kinetic energy in the direction of wind incidence 0°. For an objective comparison of the CHENSI model performances within other European codes used for MUST configuration simulation. The results obtained by the numerical modelling approach are presented in this paper.
Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S
2014-10-15
The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prest, Emmanuelle I E C
2014-10-01
The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5min intervals for 1h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345±15×103 to 425±35×103cellsmL-1) and in the percentage of intact bacterial cells (from 39±3.5% to 53±4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. © 2014 Elsevier Ltd.
A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...
CSIR Research Space (South Africa)
Heyns, Johan A
2013-05-01
Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...
Breugem, W.P.; Boersma, B.J.
2005-01-01
A direct numerical simulation (DNS) has been performed of turbulent channel flow over a three-dimensional Cartesian grid of 30×20×9 cubes in, respectively, the streamwise, spanwise, and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The flow field is resol
1955-01-01
8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa
Incompressible laminar flow through hollow fibers: a general study by means of a two-scale approach
Borsi, Iacopo; Farina, Angiolo; Fasano, Antonio
2011-08-01
We study the laminar flow of an incompressible Newtonian fluid in a hollow fiber, whose walls are porous. We write the Navier-Stokes equations for the flow in the inner channel and Darcy's law for the flow in the fiber, coupling them by means of the Beavers-Joseph condition which accounts for the (possible) slip at the membrane surface. Then, we introduce a small parameter {\\varepsilon ≪ 1} (the ratio between the radius and the length of the fiber) and expand all relevant quantities in powers of ɛ. Averaging over the fiber cross section, we find the velocity profiles for the longitudinal flow and for the cross-flow, and eventually, we determine the explicit expression of the permeability of the system. This work is also preliminary to the study of more complex systems comprising a large number of identical fibers (e.g., ultrafiltration modules and dialysis).
Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung
2015-10-14
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.
Schatlo, Bawarjan; Jägersberg, Max; Paass, Gerhard; Faltermeier, Rupert; Streich, Jörg; Meyer, Bernhard; Schaller, Karl
2015-01-01
The aim of this study was to assess (1) whether vasoreactivity is altered in patients with epilepsy and (2) whether the two most commonly used approaches, the trans-Sylvian (TS) and the trans-cortical (TC) route, differ in their impact on cortical blood flow. Patients were randomized to undergo selective amygdalohippocampectomy (selAH) through a TC or TS route. Before and after selAH, we recorded microcirculation parameters on the superficial cortex surrounding the surgical corridor. Blood flow and velocity were measured using laser Doppler flowmetry and micro-Doppler, respectively. Cortical oxygen saturation (SO2) was measured using remission spectrophotometry under hypocapnic and normocapnic conditions. Ten patients were operated using the TS approach, and eight were operated via the TC approach. Vasomotor reactivity patterns measured with micro-Doppler were physiologically prior to selAH in both groups. After completion of surgery, a significant increase in SO2-values occurred in the TS group (before: 56.7 ± 2.2, after: 65.5 ± 3.0%SO2), but not in the TC group (before: 52.9 ± 5.2, after: 53.0 ± 3.7%SO2). The rate of critical SO2 values below 25% was significantly higher after the TC approach (12.3%) compared to the TS approach (5.2%; p < 0.05). Our findings provide the first invasively measured evidence that patients with mesial temporal lobe epilepsy have preserved cerebral blood flow responses to alterations in CO2. In addition, local cortical SO2 was higher in the TS group than in the TC group after selAH. This may be a sign of reactive cortical vessel dilation after proximal vessel manipulation associated with the TS approach. In contrast, the lower values of SO2 after the TC approach indicate tissue ischaemia surrounding the surgical corridor surrounding the corticotomy.
Zhang, G. P.; Savenije, H. H. G.
2005-09-01
Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. The coupling of surface and subsurface flow processes in the numerical model is realised by simultaneous computation of flux exchanges between surface and subsurface domains for each REW. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work represents a complete application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
Directory of Open Access Journals (Sweden)
Hamed Mirzadeh
2014-09-01
Full Text Available A comparative study was carried out on the hot flow stress of AZ31, AZ61, and AZ91 magnesium alloys. Their hot working behaviors were studied through constitutive analysis based on a simple physically-based approach which accounts for the dependence of the Young's modulus and the self-diffusion coefficient of magnesium on temperature. Since the main difference between these alloys is the difference in their amount of aluminum, the differences in constitutive behavior were quantitatively characterized by relating the hot flow stress to amount of Al, which was not possible without the consideration of physically-based parameters. It was concluded that the used approach in the current work can be considered as a versatile tool in future hot working and alloy development studies.
Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.
2008-11-01
The ideal MHD linear stability normal modes and frequencies for a circular cylindrical plasma (having an arbitrary equilibrium flow) interacting with a resistive wall are calculated. Projections of the plasma displacement are expanded as finite elements, using a Galerkin approach to form the inner products. A Green's function approach is taken to couple the perturbed wall currents to the plasma surface perturbations. The standard linear form, φAx=B x, is obtained by introducing an auxiliary variable, u=φξ+iV .∇ξ, and an additional degree of freedom representing the perturbed current in the resistive wall. It is shown that having projections aligned with (or perpendicular to) the equilibrium magnetic field is more important for correctly calculating the slow wave part of the spectrum than having a higher order finite element expansion with non-field-aligned projections. Investigations into the effects of axial and azimuthal flows on the resistive wall mode are also presented.
Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus
2016-11-01
Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall
Carling, Paul; Kleinhans, Maarten; Leyland, Julian; Besozzi, Louison; Duranton, Pierre; Trieu, Hai; Teske, Roy
2014-05-01
Understanding of flow resistance of forested floodplains is essential for floodplain flow routing and floodplain reforestation projects. Although the flow resistance of grass-lined channels is well-known, flow retention due to flow-blocking by trees is poorly understood. Flow behaviour through tree-filled channels or over forested floodplain surfaces has largely been addressed using laboratory studies of artificial surfaces and vegetation. Herein we take advantage of a broad, shallow earthen experimental outdoor channel with headwater and tailwater controls. The channel was disused and left undisturbed for more than 20 years. During this time period, small deciduous trees and a soil cover of grass, herbs and leaf-litter established naturally. We measured flow resistance and fluid retention in fifteen controlled water discharge experiments for the following conditions: (a) natural cover of herbs and trees; (b) trees only and; (c) earthen channel only. In the b-experiments the herbaceous groundcover was first removed carefully and in the c-experiments the trees were first cut flush with the earthen channel floor. Rhodamine-B dye was used to tag the flow and the resultant fluorescence of water samples were systematically assayed through time at two stations along the length of the channel. Dilution-curve data were analysed within the Aggregated Dead Zone (ADZ) framework to yield bulk flow parameters including dispersion, fluid retention and flow resistance parameters after the procedure of Richardson & Carling (2006). The primary response of the bulk flow to vegetation removal was an increase in bulk velocity, with depth and wetted width decreasing imperceptibly at the resolution of measurement. An overall reduction in flow resistance and retention occurred as discharge increased in all experiments and flow retention. Retentiveness was more prominent during low flow and for all three experimental conditions tended to converge on a constant low value for high
Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping
2011-04-01
Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.
Blahut, J.; Luna, B. Quan; Akbas, S. O.; van Westen, C. J.
2009-04-01
On Sunday morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta, a fraction of Colorina municipality. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. At first several rock blocks about 2 m3 in size fell down from the direction of the torrent. The blocks were followed by a wave of debris and mud that immediately destroyed one building and caused damage to other nine houses. A stream flow following the debris flow consisting of fine mud with high water content that partially washed away the accumulation of deposits from the debris phase could also be distinguished. Geomorphologic investigations allowed identification of five main sections of the flow: 1) the proper scarp; 2) path in the forested area; 3) path on the alpine meadows; 4) accelerating section; 5) accumulation area. The initiation area of the flow is situated at 1760 m. a.s.l. (1480 m above the deposition zone) in a coniferous forest. The proper scarp consisted of an area of approximately 20 m2 in size, and a height of about 0.8 m. The final volume of the debris was estimated by field mapping to be between 12 000 and 15 000 m3. It was observed that erosion and entrainment played an important role in the development of the debris flow. The Selvetta event was modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. Entrainment was modeled at each section of the flow, and different hydrographs were produced in agreement with the behavior of the debris flow during its course. The significance of calculated values of pressure and
1983-11-01
element u.-lei is readily applied to such flows. For lully developed flow V = 0, and U and H are functions of y only (i.e., J ■ U(y) and H ■ H(y...included, application of the basic momentum theorem yields T b |£| . / w+ Jb \\ T r ’dx’ I W < s,av where T is the average shear stress
Directory of Open Access Journals (Sweden)
J. Korol
2016-10-01
Full Text Available The main goal of the study was to evaluate material and energy flow analysis (MEFA of steel production. The application of umberto universal software to devise MEFA for the steel production was presented. The material and energy flow analysis of steel production includes a range of technologies through each unit process in integrated steelmaking route in Poland. Modelling MEFA helps a high level of technology to be reached through the effective use of resources and energy.
Kaesler, Andreas; Schlanstein, Peter C; Hesselmann, Felix; Büsen, Martin; Klaas, Michael; Roggenkamp, Dorothee; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta
2016-12-07
Flow distribution is key in artificial lungs, as it directly influences gas exchange performance as well as clot forming and blood damaging potential. The current state of computational fluid dynamics (CFD) in artificial lungs can only give insight on a macroscopic level due to model simplification applied to the fiber bundle. Based on our recent work on wound fiber bundles, we applied particle image velocimetry (PIV) to the model of an artificial lung prototype intended for neonatal use to visualize flow distribution in a stacked fiber bundle configuration to (i) evaluate the feasibility of PIV for artificial lungs, (ii) validate CFD in the fiber bundle of artificial lungs, and (iii) give a suggestion how to incorporate microscopic aspects into mainly macroscopic CFD studies. To this end, we built a fully transparent model of an artificial lung prototype. To increase spatial resolution, we scaled up the model by a factor of 5.8 compared with the original size. Similitude theory was applied to ensure comparability of the flow distribution between the device of original size and the scaled-up model. We focused our flow investigation on an area (20 × 70 × 43 mm) in a corner of the model with a Stereo-PIV setup. PIV data was compared to CFD data of the original sized artificial lung. From experimental PIV data, we were able to show local flow acceleration and declaration in the fiber bundle and meandering flow around individual fibers, which is not possible using state-of-the-art macroscopic CFD simulations. Our findings are applicable to clinically used artificial lungs with a similar stacked fiber arrangement (e.g., Novalung iLa and Maquet QUADROX-I). With respect to some limitations, we found PIV to be a feasible experimental flow visualization technique to investigate blood-sided flow in the stacked fiber arrangement of artificial lungs.
Silva,Milton B. da; Crispino,Carla C.; REIS, Boaventura F.
2010-01-01
In this work, a reliable and inexpensive photometer based on twin LEDs assembled as a radiation source and as a photodetector is described. The setup including the photometer and flow system module was designed to implement an automated titration procedure employing the multicommuted flow injection analysis (MCFIA) process. The proposed system was able to carry out photometric titration without using analytical curve to achieve the sample concentration. Its usefulness was proven by analyzing ...
Energy Technology Data Exchange (ETDEWEB)
Yasukawa, K. [Geological Survey of Japan, Tsukuba (Japan); Mogi, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1998-02-01
Self-Potential (SP) anomaly at the ground surface caused by subsurface fluid flow is numerically calculated for two-dimensional models using a simulation code PTSP to investigate the topographic effects on the SP profile. The result shows that the negative SP anomaly generally seen in higher elevation can be explained as a result of topographic effects on the near surface fluid flow system for cases of homogeneous earth. However, heterogeneous permeability distribution possibly changes the fluid flow pattern and its derived SP profile. Heterogeneity in electrical resistivity and cross-coupling conductivity also affects on the SP pattern, causing the shift of peak anomaly location. Therefore, a numerical approach applying hydrogeological and physical property distributions is invaluable for detailed interpretation of SP survey data. 19 refs., 8 figs.
Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches
Institute of Scientific and Technical Information of China (English)
Zhixiang Xiao; Yufei Zhang; Jingbo Huang; Haixin Chen; Song Fu
2007-01-01
This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth-ods studied in this work include the detached eddy simula-tion (DES) based on Spalart-Allmaras (S-A), Menter's k-w shear-stress-transport (SST) and k-ω with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) mod-els and the zonaI-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences.A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Com-parisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity,etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models,is obtained for the separation flows.
Carrillo-Rivera, J. J.; Cardona, A.; Moss, D.
1996-11-01
Fractured volcanics exert a control on groundwater flow in the San Luis Potosi (SLP) valley. The chemical composition and temperature of water pumped from boreholes partially penetrating the fractured volcanics indicate that the produced water originates from an upward vertical flow. Most of the thermal groundwater has been detected in areas related to regional faults and lineaments. Intensive and uncontrolled pumping from the upper {1}/{4} of the aquifer (total depth > 1500 m) causes the rise of water from a deep regional flow system that mixes with the shallower waters. The deep waters contain high fluoride concentrations that contaminate the mixture and cause substantial health related effects. The recharge controls on