WorldWideScience

Sample records for flow injection on-line

  1. Trends and perspectives of flow injection/sequential injection on-line sample-pretreatment schemes coupled to ETAAS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2005-01-01

    Flow injection (FI) analysis, the first generation of this technique, became in the 1990s supplemented by its second generation, sequential injection (SI), and most recently by the third generation (i.e.,Lab-on-Valve). The dominant role played by FI in automatic, on-line, sample pretreatments in ...

  2. Flow injection on-line preconcentration of low levels of Cr(VI) with detection by ETAAS

    DEFF Research Database (Denmark)

    Som-aum, Waraporn; Liawruangrath, Saisunee; Hansen, Elo Harald

    2002-01-01

    A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed in a ...

  3. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-07-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml{sup -1} and a limit of detection of 0.18 ng ml{sup -1}. The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations.

  4. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-01-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml -1 and a limit of detection of 0.18 ng ml -1 . The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations

  5. Flow injection on-line spectrophotometric determination of thorium(IV) after preconcentration on XAD-4 resin impregnated with oxytetracycline

    Energy Technology Data Exchange (ETDEWEB)

    Shahida, Shabnam; Khan, Muhammad Haleem [Univ. of Azad Jammu and Kashmir, Muzaffarabad (Pakistan). Dept. of Chemistry; Ali, Akbar [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2014-02-15

    A very sensitive, selective and simple flow injection time-based method was developed for on-line preconcentration and determination of thorium(IV) at micro g L{sup -1} levels in environmental samples. The system operation was based on thorium(IV) ion retention at pH 4.0 in the minicolumn at a flow rate of 15.2 mL min{sup -1}. The trapped complex was then eluted with 3.6 mol L{sup -1} HCl at a flow rate of 4.9 mL min{sup -1}. The amount of thorium(IV) in the eluate was measured spectrophotometrically at 651 nm using arsenazo-III solution (0.05 % in 3.6 mol L{sup -1} HCl stabilized with 1 % triton X-100, 4.9 mL min{sup -1}) as colorimetric reagent. All chemical, and flow injection variables were optimized for the quantitative preconcentration of metal and a study of interference level of various ions was also carried out. The system offered low backpressure and improved sensitivity and selectivity. At a preconcentration time of 60 s and a sample frequency of 40 h{sup -1}, the enhancement factor was 97, the detection limit was 0.25 μg L{sup -1}, and the precision expressed as relative standard deviation was 1.08 % (at 50 μg L{sup -1}), whereas for 300 s of the preconcentration time and a sample frequency of 10 h{sup -1}, the enhancement factor of 357, the detection limit (3s) of 0.069 μg L{sup -1} and the precision of 1.32 % (at 10 μg L{sup -1}) was reported. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference material IAEA-SL-1 (Lake Sediment) and spiked water samples.

  6. Flow injection on-line spectrophotometric determination of thorium(IV) after preconcentration on XAD-4 resin impregnated with oxytetracycline

    International Nuclear Information System (INIS)

    Shahida, Shabnam; Khan, Muhammad Haleem; Ali, Akbar

    2014-01-01

    A very sensitive, selective and simple flow injection time-based method was developed for on-line preconcentration and determination of thorium(IV) at micro g L"-"1 levels in environmental samples. The system operation was based on thorium(IV) ion retention at pH 4.0 in the minicolumn at a flow rate of 15.2 mL min"-"1. The trapped complex was then eluted with 3.6 mol L"-"1 HCl at a flow rate of 4.9 mL min"-"1. The amount of thorium(IV) in the eluate was measured spectrophotometrically at 651 nm using arsenazo-III solution (0.05 % in 3.6 mol L"-"1 HCl stabilized with 1 % triton X-100, 4.9 mL min"-"1) as colorimetric reagent. All chemical, and flow injection variables were optimized for the quantitative preconcentration of metal and a study of interference level of various ions was also carried out. The system offered low backpressure and improved sensitivity and selectivity. At a preconcentration time of 60 s and a sample frequency of 40 h"-"1, the enhancement factor was 97, the detection limit was 0.25 μg L"-"1, and the precision expressed as relative standard deviation was 1.08 % (at 50 μg L"-"1), whereas for 300 s of the preconcentration time and a sample frequency of 10 h"-"1, the enhancement factor of 357, the detection limit (3s) of 0.069 μg L"-"1 and the precision of 1.32 % (at 10 μg L"-"1) was reported. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference material IAEA-SL-1 (Lake Sediment) and spiked water samples.

  7. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa......Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified...... by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase...... associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents...

  8. Flow injection on-line oxidizing fluorometry coupled to dialysis sampling for the study of carbamazepine-protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiqi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: zqzhang@snnu.edu.cn; Liang Guoxi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2005-04-22

    The mechanism of binding of carbamazepine (CBZ) with bovine serum albumin (BSA) has been investigated in vitro based on a new flow injection fluorometry coupled to the technique of dialysis sampling. The CBZ and BSA were mixed in different molar ratios in 0.050 mol L{sup -1} phosphate buffer (containing 0.9% NaCl), pH 7.4, and incubated at 37 {+-} 0.5 deg. C in a water bath. The dialysis sampler was utilized to sample free CBZ from mixed solution with a relative dialytic efficiency of 7.6%. Then the CBZ in dialysis solution was injected into carrier and on-line oxidized by lead dioxide solid-phase reactor into fluorescent product with a maximum excitation wavelength of 355 nm and a maximum emission wavelength of 478 nm. The fluorescence intensity measured was linear proportional with the concentration of free CBZ in mixed solution over the range of 1 x 10{sup -5} to 2 x 10{sup -4} mol L{sup -1} with the detection limit of 6 x 10{sup -6} mol L{sup -1}. According to the fluorescence measurement results from mixed solution, the association constant (K) estimated for CBZ-BSA binding and the number of the binding site (n) with Scatchard analysis were 1.08 x 10{sup 4} L mol{sup -1} and 0.94, respectively. Stern-Volmer plots indicated the presence of dynamic component in the quenching mechanism. The acting force was suggested to be mainly hydrophobic and the distance between the acceptor and donor was 3.12 nm. The estimated binding parameters agreed well with literature values.

  9. Flow injection on-line dilution for multi-element determination in human urine with detection by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald; Gammelgaard, Bente

    2001-01-01

    A simple flow injection on-line dilution procedure with detection by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of copper, zinc, arsenic, lead, selenium, nickel and molybdenum in human urine. Matrix effects were minimized by employing a dilution factor...

  10. On-line Speciation of Cr(III) and Cr(VI) by Flow Injection Analysis With Spectrophotometric Detection and Chemometrics

    DEFF Research Database (Denmark)

    Diacu, Elena; Andersen, Jens Enevold Thaulov

    2003-01-01

    A flow injection system has been developed, for on-line speciation. of Cr(III) and Cr(VI) by the Diphenylcarbazide (DPC) method with H2O2 oxidation followed by spectrophotometric detection at the 550 nm wavelength. The data thus obtained were subjected to a chemometric analysis (PLS), which showe...

  11. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  12. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Burguera-Pascu, Margarita [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain)], E-mail: margaburpas@hotmail.com; Rodriguez-Archilla, Alberto [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain); Burguera, Jose Luis; Burguera, Marcela; Rondon, Carlos; Carrero, Pablo [Department of Chemistry, Faculty of Sciences, University of Los Andes, Merida (Venezuela)

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI{sub 1}) which allowed the introduction of 10 {mu}L of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI{sub 1} also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 {mu}L aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI{sub 2}). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 deg. C), followed by pyrolysis and atomization at 700 and 1700 deg. C, respectively. The aqueous calibration was linear up to 120.0 {mu}g L{sup -1} for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3{sigma}) was of 0.35 {mu}g L{sup -1}. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery

  13. Determination of trace thorium in water samples by flow injection fluorescence spectrophotometry with microcolumn on-line preconcentration

    International Nuclear Information System (INIS)

    Shen Zhuqin; Zhang Yanan; Guo Dongfa; Huang Yun

    1991-01-01

    An on-line preconcentration time resolved fluorimetric method was developed for the determination of trace thorium in water, based on luminescence of complex Th-morin-TOPO (or TRPO)-sodium lauryl sulfate in sulfuric acid medium. Interferences from companied cations, such as Al 3+ and Zr 4+ , which emit fluorescence with much slower rising rate at the same condition were effectively eliminated through optimization of the manifold parameters and precisely controlling of the elution flow rate. Effects of nearly 40 ions were also investigated. The detection limit, the liner range and relative standard deviation for 50 ng Th are 2.5 ng/L, 0∼80 ng and 3.6%, respectively. Sampling rate is 30 per hour

  14. Rapid determination of 99Tc in environmental samples by high resolution ICP-MS coupled with on-line flow injection system

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, C.S.; Rho, B.H.; Lee, J.I.

    2002-01-01

    High resolution inductively coupled plasma mass spectrometry coupled with an on-line flow injection system (FI-HR-ICP-MS) was applied to determine the ultra-trace level 99 Tc in soil. The flow injection system (PrepLab TM ) was composed of two TEVA-Spec R resins, reduced remarkably the sample amounts and the analysis time, compared to the conventional analytical methods. In the flow injection system, Mo and Ru were sufficiently eliminated by using the flow injection system, with the decontamination factors of 1.6 x 10 4 and 9.9 x 10 5 , respectively. With the present method, it was possible to determine ultra-low level of 99 Tc in 3∼6 soil at 3-5 hours of analysis time per sample. The relative standard deviation for each sample was less than 4%. The detection limits for 99 Tc was 85 fg x ml -1 (0.05 mBq x ml -1 ), which was calculated from the three times standard deviation of the count rate of the blank. (author)

  15. On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis.

    Science.gov (United States)

    Dremel, B A; Li, S Y; Schmid, R D

    1992-01-01

    A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).

  16. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection.

    Science.gov (United States)

    Chen, Zhi-Gang; Yin, Xi-Jie; Zhou, Youping

    2015-08-01

    Although deemed important to δ 18 O measurement by on-line high-temperature conversion techniques, how the GC conditions affect δ 18 O measurement is rarely examined adequately. We therefore directly injected different volumes of CO or CO-N 2 mix onto the GC column by a six-port valve and examined the CO yield, CO peak shape, CO-N 2 separation, and δ 18 O value under different GC temperatures and carrier gas flow rates. The results show the CO peak area decreases when the carrier gas flow rate increases. The GC temperature has no effect on peak area. The peak width increases with the increase of CO injection volume but decreases with the increase of GC temperature and carrier gas flow rate. The peak intensity increases with the increase of GC temperature and CO injection volume but decreases with the increase of carrier gas flow rate. The peak separation time between N 2 and CO decreases with an increase of GC temperature and carrier gas flow rate. δ 18 O value decreases with the increase of CO injection volume (when half m/z 28 intensity is rate. On average, the δ 18 O value of the injected CO is about 1‰ higher than that of identical reference CO. The δ 18 O distribution pattern of the injected CO is probably a combined result of ion source nonlinearity and preferential loss of C 16 O or oxygen isotopic exchange between zeolite and CO. For practical application, a lower carrier gas flow rate is therefore recommended as it has the combined advantages of higher CO yield, better N 2 -CO separation, lower He consumption, and insignificant effect on δ 18 O value, while a higher-than-60 °C GC temperature and a larger-than-100 µl CO volume is also recommended. When no N 2 peak is expected, a higher GC temperature is recommended, and vice versa. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Determination of uranium in natural waters and high-purity aluminum by flow-injection on-line preconcentration and ICP-MS detection

    International Nuclear Information System (INIS)

    Seki, Tatsuya; Oguma, Koichi

    2004-01-01

    A flow injection method has been developed for the determination of uranium is natural waters and high-purity aluminum by use of on-line preconcentration on a U/TEVA TM column and ICP-MS detection. The sample solution prepared as a nitric acid solution in 3 mol l -1 was passed through the U/TEVA TM column to collect uranium and uranium adsorbed was eluted with 0.1 mol l -1 nitric acid. The effluent was introduced directly into the nebulizer of the ICP-MS and 238 U was measured. The detection limit, calculated as 3-times the standard deviation of the background noise, was 3pg and the sample throughput was about 10 per hour. The proposed method was successfully applied to the determination of uranium in river-water reference materials, a seawater reference material and high-purity aluminum reference materials. (author)

  19. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guilong [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China); He, Qiang, E-mail: heqiang0980@163.com [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Lu, Ying [Department of Mathematics and Physics, Armed Police College, Chengdu, 610213 (China); Huang, Jing [Research Center for Advanced Computation, College of Science, Xihua University, Chengdu, 610039 (China); Lin, Jin-Ming, E-mail: jmlin@mail.tsinghua.edu.cn [Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China)

    2017-02-22

    In this paper, a rapid and simple method using magnetic multi-walled carbon nanotubes (MWCNTS), as a solid-phase extraction (SPE) sorbent, was successfully developed for extraction and preconcentration trace amounts of Cr(III) in water samples. The synthesized magnetic-MWCNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A rhodamine derivative (R1) was synthesized and characterized as a highly selective and sensitive fluorescent derivatizing agent for Cr(III). After SPE procedure, Cr(III) analysis was performed by flow injection microfluidic chip with on-line fluorescent derivatization and laser-induced fluorescence (LIF) spectroscopy detection. The parameters, which affected the efficiency of the developed method were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0–10.0 nM, with a detection limit of 0.094 nM and an enrichment factor of 38. Furthermore, real water samples were analyzed and good recoveries were obtained from 91.0 to 101.6%. - Graphical abstract: Flow injection microfluidic device with on-line fluorescent derivatization and detection coupled to LIF. - Highlights: • A highly selective and sensitive derivatizing reagent for Cr(III) was synthesized and characterized. • The magnetic-MWCNTs nanocomposite as a SPE sorbent was successfully synthesized and characterized. • A new portable detection system was developed for microfluidic chip FIA platform.

  20. On-line monitoring of glucose and/or lactate in a fermentation process using an expanded micro-bed flow injection analyser.

    Science.gov (United States)

    Nandakumar, M P; Lali, A M; Mattiasson, B

    1999-01-01

    A novel flow injection biosensor system for monitoring fermentation processes has been developed using an expanded micro bed as the enzyme reactor. An expanded bed reactor is capable of handling a mobile phase containing suspended matter like cells and cell debris. Thus, while the analyte is free to interact with the adsorbent, the suspended particulate matter passes through unhindered. With the use of a scaled down expanded bed in the flow injection analysis (FIA) system, it was possible to analyse samples directly from a fermentor without the pretreatment otherwise required to extract the analyte or remove the suspended cells. This technique, therefore, provides a means to determine the true concentrations of the metabolites in a fermentor, with more ease than possible with other techniques. Glucose oxidase immobilised on STREAMLINE was used to measure glucose concentration in a suspension of dead yeast cells. There was no interference from the cell particles even at high cell densities such as 15 gm dry weight per litre. The assay time was about 6 min. Accuracy and reproducibility of the system was found to be good. In another scheme, lactate oxidase was covalently coupled to STREAMLINE for expanded bed operation. With the on-line expanded micro bed FIA it was possible to follow the fermentation with Lactobacillus casei.

  1. Determination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminol chemiluminescence detection

    International Nuclear Information System (INIS)

    Zhang Wei; Danielson, Neil D.

    2003-01-01

    An on-line quinine-sensitized photo-oxidation with quenched chemiluminescence (CL) detection method is developed for phenols using flow injection (FI) and liquid chromatography (LC). This detection method is based on the decrease of light emission from the luminol CL reaction due to the photo-oxidation of phenols that scavenge the photogenerated reactive oxygen species (e.g. singlet oxygen ( 1 O 2 ) and superoxide (O 2 · - )). On-line photo-oxidation is achieved using a coil photo-reactor made from fluoroethylene-propylene copolymer tubing (3048 mmx0.25 mm i.d.) coiled around a mercury UV lamp. A buffer of pH 7 and a concentration of 350 μM for quinine sulfate are determined optimum for the sensitized photo-oxidation. Using a carrier system flow rate of 60 μl/min, calibration curves taken by FI for 10 phenolic compounds in aqueous solutions showed this decreasing sensitivity order: 4-chlorophenol, phenol, 4-nitrophenol, 3-hydroxy-L-kynurenine, 2-nitrophenol, salicylate, 3-nitrophenol, catechol, 2,4-dinitrophenol, and 2,4-dichlorophenol. This detection method using two tandem coil photo-reactors is also applied for the LC separation of phenol, 4-nitrophenol and 4-chlorophenol on an octadecyl (C18) silica LC column using acetonitrile-H 2 O (40:60, v/v) as a mobile phase. The quenched CL detection limits (about 1 μM or 20 pmol) for phenol and 4-chlorophenol are comparable to those for UV detection at 254 nm. Some selectivity in the quenched CL detection is evident by no interference in the FI phenol response even when benzaldehyde and phenethanol concentrations are 8 and 15 times that of phenol

  2. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    International Nuclear Information System (INIS)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F.; Olsina, Roberto A.; Martinez, Luis D.

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L -1 nitric acid at a flow rate of 1.5 mL min -1 , directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 μg L -1 . The precision for 10 replicate determinations at the 2.0 μg L -1 Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 μg L -1 . The method was successfully applied to the determination of dysprosium in urine. (orig.)

  3. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Department of Chemistry, Xuzhou Normal University, Xuzhou 221116 (China); Jin Yan [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Han Weiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Miao, Qiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)]. E-mail: bisp@nju.edu.cn

    2006-07-15

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH{sub 4} solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h{sup -1} with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l{sup -1} for Hg{sup 2+} and 2.0 ng l{sup -1} for CH{sub 3}Hg{sup +}. The precisions (RSD) for the 11 replicate measurements of each 0.2 {mu}g l{sup -1} of Hg{sup 2+} and CH{sub 3}Hg{sup +} were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  4. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Wu Hong; Jin Yan; Han Weiying; Miao, Qiang; Bi Shuping

    2006-01-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h -1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l -1 for Hg 2+ and 2.0 ng l -1 for CH 3 Hg + . The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l -1 of Hg 2+ and CH 3 Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples

  5. Determination of scandium in acid mine drainage by ICP-OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes.

    Science.gov (United States)

    Jerez, Javier; Isaguirre, Andrea C; Bazán, Cristian; Martinez, Luis D; Cerutti, Soledad

    2014-06-01

    An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300 s (for a 25 mL sample volume). The overall time required for preconcentration and elution of 25 mL of sample was about 6 min; the throughput was about 10 samples per hour. The value of the detection limit was 4 ng L(-1) and the precision for 10 replicate determinations at 100 ng L(-1) Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10 mg L(-1). After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Determination of As(III) and As(V) by Flow Injection-Hydride Generation-Atomic Absorption Spectrometry via On-line Reduction of As(V) by KI

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1997-01-01

    A volume-based flow injection (FI) procedure is described for the determination and speciation of trace inorganic arsenic, As(III) and As(V), via hydride generation-atomic absorption spectrometry (HG-AAS) of As(III). The determination of total arsenic is obtained by on-line reduction of As(V) to As...

  7. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  8. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Beldomenico, Horacio; Tudino, Mabel

    2011-01-01

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH 3 generation using 3.5 mol L -1 HCl as carrier solution and 0.35% (m/v) NaBH 4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl - , SO 4 2- , NO 3 - , HPO 4 2- , HCO 3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C 6 H 8 O 6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L -1 and 0.6 μg L -1 for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h -1 . The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and

  9. HOPI: on-line injection optimization program

    International Nuclear Information System (INIS)

    LeMaire, J.L.

    1977-01-01

    A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section

  10. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    Science.gov (United States)

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Flow-injection determination of thorium and uranium after on-line ion-exchange preconcentration in Dowex 50-X8

    International Nuclear Information System (INIS)

    Perez Pavon, J.L.; Garcia Pinto, C.G.; Rodriguez Garcia, Estrella; Moreno Cordero, Bernardo

    1992-01-01

    The preconcentration of thorium and uranium on Dowex 50-X8 was studied as a method for the preconcentration of these cations prior to their determination by flow injection with spectrophotometric detection using Arsenazo III in 3.6 M HCl stabilized with Triton X-100 as chromogenic reagent. The preconcentration device is a minicolumn included in the sample loop of the injection valve. A second valve contains a reducing minicolumn filled with lead powder to reduce U(VI) to U(IV) before the confluence of the sample with the reagent stream. The method can be applied to samples containing 0.5-100 μg l -1 and was tested with different spiked water samples. (author). 15 refs.; 3 figs.; 3 tabs

  12. Selective Flow-Injection Quantification of Ultra-trace Amounts of Cr(VI) via On-line Complexation and Preconcentration with APDC Followed by Determination by Electrothermal Atomic Absorption Spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1998-01-01

    A rapid, sensitive and selective time-based flow injection (FI) preconcentration procedure is described for the determination of ultra-trace amounts of Cr(VI) via on-line reaction with ammonium pyrrolidine dithiocarbamate (APDC) and formation of the Cr(VI)-PDC complex. The preconcentration...... to direct introduction of 55 mu l samples, yielding a detection limit (3 sigma) of 4.2 ng l(-1). The sample frequency was 21.2 samples per hour. The proposed method was evaluated by analyzing drinking water, a NIST Cr(VI)-reference material and synthetic sea water. A major contribution to successful...

  13. Determination of arsenic species in human urine using HPLC with on-line photooxidation or microwave-assisted oxidation combined with flow-injection HG-AAS

    Energy Technology Data Exchange (ETDEWEB)

    Sur, R.; Begerow, J.; Dunemann, L. [Department of Analytical Chemistry, Medizinisches Institut fuer Umwelthygiene, Duesseldorf (Germany)

    1999-03-01

    An improved analytical procedure is presented for the separation and simultaneous determination of hydride-forming (toxic) and not hydride-forming (non-toxic) arsenic species in human urine. Separation was performed by cation-exchange chromatography using a new solid phase type based on the continuous bed chromatography (CBC) technology. This column permits by a factor of 4 higher flow rates than conventional columns resulting in a drastical reduction of retention times without any loss of resolution. Using this type of column, arsenobetaine (AsBet), arsenocholine (AsChol), and dimethylarsinic acid (DMA) were separated from the more toxic arsenic species arsenous acid (As(III)), arsenic acid (As(V)), and methylarsonic acid (MA) within only 4 min. The HPLC system was coupled via a flow injection system and either a UV or a microwave (MW) reactor to the HG-AAS instrument. UV photolysis and MW digestion were used to transform AsBet and AsChol to hydride-forming species and to make them accessible to HG-AAS. UV photolysis turned out to be more suitable for this application than MW digestion, because the latter technique led to peak broadening and poorer performance. The described procedure was applied to the determination of arsenic species in urine samples of non-occupationally exposed persons before and 12 h after seafood consumption. Detection limits were about 1 {mu}g/L for each arsenic species. After consumption, the AsBet and DMA excretion increased by at least a factor of 150 for AsBet and by a factor of 6 for DMA, respectively, while the excretion of the other species did not increase significantly. This invalidates the use of total urinary arsenic as well as total hydride-forming arsenic as an indicator for exposure to inorganic arsenic. (orig.) With 4 figs., 2 tabs., 13 refs.

  14. Coupling on-line preconcentration by ion-exchange with ETAAS. A novel flow injection approach based on the use of a renewable microcolumn as demonstrated for the determination of nickel in environmental and biological samples

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2000-01-01

    microcolumn incorporated within an integrated micro FI-system, the column is loaded with a defined volume of small beads of an SP Sephadex C-25 cation-exchange resin and subsequently exposed to a metered amount of sample solution. However, instead of eluting the retained analyte from the organic ion-exchange......A novel way of exploiting flow injection/sequential injection (FIA/SIA) on-line ion-exchange preconcentration with detection by electrothermal atomic absorption spectrometry (ETAAS) is described and demonstrated for the determination of trace-levels of nickel. Based on the use of a renewable...... resin, the beads are along with 30 mul of carrier (buffer) solution transported via air segmentation directly into the graphite tube, where they are ashed during the pyrolysis and atomization process. The ETAAS determination is performed in parallel with the preconcentration process of the ensuing...

  15. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, J.F., E-mail: tyson@chem.umass.edu [Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Palmer, C.D. [Lead Poisoning Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509 (United States)

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3 s) for selenium was 10 {mu}g L{sup -1}, and for sulfide was 70 {mu}g L{sup -1} (200-{mu}L injection volume). The calibration was linear for selenium up to 2 mg L{sup -1} and to 10 mg L{sup -1} for sulfide. The throughput was 180 h{sup -1}. The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  16. Determination of Ultra-Trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Co-precipitation with Lanthanium Hydroxide. Part II. On-line Addition of Coprecipating Agent

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    -line and merged with an ammonium buffer solution of pH 9.1, which promotes precipitation and quantitative collection on the inner walls of an incorporated knotted Microline reactor. The Se(IV) preconcentrated by coprecipitation with the generated lanthanum hydroxide precipitate is subsequently eluted...... with hydrochloric acid, allowing an ensuing determination via hydride generation. At different sample flow rates, i.e., 4.8, 6.4 and 8.8 ml/min, enrichment factors of 30, 40 and 46, respectively, were obtained at a sampling frequency of 33 samples/h. The detection limit (3s) was 0.005 µg/l at a sample flow rate...

  17. Determination of trace amounts of lead by chelating ion exchange and on-line preconcentration in flow-injection atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Purohit, Rajesh; Devi, Surekha

    1992-01-01

    Resins synthesized from quinolin-8-ol and resorcinol or hydro-quinone, with furfuraldehyde, formaldehyde or benzaldehyde as cross-linking agent, were used for the preconcentration of nanogram amounts of lead. The rate of exchange and activation energy of lead exchange were calculated. Column separations of lead-copper and lead-zinc did not show any cross-contamination. A continuous flow manifold using resin microcolumns was developed for the preconcentration and determination of lead. (author). 24 refs.; 5 figs.; 3 tabs

  18. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  19. On-line sample processing methods in flow analysis

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2008-01-01

    In this chapter, the state of the art of flow injection and related approaches thereof for automation and miniaturization of sample processing regardless of the aggregate state of the sample medium is overviewed. The potential of the various generation of flow injection for implementation of in...

  20. On-line solid-phase enrichment coupled to packed reactor flow injection analysis in a green analytical procedure to determine low levels of folic acid using fluorescence detection

    Directory of Open Access Journals (Sweden)

    Emara Samy

    2012-12-01

    Full Text Available Abstract Background Analysis of folic acid (FA is not an easy task because of its presence in lower concentrations, its lower stability under acidic conditions, and its sensitiveness against light and high temperature. The present study is concerned with the development and validation of an automated environmentally friendly pre-column derivatization combined by solid-phase enrichment (SPEn to determine low levels of FA. Results Cerium (IV trihydroxyhydroperoxide (CTH as a packed oxidant reactor has been used for oxidative cleavage of FA into highly fluorescent product, 2-amino-4-hydroxypteridine-6-carboxylic acid. FA was injected into a carrier stream of 0.04 M phosphate buffer, pH 3.4 at a flow-rate of 0.25 mL/min. The sample zone containing the analyte was passed through the CTH reactor thermostated at 40°C, and the fluorescent product was trapped and enriched on a head of small ODS column (10 mm x 4.6 mm i.d., 5 μm particle size. The enriched product was then back-flush eluted by column-switching from the small ODS column to the detector with a greener mobile phase consisting of ethanol and phosphate buffer (0.04M, pH 3.4 in the ratio of 5:95 (v/v. The eluent was monitored fluorimetrically at emission and excitation wavelengths of 463 and 367 nm, respectively. The calibration graph was linear over concentrations of FA in the range of 1.25-50 ng/mL, with a detection limit of 0.49 ng/mL. Conclusion A new simple and sensitive green analytical procedure including on-line pre-column derivatization combined by SPEn has been developed for the routine quality control and dosage form assay of FA at very low concentration level. The method was a powerful analytical technique that had excellent sensitivity, sufficient accuracy and required relatively simple and inexpensive instrumentation.

  1. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    Science.gov (United States)

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  2. Flow injection analysis in inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Rosias, Maria F.G.G.

    1995-10-01

    The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs

  3. Determination of Ultra-trace Amounts of Arsenic(III) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Coprecipitation with Lanthanum Hydroxide or Hafnium Hydroxide

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    -dissolution in a filterless knotted Microline reactor. The sample and coprecipitating agent are mixed on-line and merged with an ammonium buffer solution, which promotes a controllable and quantitative collection of the generated hydroxide on the inner walls of the knotted reactor incorporated into the FI-HG-AAS system....../h. The limit of detection (3s) was 0.003 µg/l and the precision (relative standard deviation) was 1.0% (n = 11)at the 0.1 µg/l level....

  4. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1998-01-01

    Learning objectives:* To provide an introduction to automated assays* To describe the basic principles of FIA * To demonstrate the capabilities of FIA in relation to batch assays and conventional continuous flow systems* To show that FIA allows one to augment existing analytical techniques* To sh...... how FIA offers novel analytical procedures which are not feasible by conventional means* To hightlight the potentials of FIA in selected practical assays...

  5. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    Science.gov (United States)

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  6. On-line monitoring of Glucose and penicillin by sequential injection analysis

    DEFF Research Database (Denmark)

    Min, R.W.; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    and a detector. The glucose analyzer is based on an enzymatic reaction using glucose oxidase, which converts glucose to glucono-lactone with formation of hydrogen peroxide and subsequent detection of H2O2 by a chemiluminescence reaction involving luminol. The penicillin analysis is based on formation......A sequential injection analysis (SIA) system has been developed for on-line monitoring of glucose and penicillin during cultivations of the filamentous fungus Penicillium chrysogenum. The SIA system consists of a peristaltic pump, an injection valve, two piston pumps, two multi-position valves...

  7. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2015-01-01

    Full Text Available This paper used near-infrared (NIR spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R-3, 4-dihydroxyphenyllactic acid, protocatechuic aldehyde (PA, rosmarinic acid (RA, and salvianolic acid B (SAB concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  8. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection.

    Science.gov (United States)

    Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang

    2015-01-01

    This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  9. The activity-integrated method for quality assessment of reduning injection by on-line DPPH-CE-DAD.

    Directory of Open Access Journals (Sweden)

    Yan-xu Chang

    Full Text Available A sensitive on-line DPPH-CE-DAD method was developed and validated for both screening and determining the concentration of seven antioxidants of Reduning injection. The pH and concentrations of buffer solution, SDS, β-CD and organic modifier were studied for the detection of DPPH and seven antioxidants. By on-line mixing DPPH and sample solution, a DPPH-CE method for testing the antioxidant activity of the complex matrix was successfully established and used to screen the antioxidant components of Reduning injection. Then, antioxidant components including caffeic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid were quantified by the newly established CE-DAD method. Finally, the total antioxidant activity and the multiple active components were selected as markers to evaluate the quality of Reduning injection. The results demonstrated that the on-line DPPH-CE-DAD method was reagent-saving, rapid and feasible for on-line simultaneous determination of total pharmacological activity and contents of multi-components samples. It was also a powerful method for evaluating the quality control and mechanism of action of TCM injection.

  10. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  11. Coupling sequential injection on-line preconcentration using a PTFE beads packed column to direct injection nebulization inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection on-line preconcentration procedure for trace metals by using a PTFE bead-packed microcolumn coupled to ICP-MS is described, and used for simultaneous analyses of cadmium and lead. In dilute nitric acid (0.5%, v/v), neutral complexes between the analytes...

  12. Modified and reverse radiometric flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-06-01

    Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.

  13. Automated injection of slurry samples in flow-injection analysis

    NARCIS (Netherlands)

    Hulsman, M.H.F.M.; Hulsman, M.; Bos, M.; van der Linden, W.E.

    1996-01-01

    Two types of injectors are described for introducing solid samples as slurries in flow analysis systems. A time-based and a volume-based injector based on multitube solenoid pinch valves were built, both can be characterized as hydrodynamic injectors. Reproducibility of the injections of dispersed

  14. Development of flow injection analysis technique for uranium estimation

    International Nuclear Information System (INIS)

    Paranjape, A.H.; Pandit, S.S.; Shinde, S.S.; Ramanujam, A.; Dhumwad, R.K.

    1991-01-01

    Flow injection analysis is increasingly used as a process control analytical technique in many industries. It involves injection of the sample at a constant rate into a steady flowing stream of reagent and passing this mixture through a suitable detector. This paper describes the development of such a system for the analysis of uranium (VI) and (IV) and its gross gamma activity. It is amenable for on-line or automated off-line monitoring of uranium and its activity in process streams. The sample injection port is suitable for automated injection of radioactive samples. The performance of the system has been tested for the colorimetric response of U(VI) samples at 410 nm in the range of 35 to 360mg/ml in nitric acid medium using Metrohm 662 Photometer and a recorder as detector assembly. The precision of the method is found to be better than +/- 0.5%. This technique with certain modifications is used for the analysis of U(VI) in the range 0.1-3mg/ailq. by alcoholic thiocynate procedure within +/- 1.5% precision. Similarly the precision for the determination of U(IV) in the range 15-120 mg at 650 nm is found to be better than 5%. With NaI well-type detector in the flow line, the gross gamma counting of the solution under flow is found to be within a precision of +/- 5%. (author). 4 refs., 2 figs., 1 tab

  15. On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2007-01-01

    two different signal processing algorithms. The DFT technique is used for the single harmonic injection and the statistic technique is used for the double harmonic injection. The grid impedance estimation is used for compliance with the anti-islanding requirements of the German standard (VDE0126...

  16. Flow Injection Analysis in Industrial Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2009-01-01

    Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...

  17. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis.

    Science.gov (United States)

    Zhang, Qiyang; Gong, Maojun

    2016-06-10

    Flow-gated capillary electrophoresis (CE) coupled with microdialysis has become an important tool for in vivo bioanalytical measurements because it is capable of performing rapid and efficient separations of complex biological mixtures thus enabling high temporal resolution in chemical monitoring. However, the limit of detection (LOD) is often limited to a micro- or nano-molar range while many important target analytes have picomolar or sub-nanomolar levels in brain and other tissues. To enhance the capability of flow-gated CE for catecholamine detection, a novel and simple on-line sample preconcentration method was developed exclusively for fluorescent derivatives of catecholamines that were fluorogenically derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The effective preconcentration coupled with the sensitive laser-induced fluorescence (LIF) detection lowered the LOD down to 20pM for norepinephrine (NE) and 50pM for dopamine (DA) at 3-fold of S/N ratio, and the signal enhancement was estimated to be over 100-fold relative to normal injection when standard analytes were dissolved in artificial cerebrospinal fluid (aCSF). The basic focusing principle is novel since the sample plug contains borate while the background electrolyte (BGE) is void of borate. This strategy took advantage of the complexation between diols and borate, through which one negative charge was added to the complex entity. The sample derivatization mixture was electrokinetically injected into a capillary via the flow-gated injection, and then NE and DA derivatives were selectively focused to a narrow zone by the reversible complexation. Separation of NE and DA derivatives was executed by incoming surfactants of cholate and deoxycholate mixed in the front BGE plug. This on-line preconcentration method was finally applied to the detection of DA in rat cerebrospinal fluid (CSF) via microdialysis and on-line derivatization. It is anticipated that the method would

  18. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study

    DEFF Research Database (Denmark)

    Hinna, A.; Steiniger, F.; Hupfeld, S.

    2014-01-01

    Knowledge about drug retention within colloidal carriers is of uppermost importance particularly if drug targeting is anticipated. The aim of the present study was to evaluate asymmetrical flow field-flow fractionation (AF4) with on-line UV/VIS drug quantification for its suitability to determine...... both release and transfer of drug from liposomal carriers to a model acceptor phase consisting of large liposomes. The hydrophobic porphyrin 5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine (p-THPP), a fluorescent dye with an absorbance maximum in the visible range and structural similarity...... channel geometries. Drug quantification by on-line absorbance measurements was established by comprehensive evaluation of the size-dependent turbidity contribution in on-line UV/VIS detection and by comparison with off-line results obtained for the respective dye-loaded donor formulations (dissolved...

  19. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    Science.gov (United States)

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  20. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  1. Retro-review of flow injection analysis

    DEFF Research Database (Denmark)

    Ruzicka, Jaromir; Hansen, Elo Harald

    2008-01-01

    It is indeed unusual for authors to review their own monograph – J. Ruzicka, E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, Chichester, West Sussex, UK, 1988. – and even more so if the book was published 20 years ago. Yet such an exercise might yield a perspective on the progress of an...

  2. On-line automatic detection of wood pellets in pneumatically conveyed wood dust flow

    Science.gov (United States)

    Sun, Duo; Yan, Yong; Carter, Robert M.; Gao, Lingjun; Qian, Xiangchen; Lu, Gang

    2014-04-01

    This paper presents a piezoelectric transducer based system for on-line automatic detection of wood pellets in wood dust flow in pneumatic conveying pipelines. The piezoelectric transducer senses non-intrusively the collisions between wood pellets and the pipe wall. Wavelet-based denoising is adopted to eliminate environmental noise and recover the collision events. Then the wood pellets are identified by sliding a time window through the denoised signal with a suitable threshold. Experiments were carried out on a laboratory test rig and on an industrial pneumatic conveying pipeline to assess the effectiveness and operability of the system.

  3. A signal-flow-graph approach to on-line gradient calculation.

    Science.gov (United States)

    Campolucci, P; Uncini, A; Piazza, F

    2000-08-01

    A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.

  4. Calibration curves for on-line leakage detection using radiotracer injection method

    Directory of Open Access Journals (Sweden)

    Ayoub Khatooni

    2017-11-01

    Full Text Available One of the most important requirements for industrial pipelines is the leakage detection. In this paper, detection of leak and determination of its amount using radioactive tracer injection method has been simulated by Monte Carlo MCNP code. The detector array included two NaI (Tl detectors which were located before and after the considered position, measure emitted gamma from radioactive tracer. After calibration of radiation detectors, the amount of leakage can be calculated based on the count difference of detectors. Also, the effect of material and thickness and diameter of pipe, crystal dimension, types of fluid, activity of tracer and its type (24Na, 82Br, 131I, 99mTc, 113mIn as well as have been investigated on the detectable amount of leakage. According to the results, for example, leakage more than 0.007% in volume of the inlet fluid for iron pipe with outer diameter 4 inch and thickness of 0.5 cm, Petrol as fluid inside pipe, 3 3 inch detector and 24Na with activity of 100 mCi can be detected by this presented method.

  5. A prototype of on-line digital flow rate meter based on cross-correlation principle

    International Nuclear Information System (INIS)

    Sun Xiaodong; Dai Zhenxi; Xu Jijun

    1997-01-01

    An on-line, digital prototype of flow rate measurement system based on cross-correlation principle is developed. Laboratory measurements using the prototype show that sufficiently large temperature fluctuations exist naturally and that measurements are possible. Temperature fluctuations are detected by two identical thermocouples spaced along the flow direction and are pre-processed by a thermocouple signal amplifier. The pre-processed temperature fluctuations are analyzed by a cross-correlator which measures the transit time of temperature fluctuations between two thermocouples directly. Thus, the so-called correlation velocity can be determined by a chip microprocessor 8031. Experimental results with single-phase under steady conditions also show that the distance between two thermocouples and the Reynolds number of fluid are the most important parameters to the measurement

  6. On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    A novel and miniaturized micro-sequential injection bead injection lab-on-valve (μSI-BI-LOV) fractionation system was developed for in-line microcolumn soil extraction under simulated environmental scenarios and accurate monitoring of the content of easily mobilisable hexavalent chromium in soil...... environments at the sub-low parts-per-million level. The flow system integrates dynamic leaching of hexavalent chromium using deionized water as recommended by the German Standard DIN 38414-S4 method; on-line pH adjustment of the extract by a 0.01 mol L-1 Tris-HNO3 buffer solution; isolation of the chromate...... polluted agricultural soil material (San Joaquin Soil-Baseline Trace Element Concentrations) with water-soluble Cr(VI) salts at different concentration levels. The potential of the μSI-BI-LOV set-up with renewable surfaces for flame-AAS determination of high levels of readily bioavailable chromate...

  7. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  8. Flow injection spectrofluorimetric method for the determination of cadmium

    International Nuclear Information System (INIS)

    Bo Tang; Taixing Yue; Lili Zhang; Junsen Wu; Zhenzhen Chen

    2004-01-01

    A novel fluorescent reagent, o-vanillin furoylhydrazone (OVFH), was synthesized, and its infrared spectrum, elemental analysis and dissociation constant are reported. The reaction between Cd 2+ and OVFH produces an intensely fluorescent complex in ethanol-water medium of pH 10.00, and this finding has led to a simple, rapid, and sensitive flow injection (FI) spectrofluorimetric method for on-line determination of Cd 2+ . Under the optimum experimental conditions, the fluorescent complex had excitation and emission maxima at 393 and 494 nm, respectively. The linear range is from 0.025 to 8.0 μg mL -1 of Cd 2+ , the detection limit is 7.6 μg L -1 and the maximum sampling rate is 80 h -1 . The effect of interferences was studied. The method was successfully applied to the determination of cadmium in environmental samples. (author)

  9. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  10. Are Flow Injection-based Approaches Suitable for Automated Handling of Solid Samples?

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Cerdà, Victor

    Flow-based approaches were originally conceived for liquid-phase analysis, implying that constituents in solid samples generally had to be transferred into the liquid state, via appropriate batch pretreatment procedures, prior to analysis. Yet, in recent years, much effort has been focused...... electrolytic or aqueous leaching, on-line dialysis/microdialysis, in-line filtration, and pervaporation-based procedures have been successfully implemented in continuous flow/flow injection systems. In this communication, the new generation of flow analysis, including sequential injection, multicommutated flow.......g., soils, sediments, sludges), and thus, ascertaining the potential mobility, bioavailability and eventual impact of anthropogenic elements on biota [2]. In this context, the principles of sequential injection-microcolumn extraction (SI-MCE) for dynamic fractionation are explained in detail along...

  11. A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas

    International Nuclear Information System (INIS)

    Roach, G.J.; Watt, J.S.

    1997-01-01

    Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997

  12. Simulated effect of timing and Pt quantity injected on On-line NobleChem application on total fuel liftoff

    International Nuclear Information System (INIS)

    Pop, M.G.; Riddle, J.M.; Lamanna, L.S.; Gregorich, C.; Hoornik, A.

    2015-01-01

    Total liftoff is a measure of fuel performance and a risk indicator for fuel reliability. Fuel operability and license limits are directly related to the expected total lifetime liftoff. AREVA's continued commitment to zero fuel failure is expressed, among other efforts, in the continued development and improvement of its fuel cladding corrosion and crud risk assessment tools. The AREVA models used to assess and predict crud deposition on BWR cores over their lifespan have been refined by the development and incorporation of the PEZOG tool in response to the move in the industry to the On-Line NobleChem TM (OLNC) technology. PEZOG models the platinum-enhanced zirconium oxide growth of fuel cladding when exposed to platinum during operation. Depending on the local chemistry and radiation condition, noble metals act as catalysts for many reactions, including but not limited to hydrogen oxidation and oxygen reduction. OLNC's intention is to catalyze the hydrogen and oxygen recombination reaction for core internals protection. However, research has indicated that noble metals catalyze the oxygen reduction under the chemistry and radiation conditions as experienced in the pores of crud deposits, and hence, can increase the corrosion rate of zirconium alloy cladding. The developed PEZOG module calculates the oxide thickness as a function of platinum injection strategy. The stratified nature of oxide and crud layers formed on fuel cladding surfaces is reflected in the calculations as are the different platinum interaction in each of the layers. This paper presents examples of the evaluation of various aspects of the platinum injection strategies and their influence on the oxide growth enhancement as applied to conditions of a U.S. plant. (authors)

  13. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  14. The on-line graph processing study on phase separation of two-phase flow in T-tube

    International Nuclear Information System (INIS)

    Qian Yong; Xu Jijun; Yang Zhilin; Chen Yifen

    1997-01-01

    The on-line graph processing measure system is equipped with and experimental study of phase separation of air-water bubbly flow in the horizontal T-junction is carried out. For the first time, the author have found and defined the new type of complete phase separation, by the visual experiment, which shows that under certain conditions, the air flow entering the T junction will flow into the run outlet completely, which had never been reported in the literature Also, the pressure wave feed back effect and the branch bubble flow reorganization effect were found and analyzed. The complexity of this phase separation phenomenon in the T junction has been further revealed via the on-line graph processing technology. Meanwhile the influences of the inlet mass flow rate W1, the inlet mass quality X1, and the mass extraction rate G3/G1 on phase separation were analyzed

  15. Development of an automated sequential injection on-line solvent extraction-back extraction procedure as demonstrated for the determination of cadmium with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithioc......An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium....../preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng/l, along with a sampling frequency of 13s/h were obtained at a sample flow rate of 6.0mlmin/sup -1/. The precision (R.S.D.) at the 0.4 mug/l level was 1.8% as compared to 3.2% when quantifying the organic extractant...

  16. Comportamento do Consumidor On-line: a perspectiva da teoria do fluxoOn-line Consumer Behavior: the flow theory perspectiveComportamiento del consumidor On-line: la perspectiva de la teoría del flujo

    Directory of Open Access Journals (Sweden)

    FARIAS, Salomão Alencar de

    2008-03-01

    Full Text Available RESUMOEste artigo investiga o comportamento do consumidor on-line com base no fluxo, definido como a sensação holística que as pessoas sentem quando agem com total envolvimento em uma atividade (CSIKSZENTMIHALYI, 1975. Emprega-se essa teoria para melhor compreender o comportamento de compra pela Internet, embora seja um conceito ainda confuso na literatura do comportamento do consumidor, pois que não existe um consenso a respeito de quais os fatores antecedem, caracterizam ou são conseqüências do estado de fluxo. Desse modo, esta pesquisa buscou identificar os construtos, relacionados ao estado de fluxo, que devem fazer parte de um esquema de comportamento de compra on-line, além de indicar qual a sua aplicabilidade para o alcance da satisfação do consumidor na compra pela rede. Para tanto, foi utilizada uma metodologia de caráter descritivo com aplicação de um survey junto a uma amostra de 237 consumidores do varejo eletrônico. Os dados coletados foram analisados por meio de técnicas estatísticas multivariadas. Os resultados indicaram que o ambiente on-line e a telepresença antecedem o fluxo que, por sua vez, está associado ao comportamento exploratório, efeito positivo do processo de navegação, compra e satisfação com o processo de compra.ABSTRACTThis article investigates the on-line consumer behavior based on the flow theory, defined as the holistic sensation that people feel when acting with total involvement in an activity (CSIKSZENTMIHALYI, 1975. This theory has been used for better understanding the purchase behavior through the Internet, although this concept is still not sufficiently clear in consumer behavior literature, since it does not exist a consensus regarding which factors that precede, characterize or are consequences of the flow state. Thus, the present research was aimed at identifying the constructs related to the flow state that must be part of an on-line purchase behavior framework, indicating which

  17. On-line liquid phase micro-extraction based on drop-in-plug sequential injection lab-at-valve platform for metal determination

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Constantina [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2013-04-10

    Highlights: ► Drop-in-plug micro-extraction based on SI-LAV platform for metal preconcentration. ► Automatic liquid phase micro-extraction coupled with FAAS. ► Organic solvents with density higher than water are used. ► Lead determination in environmental water and urine samples. -- Abstract: A novel automatic on-line liquid phase micro-extraction method based on drop-in-plug sequential injection lab-at-valve (LAV) platform was proposed for metal preconcentration and determination. A flow-through micro-extraction chamber mounted at the selection valve was adopted without the need of sophisticated lab-on-valve components. Coupled to flame atomic absorption spectrometry (FAAS), the potential of this lab-at-valve scheme is demonstrated for trace lead determination in environmental and biological water samples. A hydrophobic complex of lead with ammonium pyrrolidine dithiocarbamate (APDC) was formed on-line and subsequently extracted into an 80 μL plug of chloroform. The extraction procedure was performed by forming micro-droplets of aqueous phase into the plug of the extractant. All critical parameters that affect the efficiency of the system were studied and optimized. The proposed method offered good performance characteristics and high preconcentration ratios. For 10 mL sample consumption an enhancement factor of 125 was obtained. The detection limit was 1.8 μg L{sup −1} and the precision expressed as relative standard deviation (RSD) at 50.0 μg L{sup −1} of lead was 2.9%. The proposed method was evaluated by analyzing certified reference materials and applied for lead determination in natural waters and urine samples.

  18. Development and application of an on-line sequential injection system for the separation of artificial and natural radionuclides in environmental samples

    International Nuclear Information System (INIS)

    Kim, C.-K.; Sansone, U.; Martin, P.; Kim, C.-S.

    2007-02-01

    The Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the IAEA's Seibersdorf Laboratory in Austria, has the programmatic responsibility to provide assistance to Member State laboratories in maintaining and improving the reliability of analytical measurement results, both in trace element and radionuclide determinations. This is accomplished through the provision of reference materials of terrestrial origin, validated analytical procedures, training in the implementation of internal quality control, and through the evaluation of measurement performance by organization of worldwide and regional interlaboratory comparison exercises. In this framework an on-line sequential injection (SI) system was developed, which can be widely used for the separation and preconcentration of target analytes from diverse environmental samples. The system enables the separation time to be shortened by maintaining a constant flow rate of solution and by avoiding clogging or bubbling in a chromatographic column. The SI system was successfully applied to the separation of Pu in IAEA reference material (IAEA Soil-6) and to the sequential separation of 210 Po and 210 Pb in phosphogypsum candidate reference material. The replicate analysis results of Pu in IAEA reference material (Soil-6) obtained with the SI system are in good agreement with the recommended value within 5% of standard deviation. The SI system enabled a halving in the separation time required for of radionuclides

  19. Sequential injection-bead injection-lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wang Jianhua; Hansen, Elo Harald; Miro, Manuel

    2003-01-01

    This communication presents an overview of the state-of-the-art of the exploitation of sequential injection (SI)-bead injection (BI)-lab-on-valve (LOV) schemes for automatic on-line sample pre-treatments interfaced with ETAAS and ICPMS detection as conducted in the authors' group. The discussions are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material, that is, the hydrophilic SP Sephadex C-25 cation exchange and iminodiacetate based Muromac A-1 chelating resins, and the hydrophobic poly(tetrafluoroethylene) (PTFE) and poly(styrene-divinylbenzene) copolymer alkylated with octadecyl groups (C 18 -PS/DVB). Using ETAAS as detection device, the easy-to-handle hydrophilic renewable reactors hold the features of improved R.S.D.s and LODs as compared to those operated in the conventional, permanent mode, in addition to the elimination of flow resistance. The hydrophobic columns fall into two categories, that is, the renewable one packed with C 18 -PS/DVB beads entails analogous R.S.D.s and LODs with respect to the conventional approach, while those with PTFE beads result in slightly inferior R.S.D.s and LODs by similar comparison, yet offering a wider dynamic range than when using an external permanent column. Moreover, the hydrophilic materials result in much higher enrichment of the analyte than the hydrophobic ones, although PTFE is the packing material that exhibits the best retention efficiency

  20. Liquid chromatography mass spectrometry determination of perfluoroalkyl acids in environmental solid extracts after phospholipid removal and on-line turbulent flow chromatography purification.

    Science.gov (United States)

    Mazzoni, M; Polesello, S; Rusconi, M; Valsecchi, S

    2016-07-01

    An on-line TFC (Turbulent Flow Chromatography) clean up procedures coupled with UHPLC-MS/MS (Ultra High Performance Liquid Chromatography Mass Spectrometry) multi-residue method was developed for the simultaneous determination of 8 perfluroalkyl carboxylic acids (PFCA, from 5 to 12 carbon atoms) and 3 perfluoroalkyl sulfonic acids (PFSA, from 4 to 8 carbon atoms) in environmental solid matrices. Fast sample preparation procedure was based on a sonication-assisted extraction with acetonitrile. Phospholipids in biological samples were fully removed by an off-line SPE purification before injection, using HybridSPE(®) Phospholipid Ultra cartridges. The development of the on-line TFC clean-up procedure regarded the choice of the stationary phase, the optimization of the mobile phase composition, flow rate and injected volume. The validation of the optimized method included the evaluation of matrix effects, accuracy and reproducibility. Signal suppression in the analysis of fortified extracts ranged from 1 to 60%, and this problem was overcome by using isotopic dilution. Since no certified reference materials were available for PFAS in these matrices, accuracy was evaluated by recoveries on spiked clam samples which were 98-133% for PFCAs and 40-60% for PFSAs. MLDs and MLQs ranged from 0.03 to 0.3ngg(-1) wet weight and from 0.1 to 0.9ngg(-1) wet weight respectively. Repeatability (intra-day precision) and reproducibility (inter-day precision) showed RSD from 3 to 13% and from 4 to 27% respectively. Validated on-line TFC/UHPLC-MS/MS method has been applied for the determination of perfluoroalkyl acids in different solid matrices (sediment, fish, bivalves and bird yolk). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. FI/SI on-line solvent extraction/back extraction preconcentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection on-line preconcentration procedure for determination of trace levels of copper and lead via solvent extraction/back extraction coupled to ICP-MS is described. In citrate buffer of pH 3, neutral complexes between the analytes and the chelating reagent, ammonium...... loop, the content of which is subsequently introduced into the ICP-MS, via a direct injection high efficiency nebulizer (DIHEN), for quantification. Enrichment factors of 29.6 (Cu) and 23.3 (Pb), detection limits of 17 ng/l (Cu) and 11 ng/l (Pb), along with a sampling frequency of 13 s/h were obtained...

  2. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.

    Science.gov (United States)

    Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B

    1993-08-01

    A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.

  3. Radiometric flow injection analysis with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.

  4. Sequential injection lab-on-valve: the third generation of flow injection analysis

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    Termed the third generation of flow injection analysis, sequential injection (SI)-lab-on-valve (LOV) has specific advantages and allows novel, unique applications - not least as a versatile front end to a variety of detection techniques. This review presents snd discusses progress to date of the ...

  5. On-Line Detection of Distributed Attacks from Space-Time Network Flow Patterns

    National Research Council Canada - National Science Library

    Baras, J. S; Cardenas, A. A; Ramezani, V

    2003-01-01

    .... The directionality of the change in a network flow is assumed to have an objective or target. The particular problem of detecting distributed denial of service attacks from distributed observations is presented as a working framework...

  6. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  7. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  8. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  9. Exploiting Sequential Injection on-line Solvent Extraction/Back Extraction with Detection by ETAAS or ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix...... tolerances. With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity...

  10. Exploiting sequential injection on-line solvent extraction/back extraction with detection by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix tolerance....... With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity. And for ICPMS...

  11. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  12. Development of an automated flow injection analysis system for determination of phosphate in nutrient solutions.

    Science.gov (United States)

    Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa

    2018-01-25

    A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2  = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

    Science.gov (United States)

    Li, B; Zhang, Z; Liu, W

    2001-05-30

    A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

  14. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2014-08-11

    Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.

  15. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M.; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2014-01-01

    Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches

  16. Flow improvers for water injection based on surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Oskarsson, H.; Uneback, I.; Hellsten, M.

    2006-03-15

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  17. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l-1 NH4Cl, 0.1 mol l-1 NaOH and 0...... of the operational times from days to hours, highly temporal resolution of the leaching process, and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis...... of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus...

  18. On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flow-through cell

    DEFF Research Database (Denmark)

    Christiansen, Torben; Spohr, Anders Bendsen; Nielsen, Jens Bredal

    1999-01-01

    Using image analysis the growth kinetics of the single hyphae of the filamentous fungus Aspergillus oryzae has been determined on-line in a flow-through cell at different glucose concentrations in the range from 26 mg L-1 to 20 g L-1. The tip extension rate of the individual hyphae can be described...... with saturation type kinetics with respect to the length of the hyphae. The maximum tip extension rate is constant for all hyphae measured at the same glucose concentration, whereas the saturation constant for the hyphae varies significantly between the hyphae even within the same hyphal element. When apical...... branching occurs, it is observed that the tip extension rate decreases temporarily. The number of branches formed on a hypha is proportional to the length of the hypha that exceeds a certain minimum length required to support the growth of a new branch. The observed kinetics has been used to simulate...

  19. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  20. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  1. Flow Injection Analysis: A Revolution in Modern Analytical Chemistry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    A review is made of the fundamentals of Flow Injection Analysis (FIA), and the versatility and applicability of this analytical concept is demonstrated by a series of examples, comprizing the use of different types of FIA-manifolds and various detection devices (optical and electrochemical...

  2. Minicolumn field preconcentration and flow-injection flame atomic absorption spectrometric determination of cadmium in seawater

    International Nuclear Information System (INIS)

    Yebra-Biurrun, M.C.; Moreno-Cid, A.; Puig, L.

    2004-01-01

    A simple method for the continuous field preconcentration of trace dissolved cadmium in seawater samples has been developed based on the minicolumn field sampling technique. For this purpose, minicolumns containing Chelite P (aminomethylphosphonic groups) were connected to a field flow preconcentration system (FFPS). Once in the laboratory, these minicolumns are sequentially inserted into a flow-injection system for on-line cadmium elution and detection by flame atomic absorption spectrometry. Factorial designs have been used to optimise the FFPS and the flow-injection elution process. Six experimental variables were optimised: sample pH, sample flow-rate, eluent concentration, eluent volume, eluent flow-rate and minicolumn diameter. The detection limit (3F) of the procedure was 2.7 ng l -1 for a sample volume of 300 ml. The precision (expressed as relative standard deviation) for 11 independent determinations was 0.5-9.4% for cadmium solutions of 10-300 ng l -1 . Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified values. This procedure has been successfully applied to the determination of cadmium in seawater samples from Galicia (Spain)

  3. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics.

    Science.gov (United States)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Brandl, Martin

    2016-05-30

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection there is a risk of premature drug loss due to drug transfer to plasma proteins and cell membranes. Here we report on the refinement of a recently introduced simple in vitro predictive tool by Hinna and colleagues in 2014, which brings small drug loaded (donor) liposomes in contact with large acceptor liposomes, the latter serving as a model mimicking biological sinks in the body. The donor- and acceptor-liposomes were subsequently separated using asymmetrical flow field-flow fractionation (AF4), during which the sample is exposed to a large volume of eluent which corresponds to a dilution factor of approximately 600. The model drug content in the donor- and acceptor fraction was quantified by on-line UV/VIS extinction measurements with correction for turbidity and by off-line HPLC measurements of collected fractions. The refined method allowed for (near) baseline separation of donor and acceptor vesicles as well as reliable quantification of the drug content not only of the donor- but now also of the acceptor-liposomes due to their improved size-homogeneity, colloidal stability and reduced turbidity. This improvement over the previously reported approach allowed for simultaneous quantification of both drug transfer and drug release to the aqueous phase. By sampling at specific incubation times, the release and transfer kinetics of the model compound p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine) was determined. p-THPP is structurally closely related to the photosensitizer temoporfin, which is in clinical use and under evaluation in liposomal formulations. The transfer of p-THPP to the acceptor vesicles followed 1st order kinetics with a half-life of

  4. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... the point of sample injection/introduction to the point of detection. Hence, in FI-fAAS this feature allows not only to obtain improved repeatability but also improved accuracy, and because the wash to sample ratio is high it permits the handling of samples with elevated salt contents - which...

  5. Forecasting of flowrate under rolling motion flow instability condition based on on-line sequential extreme learning machine

    International Nuclear Information System (INIS)

    Chen Hanying; Gao Puzhen; Tan Sichao; Tang Jiguo; Hou Xiaofan; Xu Huiqiang; Wu Xiangcheng

    2015-01-01

    The coupling of multiple thermal-hydraulic parameters can result in complex flow instability in natural circulation system under rolling motion. A real-time thermal-hydraulic condition prediction is helpful to the operation of systems in such condition. A single hidden layer feedforward neural networks algorithm named extreme learning machine (ELM) is considered as suitable method for this application because of its extremely fast training time, good accuracy and simplicity. However, traditional ELM assumes that all the training data are ready before the training process, while the training data is received sequentially in practical forecasting of flowrate. Therefore, this paper proposes a forecasting method for flowrate under rolling motion based on on-line sequential ELM (OS-ELM), which can learn the data one by one or chunk-by-chunk. The experiment results show that the OS-ELM method can achieve a better forecasting performance than basic ELM method and still keep the advantage of fast training and simplicity. (author)

  6. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    International Nuclear Information System (INIS)

    Tue-Ngeun, Orawan; Sandford, Richard C.; Jakmunee, Jaroon; Grudpan, Kate; McKelvie, Ian D.; Worsfold, Paul J.

    2005-01-01

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH 2 which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO 2 increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO 2 as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L -1 for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L -1 -5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L -1 -2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L -1 . Sample throughput for the automated system was 8 h -1 for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 μL per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  7. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tue-Ngeun, Orawan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sandford, Richard C. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: rsandford@plymouth.ac.uk; Jakmunee, Jaroon [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Grudpan, Kate [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, P.O. Box 23, Clayton Campus, Vic. 3800 (Australia); Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)

    2005-12-04

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH < 2), converted DIC to CO{sub 2} which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO{sub 2} increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO{sub 2} as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L{sup -1} for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L{sup -1}-5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L{sup -1}-2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L{sup -1}. Sample throughput for the automated system was 8 h{sup -1} for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 {mu}L per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  8. Coupling sequential injection on-line preconcentration by means of a renewable microcolumn with ion-exchange beads with detection by electrothermal atomic absorption spectrometry. Comparing the performance of eluting the loaded beads with transporting them directly into the graphite tube

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2001-01-01

    The design of a flow injection/sequential injection (FIA/SIA) on-line preconcentration system incorporating a renewable microcolumn with ion-exchange beads and interfaced with an electrothermal atomic absorption spectrometry (ETAAS) detector is described, and its practical applicability.......4% for the procedure in which the loaded beads are transported directly to the graphite furnace for pyrolysis and atomization, and even improved in comparison to the traditional unidirectional and bidirectional repetitive elution procedures which under comparable conditions yield R.S.D.-values of 5.8 and 4...

  9. Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis-mass spectrometry: a sensitive method for measurement of ten haloacetic acids in drinking water.

    Science.gov (United States)

    Zhang, Huijuan; Zhu, Jiping; Aranda-Rodriguez, Rocio; Feng, Yong-Lai

    2011-11-07

    Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)-electrospray ionization-tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013-0.12 μg L(-1) for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Practical utility of on-line clearance and blood temperature monitors as noninvasive techniques to measure hemodialysis blood access flow.

    Science.gov (United States)

    Fontseré, Néstor; Blasco, Miquel; Maduell, Francisco; Vera, Manel; Arias-Guillen, Marta; Herranz, Sandra; Blanco, Teresa; Barrufet, Marta; Burrel, Marta; Montaña, Javier; Real, Maria Isabel; Mestres, Gaspar; Riambau, Vicenç; Campistol, Josep M

    2011-01-01

    Access blood flow (Qa) measurements are recommended by the current guidelines as one of the most important components in vascular access maintenance programs. This study evaluates the efficiency of Qa measurement with on-line conductivity (OLC-Qa) and blood temperature monitoring (BTM-Qa) in comparison with the gold standard saline dilution method (SDM-Qa). 50 long-term hemodialysis patients (42 arteriovenous fistulas/8 arteriovenous grafts) were studied. Bland-Altman and Lin's coefficient (ρ(c)) were used to study accuracy and precision. Mean values were 1,021.7 ± 502.4 ml/min SDM-Qa, 832.8 ± 574.3 ml/min OLC-Qa (p = 0.007) and 1,094.9 ± 491.9 ml/min with BTM-Qa (p = NS). Biases and ρ(c) obtained were -188.8 ml/min (ρ(c) 0.58) OLC-Qa and 73.2 ml/min (ρ(c) 0.89) BTM-Qa. The limits of agreement (bias ± 1.96 SD) obtained were from -1,119 to 741.3 ml/min (OLC-Qa) and -350.6 to 497.2 ml/min (BTM-Qa). BTM-Qa and OLC-Qa are valid noninvasive and practical methods to estimate Qa, although BTM-Qa was more accurate and had better concordance than OLC-Qa compared with SDM-Qa. Copyright © 2010 S. Karger AG, Basel.

  11. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  12. Spectrofluorimetric determination of cerium by flow injection analysis

    International Nuclear Information System (INIS)

    Liu Shaorong; Meng Jian; Liu Wenhua

    1990-01-01

    A spectrofluorimetric method for the determination of cerium (λ ex/em:251/365 nm) in hydrochloric acid solution by flow injection analysis is presented. It has well developed the normal spectrofluorimetric method for determination of cerium and has made: 1, the determination procedure shortened; 2, the determination speed increased to about 180 samples per hour; 3, the determination range widened to 0.05-100.0 ppm CeO 2 , abouot two times as wide as the normal spectrofluorimetric method; and 4, the relative standard deviation lessened (about 0.47% for 0.1 ppm CeO 2 , n = 13)

  13. Principles and Applications of Flow Injection Analysis in Biosensors

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    In practical applications biosensors are often forced to operate under less than optimal conditions. Because of their construction, and the physical processes and chemical reactions involved in their operation, compromise conditions are frequently required to synchronize all events taking place....... Therefore, and in order to implement functions such as periodic calibration, conditioning and possible regeneration of the biosensor, and, very importantly, to yield the freedom to select the optimum detection means, it is advantageous to use these devices in a flow-through mode, particularly by employing...... the flow injection (FI) approach. The capacity of FI, as offering itself as a complementary facility to augment the performance of biosensors, and in many cases as an attractive alternative, is demonstrated by reference to selected examples, comprising assays based on enzymatic procedures with optical...

  14. Sensitive flow-injection spectrophotometric analysis of bromopride

    Science.gov (United States)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  15. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte...

  16. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection

    DEFF Research Database (Denmark)

    Long, Xiangbao; Hansen, Elo Harald; Miró, Manuel

    2005-01-01

    The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed...

  17. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers

    KAUST Repository

    Subramanian, S. K.; Li, Yan; Cathles, L. M.

    2013-01-01

    The exact manner in which preferential (e.g., much faster than average) flow occurs in the subsurface through small fractures or permeable connected pathways of other kinds is important to many processes but is difficult to determine, because most chemical tracers diffuse quickly enough from small flow channels that they appear to move more uniformly through the rock than they actually do. We show how preferential flow can be assessed by injecting 2 to 5 nm carbon particles (C-Dots) and an inert KBr chemical tracer at different flow rates into a permeable core channel that is surrounded by a less permeable matrix in laboratory apparatus of three different designs. When the KBr tracer has a long enough transit through the system to diffuse into the matrix, but the C-Dot tracer does not, the C-Dot tracer arrives first and the KBr tracer later, and the separation measures the degree of preferential flow. Tracer sequestration in the matrix can be estimated with a Peclet number, and this is useful for experiment design. A model is used to determine the best fitting core and matrix dispersion parameters and refine estimates of the core and matrix porosities. Almost the same parameter values explain all experiments. The methods demonstrated in the laboratory can be applied to field tests. If nanoparticles can be designed that do not stick while flowing through the subsurface, the methods presented here could be used to determine the degree of fracture control in natural environments, and this capability would have very wide ranging value and applicability.

  18. Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis

    International Nuclear Information System (INIS)

    Tzanavaras, Paraskevas D.; Themelis, Demetrius G.

    2007-01-01

    Pharmaceutical analysis is one of the most important fields in analytical chemistry. The discovery of new drugs and the on-going update of international regulations for the safety and efficacy of pharmaceutical formulations demand the continuous development of new analytical methods. Inevitably, automation plays an important role, especially when a lot of samples have to be analyzed in the minimum of time. The present study reviews the applications of flow injection (FI) spectrophotometry to the determination of active pharmaceutical ingredients (APIs) in their respective formulations. However, the topic covered in this study is important not only to pharmaceutical analytical scientists. The principles, figures of merit and 'chemistry' of the presented methods can be of interest to bio-analytical and clinical chemists as well for the analysis of biological samples, to environmental analysts that study the up-to-date demand of the determination of the fate of pharmaceuticals in the environment and even to toxicologists and forensic scientists. This review covers scientific contributions published later than 2000. A variety of FI procedures based on homogeneous (direct UV measurements, colour-forming reactions, metal-drug interactions) and heterogeneous (optical sensors and solid-phase reactors) systems are discussed. A third section covers on-line sample pretreatment (solid-phase extraction, liquid-liquid extraction, on-line digestion, etc.)

  19. Automation of radiochemical analysis by flow injection techniques. Am-Pu separation using TRU-resinTM sorbent extraction column

    International Nuclear Information System (INIS)

    Egorov, O.; Washington Univ., Seattle, WA; Grate, J.W.; Ruzicka, J.

    1998-01-01

    A rapid automated flow injection analysis (FIA) procedure was developed for efficient separation of Am and Pu from each other and from interfering matrix and radionuclide components using a TRU-resin TM column. Selective Pu elution is enabled via on-column reduction. The separation was developed using on-line radioactivity detection. After the separation had been developed, fraction collection was used to obtain the separated fractions. In this manner, a FIA instrument functions as an automated separation workstation capable of unattended operation. (author)

  20. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. The impact of interpreted flow regimes during constant head injection tests on the estimated transmissivity from injection tests and difference flow logging

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Ludvigsson, Jan-Erik; Harrstroem, Johan [Geosigma AB, Uppsala (Sweden)

    2013-04-15

    A large number of constant head injection tests were carried out in the site investigation at Forsmark using the Pipe String System, PSS3. During the original evaluation of the tests the dominating transient flow regimes during both the injection and recovery period were interpreted together with estimation of hydraulic parameters. The flow regimes represent different flow and boundary conditions during the tests. Different boreholes or borehole intervals may display different distributions of flow regimes. In some boreholes good agreement was obtained between the results of the injection tests and difference flow logging with Posiva flow log (PFL) but in other boreholes significant discrepancies were found. The main objective of this project is to study the correlation between transient flow regimes from the injection tests and other borehole features such as transmissivity, depth, geology, fracturing etc. Another subject studied is whether observed discrepancies between estimated transmissivity from difference flow logging and injection tests can be correlated to interpreted flow regimes. Finally, a detailed comparison between transient and stationary evaluation of transmissivity from the injection tests in relation to estimated transmissivity from PFL tests in corresponding sections is made. Results from previous injection tests in 5 m sections in boreholes KFM04, KFM08A and KFM10A were used. Only injection tests above the (test-specific) measurement limit regarding flow rate are included in the analyses. For all of these tests transient flow regimes were interpreted. In addition, results from difference flow logging in the corresponding 5 m test sections were used. Finally, geological data of fractures together with rock and fracture zone properties have been used in the correlations. Flow regimes interpreted from the injection period of the tests are generally used in the correlations but deviations between the interpreted flow regimes from the injection and

  2. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  3. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples

    DEFF Research Database (Denmark)

    Buanuam, Janya; Tiptanasup, Kasipa; Shiowatana, Juwadee

    2006-01-01

    A continuous-flow system comprising a novel, custom-built extraction module and hyphenated with inductively coupled plasma-mass spectrometric (ICP-MS) detection is proposed for assessing metal mobilities and geochemical associations in soil compartments as based on using the three step BCR (now...... the Measurements and Testing Programme of the European Commission) sequential extraction scheme. Employing a peristaltic pump as liquid driver, alternate directional flows of the extractants are used to overcome compression of the solid particles within the extraction unit to ensure a steady partitioning flow rate...... and thus to maintain constant operationally defined extraction conditions. The proposed flow set-up is proven to allow for trouble-free handling of soil samples up to 1 g and flow rates ≤ 10 mL min–1. The miniaturized extraction system was coupled to ICP-MS through a flow injection interface in order...

  4. Remote calorimetric detection of urea via flow injection analysis.

    Science.gov (United States)

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-07

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.

  5. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 77-82 ISSN 1469-0667 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube mass spectroscopy (SIFT-MS) * breath analysis * breath metabolities * flowing afterglow mass spectrometry (FA-MS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.198, year: 2007

  6. Determination of the sulfur mustard hydrolysis product thiodiglycol by microcolumn liquid chromatography coupled on-line with sulfur flame photometric detection using large-volume injections and peak

    NARCIS (Netherlands)

    Hooijschuur, E.W.J.; Kientz, C.E.; Brinkman, U.A.T.

    1999-01-01

    A selective, direct and relatively rapid method has been developed for the determination of thiodiglycol (TDG) in aqueous samples. TDG is the main hydrolysis product of the chemical warfare agent sulfur mustard. The method of analysis is based on the on-line coupling of reversed-phase microcolumn

  7. Flow injection kinetic spectrofluorimetric determination of trace amounts of osmium

    Science.gov (United States)

    Tang, Bo; Zhang, Hui; Wang, Yan

    2005-07-01

    A flow injection (FI) kinetic spectrofluorimetric method is described for the determination of osmium(IV) and the possible mechanism of catalytic reaction is discussed. The method is based on the fluorescence enhancing reaction of o-vanillin furfuralhydrazone (OVFH) with potassium bromate, which is catalyzed by Os(IV) in water medium at pH 6.10 and 45 °C. OVFH is newly synthesized and its ionization, IR and elemental analysis are established. Under these experimental conditions, the oxidized product of OVFH has excitation and emission maxima at 337 and 490 nm, respectively. The linear range of this method is 0-600 ng ml -1 with the R.S.D. of 1.2%. The detection limit is 1.0 ng ml -1 of Os(IV). A high analysis rate of 24 samples h -1 is obtained by the FI method. The proposed method is applied successfully to determine Os(IV) in synthetic mixture and mineral samples, and the results are well consistent with the standard values.

  8. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring.

    Science.gov (United States)

    Gitlin, Leonid; Hoera, Christian; Meier, Robert J; Nagl, Stefan; Belder, Detlev

    2013-10-21

    Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.

  9. Combination of Flow Injection and Electrothermal Atomic Absorption Spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1999-01-01

    The paper discusses the advantages gained by exploiting this combination, FI-ETAAS. Emphasis is placed on illlustrating various avenues to perform on-line preconcentration of metal ions in order to obtain very low limits of detection of the measurand, and ways and means to enhance the selectivity...

  10. Flow injection chemiluminescent determination of N-nitrosodimethylamine using photogenerated tris(2,2'-bipyridyl) ruthenium (III)

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2005-01-01

    A flow injection configuration was developed and evaluated for the chemiluminescent determination of N-nitrosodimethylamine. The method is based on the on-line cleavage of the N-NO bond of the nitrosamine by irradiation with ultraviolet light. The dimethylamine generated was subsequently reacted with tris(2,2'-bipyridyl) ruthenium (III), which was generated through the on-line photo-oxidation of tris(2,2'-bipyridyl) ruthenium (II) with peroxydisulfate. After selecting the best operating parameters, the emitted light showed a linear relationship with the concentration of N-nitrosodimethylamine between 1.5 and 148 ng ml -1 , with a detection limit of 0.29 ng ml -1 . The repeatability was 1.6% expressed as relative standard deviation (n = 10) and the reproducibility, studied on five consecutive days, was 3.2%. The sample throughput was 50 injections per hour. The method was applied to studying the recoveries of N-nitrosodimethylamine in water and different cured meat products

  11. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  12. On-line study of fungal morphology during submerged growth in a small flow-through cell

    DEFF Research Database (Denmark)

    Spohr, Anders Bendsen; Dam Mikkelsen, C.; Carlsen, Morten

    1998-01-01

    A flow-through cell is designed to measure the growth kinetics of hyphae of Aspergillus oryzae grown submerged in a well controlled environment. The different stages of the growth process are characterized, from the spore to the fully developed hyphal element with up to 60 branches and a total...... is determined. After about 10 h growth at a glucose concentration of 250 mg L-1, 6-7 branches have been set, and both the total hyphal length l(t) and the number of tips increase exponentially with time. The specific growth rate of the hyphae is 0.33 h(-1) while the average rate of the extension of the growing...... tips approaches 55 mu m h(-1). The growth kinetics for all the branches on the main hypha have also been found. The main hypha and all the branches grow at a rate which can be modeled by saturation kinetics with respect to the branch length and with nearly equal final tip speeds (160 mu m h(-1...

  13. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould...

  14. On-line ion exchange preconcentration in a sequential injection lab-on-valve microsystem incorporating a renewable column with ETAAS for the trace-level determination of bismuth in urine and river sediment

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2001-01-01

    A sequential injection system for on-line ion-exchange separation and preconcentration of trace-level amounts of metal ions with ensuing detection by electrothermal atomic absorption spectrometry (ETAAS) is described. Based on the use of a renewable microcolumn incorporated within an integrated l.......3% for the determination of 2.0 mug/l Bi (n = 7). The procedure was validated by determination of bismuth in a certified reference material CRM 320 (river sediment), and by bismuth spike recoveries in two human urine samples....

  15. Assessment of multi-phase movements in a gas-gathering pipeline and the relevance to on-line, real-time corrosion monitoring and inhibitor injection

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.A.; Asperger, R.G.

    1988-01-01

    A study was conducted to determine the time required for aqueous fluid to travel 100 miles (160 km) from an offshore platform in the Gulf of Mexico to landfill. If this time is short, the corrosivity of the water at landfall may be used as the basis for setting the offshore corrosion inhibitor injection rates. But, for this particular system, the traveling time was found to be long, greater than 65 days. Therefore, the corrosivity as measured on-shore can not be used for online, real-time adjustments of the offshore, corrosion inhibitor chemical pumps.

  16. Recent developments in automated determinations of trace level concentrations of elements and on-line fractionations schemes exploiting the micro-sequential injection - lab-on-valve approach

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel; Long, Xiangbao

    2006-01-01

    The determination of trace level concentrations of elements, such as metal species, in complex matrices by atomic absorption or emission spectrometric methods often require appropriate pretreatments comprising separation of the analyte from interfering constituents and analyte preconcentration...... are presented as based on the exploitation of micro-sequential injection (μSI-LOV) using hydrophobic as well as hydrophilic bead materials. The examples given comprise the presentation of a universal approach for SPE-assays, front-end speciation of Cr(III) and Cr(VI) in a fully automated and enclosed set...

  17. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  18. Simulation and System Analysis of Flow Pulsation at Normal and Emergency for Advanced On-line Monitoring and Control of NPP

    International Nuclear Information System (INIS)

    Proskouriakov, K.N.; Moukhine, V.S.

    2002-01-01

    In addition to investigation of thermal-hydraulic processes on NPP with use of computer codes the new system analysis of flow pulsation is worked out. System analysis shows that properties of heat rejection circuits of NPP as oscillatory system are not equal the sum of properties of its separate elements but gives the new properties which must be taken into account. Methods have been worked out for calculating and identifying the sources of thermal-hydraulic disturbances are intended to improve the means of early diagnostics of anomalies in the technological process, to forecast their development, to improve the efficiency of overhauling operations and safety in operation, and also to create advanced on-line monitoring and control of NPP. Conception of the control system development presents. Proposal for main topics R and D areas for advanced NPP monitoring, diagnostic and control are identified. (authors)

  19. Numerical Simulation of Magnetic Nanoparticles Injection into Two–phase Flow in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Saad, Ahmed M.; Sun, Shuyu; Salama, Amgad

    2017-01-01

    In this paper, the problem of magnetic nanoparticles injection into a water–oil two–phase flow under an external permanent magnetic field is investigated. The mathematical model of the problem under consideration has been developed. We treat

  20. Modelling and Simulation of Structural Deformation of Isothermal Subsurface Flow and Carbon Dioxide Injection

    KAUST Repository

    El-Amin, Mohamed; Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2011-01-01

    force term. The flux continuity condition is used at interfaces between different permeability layers of the heterogeneous medium. We analyze the vertical migration of a CO2 plume injected into a 2D layered reservoir. Analysis of distribution of flow

  1. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    OpenAIRE

    Jaroon Jakmunee

    2008-01-01

    A stopped-flow injection (FI) spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product z...

  2. The Impact of Flow Injection on Modern Chemical Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and preconcentration procedures. In recent years, FIA has been supplemented by Sequential Injection Analysis (SIA) and the Lab-on-Valve (LOV) approach. Following a brief historic introduction and an account of the impact of FIA in academia, the lecture will describe these two new generations of FIA, accompanied...

  3. Flow Injection/Sequential Injection Analysis Systems: Potential Use as Tools for Rapid Liver Diseases Biomarker Study

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Flow injection/sequential injection analysis (FIA/SIA systems are suitable for carrying out automatic wet chemical/biochemical reactions with reduced volume and time consumption. Various parts of the system such as pump, valve, and reactor may be built or adapted from available materials. Therefore the systems can be at lower cost as compared to other instrumentation-based analysis systems. Their applications for determination of biomarkers for liver diseases have been demonstrated in various formats of operation but only a few and limited types of biomarkers have been used as model analytes. This paper summarizes these applications for different types of reactions as a guide for using flow-based systems in more biomarker and/or multibiomarker studies.

  4. Sequential injection/bead injection lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald; Miró, Manuel

    2003-01-01

    are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material...

  5. Load Flow Analysis of a 15Mva Injection Substation | Oshevire ...

    African Journals Online (AJOL)

    This load flow helps to determine the state of the power system for a given load and generation distribution. This paper presents the computer aided power flow analysis of the existing Otovwodo33/11kV distribution network using the ETAP 7.0 software. The result showed that out of 91load feeders of which 6 is out of service, ...

  6. Numerical simulation of flow characteristics of lean jet to cross-flow in safety injection of reactor cooling system

    International Nuclear Information System (INIS)

    Wang Haijun; He Huining; Luo Yushan; Wang Weishu

    2011-01-01

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio V R is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio V R , the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering. (authors)

  7. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics

    DEFF Research Database (Denmark)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith

    2016-01-01

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection...... ratio. An initial rapid transfer of p-THPP was found (∼5%) and investigated further by determining the extent of transfer between donor and acceptor during separation. The donor- and acceptor phase were found to be separated within few minutes and only minor (≤2%) transfer could be detected within...

  8. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  9. On-Line Organic Solvent Field Enhanced Sample Injection in Capillary Zone Electrophoresis for Analysis of Quetiapine in Beagle Dog Plasma

    Directory of Open Access Journals (Sweden)

    Yuqing Cao

    2016-01-01

    Full Text Available A rapid and sensitive capillary zone electrophoresis (CZE method with field enhanced sample injection (FESI was developed and validated for the determination of quetiapine fumarate in beagle dog plasma, with a sample pretreatment by LLE in 96-well deep format plate. The optimum separation was carried out in an uncoated 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 13 kV. The electrophoretic analysis was performed by 50 mM phosphate at pH 2.5. The detection wavelength was 210 nm. Under these optimized conditions, FESI with acetonitrile enhanced the sensitivity of quetiapine about 40–50 folds in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision and extraction recovery. Using mirtazapine as an internal standard (100 ng/mL, the response of quetiapine was linear over the range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL. The intra- and inter-day precisions for the assay were within 4.8% and 12.7%, respectively. The method represents the first application of FESI-CZE to the analysis of quetiapine fumarate in beagle dog plasma after oral administration.

  10. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    Science.gov (United States)

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  11. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    Science.gov (United States)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ 1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low injection rates; most industrial-scale injection

  12. On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks.

    Science.gov (United States)

    Alhusban, Ala A; Gaudry, Adam J; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M

    2014-01-03

    Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples

    International Nuclear Information System (INIS)

    Lemos, Valfredo Azevedo; Novaes, Cleber Galvao; Lima, Adriana da Silva; Vieira, Daniel Rodrigues

    2008-01-01

    A solid-phase extraction method combined with flow injection (FI) on-line flame atomic absorption spectrometry (FAAS) for the determination of cadmium and nickel in tobacco samples is presented. The 2-aminothiophenol functionalized Amberlite XAD-4 (AT-XAD) resin was synthesized by covalent coupling of the ligand with the copolymer through a methylene group. A minicolumn packed with AT-XAD was connected into the automated on-line preconcentration system. Elution of metal ions from minicolumn can be made with 0.50 mol L -1 hydrochloric acid solution. With a consumption of 21.0 mL of sample solution, detection limits (3 s) of 0.3 (Cd) and 0.8 μg L -1 (Ni) were achieved at a sample throughput of 18 h -1 . Enrichment factors (EF) of 99 (cadmium) and 43 (nickel) were obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The contents of Cd and Ni in a certified reference material (NIST 1570a, spinach leaves) determined by the present method was in good agreement with the certified value. The developed procedure was also successfully applied to the determination of Cd and Ni in local tobacco samples

  14. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    Science.gov (United States)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  15. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  16. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  17. Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system.

    Science.gov (United States)

    Jakmunee, Jaroon; Junsomboon, Jaroon

    2009-09-15

    A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl+0.0125 M H(2)SO(4)) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L(-1) PO(4)-P, with a detection limit of 0.02 mg L(-1). Relative standard for 11 replicate injections of 5 mg L(-1) PO(4)-P was 0.5%. A sample through put of 35 h(-1) was achieved, with consumption of 14 mg KCl, 10mg ammonium molybdate and 0.05 mL H(2)SO(4) per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.

  18. A multisyringe flow injection system with immobilized glucose oxidase based on homogeneous chemiluminescence detection

    International Nuclear Information System (INIS)

    Manera, Matias; Miro, Manuel; Estela, Jose Manuel; Cerda, Victor

    2004-01-01

    In this paper, enzyme containing reactors are for the first time implemented in the multisyringe flow injection analysis (MSFIA) technique interfaced with chemiluminescence detection for biochemical assays. The automated methodology is based on the on-line substrate conversion in an oxidase packed-bed reactor and the post-column chemiluminogenic catalysed-reaction of the generated oxidising species with an organic molecule (namely, 3-aminophthalhydrazide) in front of the photosensor module. Various catalysts in homogeneous phase are compared taking advantage of the benefits of the MSFIA concept. On one hand, mineral catalysts (namely, Co(II)) are assessed, on the other hand, minute and accurate volumes of soluble organic species (viz., horseradish peroxidase (HRP)) are readily handled without requiring further immobilization protocols. The potentials of the MSFIA-CL concept with immobilisation of the proper oxidase protein are demonstrated using glucose as a model of substrate. Despite the different pH and kinetic requirements for both the substrate conversion in the enzyme-reactor and the Co(II)/HRP-mediated luminol oxidation integrated in the flow system, the MSFIA approach warrants maximum yields owing to the independent optimisation of the physical and chemical parameters of the various reactions involved. Under the optimised configurations and experimental variables, dynamic working ranges from 2.5x10 -6 to 1.0x10 -3 mol l -1 glucose may be obtained for both detection schemes by proper photomultiplier gain selection. The detection and determination limits calculated at the 3σ and 10σ level were 8.6x10 -7 and 2.0x10 -6 mol l -1 glucose, respectively, for the Co(II)-luminol system, and 1.3x10 -6 and 2.3x10 -6 mol l -1 glucose, respectively, for the HRP-luminol procedure. The repeatability (n=10) at the 1.0x10 -5 mol l -1 level was slightly better for the Co(II)-catalysed reaction (2.5% versus 4.0%). The developed MSFIA-CL methodology was used for kinetic

  19. A novel approach for determination of free fatty acids in vegetable oils by a flow injection system with manual injection.

    Science.gov (United States)

    Ayyildiz, H Filiz; Kara, Huseyin; Sherazi, S T H

    2011-12-01

    A non-aqueous flow injection method for determining free fatty acid (FFA) content in corn and sunflower oil samples was developed. A single-line manifold system was built by modification of an HPLC for flow injection analysis (FIA). Without pre-treatment, oil samples were injected into a n-propanol solution containing KOH and phenolphthalein (PHP). The main parameters, such as flow rate of carrier phase, length, geometry, inner diameters of the coils and reagent concentration were all optimized. The proposed FIA method was validated for precision, accuracy, linear region, limit of detection (LOD) and limit of quantification (LOQ). The intra- and inter-day measurements of the precision of the method were found to be within the limits of acceptance criteria (RSD analyst. The linear concentration range was calculated as 0.09-1.50 and 0.07-1.40 FFA% for corn and sunflower oils, correspondingly. The LOD and LOQ were found to be 7.53 × 10(-4)-2.28 × 10(-3) oleic acid % and 7.11 × 10(-4)-2.23 × 10(-3) oleic acid % for corn and sunflower oils, respectively. The results were compared with those obtained by the AOCS (Ca-5a-40) method using statistical t and F tests, and a significant difference was not observed between the methods at a 95% confidence level. The proposed method is suitable for quality control of routine applications due to its simplicity, high sample throughput, and economy of solvents and sample, offering considerable promise as a low cost analytical system that needs minimum human intervention over long periods of time.

  20. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  1. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  2. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    Science.gov (United States)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  3. An automatic system for acidity determination based on sequential injection titration and the monosegmented flow approach.

    Science.gov (United States)

    Kozak, Joanna; Wójtowicz, Marzena; Gawenda, Nadzieja; Kościelniak, Paweł

    2011-06-15

    An automatic sequential injection system, combining monosegmented flow analysis, sequential injection analysis and sequential injection titration is proposed for acidity determination. The system enables controllable sample dilution and generation of standards of required concentration in a monosegmented sequential injection manner, sequential injection titration of the prepared solutions, data collecting, and handling. It has been tested on spectrophotometric determination of acetic, citric and phosphoric acids with sodium hydroxide used as a titrant and phenolphthalein or thymolphthalein (in the case of phosphoric acid determination) as indicators. Accuracy better than |4.4|% (RE) and repeatability better than 2.9% (RSD) have been obtained. It has been applied to the determination of total acidity in vinegars and various soft drinks. The system provides low sample (less than 0.3 mL) consumption. On average, analysis of a sample takes several minutes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Flow-injection analysis of nitrate by reduction to nitrite and gas-phase molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, B.; Tavassoli, A. [Dept. of Chemistry, Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)

    2001-12-01

    Two flow-injection manifolds have been investigated for the determination of nitrate. These manifolds are based on the reduction of nitrate to nitrite and determination of nitrite by gas-phase molecular absorption spectrophotometry. Nitrate sample solution (300 {mu}L) which is injected to the flow line, is reduced to nitrite by reaction with hydrazine or passage through the on-line copperized cadmium (Cd-Cu) reduction column. The nitrite produced reacts with a stream of hydrochloric acid and the evolved gases are purged into the stream of O{sub 2}carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then swept into a flow-through cell which has been positioned in the cell compartment of an UV-visible spectrophotometer. The absorbance of the gaseous phase is measured at 204.7 nm. A linear relationship was obtained between the intensity of absorption signals and concentration of nitrate when Cd-Cu reduction method was used, but a logarithmic relationship was obtained when the hydrazine reduction method was used. By use of the Cd-Cu reduction method, up to 330 {mu}g of nitrate was determined. The limit of detection was 2.97 {mu}g nitrate and the relative standard deviations for the determination of 12.0, 30.0 and 150 {mu}g nitrate were 3.32, 3.87 and 3.6%, respectively. Maximum sampling rate was approximately 30 samples per hour. The Cd-Cu reduction method was applied to the determination of nitrate and the simultaneous determination of nitrate and nitrite in meat products, vegetables, urine, and a water sample. (orig.)

  5. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    Science.gov (United States)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  6. Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder

    KAUST Repository

    Richter, David; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2011-01-01

    Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re = 3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy. © 2011 American Society of Mechanical Engineers.

  7. Effect of water chemistry on flow accelerated corrosion rate of carbon steel measured by on-line corrosion-monitoring system

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.

    2010-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. Iron and chromium solubility should be the most effective factor to determine the effect of water chemistry on the FAC. It is very important to evaluate the correlation between the solubility and the FAC rate of the carbon steel. In the present study, the effects of pH and Cr concentration of material on the FAC rate of carbon steel were evaluated by using high temperature loop equipment with on-line corrosion-monitoring system. Effect of dissolved oxygen concentration at pH 7 was also evaluated. The experimental FAC rates were compared with the calculation result, which was obtained from a FAC model developed previously by the authors' group. The tube specimens made of STPT 480 carbon steel were used for the FAC tests. The Cr concentration of STPT 480 was specially adjusted to 0.001 and 0.08 %. The inner diameters of the tubes were 1.6, 2.4, and 3.2 mm. The solutions were fed to the specimens with the flow rate of 1.5 l/min. The temperature of the solution at the specimen was controlled at 140 o C. Test solutions were demineralized water or NH 3 solutions of pH 8.0, 9.2, and 10.0. The increase in pH more than 9 decreased the FAC rates of both 0.001 and 0.08 % Cr specimens at 140 o C. Increase of the Cr concentration of the material decreased the FAC rate in the solution of pH 7.0, 8.0, 9.2, and 10.0. The FAC model reproduced well dependence of the experimental FAC behavior on water chemistry. It was confirmed that effect of pH and Cr concentration of material on the FAC rate were closely related to the solubility and diffusion of iron and chromium. (author)

  8. Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla Univ. Daejeon (Korea, Republic of)

    2017-10-15

    In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the 1st - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

  9. Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.

  10. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  11. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  12. Jet flow analysis of liquid poison injection in a CANDU reactor using source term

    International Nuclear Information System (INIS)

    Chae, Kyung Myung; Choi, Hang Bok; Rhee, Bo Wook

    2001-01-01

    For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system number 2 (SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate the flow field and poison concentration formed inside the CANDU reactor calandria. As the ratio of calandria shell radius over injection nozzle hole diameter is so large (1055), it is impractical to develop a full-size model encompassing the whole calandria shell. In order to reduce the model to a manageable size, a quarter of one-pitch length segment of the shell was modeled using symmetric nature of the jet; and the injected jet was treated as a source term to avoid the modeling difficulty caused by the big difference of the hole sizes. For the analysis of an actual CANDU-6 SDS2 poison injection, the grid structure was determined based on the results of two-dimensional real- and source-jet simulations. The maximum injection velocity of the liquid poison is 27.8 m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation results have shown well-established jet flow field. In general, the jet develops narrowly at first but stretches rapidly. Then, the flow recirculates a little in r-x plane, while it recirculates largely in r-θ plane. As the time goes on, the adjacent jets contact each other and form a wavy front such that the whole jet develops in a plate form. his study has shown that the source term model can be effectively used for the analysis of the poison injection and the simulation result of the CANDU reactor is consistent with the model currently being used for the safety analysis. In the future, it is strongly recommended to analyze the transient (from helium tank to injection nozzle hole) of the poison injection by applying Bernoulli equation with real boundary conditions

  13. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  14. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  15. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    laminar-turbulent transition on slender bodies in a hypersonic flow at small angles of attack is caused by amplification of acoustic waves trapped in...x decreases and slowly approaches the no-blow distribution. These CFD data demonstrate that the injection strongly affects the near-wall flow...conclusion. Figure 10 shows that the spatial growth rates ( )  are maximal for mode 0 corresponding to the Mack second mode – typical for hypersonic

  16. Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

  17. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  18. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and selectivity. Either in order to separate/preconcentrate the analyte material, or because of the presence of potentially interfering matrix constituents. Such pretreatments are advantageously performed in flow injection (FI) or sequential injection (SI) manifolds, where all appropriate unit operations can...

  19. Spectrophotometric flow injection catalytic determination of molybdenum in plant digest using ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1987-03-01

    A spectrophotometric flow injection analytical method based on the catalytic action of molybdenum on the oxidation of iodide by hydrogen peroxide in acidic medium is proposed for the molybdenum determination in plant digests. A cation exchange resin column is incorporated into a flow injection system for removal of interferents. The following system variables were investigated and optimized: reagent concentrations, sample injection volume, mixing and reaction coil lengths, temperature, sampling time, pumping rate and concentration of eluting agents. The effects of interfering species and of the acidity of samples on the molybdenum retention by the ion exchange resin column were investigated. The proposed method is characterized by good precision (r.s.d. (2.0%), a sampling rate of about 40 samples per hour, and permits the determination of molybdenum in plant digests in the range 1.0 to 40.0 μg/l. The results compare well with those obtained by graphite furnace atomic absorption spectrometry. (author) [pt

  20. The efficacy of IntraFlow intraosseous injection as a primary anesthesia technique.

    Science.gov (United States)

    Remmers, Todd; Glickman, Gerald; Spears, Robert; He, Jianing

    2008-03-01

    The purpose of this study was to compare the efficacy of intraosseous injection and inferior alveolar (IA) nerve block in anesthetizing mandibular posterior teeth with irreversible pulpitis. Thirty human subjects were randomly assigned to receive either intraosseous injection using the IntraFlow system (Pro-Dex Inc, Santa Ana, CA) or IA block as the primary anesthesia method. Pulpal anesthesia was evaluated via electric pulp testing at 4-minute intervals for 20 minutes. Two consecutive 80/80 readings were considered successful pulpal anesthesia. Anesthesia success or failure was recorded and groups compared. Intraosseous injection provided successful anesthesia in 13 of 15 subjects (87%). The IA block provided successful anesthesia in 9 of 15 subjects (60%). Although this difference was not statistically significant (p = 0.2148), the results of this preliminary study indicate that the IntraFlow system can be used as the primary anesthesia method in teeth with irreversible pulpitis to achieve predictable pulpal anesthesia.

  1. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atom...

  2. Effect of gas field production and CO2 injection on brine flow and salt precipitation

    NARCIS (Netherlands)

    Loeve, D.; Tambach, T.J.; Hofstee, C.; Plug, W.J.; Maas, J.

    2012-01-01

    This paper reports modeling of gas field produc-tion and CO2 injection from a theoretical reser-voir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during

  3. Wavelet transform for the evaluation of peak intensities in flow-injection analysis

    NARCIS (Netherlands)

    Bos, M.; Hoogendam, E.

    1992-01-01

    The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio

  4. Wavelett transform for the evaluation of peak intensities in flow-injection analysis

    NARCIS (Netherlands)

    Bos, M.; Hoogendam, E.; Hoogendam, E.

    1992-01-01

    The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio

  5. Flow injection analysis using carbon film resistor electrodes for amperometric determination of ambroxol.

    Science.gov (United States)

    Felix, Fabiana S; Brett, Christopher M A; Angnes, Lúcio

    2008-06-30

    Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5x10(-7) to 3.5x10(-4) mol L(-1), in 0.1 mol L(-1) sulfuric acid electrolyte, as well as high sensitivity, 0.110 Amol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6x10(-8) mol L(-1) and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 microL and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0x10(-6) and 6.0x10(-5) mol L(-1) ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis.

  6. Reverse radiometric flow injection analysis (RFIA) of radioactive waste-waters with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    A new application of reverse radiometric flow injection analysis is described. RFIA was used for the analysis of radioactive wastewaters. ASIA (Ismatec) analyzer with NaI(Tl) scintillation detector was used in the study of analysis of [sup 131]I containing waste-aster. (author) 4 refs.; 3 figs.

  7. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    . The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...

  8. Determination of uranium (IV) in cloride solutions of enrichment columns by spectrometry with flow injection

    International Nuclear Information System (INIS)

    Bastos, M.B.R.

    1988-01-01

    The utilization of Flow Injection Analysis for the U (IV) spectrophotometric determination in chloride solutions is described. The method has been shown reproducible in the range of concentrations and conditions employed with a standard deviation of about 0,3. (C.G.C.) [pt

  9. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  10. Home-Made Micro Valve for Determining Malachite Green Dye by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Amal Saadoon Majeed

    2017-07-01

    Full Text Available The research is included studying and designing micro flow injection system which is characterized with rapidity, simplicity, and low cost for the determination of green malachite dye. The study of flow rate of carrier stream, repeatability, dispersion coefficient, and calibration graph are conducted. It is found that the optimum conditions for the determination of mentioned dye are flow rate 4.200 mL/min, sampling rate 102 sample/h, limit of detection 0.05 ppm, linear range (0.05-18.00 ppm with linearity (R2=0.9700, RSD is 0.355, the repeatability for seven successive injections is studied for the two concentrations 5 ppm and 12 ppm, and the dispersion coefficient values are 1.73 and 1.28 at the two concentrations 2 ppm and 9 ppm respectively.

  11. Mathematical modeling of flow-injection techniques and their applications for environmental monitoring

    International Nuclear Information System (INIS)

    Begum, N.N.; Ahmed, J.

    2006-01-01

    A classification of the existing mathematical models of flow-injection (FI) manifolds based on the main principles on which they are built, have been proposed. Numerous mathematical models of FI systems employing ideas from different scientific areas (e.g. mathematical statistics, chemical engineering, chromatography) have been developed so far. The models have been compared with respect to their predictive power, the complexity of their mathematical treatment, and the requirements for computation time when applied to single-line, multi-channel and conjugated two-line FI systems. It is concluded that the axially dispersed plug flow model deserves special attention because it offers an acceptable compromise between the conflicting requirements for maximal possible mathematical simplicity and maximal possible precision. Applicability of these existing flow-injection models to single-line, multi-channel and conjugated two-line systems for environmental monitoring have been discussed. (author)

  12. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    Science.gov (United States)

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  13. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  14. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    Science.gov (United States)

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-06

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    Science.gov (United States)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  16. Optimization of a flow injection analysis system for multiple solvent extraction

    International Nuclear Information System (INIS)

    Rossi, T.M.; Shelly, D.C.; Warner, I.M.

    1982-01-01

    The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables

  17. Adaptation of a load-inject valve for a flow injection chemiluminescence system enabling dual-reagent injection enhances understanding of environmental Fenton chemistry

    International Nuclear Information System (INIS)

    Jones, Matthew R.; Nightingale, Philp D.; Turner, Suzanne M.; Liss, Peter S.

    2013-01-01

    Graphical abstract: -- Highlights: •Measurement of multiple components of Fenton chemistry; Fe(II) and H 2 O 2 . •Rapid, quasi-simultaneous analysis enables calculation of environmental kinetics. •Low, nano to pico-molar detection limits with dual analyte analysis. •Able to measure complex matrix samples – organically enriched seawater. •Low cost system with appreciable sensitivity compared to single analyte analysis. -- Abstract: Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22 s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions

  18. Transmicrocatheter local injection of ethanol to treat hepatocellular carcinoma with high flow arteriovenous shunts

    International Nuclear Information System (INIS)

    Guan Shouhai; Shan Hong; Jiang Zaibo; Huang Mingsheng; Zhu Kangshun; Li Zhengran; Meng Xiaochun

    2002-01-01

    Objective: To evaluate the feasibility and clinical effect of embolization therapy in treating the high flow hepatic arteriovenous shunts in hepatocellular carcinoma (HCC) by locally injected ethanol through microcatheter. Methods: Forty-one branches of arteriovenous shunts were treated by local ethanol infusion through microcatheter in 29 patients suffered with HCC. Angiography was performed to observe the embolization effect and influence to non-targeted vessels. Result: Forty-one branches of arteriovenous shunts in 29 patients were injected with ethanol locally. Each single shunt was infused 1-6 times. The dose of ethanol was 2-3 ml per time, and the total dose of ethanol was 2-12 ml. All shunting tracts were embolized, and all non-target vessels were protected fluently. Iodine-oil deposition was well in continued TACE. Their syndromes were improved or disappeared. Conclusion: Transmicrocatheter injection of ethanol could safely and effectively treat the hepatic arteriovenous shunts and make advantages to TACE in HCC

  19. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  20. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko

    2013-01-01

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  1. Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent

    Science.gov (United States)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2018-02-01

    A novel reverse flow injection spectrophotometric method for the determination of ciprofloxacin was successfully combined with the on-line introduction of an iron solution extracted from soil as green reagent. The assay was optimized by a univariate method to select the optimum conditions for the highest absorbance and highest stability of the complex. Beer-Lambert's law (λmax = 440 nm) is obeyed in the range 0.5-50 μg mL- 1 with a correlation coefficient (r2) of 0.9976 and 0.9996 using soil as green reagent from Khon Kaen, Thailand and Vientiane, Laos, respectively. The average percentage recoveries were in the range of 98.55-102.14% and the precision was in the range of 0.80-1.73%. The limit of detection and the limit of quantitation were 0.20 and 0.69 μg mL- 1, respectively, with a sampling rate of over 46 samples h- 1. The method was successfully applied to the determination of ciprofloxacin in commercial pharmaceutical formulations. The results were in good agreement with those obtained by the reference HPLC method using a t-test at 95% of confidence level for comparison. This method is suitable for laboratories looking for alternative analytical methods using green reagents.

  2. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  3. Theoretical considerations of Flow Injection Analysis in the Absence of Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters are associa...... that any deviation from the features of the present model and the results of a tentative chemical reaction with one of the test compounds, is related to chemical kinetics.......The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters...

  4. Irreversibility analysis of magneto-hydrodynamic nanofluid flow injected through a rotary disk

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The non-linear Navier-Stokes equations governed on the nanofluid flow injected through a rotary porous disk in the presence of an external uniform vertical magnetic field can be changed to a system of non-linear partial differential equations by applying similar parameter. In this study, partial differential equations are analytically solved by the modified differential transform method, Pade differential transformation method to obtain self-similar functions of motion and temperature. A very good agreement is observed between the obtained results of Pade differential transformation method and those of previously published ones. Then it has become possible to do a comprehensive parametric analysis on the entropy generation in this case to demonstrate the effects of physical flow parameters such as magnetic interaction parameter, injection parameter, nanoparticle volume fraction, dimensionless temperature difference, rotational Brinkman number and the type of nanofluid on the problem.

  5. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Science.gov (United States)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  6. Modelling and Simulation of Structural Deformation of Isothermal Subsurface Flow and Carbon Dioxide Injection

    KAUST Repository

    El-Amin, Mohamed

    2011-05-15

    Injection of CO2 in hydrocarbon reservoir has double benefit. On the one hand, it is a profitable method due to issues related to global warming, and on the other hand it is an effective mechanism to enhance hydrocarbon recovery. Such injection associates complex processes involving, e.g., solute transport of dissolved materials, in addition to local changes in density of the phases. Also, increasing carbon dioxide injection may cause a structural deformation of the medium, so it is important to include such effect into the model. The structural deformation modelling in carbon sequestration is important to evaluate the medium stability to avoid CO2 leakage to the atmosphere. On the other hand, geologic formation of the medium is usually heterogeneous and consists of several layers of different permeability. In this work we conduct numerical simulation of two-phase flow in a heterogeneous porous medium domain with dissolved solute transport as well as structural deformation effects. The solute transport of the dissolved component is described by concentration equation. The structural deformation for geomechanics is derived from a general local differential balance equation with neglecting the local mass balance of solid phase and the inertial force term. The flux continuity condition is used at interfaces between different permeability layers of the heterogeneous medium. We analyze the vertical migration of a CO2 plume injected into a 2D layered reservoir. Analysis of distribution of flow field components such as saturation, pressures, velocities, and CO2 concentration are presented.

  7. Spectrophotometric determination of uranium and thorium with arsenazo III in the flow injection system

    International Nuclear Information System (INIS)

    Andrade, M. das G.M. de.

    1986-12-01

    A simple system for flow injection analysis (FIA) with double confluence was built using a filter photocolorimeter, an analogic potentiometer, 'plexiglass' flow cuvettes, polyethylene colls and tubes, 'plexiglass' commuter and peristaltic pump to introduce solutions and gravity as flow source. The system was dimensioned and studied using only Arsenazo III solutions. Spectrophotometric methods for uranium and thorium using Arsenazo III were studied using a scanning spectrophotometer and after chosing adequate red filter, adapted to photocolorimetry using flow cuvettes and FIA. Synthetic samples, phosphate rock, and process samples from uranium recovery of dolomites were analysed. Rocks of Morro do Ferro (MG, Brazil), Caldasite (Baddeleyte + Zirconite), Zirconite, Monazite from a program for certification and certified rocks (Dunite DC-1, CANMET) were analysed without chemical separation of Th (IV) and with ion exchange separation in semi-micro columns of cation exchange resin (Dowex 50). (Author) [pt

  8. Flow injection spectrophotometric determination of low concentrations of orthosphate in natural waters employing ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1981-01-01

    A simple and fast method for the determination of low concentrations of orthophosphate in natural waters is described. Ion exchange is incorporated into a flow injection system by usina a resin column in the sample loop of a proportion injector. Effects of sample aspiration rate, sampling time, eluting agent concentration, pumping rate of the sample carrier stream and interfaces, were investigated both using 32 PO 3- 4 or 31 PO 3- 4 with columns coupled to a gerger-muller detector and incorporated in a flow system with molybdenum blue colorinetry. (M.A.C.) [pt

  9. Numerical Simulation of Magnetic Nanoparticles Injection into Two–phase Flow in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2017-06-09

    In this paper, the problem of magnetic nanoparticles injection into a water–oil two–phase flow under an external permanent magnetic field is investigated. The mathematical model of the problem under consideration has been developed. We treat the water-nanoparticles suspension as a miscible mixture while it is immiscible with the oil phase. The magnetized phase pressure includes an additional pressure term with the conventional thermodynamic pressure. The countercurrent imbibition flow problem is taken as an example. Physical variables including water–nanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat deposited nanoparticles are investigated under the influence of the magnetic field.

  10. Entropy Generation in a Rotating Couette Flow with Suction/Injection

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-05-01

    Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.

  11. The determination, by flow-injection analysis, of iron, sulphate, silver and cadmium

    International Nuclear Information System (INIS)

    Jones, E.A.

    1983-01-01

    This report describes the spectrophotometric determination by flow-injection analysis including, where necessary, liquid-liquid extraction of iron with 1,10-phenanthroline; of sulphate by its catalytic effect on the methylthymol blue-zirconium reaction; of silver with bromopyrogallol red and 1,10-phenanthroline; and of cadmium with dithizone. Optimum conditions for each system are established, and sensitivities and ranges of determination are given

  12. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  13. Micelle-mediated methodology for the preconcentration of uranium prior to its determination by flow injection

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Laespada, M E; Perez Pavon, J L; Moreno Cordero, B [Univ. de Salamanca (Spain). Dept. de Quimica Analitica, Nutricion y Bromatologia

    1993-02-01

    Cloud point extraction has been used for the preconcentration of uranium, prior to its determination by flow injection. The non-ionic surfactant employed was Triton X-114 and the reagent chosen to form a hydrophobic chelate of uranium was 1-(2-pyridylazo)-2-naphthol. The optimum conditions for the preconcentration and determination of uranium have been studied. This methodology has been applied to the determination of trace amounts of uranium in tap and river waters from Salamanca. (Author).

  14. Determination of albumin in bronchoalveolar lavage fluid by flow-injection fluorometry using chromazurol S.

    Science.gov (United States)

    Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Saito, Yutaka; Nagai, Sonoko

    2008-03-01

    A highly sensitive flow injection fluorometry for the determination of albumin was developed and applied to the determination of albumin in human bronchoalveolar lavage fluids (BALF). This method is based on binding of chromazurol S (CAS) to albumin. The calibration curve was linear in the range of 5-200 microg/ml of albumin. A highly linear correlation (r=0.986) was observed between the albumin level in BALF samples (n=25) determined by the proposed method and by a conventional fluorometric method using CAS (CAS manual method). The IgG interference was lower in the CAS flow injection method than in the CAS manual method. The albumin level in BALF collected from healthy volunteers (n=10) was 58.5+/-13.1 microg/ml. The albumin levels in BALF samples obtained from patients with sarcoidosis and idiopathic pulmonary fibrosis were increased. This finding shows that the determination of albumin levels in BALF samples is useful for investigating lung diseases and that CAS flow injection method is promising in the determination of trace albumin in BALF samples, because it is sensitive and precise.

  15. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  16. Fluoroscopically Guided Extraforaminal Cervical Nerve Root Blocks: Analysis of Epidural Flow of the Injectate with Respect to Needle Tip Position

    Science.gov (United States)

    Shipley, Kyle; Riew, K. Daniel; Gilula, Louis A.

    2013-01-01

    Study Design Retrospective evaluation of consecutively performed fluoroscopically guided cervical nerve root blocks. Objective To describe the incidence of injectate central epidural flow with respect to needle tip position during fluoroscopically guided extraforaminal cervical nerve root blocks (ECNRBs). Methods Between February 19, 2003 and June 11, 2003, 132 consecutive fluoroscopically guided ECNRBs performed with contrast media in the final injected material (injectate) were reviewed on 95 patients with average of 1.3 injections per patient. Fluoroscopic spot images documenting the procedure were obtained as part of standard quality assurance. An independent observer not directly involved in the procedures retrospectively reviewed the images, and the data were placed into a database. Image review was performed to determine optimal needle tip positioning for injectate epidural flow. Results Central epidural injectate flow was obtained in only 28.9% of injections with the needle tip lateral to midline of the lateral mass (zone 2). 83.8% of injectate went into epidural space when the needle tip was medial to midline of the lateral mass (zone 3). 100% of injectate flowed epidurally when the needle tip was medial to or at the medial cortex of the lateral mass (zone 4). There was no statistically significant difference with regards to central epidural flow and the needle tip position on lateral view. Conclusion To ensure central epidural flow with ECNRBs one must be prepared to pass the needle tip medial to midplane of the lateral mass or to medial cortex of the lateral mass. Approximately 16% of ECNRBs with needle tip medial to midline of the lateral mass did not flow into epidural space. One cannot claim a nerve block is an epidural block unless epidural flow of injectate is observed. PMID:24494176

  17. Indications of Segmental Flow in Straight Pipes by Flow Injection with Spectrophotometric Detection

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    A procedure of spectrophotometric analysis of fluid flow in pipes is described and its performance is tested on three different dye compounds. The procedure follows measurement and mathematical de-convolution of the signal with an exponential function that is associated with molecular diffusion. ...

  18. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    Directory of Open Access Journals (Sweden)

    Jaroon Jakmunee

    2008-06-01

    Full Text Available A stopped-flow injection (FI spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product zone. When the flow started again, a concentrated product zone was pushed into a flow cell and a signal profile due to light absorption of the product was recorded. Employing a lab-built semi-automatic stopped-FI analyser, the analysis can be performed with higher degree of automation and low chemical consumption. Linear calibration graph in the range of 5-50 mg ClO3- L-1 was obtained, with detection limit of 1.4 mg ClO3- L-1. Relative standard deviation of 2.2% (30 mg ClO3- L-1, n=10 and sample throughput of about 20 h-1 were achieved. The system was applied to soil samples and validated by batch spectrophotometric and standard titrimetric methods.

  19. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  20. Three-dimensional simulation of flow and combustion for pulverised coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.Y.; Zulli, P.; Rogers, H.; Mathieson, J.G.; Yu, A.B. [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    A three-dimensional numerical model of pulverised coal injection has been developed for simulating coal flow and combustion in the tuyere and raceway of a blast furnace. The model has been used to simulate previously reported combustion tests, which feature an inclined co-axial lance with an annular cooling gas. The predicted coal burnout agrees well with that measured for three coals with volatile contents and particle size ranging between 20.2-36.4% and particle sizes 1-200 {mu}m. Many important phenomena including flow asymmetry, recirculating flow and particle dispersion in the combustion chamber have been predicted. The current model can reproduce the experimental observations including the effects on burnout of coal flowrate and the introduction of methane for lance cooling.

  1. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  2. Dispersion-convolution model for simulating peaks in a flow injection system.

    Science.gov (United States)

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  3. MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the influence of thermal radiation and chemical reaction on two dimensional steady magnetohydrodynamic flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of suction/injection. We considered nanofluid volume fraction on the boundary is submissive controlled, which makes the present study entirely different from earlier studies and physically more realistic. The equations governing the flow are solved numerically. Effects of non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. Also, coefficient of skin friction and local Nusselt number is investigated for stretching/shrinking and suction/injection cases separately and presented through tables. Comparisons with existed results are presented. Present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that the enhancement in Brownian motion and thermophoresis parameters depreciates the nanoparticle concentration and increases the mass transfer rate. Dual solutions exist only for certain range of stretching/shrinking and suction/injection parameters.

  4. Cerebral blood flow in the occlusive cerebrovascular disease. 133Xe intravenous injection method

    Energy Technology Data Exchange (ETDEWEB)

    Kuda, Hitoshi; Mukawa, Jiro; Takara, Eiichi; Kinjo, Toshihiko; Ishikawa, Yasunari

    1988-04-01

    From December 1985 to May 1986, cerebral blood flow (CBF) was studied in 11 patients with occlusive cerebrovascular diseases confined by angiography. 133Xe (5mci) intravenous injection method designed by Kuikka and coworkers was applied for the measurement of regional-CBF and mean-CBF, and the calculation was based on the initial slope index. They were composed of 4 patients of the middle cerebral artery occlusion, 2 of the posterior cerebral artery occlusion, 1 of the internal carotid artery occlusion, 2 of the middle cerebral artery stenosis, 1 of the internal carotid artery stenosis, and 1 of the anterior cerebral artery stenosis. The period from the vascular attack to the initial CBF study was 2-29 days(mean 9.2 days). Recovery of mean-CBF was correlated with clinical and neurological improvement, and vice versa. There was no correlation between mean-CBF and neurological severity. CBF study alone is not sufficient to evaluate neuronal conditions in the occlusive disease. Additional other means, such as CT-scan, angiography and etc. should be requested for it. Intravenous 133Xe injection technique has an advantage over intracarotid injection method; less dangerous, especially in ages and capable of simultaneous measurement of bilateral hemisphere. Considering /sup c/ross talk/sup /regional-CBF of a low density area on X-ray CT-scan was equal to the one obtained by intracarotid injection method.

  5. Study of process parameters on two phase flow agitated by top blowing lance injection into a bath

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jiliang; Ahokainen, T.; Holappa, L.

    1998-12-31

    Numerical investigation has been carried out for two phase flow in a bath agitated by top blowing lance injection. Eulerian two phase flow model is used. Lance immersion depth, injection gas flow rate, nozzle diameter, and bubble size have been systematically changed to examine their influence on the flow characteristics in the bath. It is found that there appear three typical flow patterns: one-vortex, two-vortex, and three-vortex type, with changing the injection gas flow rate or/and the nozzle diameter at moderate lance immersion depth. Predicted velocities are in a good agreement with Iguchi et al.`s experimental data and the main findings are also consistent with the measurements and observations of Chatterjee and Hsiao and Lehner. (orig.) 24 refs. Computational Fluid Dynamics Technology Programme

  6. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination

    DEFF Research Database (Denmark)

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-01-01

    In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit into the w...

  7. How Flow Injection Analysis (FIA) over the past 25 years has changed our way of performing chemical analyses

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2007-01-01

    Briefly looking back on the impact of flow injection analysis (FIA), as reflected in the rapid growth of publications in the scientific literature, and touching upon many of the novel and unique analytical chemical possibilities that FIA and its sequels, sequential injection analysis (SIA) and La...

  8. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Science.gov (United States)

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  9. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari

    2017-12-01

    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  10. O-(β-hydroxyethylrutosides determination by micellar flow injection (FI-spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Cecilia Mariana Peralta

    2014-12-01

    Full Text Available A simple, eco-friendly, sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethylrutosides. The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethylrutosides fluorescence enhancement, increasing considerably the sensitivity of detection. All the variables affecting the fluorescence intensity were studied and optimized. The flow rate was 5 mL/min with detection at 450 nm (after excitation at 346 nm. A linear correlation between drug amount and peak area was established for O-(β-hydroxyethylrutosides in the range of 0.01–200 µg/mL with a detection limit of 0.001 µg/mL (s/n=3. Validation processes were performed by recovering studies with satisfactory results. The new methodology can be employed for the routine analysis of O-(β-hydroxyethylrutosides in bulks as well as in commercial formulations. Keywords: O-(β-hydroxyethylrutosides, Micellar enhancement, Flow injection, Spectrofluorimetry, Pharmaceuticals

  11. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor.

    Science.gov (United States)

    Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A

    2010-12-15

    This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor

    International Nuclear Information System (INIS)

    Noroozifar, M.; Khorasani-Motlagh, M.; Hosseini, S.-N.

    2005-01-01

    A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L -1 with a detection limit 0.2 mg L -1 and sampling rate 72 h -1 . The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%

  13. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    Science.gov (United States)

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Renal blood flow after selective injection of different dosages of diatrizoate into the renal artery

    International Nuclear Information System (INIS)

    Burgener, F.A.; Fischer, H.W.; Weber, D.A.

    1975-01-01

    The characteristic biphasic renal haemodynamic response to diatrizoate injected into the renal artery was shown in the dog with the 133-xenon washout technique. A brief increase in renal blood flow (RBF) during the first ten seconds is followed by a more prolonged period of diminuished RBF. A dose of 4 ml. diatrizoate 60% resulted in the maximum RBF increase of 43% after ten seconds, but even 1 ml. diatrizoate raised the RBF 24%. The initial vasodilator effect of diatrizoate compares well in its extent with the most potent renal vasodilators. (orig.) [de

  15. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  16. The determination of uranium(VI) by flow-injection analysis

    International Nuclear Information System (INIS)

    Jones, E.A.

    1985-01-01

    A method is described for the direct determination of uranium(VI) in waste waters and acid leach liquors by use of a flow-injection procedure and spectrophotometric measurement with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (bromo-PADAP). The interference effects of several commonly occurring elements were studied. The calibration curve is linear over concentrations of uranium(VI) from 0,5 to 20 mg/1, and the precision obtained on a synthetic leach liquor was 0,019 (relative standard deviation). The procedure is rapid and convenient, and up to 40 samples can be analysed in an hour

  17. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    OpenAIRE

    Gervasio,Ana P. G.; Miranda,Carlos E. S.; Luca,Gilmara C.; Tumang,Cristiane A.; Campos,Luis F. P.; Reis,Boaventura F.

    2001-01-01

    A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III) and Cr(III), a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0...

  18. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    Science.gov (United States)

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  19. Photometric estimation of plutonium in product solutions and acid waste solutions using flow injection analysis technique

    International Nuclear Information System (INIS)

    Dhas, A.J.A.; Dharmapurikar, G.R.; Kumaraguru, K.; Vijayan, K.; Kapoor, S.C.; Ramanujam, A.

    1995-01-01

    Flow injection analysis technique is employed for the measurement of plutonium concentrations in product nitrate solutions by measuring the absorbance of Pu(III) at 565 nm and of Pu(IV) at 470 nm, using a Metrohm 662 photometer, with a pyrex glass tube of 2 nm (ID) inserted in the light path of the detector serving as a flow cell. The photometer detector never comes in contact with radioactive solution. In the case of acid waste solutions Pu is first purified by extraction chromatography with 2-ethyl hexyl hydrogen 2 ethyl hexyl phosphonate (KSM 17)- chromosorb and the Pu in the eluate in complexed with Arsenazo III followed by the measured of absorbance at 665 nm. Absorbance of reference solutions in the desired concentration ranges are measured to calibrate the system. The results obtained agree with the reference values within ±2.0%. (author). 3 refs., 1 tab

  20. Effect of intracoronary nitroprusside injection on flow recovery during primary PCI in acute STEMI patients.

    Science.gov (United States)

    Yang, Lixia; Mu, Lihua; Sun, Linhui; Qi, Feng; Guo, Ruiwei

    2017-04-01

    The no/slow reflow phenomenon during primary percutaneous coronary intervention (PPCI) causes the destruction of the coronary microcirculation and further myocardial damage. Some studies have shown that intracoronary nitroprusside infusion is a safe and effective method for managing the no/slow reflow phenomenon. However, it is uncertain whether the injection of nitroprusside at a specific time point during PPCI can most effectively prevent no-reflow. In this study, we investigated the effect of the timing of an intracoronary nitroprusside injection on flow recovery during PPCI in patients with ST elevation acute myocardial infarction (STEMI). One hundred twenty consecutive patients with STEMI who underwent PPCI were enrolled in the study. Patients who fulfilled the eligibility criteria were randomly allocated to three groups: control group (N.=40) received no nitroprusside before they completed PCI; the second group (N.=40) received nitroprusside before balloon dilatation; and the third group (N.=40) received nitroprusside after each balloon dilatation and before contrast agent refilling. The baseline clinical variables and the details of the PCI procedure were collected. The thrombolysis in myocardial infarction (TIMI) flow grades and the corrected TIMI frame count (cTFC) were evaluated immediately after stent implantation was completed. There were no significant differences in the baseline characteristics, antithrombotic drugs given before PCI, and details of the PCI procedure among the three groups (P>0.05). The incidence of TIMI grade 3 after PCI was significantly higher in the nitroprusside group than in the control group (P=0.025), whereas cTFC was significantly lower in the nitroprusside group (26.6±15.2) than in the control group (38.1±21.3, P=0.001). The incidence of TIMI grade 3 after PCI was significantly higher in the third group than in the second group (P=0.045), and cTFC was significantly lower in the third group (21.5±9.5) than in the second

  1. Polyion selective polymeric membrane-based pulstrode as a detector in flow-injection analysis.

    Science.gov (United States)

    Bell-Vlasov, Andrea K; Zajda, Joanna; Eldourghamy, Ayman; Malinowska, Elzbieta; Meyerhoff, Mark E

    2014-04-15

    A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis.

  2. A novel stopped flow injection-amperometric procedure for the determination of chlorate.

    Science.gov (United States)

    Tue-Ngeun, Orawan; Jakmunee, Jaroon; Grudpan, Kate

    2005-12-15

    A novel stopped flow injection-amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55+/-0.5 degrees C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2x10(-6)-6.0x10(-5)moll(-1)and 6.0x10(-5)-6.0x10(-4)moll(-1). A sample throughput of 25h(-1) was accomplished. Relative standard deviation was 2% (n=21, 1.2x10(-4)moll(-1) chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.

  3. Indirect flow injection determination of N-acetyl-L-cysteine using cerium(IV) and ferroin

    International Nuclear Information System (INIS)

    Vieira, Heberth Juliano; Fatibello-Filho, Orlando

    2005-01-01

    An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen) 2 ] 2+ ) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen) 2 ] 3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10 -6 to 1.3x10 -4 mol L -1 . The detection limit was 5.0x10 -6 mol L -1 and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10 -5 mol L -1 N-acetyl-L-cysteine. (author)

  4. Stopped-flow injection method for determination of phosphate in soils and fertilisers

    Directory of Open Access Journals (Sweden)

    Jaroon Jakmunee

    2008-02-01

    Full Text Available A stopped-flow injection system for the determination of phosphate has been developed. It involves the phosphate-molybdate-ascorbic acid reactions in the molybdenum blue method. The system is controlled by a semi-automatic stopped-FI analyser with a light emitting diode (LED-colorimeter for monitoring the absorbance change relating to the concentration of a reaction product formed during the stopping period while the injected zone of a standard or sample is being in the flow cell. The slope of the FIAgram obtained is linearly proportional to the reaction rate, which depends on the phosphate concentration. Effects of concentration of reagents, viz. sodium molybdate, ascorbic acid and nitric acid, on the slope of the FIAgram were studied. The suitable concentration is 0.02 M, 0.25 %w/v and 0.15 M, respectively. A linear calibration graph in the range of 0.3-6.0 mg P L-1 was employed for the determination of phosphate in soil and fertiliser samples. The results obtained agree well with those from a standard spectrophotometric method.

  5. Determination of pH by flow-injection analysis and by fiber-optrode analysis

    International Nuclear Information System (INIS)

    Pia, S.H.; Waltman, D.P.; Hillman, D.C.

    1988-07-01

    Two new procedures for measuring pH were developed. The first measures pH colorimetrically using a proprietary indicator-dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber-optic chemical sensor (FOCS) specifically developed for pH determinations. The FOCS method measures pH by monitoring the fluorescence of a fluorescein derivative bonded to the distal end of a fiber-optic cable called an optrade. The FIA method currently has a precision and accuracy of about + or - 0.2 pH units and can measure 100 samples/hour. The FOCS method has a precision of + or - 0.05-0.20 pH units and an accuracy of + or - 0.1 to 0.6 pH units. About 10 to 60 samples can be analyzed. The characteristics of the FOCS Method will vary significantly with individual optrodes. The experimental results indicate that either flow-injection analysis or fiber optic chemical sensor analysis could form the basis for an alternative to electrometric measurement of pH in certain circumstances

  6. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.

    Science.gov (United States)

    Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-06-15

    In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Preliminary three-dimensional potential flow simulation of a five-liter flask air injection experiment

    International Nuclear Information System (INIS)

    Davis, J.E.

    1977-01-01

    The preliminary results of an unsteady three-dimensional potential flow analysis of a five-liter flask air injection experiment (small-scale model simulation of a nuclear reactor steam condensation system) are presented. The location and velocity of the free water surface in the flask as a function of time are determined during pipe venting and bubble expansion processes. The analyses were performed using an extended version of the NASA-Ames Three-Dimensional Potential Flow Analysis System (POTFAN), which uses the vortex lattice singularity method of potential flow analysis. The pressure boundary condition at the free water surface and the boundary condition along the free jet boundary near the pipe exit were ignored for the purposes of the present study. The results of the analysis indicate that large time steps can be taken without significantly reducing the accuracy of the solutions and that the assumption of inviscid flow should not have an appreciable effect on the geometry and velocity of the free water surface. In addition, the computation time required for the solutions was well within acceptable limits

  8. The effect of intralesional steroid injections on the volume and blood flow in periocular capillary haemangiomas.

    Science.gov (United States)

    Verity, David H; Rose, Geoffrey E; Restori, M

    2008-01-01

    To examine the effect of steroid therapy on the volume estimates and blood flow characteristics of childhood periorbital capillary haemangiomas. Children at risk of amblyopia due to periorbital haemangiomas were treated with intralesional steroid injections (between 1 and 4 courses) and serial assessment of the volume and blood-flow characteristics of the lesions measured using colour Doppler ultrasonography. The characteristics of the haemangiomas in these children were compared with a cohort of untreated cases. Eight of nine treated children were female, this proportion being significantly different from the equal sex distribution of an untreated cohort (p suppression persisting for several months (between 5 and 20) before the lesion later displays the cyclic fluctuations in volume and flow seen with untreated lesions. All treated haemangiomas had some residual vascular anomaly, detectable on ultrasonography, at last follow-up--this being despite absence of clinical signs in most cases. Periorbital capillary haemangiomas requiring steroid therapy for risk of amblyopia were significantly commoner in females, were larger lesions and presented at an earlier age. Intralesional steroids appear to cause a reduction of blood flow, with a transient reduction in volume and a suppression of the natural cyclic variation seen without treatment. The changes after a course of steroid therapy appear to last for between 5 and 20 months, this period of suppression of the lesion probably being particularly useful during infancy and early childhood when the child is at greatest risk of amblyopia.

  9. Development of flow injection method for indirect copper determination with amperometric detection in drinking water samples

    Directory of Open Access Journals (Sweden)

    Nikolić-Mandić Snežana

    2012-01-01

    Full Text Available A gas-diffusion flow injection method with amperometric detection for indirect copper determination on a silver electrode is developed. The flow through system is equipped with two injection valves and a gas-diffusion unit. In the first step, a signal of cyanide solution was recorded. In the following step a signal of cyanide in the presence of copper was measured. Interferences (Cd(II, Co(II, Ag(I, Ni(II, Fe(III, Hg(II and Zn(II were investigated and successfully removed. The calibration graph is linear in the range 1-90 μmol dm-3 of copper, correlation coefficient is 0.993, the regression equation is I = (0.0455±0.0015c + (0.4611±0.0671, I is relative signal decrease in μA and c is concentration in μmol dm-3. Relative standard deviation for six consecutive injections of 30 μmol dm-3 copper(II was 1.47 % and for 1 μmol dm-3 copper(II was 3.40 %. The detection limit, calculated as 3 s/m (where s is a standard deviation of nine measurement of a reagent blank and m is the slope of the calibration curve, was 0.32 μmol dm-3, which corresponds to 2.44 ng of copper(II (loop volume was 0.12 cm3. The method enables 60 analyses per hour and it was successfully applied on determination of copper in drinking water samples. [Acknowledgements. The authors acknowledge the grant from the Ministry of Education and Science of the Republic of Serbia, Project number 172051

  10. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  11. LC-HR-MS/MS standard urine screening approach: Pros and cons of automated on-line extraction by turbulent flow chromatography versus dilute-and-shoot and comparison with established urine precipitation.

    Science.gov (United States)

    Helfer, Andreas G; Michely, Julian A; Weber, Armin A; Meyer, Markus R; Maurer, Hans H

    2017-02-01

    Comprehensive urine screening for drugs and metabolites by LC-HR-MS/MS using Orbitrap technology has been described with precipitation as simple workup. In order to fasten, automate, and/or simplify the workup, on-line extraction by turbulent flow chromatography and a dilute-and-shoot approach were developed and compared. After chromatographic separation within 10min, the Q-Exactive mass spectrometer was run in full scan mode with positive/negative switching and subsequent data dependent acquisition mode. The workup approaches were validated concerning selectivity, recovery, matrix effects, process efficiency, and limits of identification and detection for typical drug representatives and metabolites. The total workup time for on-line extraction was 6min, for the dilution approach 3min. For comparison, the established urine precipitation and evaporation lasted 10min. The validation results were acceptable. The limits for on-line extraction were comparable with those described for precipitation, but lower than for dilution. Thanks to the high sensitivity of the LC-HR-MS/MS system, all three workup approaches were sufficient for comprehensive urine screening and allowed fast, reliable, and reproducible detection of cardiovascular drugs, drugs of abuse, and other CNS acting drugs after common doses. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    Science.gov (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  13. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    Science.gov (United States)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  14. On-line Determination of the Deuterium Abundance in Breath Water Vapour by Flowing Afterglow Mass Spectrometry with Applications to Measurements of Total Body Water

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2001-01-01

    Roč. 15, č. 1 (2001), s. 25-32 ISSN 0951-4198 R&D Project s: GA ČR GA203/00/0632 Grant - others:Royal Society(GB) Joint project Institutional research plan: CEZ:AV0Z4040901 Keywords : flowing afterglow * mass spectrometry * stable isotopes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.478, year: 2001

  15. Channel flow induced by wall injection of fluid and particles; Ecoulement induit par injection parietale de fluide et de particules dans un conduit

    Energy Technology Data Exchange (ETDEWEB)

    Feraille, Th.; Casalis, G. [Aerodynamics and Energetics Modeling Dept., 31 - Toulouse (France)

    2003-12-01

    The Taylor flow is the laminar single phase flow induced by gas injection through porous walls, and is assumed to represent the flow inside solid propellant motors. Such a flow is intrinsically unstable, and the generated instabilities are probably responsible for the thrust oscillations observed in the aforesaid motors. However particles are embedded in the propellants usually used, and are released in the fluid by the lateral walls during the combustion, so that there are two heterogeneous phases in the flow. The purpose of this paper is to study the influence of these particles on stability by comparison with stability results from the single phase studies, in a plane two-dimensional configuration. The particles are supposed to be chemically inert and of a uniform size. In order to carry out a linear stability study for this flow modified by the presence of particles, the mean particle velocity field is first determined, assuming that only the gas exerts forces on the particles. This field is sought in a self similar form, which imposes a limit on the size of the particles. However, the particle mass concentration cannot be obtained in a self similar form, but can only, be described by a partial differential equation. The mean flow characteristics being determined, the spectrum of the discretized linear stability operator shows first that particle addition does not trigger any new 'dangerous' modes compared with the single phase flow case. It also shows that the most amplified mode in the case of the single phase flow remains the most amplified mode in the case of the two phase flow. Moreover, the addition of particles acts continuously upon stability results, behaving linearly with respect to the particle mass concentration when the latter is small. The linear correction to the monophasic mode, as well as the evolution of the modes with weak values of the particle mass concentration at the wall, are shown to be proportional to the ejection velocity of

  16. Model and simulation for melt flow in micro-injection molding based on the PTT model

    International Nuclear Information System (INIS)

    Cao, Wei; Kong, Lingchao; Li, Qian; Ying, Jin; Shen, Changyu

    2011-01-01

    Unsteady viscoelastic flows were studied using the finite element method in this work. The Phan-Thien–Tanner (PTT) model was used to represent the rheological behavior of viscoelastic fluids. To effectively describe the microscale effects, the slip boundary condition and surface tension were added to the mathematical model for melt flow in micro-injection molding. The new variational equation of pressure, including the viscoelastic parameters and slip boundary condition, was generalized using integration by parts. A computer code based on the finite element method and finite difference method was developed to solve the melt flow problem. Numerical simulation revealed that the melt viscoelasticity plays an important role in the prediction of melt pressure, temperature at the gate and the succeeding melt front advancement in the cavity. Using the viscoelastic model one can also control the rapid increase in simulated pressure, temperature, and reduce the filling difference among different cavities. The short shot experiments of micro-motor shaft showed that the predicted melt front from the viscoelastic model is in fair agreement with the corresponding experimental results

  17. Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection

    International Nuclear Information System (INIS)

    Yaqoob, M.; Nabi, A.

    2013-01-01

    A simple and sensitive flow injection spectrophotometric method is reported for the room temperature determination of nitrite and nitrate based on the Griess reaction and a copperised cadmium column for reduction of nitrate. Calibration graphs were linear over the range 2 - 1000 micro g N L /sup -1/ (R2 = 0.9997 and 0.9999, n = 9) with a limit of detection (3 s.d.) of 1.0 micro g N L and relative standard deviations (n = 10) of 0.9 and 1.2% for 50 micro g N L nitrite and nitrate respectively. The sample throughput was 50 h. The effect of reagent concentrations, physical parameters (flow rate, sample volume, reaction coil and copperised cadmium column length) and the potential interferences are reported. The effect of salinity on the blank and on the determination of nitrite and nitrate are also presented. The method was applied to natural waters (rainwater, freshwater and estuarine water) and the results for nitrite + nitrate (140 - 7310 micro g N L/sup -1/) were not significantly different (95% confidence interval) from results obtained using a segmented flow analyser reference method with spectrophotometric detection. (author)

  18. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Radulescu

    2014-01-01

    Full Text Available A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX, carboxyl esterase (CaE and bovine serum albumin (BSA were immobilised with glutaraldehyde (GA onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC. The biosensor response was fast. The sample throughput using a flow injection analysis (FIA system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples without any pre-treatment step prior to measurement.

  19. Method for 236U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter

    2015-01-01

    An automated analytical method implemented in a flow injection (FI) system was developed for rapid determination of 236U in 10 L seawater samples. 238U was used as a chemical yield tracer for the whole procedure, in which extraction chromatography (UTEVA) was exploited to purify uranium, after...... experimental parameters affecting the analytical effectiveness were investigated and optimized in order to achieve high chemical yields and simple and rapid analysis as well as low procedure background. Besides, the operational conditions for the target preparation prior to the AMS measurement were optimized......, on the basis of studying the coprecipitation behavior of uranium with iron hydroxide. The analytical results indicate that the developed method is simple and robust, providing satisfactory chemical yields (80−100%) and high analysis speed (4 h/sample), which could be an appealing alternative to conventional...

  20. Filterless preconcentration, flow injection analysis and detection by inductively-coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    The influence of interferences in the analysis of elements by inductively-coupled-plasma mass-spectrometry (ICP-MS) may be significantly diminished by utilising a protocol of flow-injection analysis (FIA). The method is based on filterless preconcentration of metallic elements at the walls...... of a knotted reactor that was made of nylon tubings. In the load mode, the preconcentration was accomplished by precipitation of metallic species in alkaline-buffered carriers onto the inner walls of the hydrofilic tube. After a preconcen-tration period of 40-120 seconds using sample volumes of 4-10 m...... of 10-30 were obtained in the analysis of aluminium, of chromium and of iron, which resulted in detection limits (3) down to 20 g/L at a sampling frequency of 50 per hour. The preconcentration protocol improves the selectivity thus allowing direct determination of the elements in saline media. Anionic...

  1. Sibutramine selective electrodes for batch and flow injection determinations in pharmaceutical preparations.

    Science.gov (United States)

    Zayed, S I M; Issa, Y M

    2010-01-01

    The construction and electrochemical response characteristics of two new polyvinyl chloride (PVC) membrane sensors for the determination of sibutramine hydrochloride were described. The sensors are based on the ion association complexes of sibutramine with sodium tetraphenylborate (NaTPB) or phosphotungstic acid (PTA) using dibutyl phthalate as plasticizing solvent. The sensors display a fast, stable response over the concentration range 3.84 x 10(-5)-1.00 x 10(-2) M sibutramine hydrochloride monohydrate (SibuCl), with cationic slopes of 57.7 +/- 0.57 and 59.7 +/- 1.79 mV concentration decade(-1) and detection limits of 8.91 x 10(-6) and 1.47 x 10(-5) M in case of sibutramine-tetraphenylborate (Sibu-TPB) and sibutramine-phosphotungstate ((Sibu)(3)-PT), respectively. The proposed sensors have been successfully applied for the determination of sibutramine hydrochloride in Regitrim capsules in batch and flow injection (FI) conditions.

  2. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    Science.gov (United States)

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  3. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  4. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    International Nuclear Information System (INIS)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-01-01

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10 -5 to 0.26 μg ml -1 for calf thymus DNA and 5.0x10 -8 to 5.0x10 -5 μg ml -1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5x10 -6 μg ml -1 for calf thymus DNA and 4.3x10 -8 μg ml -1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed

  5. Determination of uranium in organic phase by flow injection spectrophotometric analysis

    International Nuclear Information System (INIS)

    Yu Yiyun

    1998-01-01

    Based on the use of merging zone circuit and simulating a series of standard solution of uranium in organic phase, uranium in unknown organic phase sample was determined by flow injection spectrophotometry. A linear calibration graph was obtained with correlation coefficient of 0.999 for uranium concentration in organic phase over 10∼200 mg/L. Isopropyl alcohol was used as carrier solution. Mixing colour solution contains isopropyl alcohol, triethanolamine, masking reagent and Br-PADAP. The relative standard deviation of the method was better than +-5%. Determination of each sample can be completed in one minute. The method characteristic is: (1) using merging zone and simulating standard solution of uranium in organic phase, the method is sensitive and reliable; (2) even if the determined solution was in turbid condition, it can be quantitatively determined; (3) by means of solution replace technique, the tube of peristaltic pump can be used over a long period of time

  6. Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of {alpha}-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yafeng [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China); Zhuang Yafeng [Department of Chemistry, Changzhou Institute of Technology, Changzhou 213022 (China); Liu Songqin [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: liusq@seu.edu.cn; He Lin [Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (United States)

    2008-12-23

    A reusable and sensitive immunoassay based on phenylboronic acid immunoaffinity reactor in combination with flow injection chemiluminescence (CL) for determination of glycoprotein was described. The reactor was fabricated by immobilizing 3-aminophenylboronic acid (APBA) on glass microbeads with {gamma}-glycidoxypropyltrimethoxysilane (GPMS) as linkage. The {alpha}-fetoprotein (AFP) could be easily immobilized on the APBA coated beads through sugar-boronic interaction. After an off-line incubation, the mixture of the analyte AFP with horseradish peroxidase-labeled AFP antibody (HRP-anti-AFP) was injected into the reactor. This led the trapping of free HRP-anti-AFP by the surface coated AFP on glass beads. The trapped HRP-anti-AFP was detected by chemiluminescence due to its sensitizing effect on the reaction of luminol and hydrogen peroxide. Under optimal conditions, the chemiluminescent signal was proportional to AFP concentration in the range of 10-100 ng mL{sup -1}. The whole assay process including regeneration of the reactor could be completed within 31 min. The proposed system showed acceptable detection and fabrication reproducibility, and the results obtained with the present method were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. The described method enabled a low-cost, time saving and was potential to detect the serum AFP level in clinical diagnosis.

  7. Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea.

    Science.gov (United States)

    Tontrong, Sopa; Khonyoung, Supada; Jakmunee, Jaroon

    2012-05-01

    A flow injection (FI) spectrophotometric method with using natural reagent extracted from Morinda citrifolia root has been developed for determination of aluminium. The extract contained anthraquinone compounds which could react with Al(3+) to form reddish complexes which had maximum absorption wavelength at 499.0nm. The extract could be used as a reagent in FI system without further purification to obtain pure compound. A sensitive method for determination of aluminium in concentration range of 0.1-1.0mgL(-1), with detection limit of 0.05mgL(-1) was achieved. Relative standard deviations of 1.2% and 1.7% were obtained for the determination of 0.1 and 0.6mgL(-1) Al(3+) (n=11). Sample throughput of 35h(-1) was achieved with the consumption of 3mL each of carrier and reagent solutions per injection. The developed method was successfully applied to tea samples, validated by the FAAS standard method. The method is simple, fast, economical and could be classified as a greener analytical method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Espectrofotometria de zinco em fertilizantes em fluxo Flow injection spectrophotometry of zinc in mineral fertilizers

    Directory of Open Access Journals (Sweden)

    Arnaldo Antonio Rodella

    1999-07-01

    Full Text Available Um sistema de análise química por injeção em fluxo é proposto para a determinação espectrofotométrica de zinco em amostras de misturas de fertilizantes minerais, empregando-se zincon como reagente cromogênico. O procedimento analítico envolve redução de íons metálicos por ácido ascórbico, complexação com íon cianeto, seguindo-se a descomplexação seletiva do zinco com formaldeído, liberando-o para que reaja com o zincon formando um complexo azul. A aplicação do método proposto à extratos de mistura de fertilizantes indicou que a ação de interferentes pode ser contornada e que resultados comparáveis aos da espectrometria de absorção atômica são obtidos.A flow injection system for zinc analysis in mineral fertilizer mixtures is proposed using zincon as chromogenic reagent. The effect of interfering ions such as Cu2+, Fe3+, Mn2+ was eliminated by reduction (using ascorbic acid and complexation of these metal íons with cyanide, with zinc included. Zinc is allowed to react with zincon only after the destruction of the zinc cyano complex with formaldehyde. Flow injection analysis permitted efficient control of the reaction time so that only the zinc ion is set free to produce a blue complex with zincon. Zinc was determined in 16 fertilizer mixtures (3 replicates with precision and accuracy comparable to atomic absorption spectrometry.

  9. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    International Nuclear Information System (INIS)

    Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei

    2015-01-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC–MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica. - Highlights: • Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. • FIMS can discriminate between A. dahurica, A. podocarpa, and A. racemosa. • FIMS is a valuable screening tool for authentication of botanicals

  10. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huilian [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang, Jiangxi Province (China); Sun, Jianghao [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); McCoy, Joe-Ann [The North Carolina Arboretum Germplasm Repository, UNC Affiliate Campus, Asheville, NC (United States); Zhong, Haiyan [College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan Province (China); Fletcher, Edward J. [Strategic Sourcing, Inc., Banner Elk, NC 28604 (United States); Harnly, James, E-mail: harnly.james@ars.usda.gov [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); Chen, Pei, E-mail: pei.chen@ars.usda.gov [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States)

    2015-03-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC–MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica. - Highlights: • Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. • FIMS can discriminate between A. dahurica, A. podocarpa, and A. racemosa. • FIMS is a valuable screening tool for authentication of botanicals.

  11. Heat and mass transfer in the stratified flow with ECCS injection

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2007-01-01

    One of the most important problems in the light-water nuclear thermal-hydraulics is behaviour of the cold emergency core cooling water injected from the top or from the bottom into the horizontal section of the cold leg near the reactor vessel during the loss of coolant accident. The stratified flows appear where cold water is injected in partially or fully uncovered horizontal cold leg. The hot steam condenses on cold water surface what is also called direct contact condensation. Direct contact condensation and condensation induced water-hammer in a horizontal pipe were experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The cold water is injected through small pipe into lower horizontal part of the section, and then water fills the vertical pipeline and floods the horizontal test section of the pipeline of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the pipeline, the steam-liquid interface area increases and therefore the steam condensation rate and the steam velocity also increase and can lead to bubble entrapment. Water level at one cross-section and four local void fraction and temperature at the top of horizontal test pipeline was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Numerical simulation of the experiment with thermal phase change is presented. Surface renewal concept with small eddies is used for calculation of condensation heat transfer coefficient. Two simulations were performed: simulation of whole experimental domain (lower horizontal, vertical and test horizontal pipeline) and simplified simulation of only upper horizontal test section

  12. CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall

    International Nuclear Information System (INIS)

    Abdou, Ashraf A.; Wendel, Mark W.; Felde, David K.; Riemer, Bernie

    2009-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL). The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) can be used as a diagnostic tool to see inside the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL target test facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The

  13. On-line filtering

    International Nuclear Information System (INIS)

    Verkerk, C.

    1978-01-01

    Present day electronic detectors used in high energy physics make it possible to obtain high event rates and it is likely that future experiments will face even higher data rates than at present. The complexity of the apparatus increases very rapidly with time and also the criteria for selecting desired events become more and more complex. So complex in fact that the fast trigger system cannot be designed to fully cope with it. The interesting events become thus contaminated with multitudes of uninteresting ones. To distinguish the 'good' events from the often overwhelming background of other events one has to resort to computing techniques. Normally this selection is made in the first part of the analysis of the events, analysis normally performed on a powerful scientific computer. This implies however that many uninteresting or background events have to be recorded during the experiment for subsequent analysis. A number of undesired consequences result; and these constitute a sufficient reason for trying to perform the selection at an earlier stage, in fact ideally before the events are recorded on magnetic tape. This early selection is called 'on-line filtering' and it is the topic of the present lectures. (Auth.)

  14. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system

    Directory of Open Access Journals (Sweden)

    José F. Ovalles

    2014-04-01

    Full Text Available The quantitative estimation of amikacin (AMK in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded without any sample pretreatment. A good linear calibration (r>0.999, %RSD<2.0 in the range of 7.7–77.0 mg/mL was found. The results showed a good correlation with the manufacturer's and overall they all fell within acceptable limits of most pharmacopoeial monographs on AMK sulfate. Keywords: Amikacin, FTIR derivative spectrometry, Continuous flow system, Pharmaceutical preparation, Injection, Sulfate

  15. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  16. Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes

    International Nuclear Information System (INIS)

    Cespon-Romero, R.M.; Yebra-Biurrun, M.C.

    2007-01-01

    A flow injection procedure involving continuous acid leaching for lead and cadmium determination in hair samples of persons in permanent contact with a polluted workplace environment by flame atomic absorption spectrometry is proposed. Variables such as sonication time, nature and concentration of the acid solution used as leaching solution, leaching temperature, flow-rate of the continuous manifold, leaching solution volume and hair particle size were simultaneously studied by applying a Plackett-Burman design approach. Results showed that nitric acid concentration (leaching solution), leaching temperature and sonication time were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using a central composite design. The proposed procedure allowed the determination of cadmium and lead with limits of detection 0.1 and 1.0 μg g -1 , respectively. The accuracy of the developed procedure was evaluated by the analysis of a certified reference material (CRM 397, human hair, from the BCR). The proposed method was applied with satisfactory results to the determination of Cd and Pb in human hair samples of workers exposed to welding fumes

  17. [Prophylaxis of recurring low-flow priapism : Experimental botulinum neurotoxin injection into the ischiocavernosus muscle].

    Science.gov (United States)

    Reichel, G; Stenner, A

    2018-01-01

    The treatment of recurring low-flow priapism with the usual medications is still unsatisfactory. The case of an otherwise healthy young man experiencing low-flow priapism at the age of 31 is presented. A reason for his condition could not be identified. Over the course of several months, he required emergency urological treatment more than ten times. Treatment with cyproterone acetate (Androcur® 50 mg/day) stopped the spontaneous erections, but resulted in erectile impotence, reduced motivation, decreased interest in sex, weight gain of 10 kg, breast enlargement combined with touch sensitivity on both sides, and hair loss on both legs. In addition, the patient complained about painful cramps in his pelvic muscles. After appropriate explanations he agreed to try botulinum neurotoxin injections into both ischiocavernosus muscles. The objective was to reduce muscle tone in order to improve venous drainage of blood from the penis. The latest relapse of priapism occurred more than 6 months ago.

  18. Simultaneous injection effective mixing flow analysis of urinary albumin using dye-binding reaction.

    Science.gov (United States)

    Ratanawimarnwong, Nuanlaor; Ponhong, Kraingkrai; Teshima, Norio; Nacapricha, Duangjai; Grudpan, Kate; Sakai, Tadao; Motomizu, Shoji

    2012-07-15

    A new four-channel simultaneous injection effective mixing flow analysis (SIEMA) system has been assembled for the determination of urinary albumin. The SIEMA system consisted of a syringe pump, two 5-way cross connectors, four holding coils, five 3-way solenoid valves, a 50-cm long mixing coil and a spectrophotometer. Tetrabromophenol blue anion (TBPB) in Triton X-100 micelle reacted with albumin at pH 3.2 to form a blue ion complex with a λ(max) 625nm. TBPB, Triton X-100, acetate buffer and albumin standard solutions were aspirated into four individual holding coils by a syringe pump and then the aspirated zones were simultaneously pushed in the reverse direction to the detector flow cell. Baseline drift, due to adsorption of TBPB-albumin complex on the wall of the hydrophobic PTFE tubing, was minimized by aspiration of Triton X-100 and acetate buffer solutions between samples. The calibration graph was linear in the range of 10-50μg/mL and the detection limit for albumin (3σ) was 0.53μg/mL. The RSD (n=11) at 30μg/mL was 1.35%. The sample throughput was 37/h. With a 10-fold dilution, interference from urine matrix was removed. The proposed method has advantages in terms of simple automation operation and short analysis time. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  20. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    Science.gov (United States)

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  1. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    Science.gov (United States)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  2. On line portal imaging

    International Nuclear Information System (INIS)

    Munro, Peter

    1997-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging, describe some of the image registration methods that have been developed to determine geometric errors quantitatively, and discuss how portal imaging has been incorporated into clinical practice. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices include T.V. camera-based systems, liquid ionisation chamber systems, and shortly, flat panel systems. The characteristics of these imaging systems will be discussed. In addition, other approaches such as the use of kilovoltage x-ray sources, video monitoring, and ultrasound have been proposed for improving patient positioning. Some of the advantages of these approaches will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. One problem is finding a common frame of reference for the simulator and portal images, since the location of the radiation field within the pixel matrix may differ for the two images. As a result, a common frame of reference has to be established before the anatomic structures in the images can be registered - generally by registering radiation field edges identified in the simulator and portal images. In addition, distortions in patient geometry or rotations out of the image plane can confound the image registration techniques. Despite the

  3. On line portal imaging

    International Nuclear Information System (INIS)

    Munro, Peter

    1996-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine geometric errors quantitatively; discuss some of the ways that portal imaging has been incorporated into routine clinical practice; describe quality assurance procedures for these devices, and discuss the use of portal imaging devices for dosimetry applications. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. However, the task is not nearly as straight-forward as it sounds. One problem

  4. Instabilities and prediction of the acoustic resonance of flows with wall injection; Instabilites et prevision de l'accrochage acoustique des ecoulements avec injection parietale

    Energy Technology Data Exchange (ETDEWEB)

    Avalon, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 91 - Palaiseau (France); Casalis, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 91 - Palaiseau (France)

    1998-07-01

    Aero-acoustic coupling that occurs inside solid propellant rocket engines can lead to a longitudinal acoustic mode resonance of the combustion chamber. This phenomenon, which can have various origins, in analyzed using the Vecla test facility and the theory of linear stability of flows. Different comparisons between the hot-wire measurements performed and the theory of stability confirm the presence of intrinsic instabilities for this type of flow. The instability allows to selectively amplify a given range of frequencies which depends on the injection velocity and on the conduit height. The results obtained seem to indicate that when this frequency range does not comprise the longitudinal acoustic mode or the first harmonics, the flow becomes turbulent downstream. (J.S.)

  5. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  6. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  7. On-line monitoring of monoclonal antibody formation in high density perfusion culture using FIA.

    Science.gov (United States)

    Fenge, C; Fraune, E; Freitag, R; Scheper, T; Schügerl, K

    1991-05-01

    An automated flow injection system for on-line analysis of proteins in real fermentation fluids was developed by combining the principles of stopped-flow, merging zones flow injection analysis (FIA) with antigen-antibody reactions. IgG in the sample reacted with its corresponding antibody (a-IgG) in the reagent solution. Formation of insoluble immunocomplexes resulted in an increase of the turbidity which was determined photometrically. This system was used to monitor monoclonal antibody production in high cell density perfusion culture of hybridoma cells. Perfusion was performed with a newly developed static filtration unit equipped with hydrophilic microporous tubular membranes. Different sampling devices were tested to obtain a cell-free sample stream for on-line product analysis of high molecular weight (e.g., monoclonal antibodies) and low molecular weight (e.g., glucose, lactate) medium components. In fermentation fluids a good correlation (coefficient: 0.996) between the FIA method and an ELISA test was demonstrated. In a high density perfusion cultivation process mAb formation was successfully monitored on-line over a period of 400 h using a reliable sampling system. Glucose and lactate were measured over the same period of time using a commercially available automatic analyser based on immobilized enzyme technology.

  8. On line portal imaging

    International Nuclear Information System (INIS)

    Munro, Peter

    1995-01-01

    Purpose/Objective: The purpose of this presentation is to review the physics of imaging with high energy x-ray beams; examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine errors in patient positioning quantitatively; and discuss some of the ways that portal imaging has been incorporated into routine clinical practice. Verification of patient positioning has always been an important aspect of external beam radiation therapy. Checks of patient positioning have generally been done with film, however, film suffers from a number of drawbacks, such as poor image display and delays due to film development. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems, which are intended to overcome the limitations of portal films. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The fundamental factors which limit image quality and the characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same

  9. Study of process parameters effect on the filling phase of micro injection moulding using weld lines as flow markers

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2010-01-01

    , the relationships between the filling pattern and the different process parameter settings have to be established. In this paper, a novel approach based on the use of weld lines as flow markers to trace the development of the flow front during the filling is proposed. The effects on the filling stage of process......Micro-injection moulding (micro-moulding) is a process which enables the mass production of polymer microproducts. In order to produce high-quality injection moulded micro-parts, a crucial aspect to be fully understood and optimised is the filling of the cavity by the molten polymer. As a result...... manufactured by micro-electrodischarge machining. A commercially available polystyrene grade polymer has been moulded using a high-speed injection moulding machine. The design of experiment technique was employed to determine the effect of the process parameters on the filling phase of the micro...

  10. A microfabricated electroosmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia

    International Nuclear Information System (INIS)

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong; Almeida, M. Inês G. S.; Kolev, Spas D.; Pu, Qiaosheng

    2015-01-01

    We have microfabricated two functional components toward developing a microchip flow injection analysis (FIA) system, i.e., an open-channel electroosmotic pump and a gas-diffusion chip, consisting of two microfabricated glass wafers and a porous polytetrafluoroethylene membrane. This is the first application of gas-diffusion separation in a microchip FIA system. To demonstrate the feasibility of using these two components for performing gas-diffusion FIA, we have incorporated them together with a regular FIA injection valve and a capillary electrophoresis absorbance detector in a flow injection system for determination of ammonia in environmental water samples. This system has a limit of detection of 0.10 mg L −1 NH 3 , with a good repeatability (relative standard deviation of less than 5 % for 4.0 mg L −1 NH 3 ). Parameters affecting its performance are also discussed. (author)

  11. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Successful speciation of inorganic and organic Hg with Fe{sup 3+}, Cu{sup 2+} and thiourea as catalysts. Black-Right-Pointing-Pointer Best sensitivity enhancement and similar sensitivity for MeHg and Hg{sup 2+} with Fe{sup 3+}. Black-Right-Pointing-Pointer Successful use of Hg{sup 2+} as the primary standard for quantification of inorganic and total-Hg. Black-Right-Pointing-Pointer Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. Black-Right-Pointing-Pointer Integration with FIA for rapid analysis with a sample throughput of 180 h{sup -1}. - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH{sub 4} were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe{sup 3+}, Cu{sup 2+} and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu{sup 2+} and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe{sup 3+} gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg{sup 2+}. Due to similarity of resulting sensitivity, Hg{sup 2+} was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury

  12. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  13. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa)

    Science.gov (United States)

    Flow injection mass spectrometry (FIMS) and proton nuclear magnetic resonance spectrometry (1H-NMR), two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa L. from a single source were distinguished from ...

  14. Mass spectrometric confirmation criterion for product-ion spectra generated in flow-injection analysis. Environmental application

    NARCIS (Netherlands)

    Geerdink, R.B.; Niessen, W.M.A.; Brinkman, U.A.T.

    2001-01-01

    The suitability of a confirmation criterion recently recommended in the Netherlands for gas chromatography with mass spectrometric detection (GC-MS), was evaluated for flow-injection analysis (FIA) with atmospheric pressure chemical ionisation MS-MS detection. The main feature of the criterion is

  15. Pellet ablation and cloud flow characteristics in the JIPP T-IIU plasma with the injection-angle controllable system

    International Nuclear Information System (INIS)

    Sakakita, H.; Sato, K.N.; Liang, R.; Hamada, Y.; Ando, A.; Kano, Y.; Sakamoto, M.

    1994-01-01

    Pellet ablation and flow characteristics of ablation cloud have been studied in the JIPP T-IIU plasma by using an injection-angle controllable system. A new technique for an ice pellet injection system with controllability of injection angle has been developed and installed to the JIPP T-IIU tokamak in order to vary deposition profile of ice pellets within a plasma. Injection angle can be varied easily and successfully during an interval of two plasma shots in the course of an experiment, so that one can carry out various basic experiments by varying the pellet deposition profile. The injection angle has been varied poloidally from -6 to 6 degree by changing the angle of the last stage drift tube. This situation makes possible for pellets to aim at from about r = -2a/3 to r = 2a/3 of the plasma. From two dimensional observations by CCD cameras, details of the pellet ablation structures with various injection angles have been studied, and a couple of interesting phenomena have been found. In the case of an injection angle (θ) larger than a certain value (θ ≥ 4 o ), a pellet penetrates straightly through the plasma with a trace of straight ablation cloud, which has been expected from usual theoretical consideration. On the other hand, a long helical tail of ablation light has been observed in the case of the angle smaller than the certain value (θ ≤ 4 o ). (author) 4 refs., 4 figs

  16. Flow injection spectrophotometric determination of Fe(III) and V(v)

    International Nuclear Information System (INIS)

    Elrahman, Azza Mohamed

    2000-01-01

    Phenylflourone was synthesized with the objective of developing a method for determining Fe(III) and V(V) in the pressence of micelles using flow injectoin technique. Phenylflourone showed a wavelength of maximum absorption at 412 nm which was not affected by the presence of miccelles i.e. n-hexadodecylpyridinum bromide and sodium n-dodecylsulphate, but they have different effects on the absorbance of PHF. The example of PHF-Fe(III) and PHF-V(V) showed the wavelength of the maximum absorption at 4428 nm and 412 nm, respectively. Presence of micelles shifted the wavelength of the two complexes to a lower one. Generally the addition of micelles increased the absorbance of phenylflourone metal ions complexes except for PHF-V(V) with hexadodecylpyridinum bromide. With flow injection technique two approaches were practiced the use of micelle as a carrier or water as a carrier. Sodium n-dodecylsulphate increased the absorbance of the two complexes when it was used as a carrier or added to the metal ions using water as carrier. On the other hand, the use of n-hexadodecylpyridinum bromide as carrieer increased the absorbance of the complexes but it decreased the absorbance when it was used in conjunction with metal ions and water as a carrier. After establishing the optimum FI conditions for PHF-Fe(III) and PHF-V(V) complexes, the calibration curves were construction and produced semiliner response in the concentration range studied. Ti(IV) III, Mo(VI) showed a positive interference in PHF-Fe(III) and PHF-V(V) complexes, respectively.(Author)

  17. An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis.

    Science.gov (United States)

    Tsafack, V C; Marquette, C A; Leca, B; Blum, L J

    2000-01-01

    A fibre optic biosensor based on luminol electrochemiluminescence (ECL) integrated in a flow injection analysis (FIA) system was developed for the detection of choline. The electrochemiluminescence of luminol was generated by a glassy carbon electrode polarised at +425 mV vs. a platinum pseudo-reference electrode. Choline oxidase (Chx) was immobilised either covalently on polyamide (ABC type) or on UltraBind preactivated membranes, or by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) alone or after absorption on a weak anion exchanger, DEAE (diethylaminoethyl) Sepharose. The optimisation of the reaction conditions and physicochemical parameters influencing the FIA biosensor response demonstrated that the choline biosensor exhibited the best performances in a 30 mM veronal buffer containing 30 mM KCl and 1.5 mM MgCl2, at pH 9. The use of a 0.5 ml min-1 flow rate enabled the measurement of choline by the membrane-based ECL biosensors in 8 or 5 min, with ABC or UltraBind membranes, respectively, whereas the measurement required only 3 min with the DEAE-PVA system. For comparison, the detection of choline was performed with Chx immobilised using the four different supports. The best performances were obtained with the DEAE-PVA-Chx sensing layer, which allowed a detection limit of 10 pmol, whereas with the ABC, the UltraBind and the PVA systems, the detection limits were 300 pmol, 75 pmol and 220 pmol, respectively. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with an RSD of 4.5% whereas the stability under the best conditions was 45 assays with the other supports.

  18. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  19. Flow injection methods for the determination of a-tocopherol with spectrophotometric detection

    International Nuclear Information System (INIS)

    Rishi, L.; Waseem, A.; Yaqoob, M.; Nabi, A.; Jadoon, S.

    2011-01-01

    The present paper describes flow injection procedures for a-tocopherol determination in pharmaceuticals and infant milk powder based on spectrophotometric detection. These two procedures are based on the reduction of iron(III) to iron(II) and of Mo(Vi) to Mo(V) by a-tocopherol and subsequent formation of iron(II)-o-phenanthroline, and phospho molybdenum complexes which were monitored at 510 and 695 nm respectively. Calibration graphs were linear over the concentration range of 0.21-43 mu g/mL for iron(III) and 0.25-10 mu g/mL for Mo(Vi) reduction methods respectively. The limits of detection (3s) of 0.05 and 0.1 mu g/mL with sample throughput of 30 and 50/h respectively were obtained. The relative standard deviations of 1.2- 3.8% (n = 4) was achieved in the concentration range studied. The developed methods were applied to pharmaceuticals and infant milk powders and the results obtained were compared with official method and no significant difference between these methods was observed at 95% confidence level. (author)

  20. Reverse flow injection spectrophotometric determination of thiram and nabam fungicides in natural water samples

    International Nuclear Information System (INIS)

    Asghar, M.; Yaqoob, M.; Nabi, A.

    2014-01-01

    A reverse flow injection (rFI) spectrophotometric method is reported for determination of thiram and nabam fungicides in natural water samples. The method is based on the reduction of iron(III) in the presence of thiram/nabam in acidic medium at 60 degree C and formation of iron(II)-ferricyanide complex was measured at 790 nm. The limits of detection (3s blank) were 0.01 and 0.05 micro g mL1 for thiram and nabam respectively with a sample throughput of 60 h1. Calibration graphs were linear over the range of 0.02 - 8.0 micro g mL1 (R2 = 0.9999, n = 8) and 0.1 - 30 micro g mL1 (R2 = 0.9982, n = 10) for thiram and nabam with relative standard deviations (RSDs; n = 3) in the range of 0.8 - 1.6% respectively. Experimental parameters and potential interferences were examined. Thiram and nabam were determined in natural water samples using solid-phase extraction (SPE) procedure and recoveries were in the range of 93+-3 - 105+-2% and 87+-4 - 102+-3% respectively. The results obtained were not significantly different compared with a HPLC method. (author)

  1. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-02-12

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10{sup -5} to 0.26 {mu}g ml{sup -1} for calf thymus DNA and 5.0x10{sup -8} to 5.0x10{sup -5} {mu}g ml{sup -1} for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3{sigma}) are 6.5x10{sup -6} {mu}g ml{sup -1} for calf thymus DNA and 4.3x10{sup -8} {mu}g ml{sup -1} for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.

  2. A multisyringe flow injection method for the determination of thorium in water samples using spectrophotometric detection

    International Nuclear Information System (INIS)

    Guzman-Mar, J.L.; Aracely Hernandez-Ramirez; Lopez-Chuken, U.J.; Lopez-de-Alba, P.L.; Victor Cerda

    2011-01-01

    A fast and simple multisyringe flow injection analysis (MSFIA) method for routine determination of thorium in water samples was developed. The methodology was based on the complexation reaction of thorium with arsenazo (III) at pH 2.0. Thorium concentrations were spectrophotometrically detected at 665 nm. Under optimal conditions, Beer's law was obeyed over the range from 0.2 to 4.5 μg mL -1 thorium, a 3σ detection limit of 0.05 μg mL -1 , and a 10σ quantification limit of 0.2 μg mL -1 were obtained. The relative standard deviations (RSD, %) at 0.5, 2.5 and 4.5 μg mL -1 was 2.8, 1.5 and 0.8%, respectively (n = 10). It was found that most of the common metal ions and anions did not interfere with the thorium determination. The proposed method was successfully applied to its analysis in various water samples. (author)

  3. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  4. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    Science.gov (United States)

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques.

    Science.gov (United States)

    Motomizu, Shoji; Li, Zhen-Hai

    2005-04-15

    Trace (phosphorus determination by flow-injection analysis are reviewed. Most of the methods cited in this review are fundamentally based on the reaction of orthophosphate with molybdate to form heteropoly acids, such as molybdenum yellow and molybdenum blue, and some of the methods are based on the formation of such secondary reactions as ion associates and their aggregates with bulky cations, such as cationic dyes and quaternary ammonium ions. The heteropoly acids themselves can be measured by spectrophotometry, and the ion associate formed with a cationic dye, Malachite Green (MG), can be measured based on the coloration of MG. Light scattering detection methods can be used for measuring the aggregates of ion associates formed with bulky cations. Highly sensitive detection of phosphorus can be accomplished by fluorophotometry; Rhodamine B (RB) and its analogues react with molybdophosphate to form ion associates, which shows fluorescence quenching of RB: LOD is about 5 nM. The detection method based on the chemiluminescence of luminal oxidized with molybdophosphoric acids is probably the most sensitive of all the detection methods reported so far: LOD of the method is as low as 1nM. The LOD of the molybdenum blue method can be improved by using a liquid core waveguide: LOD is 0.5 nM.

  6. Batch and flow-injection methods for the spectrophotometric determination of olanzapine

    Energy Technology Data Exchange (ETDEWEB)

    Jasinska, A.; Nalewajko, E

    2004-04-22

    An indirect batch spectrophotometric and direct flow-injection (FI) visible spectrophotometric methods have been developed for the determination of the novel anti-psychotic drug olanzapine (OLA). The batch method is based on the oxidation of olanzapine by a known excess of potassium hexacyanoferrate(III) in the presence of the mixture of sulphuric and phosphoric acids (1:1 (v/v)). The absorbance of unreacted oxidant is measured at 425 nm. The absorbance decreases linearly with increasing concentration of the assayed drug. The FI method with detection at 540 nm is based on the direct oxidation of olanzapine one of two oxidants, cerium(IV) sulphate or potassium hexacyanoferrate(III) in acidic medium. The calibration graph were linear over the range of 2.5-40 {mu}g ml{sup -1} in the batch method and 0.05-300 and 0.5-250 {mu}g ml{sup -1} in the FI methods, used cerium (IV) sulphate and potassium hexacyanoferrate (III) respectively. Both FI methods gave similar results in terms of precision and accuracy. The relative standard deviation (R.S.D.), was <1%. The accuracy, obtained from recovery experiments, was 97.9-99.4%. The batch method gave slightly higher R.S.D. values (up to 2.3%) and lower values of accuracy (the recovery was between 96.5 and 96.6%). The methods developed were applied to the determination of olanzapine in a pharmaceutical product.

  7. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    Directory of Open Access Journals (Sweden)

    Gervasio Ana P. G.

    2001-01-01

    Full Text Available A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III and Cr(III, a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0.25 to 6.00 mg L-1, a reagent consumption of 25 mg ammonium molybdate and 2 mg stannous chloride per determination, and a relative standard deviation < 1% (n = 10 for a typical sample with 2.20 mg L-1 P were achieved. Three different types of samples were used to evaluate system performance. Accuracy was assessed by comparing the results with certified values and no significant difference at 95 % confidence level was observed.

  8. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  9. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  10. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  11. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  12. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    Science.gov (United States)

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p air in the AC contributes to better visualization and an efficient surgery.

  13. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  14. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Min, Kyoung Doug

    2006-01-01

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  15. Urinary bladder blood flow. I. Comparison of clearance of locally injected 99mtechnetium pertechnate and radioactive microsphere technique in dogs

    DEFF Research Database (Denmark)

    Krøyer, Kristian; Bülow, J; Nielsen, S L

    1990-01-01

    The blood flow of the dog urinary bladder measured by radioactive microsphere technique was compared to the clearance of locally injected 99mTechnetium pertechnate (99mTc) in the bladder wall. In semilogarithmic plots the 99mTc washout curves showed a multiexponential course. From the initial...... slopes (median 5.7 min) the bladder blood flow was calculated to be only 30-62% of the results obtained from the radioactive microsphere technique (blood flow in the muscular layer 21.7-44.8 ml/100 g/min). These lower values imply that the rate of removal of the hydrophilic tracer 99mTc at these flow...... blood flow....

  16. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  17. A dilute-and-shoot flow-injection tandem mass spectrometry method for quantification of phenobarbital in urine.

    Science.gov (United States)

    Alagandula, Ravali; Zhou, Xiang; Guo, Baochuan

    2017-01-15

    Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized. This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample to mass spectrometer. Quantification and detection of phenobarbital were achieved by an electrospray negative ionization MS/MS system operated in the multiple reaction monitoring (MRM) mode with the stable-isotope-labeled drug as internal standard. The dilute-and-shoot flow-injection method developed was linear with a dynamic range of 50-2000 ng/mL of phenobarbital and correlation coefficient > 0.9996. The coefficients of variation and relative errors for intra- and inter-assays at four quality control (QC) levels (50, 125, 445 and 1600 ng/mL) were 3.0% and 5.0%, respectively. The total run time to quantify one sample was 2 min, and the sensitivity and specificity of the method did not deteriorate even after 1200 consecutive injections. Our method can accurately and robustly quantify phenobarbital in urine without LC separation. Because of its 2 min run time, the method can process 720 samples per day. This feasibility study shows that the dilute-and-shoot flow-injection method can be a general way for fast analysis of drugs in urine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    Science.gov (United States)

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development of nanobody-based flow injection chemiluminescence immunoassay for sensitive detection of human prealbumin.

    Science.gov (United States)

    Ma, Lei; Sun, Yanyan; Kang, Xuejun; Wan, Yakun

    2014-11-15

    Nanobodies, derived from camelid heavy-chain antibodies, have novel and impactful applications in clinical diagnostics. Our objective is to develop a nanobody-based chemiluminescence immunoassay for sensitive detection of human prealbumin (PA). In this context, a phage display nanobody library is constructed via immunizing dromedary camel with human prealbumin. Three nanobodies have been identified by five successive bio-panning steps. Based on their high expression level and good affinity, two out of three are chosen for further study. Magnetic beads (MBs) were functionalized with PEI by acylamide bond formed between the carboxyl group on the surface of the MB. Then, an anti-PA nanobody (Nb1) can be effectively immobilized onto the surface of the functionalized MB using glutaradehyde as the link. The modified MBs with Nb1 can specifically capture the target PA and reacted with silica nanoparticles with co-immobilized HRP and anti-PA nanobody (Nb2). The concentration of PA was detected by flow injection chemiluminescence. When using MB/PEI as the carrier of anti-PA Nb1, the CL signal significantly increased to 4-fold compared with the signal using MB without PEI modification. The CL signal was further amplified to 5-fold when Si/Nb2 was used as the signal probe. Under optimized conditions, the present immunoassay exhibited a wide quantitative range from 0.05 to 1000 μg L(-1) with a detection limit of 0.01 μg L(-1). The sensitivity of the proposed immunoassay offers great promises in providing a sensitive, specific, time saving, and potential method for detecting PA in clinical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system

    Directory of Open Access Journals (Sweden)

    Li-Juan Wang

    2011-02-01

    Full Text Available A novel flow injection chemiluminescence (CL method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO4, and Na2SO3 in acid media. The CL intensity of KMnO4-Na2SO3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10−8 – 1.0 × 10−5 g/mL and 2.0 × 10−7 – 4.0 × 10−6 g/mL with the detection limit of 2.0 × 10−8 g/mL and 3.0 × 10−8 g/mL (S/N = 3, respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10−7 g/mL naproxen and 5.0 × 10−7 g/mL loxoprofen (n = 10, respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations. Keywords: chemiluminescence, KMnO4, loxoprofen, naproxen

  1. Start-up assist by magnetized plasma flow injection in TPE-RX reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Nagata, M. [Graduate School of Engineering, University of Hyogo, Himeji (Japan); Koguchi, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Hirano, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Sakakita, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Yambe, K. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kiyama, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)

    2006-11-15

    A reversed-field pinch (RFP) start-up assisted by a magnetized plasma flow injection was demonstrated for the first time on a TPE-RX machine. This sequence of experiments aimed to establish a new method of ionization, gas-fill and helicity injection in the start-up phase of an RFP. In this start-up method, magnetized and well-ionized plasma is formed by a magnetized coaxial plasma gun and injected into the torus chamber as an initial pre-ionized plasma for RFP formation. In the initial experiments, attenuated density pump-out and comparatively slow decay of the toroidal flux and plasma current were observed as evidence of its being an effective start-up method.

  2. Determination of technetium-99, thorium-230 and uranium-234 in soils by inductively coupled plasma mass spectrometry using flow injection preconcentration

    International Nuclear Information System (INIS)

    Hollenbach, Mark; Grohs, James; Mamich, Stephen; Kroft, Marilyn; Denoyer, E.R.

    1994-01-01

    A new method is described for the determination of 99 Tc, 230 Th, and 234 U at ultra-trace levels in soils. The method used flow injection (FI) for on-line preconcentration of 99 Tc, 230 Th and 234 U prior to detection using inductively coupled plasma mass spectrometry (ICP-MS). The FI-ICP-MS method results in greater sensitivity and freedom from interferences compared with direct aspiration into an ICP mass spectrometer. Detection limits are improved by approximately a factor of 10. The FI-ICP-MS method is also faster, less labour intensive and generates less laboratory waste than traditional radiochemical methods. The accuracy of the method was tested for 99 Tc by comparison to liquid scintillation counting and for 230 Th and 234 U by analysis of a US Department of Energy reference soil. Detection limits in the soil for 99 Tc, 230 Th and 234 U were 11 mBq g -1 (0.02 ng g -1 ), 3.7 mBq g -1 (0.005 ng g -1 ) and 0.74 mBq g -1 (0.003 ng g -1 ), respectively. Sample preparation, analysis protocol, and method validation are described. (Author)

  3. Regional cerebral blod flow studied by xenon-133. Intra-arterial injection studies and inhalation studies using emission tomography

    DEFF Research Database (Denmark)

    Lassen, N A

    1980-01-01

    .) technique is insensitive both to hyperemia and ischemia yielding essentially only a mean flow value. A new rapidly moving single photon tomograph following D. Kuhl's principle is presented applicable to Xe-133. Preliminary clinical data show that this technique is able to detect ischemic areas both with Xe......A survey of the Xenon-133 techniques for measurement of regional cerebral blood flow, rCBF, in man is presented. The intra-arterial Xe-133 injection method is very sensitive for detecting even small hyperemic areas, but cannot "see" smaller ischemic areas. The Xe-133 inhalation (or i.v. inj......-133 intra-arterial injection and with Xe-133 inhalation. The practical and economic advantages of Xe-133 or Xe-127 tomography over positron tomography for rCBF are discussed....

  4. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    Science.gov (United States)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  5. Geological Factors Affecting Flow Spatial Continuity in Water Injection of Units Operating in the LGITJ–0102 Ore Body

    Directory of Open Access Journals (Sweden)

    Ilver M. Soto-Loaiza

    2016-05-01

    Full Text Available The objective of the investigation was to identify the geological factors affecting the spatial continuity of the flow during the process of flank water injection in the units operating in the Lower Lagunilla Hydrocarbon Ore Body. This included the evaluation of the recovery factor, the petro-physic properties such as porosity, permeability, water saturation and rock type and quality in each flow unit. it was observed that the rock type of the geologic structure in the ore body is variable. The lowest values for the petro-physic properties were found in the southern area while a high variability of these parameters was observed in the northern and central areas. It was concluded that the northern area has a great potential for the development of new injection projects for petroleum recovery.

  6. Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inchul; Kim, Dohun; Koo, Jaye [Korea Aerospace Univ., Goyang (Korea, Republic of)

    2013-07-15

    To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the Smd decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the Smd shows the similar distribution.

  7. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor

    2016-01-01

    Flow of CO2 in wells is associated with substantial variations in thermophysical properties downhole, due to the coupled transient processes involved: complex flow patterns, density changes, phase transitions, and heat transfer to and from surroundings. Large temperature variations can lead...... the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...

  8. The Optimisation of Processing Condition for Injected Mould Polypropylene-Nanoclay-Gigantochloa Scortechinii based on Melt Flow Index

    Science.gov (United States)

    Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.

    2018-03-01

    The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.

  9. Cavitating flow control through continuous tangential mass injection on a 2D hydrofoil at a small attack angle

    Directory of Open Access Journals (Sweden)

    Timoshevskiy Mikhail V.

    2016-01-01

    Full Text Available We studied cavitating flow over the suction side of a symmetric 2D foil – a scaled-down model of high-pressure hydroturbine guide vanes (GV – in different cavitation regimes at the attack angle of 3°. High-speed imaging was used to analyze spatial patterns and time dynamics of the gas-vapour cavities. A hydroacoustic pressure transducer was employed to register time-spectra of pressure fluctuations nearby the hydrofoil. A PIV technique was applied to measure the velocity fields and its fluctuations. The active flow control was implemented by means of a continuous liquid supply with different flow rates through a slot channel located in the GV surface. It was found that the active mass injection does not influence the primary flow upstream of the slot channel position. For the cavitation-free and cavitation inception cases, the injection was shown to make the turbulent wake past the GV section more intense. However, at the developed cavitation regimes the active flow management made it possible to reduce substantially the amplitude or even totally suppress the periodic cavity length oscillations and pressure pulsations associated with them.

  10. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Laborda, Francisco; Medrano, Jesus; Castillo, Juan R.

    2004-01-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ

  11. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    Science.gov (United States)

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  13. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows

    International Nuclear Information System (INIS)

    Rust, T C; DiBella, E V R; McGann, C J; Christian, P E; Hoffman, J M; Kadrmas, D J

    2006-01-01

    Quantification of myocardial blood flows at rest and stress using 13 N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13 N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r = 0.998, mean absolute difference = 0.06 ml min -1 g -1 ). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use

  14. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    International Nuclear Information System (INIS)

    Saravanan, N.; Nagarajan, G.

    2010-01-01

    Automobiles are one of the major sources of air pollution in the environment. In addition CO 2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 o crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 o CA before gas exchange top dead centre (BGTDC) with injection duration of 30 o CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO X emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO 2 ) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen

  15. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India)

    2010-07-15

    Automobiles are one of the major sources of air pollution in the environment. In addition CO{sub 2} emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 CA before gas exchange top dead centre (BGTDC) with injection duration of 30 CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO{sub X} emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO{sub 2}) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of

  16. Multisyringe flow injection lab-on-valve systems coupled to hydride generation atomic fluorescence spectrometry for on-line bead-injection preconcentration and determination of total inorganic arsenic in environmental waters

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    and 10% KI. The eluate merges downstream with a defined plug of sodium tetrahydroborate (0.3% w/v) for generation of arsine, which is subsequently quantified by AFS. An oxidation agent, namely 2x10-6 M potassium permanganate, was employed for the quantitative oxidation of As(III) to As(V) in the samples...

  17. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead-injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    the determination of ultratrace level concentrations of total inorganic arsenic in freshwater. Employing quantitative preoxidation of As(III) to As(V) in the samples by means of permanganate, the method involves the preconcentration of arsenate at pH 10 on a renewable anion exchanger, namely Q-Sepharose, packed...

  18. Implementation of suitable flow injection/sequential injection on-line sample pretreatment schemes. Separation and preconcentration procedures for the determination of trace metal concentrations by ETAAS and/or ICPMS

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    are feasible, such as liquid-liquid extraction, (co)precipitation with collection in knotted reactors, adsorption, hydride generation, or the use of ion-exchange columns. Apart from hydride generation, where the analyte is converted into a gaseous species, the common denominator for these approaches...

  19. Flow injection and sequential injection: The optimal solutions for executing appropriate on-line separation and preconcentration schemes for detection of trace-level concentrations of metals in complex matrices by ICPMS

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Despite its excellent analytical chemical capacity, ICPMS (and also ETAAS), nevertheless, often requires suitable pretreatment of the sample material to facilitate the desired sensitivity and selectivity of measurement. Either because of the presence of potentially interfering matrix constituents...... materials, hydride generation, or the use of ion-exchanger packed reactors. Apart from hydride generation, where the analyte is converted into a gaseous species, the common denominator for these approaches is that the analyte material finally is contained within a well-defined small volume of eluate, which...

  20. A comparison of continuous pneumatic nebulization and flow injection-direct injection nebulization for sample introduction in inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Crain, J.S.; Kiely, J.T.

    1995-08-01

    Dilute nitric acid blanks and solutions containing Ni, Cd, Pb, and U (including two laboratory waste samples) were analyzed eighteen times over a two-month period using inductively coupled plasma-mass spectrometry (ICP-MS). Two different sample introduction techniques were employed: flow injection-direct injection nebulization (FI-DIN) and continuous pneumatic nebulization (CPN). Using comparable instrumental measurement procedures, FI-DIN analyses were 33% faster and generated 52% less waste than CPN analyses. Instrumental limits of detection obtained with FI-DIN and CPN were comparable but not equivalent (except in the case of Pb) because of nebulizer-related differences in sensitivity (i.e., signal per unit analyte concentration) and background. Substantial and statistically significant differences were found between FI-DIN and CPN Ni determinations, and in the case of the laboratory waste samples, there were also small but statistically significant differences between Cd determinations. These small (2 to 3%) differences were not related to polyatomic ion interference (e.g., 95 Mo 16 O + ), but in light of the time savings and waste reduction to be realized, they should not preclude the use of FI-DIN in place of CPN for determination of Cd, Pb, U and chemically

  1. Study on effect of mixing mechanism by the transverse gaseous injection flow in scramjet engine with variable parameters

    Science.gov (United States)

    Yadav, Siddhita; Pandey, K. M.

    2018-04-01

    In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.

  2. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    International Nuclear Information System (INIS)

    Williamson, Jill P.; Emmert, Gary L.

    2013-01-01

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag + or I 2 residuals in recycled drinking water. •Method detection limits of Ag + of 52 μg L −1 and I 2 of 2 μg L −1 . •Mean % recoveries for Ag + of 104 ± 1% and for I 2 of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag + of 1.4% and for I 2 of 5.7%. •Bias measurements agreed to 11.3 μg L −1 for Ag + and to 27.3 μg L −1 for I 2 . -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag + and I 2 are 52 μg L −1 Ag + and 2 μg L −1 I 2 ; the mean percent recoveries were 104% and 96.2% for Ag + and I 2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag + and 5.7% for I 2 . The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates

  3. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  4. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    International Nuclear Information System (INIS)

    Mesquita, Raquel B.R.; Ferreira, M. Teresa S.O.B.; Toth, Ildiko V.; Bordalo, Adriano A.; McKelvie, Ian D.; Rangel, Antonio O.S.S.

    2011-01-01

    Highlights: → Sequential injection determination of phosphate in estuarine and freshwaters. → Alternative spectrophotometric flow cells are compared. → Minimization of schlieren effect was assessed. → Proposed method can cope with wide salinity ranges. → Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 μM PO 4 3- ) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 μM) was achieved using both detection systems.

  5. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Raquel B.R. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); Ferreira, M. Teresa S.O.B. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Toth, Ildiko V. [REQUIMTE, Departamento de Quimica, Faculdade de Farmacia, Universidade de Porto, Rua Anibal Cunha, 164, 4050-047 Porto (Portugal); Bordalo, Adriano A. [Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); McKelvie, Ian D. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Rangel, Antonio O.S.S., E-mail: aorangel@esb.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2011-09-02

    Highlights: {yields} Sequential injection determination of phosphate in estuarine and freshwaters. {yields} Alternative spectrophotometric flow cells are compared. {yields} Minimization of schlieren effect was assessed. {yields} Proposed method can cope with wide salinity ranges. {yields} Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 {mu}M PO{sub 4}{sup 3-}) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 {mu}M) was achieved using both detection systems.

  6. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements.

    Science.gov (United States)

    Orton, Daniel J; Tfaily, Malak M; Moore, Ronald J; LaMarche, Brian L; Zheng, Xueyun; Fillmore, Thomas L; Chu, Rosalie K; Weitz, Karl K; Monroe, Matthew E; Kelly, Ryan T; Smith, Richard D; Baker, Erin S

    2018-01-02

    To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 μL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.

  7. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Daniel J. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Tfaily, Malak M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Moore, Ronald J. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; LaMarche, Brian L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Zheng, Xueyun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Fillmore, Thomas L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Chu, Rosalie K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Weitz, Karl K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Kelly, Ryan T. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States

    2017-12-13

    To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, low pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.

  8. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    Science.gov (United States)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  9. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  10. Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

    Directory of Open Access Journals (Sweden)

    Seyed mohammadjavad Zeidi

    2015-04-01

    Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.

  11. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  12. New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique

    International Nuclear Information System (INIS)

    Kozak, J.; Gutowski, J.; Kozak, M.; Wieczorek, M.; Koscielniak, P.

    2010-01-01

    The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength λ = 530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic 'cut off' peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 2 2 factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L -1 of both analytes, respectively.

  13. Flow analysis by using solenoid valves for As(III determination in natural waters by an on-line separation and pre-concentration system coupled to a tungsten coil atomizer

    Directory of Open Access Journals (Sweden)

    José Y. Neira

    2005-03-01

    Full Text Available A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS was developed for As(III determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC as complexing agent, and by sorption of the As(III-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent, followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL and 4 s elution time (71 µL. The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP, an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976, the retention efficiency was 94±1% (6.0 µg L-1, and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient was 3.4% (n=5, the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil, and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15. The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.

  14. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: zhangfan4060@gmail.com; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-11-15

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m{sup 3}/h to Q = 160 m{sup 3}/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating

  15. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    International Nuclear Information System (INIS)

    Zhang, Fan; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-01-01

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m"3/h to Q = 160 m"3/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.

  16. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    , comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear......Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...

  17. Flow-through solid-phase based optical sensor for the multisyringe flow injection trace determination of orthophosphate in waters with chemiluminescence detection

    International Nuclear Information System (INIS)

    Morais, Ines P.A.; Miro, Manuel; Manera, Matias; Estela, Jose Manuel; Cerda, Victor; Souto, M. Renata S.; Rangel, Antonio O.S.S.

    2004-01-01

    In this work, a novel flow-through solid-phase based chemiluminescence (CL) optical sensor is described for the trace determination of orthophosphate in waters exploiting the multisyringe flow injection analysis (MSFIA) concept with multicommutation. The proposed time-based injection flow system relies upon the in-line derivatisation of the analyte with ammonium molybdate in the presence of vanadate, and the transient immobilisation of the resulting heteropolyacid in a N-vinylpyrrolidone/divinylbenzene copolymer packed spiral shape flow-through cell located in front of the window of a photomultiplier tube. The simultaneous injection of well-defined slugs of luminol in alkaline medium and methanol solution towards the packed reactor is afterwards performed by proper switching of the solenoid valves. Then, the light emission from the luminol oxidation by the oxidant species retained onto the sorbent material is readily detected. At the same time, the generated molybdenum-blue compound is eluted by the minute amount of injected methanol, rendering the system prepared for a new measuring cycle. Therefore, the devised sensor enables the integration of the solid-phase CL reaction with elution and detection of the emitted light without the typical drawbacks of the molybdenum-blue based spectrophotometric procedures regarding the excess of molybdate anion, which causes high background signals due to its self-reduction. The noteworthy features of the developed CL-MSFIA system are the feasibility to accommodate reactions with different pH requirements and the ability to determine trace levels of orthophosphate in high silicate content samples (Si/P ratios up to 500). Under the optimised conditions, a dynamic linear range from 5 to 50 μg P l -1 for a 1.8 ml sample, repeatability better than 3.0% and a quantification limit of 4 μg P l -1 were attained. The flowing stream system handles 11 analysis h -1 and has been successfully applied to the determination of trace levels of

  18. Investigation of Steam Flow Behavior During Horizontal Injection into Vertical Annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Ku, Ja H.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    Qualification of uncertainty margins for accidents, which are classified as the design basis accidents, requires thermal hydraulic codes and related code models with an enhanced level of sophistication. In a cold leg break accident, the flow in downcomer is multidimensional and the velocity distribution of the steam flow in downcomer serves as a good example. For observation of the flow behavior near the break, experiments are performed to measure the velocity of the steam flow in a vessel scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this case, the steam has a quality approaching unity and thus is dealt with as a single-phase gas. The velocity of the steam flow is measured by micro-Pitot tubes arranged horizontally and vertically around the outer shell of the 1/20 scaled-down test vessel OMEGA (Optimized Multidimensional Experiment Geometric Apparatus). A commercial computational fluid dynamics code yields analytic results of multidimensional flow motion in the complex annular passage with flow obstacles. CFX is run with well-defined boundary conditions to obtain velocity profiles of the steam flow in the annular downcomer. Results of CFX shed light on the experimental setup as to fixing the location and angle of the micro-Pitot tubes, and correcting the sensitivity of the micro- Pitot tubes, for instance. This study aims to improve the multidimensional capability of the MARS code, which is based on RELAP5 and COBRA-IV, in predicting the multiphase flow behavior in the reactor downcomer. MARS is currently based on one- and two-dimensional flow analyses, which tends to distort total flow due to misrepresentation of the local phenomena. It is thus necessary to scrutinize the steam flow path and mechanistically model the momentum variation. These experimental and analytical results can locally be applied to developing the models of specific forms and essential phenomena treated in MARS. (authors)

  19. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  20. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    International Nuclear Information System (INIS)

    Teshima, Norio; Gotoh, Shingo; Ida, Kazunori; Sakai, Tadao

    2006-01-01

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L -1 with a sample throughput rate of 20 h -1 . The limits of detection (3σ) were 3.9 μg L -1 for copper, 4.1 μg L -1 for iron and 4.0 μg L -1 for zinc. The proposed method was applied to analysis of some patients' sera

  1. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  2. Determination of tellurium in lead and lead alloy using flow injection-hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mesko, Marcia F.; Pozebon, Dirce; Flores, Erico M.M.; Dressler, Valderi L.

    2004-01-01

    A method based on flow injection-hydride generation atomic absorption spectrometry (FI-HG AAS) for the determination of trace amount of Te in lead and lead alloy is described. A flow injection system (FI) and related analytical parameters as well as Te determination and interference caused by Pb, Bi and Ag on Te were investigated. The Pb interference could be overcome by using a small sample volume, while the Bi interference could be overcome by thiourea. However, it was not possible to minimise the interference caused by Ag on Te. The optimised conditions for Te determination in the analysed samples were: 6 mol l -1 HCl as sample carrier solution, 0.75% (m/v) sodium tetrahydroborate as Te reductant, 40 μl of sample solution, and 200 ml min -1 Ar flow rate as carrier gas. The limit of quantification (LOQ) was 1.0 μg g -1 Te (using 250 mg of sample in 50 ml final solution), the limit of detection (LOD) was 2.5 μg l -1 and the relative standard deviation (RSD) was 6% for five consecutive measurements of sample solution. The standard addition calibration method was used. Relatively high sample throughput (ca. 45 sample runs can be performed in a working hour), reduced sample manipulation since matrix separation is not necessary, and minor waste generation are the main advantages of the proposed method for Te determination by FI-HG AAS

  3. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    Science.gov (United States)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  4. Flow regime effects on non-cavitating injection nozzles over spray behavior

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R., E-mail: rpayri@mot.upv.e [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain); Salvador, F.J.; Gimeno, J.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain)

    2011-02-15

    This paper deals with the influence of flow regime (laminar, transition or turbulent) on the internal flow behavior, and how it affects the spray development in diesel nozzles. In particular, the research described here aims at studying and quantifying the internal flow regime effects on the spray behavior. With this purpose, internal flow results, based on mass flow rate and momentum flux measurements performed on three different tapered nozzles and which helped to determine the flow regime, has been taken into account as a point of departure for the spray behavior analysis. Thus, in this work, spray macroscopic visualization tests have been performed and analyzed which clearly revealed a change in the behavior of the angle and penetration of the spray related to the change of the flow nature. Moreover, with all the experimental data available, it has been possible to relate macroscopic parameters of the spray with those describing the internal flow (momentum and effective velocity) or the geometry of the nozzle (length or diameter) through correlations.

  5. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  6. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    Science.gov (United States)

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CERN Video News on line

    CERN Multimedia

    2003-01-01

    The latest CERN video news is on line. In this issue : an interview with the Director General and reports on the new home for the DELPHI barrel and the CERN firemen's spectacular training programme. There's also a vintage video news clip from 1954. See: www.cern.ch/video or Bulletin web page

  8. Laminar flow in porous pipes and ducts with variable suction or injection at the wall

    International Nuclear Information System (INIS)

    Souza Araujo, P.M. de; Stuckenbruck, S.

    1977-01-01

    The laminar flow of an incompressible fluid is analysed along a porous-walled straight circular tube and a flat duct formed by parallel porous plates. The non-similarity of velocity profiles is verified and the analytical solution is obtained by expanding the axial velocity component in a power series. The mass flow through the walls is taken into consideration as an application of Darcy's Law. Adverse axial pressure gradients and occasional reverse flow near the wall are pointed out in the work. (Author) [pt

  9. The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations.

    Science.gov (United States)

    Altiokka, G; Atkosar, Z; Can, N O

    2002-10-15

    A flow injection analysis (FIA) using UV detection, potentiometry and conductometry for levofloxacin (LVF) are described in this study. The best solvent system was found to consist of 0.2 M acetate buffer at pH 3 having 10% MeOH. A flow rate of 1 ml min(-1) was pumped and active material was detected at 288 nm. The detection limit (LOD) and limit of quantification (LOQ) for FIA were calculated to be 3 x 10(-7) M (S/N = 3) and 1 x 10(-7) M (S/N = 10), respectively. In the analysis of tablets, the RSD values were found to be 0.83, 0.98 and 0.99 for FIA, potentiometric and conductometric methods, respectively. Copyright 2002 Elsevier Science B.V.

  10. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  11. A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples.

    Science.gov (United States)

    Vakh, Christina; Evdokimova, Ekaterina; Pochivalov, Aleksei; Moskvin, Leonid; Bulatov, Andrey

    2017-12-15

    An easily performed fully automated and miniaturized flow injection chemiluminescence (CL) method for determination of phenols in smoked food samples has been proposed. This method includes the ultrasound assisted solid-liquid extraction coupled with gas-diffusion separation of phenols from smoked food sample and analytes absorption into a NaOH solution in a specially designed gas-diffusion cell. The flow system was designed to focus on automation and miniaturization with minimal sample and reagent consumption by inexpensive instrumentation. The luminol - N-bromosuccinimide system in an alkaline medium was used for the CL determination of phenols. The limit of detection of the proposed procedure was 3·10 -8 ·molL -1 (0.01mgkg -1 ) in terms of phenol. The presented method demonstrated to be a good tool for easy, rapid and cost-effective point-of-need screening phenols in smoked food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Injection, flow, and mixing of CO2 in porous media with residual gas.

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  13. The use of on-line ion chromatography for high temperature and high pressure reaction studies

    International Nuclear Information System (INIS)

    Lynch, G.J.

    1993-10-01

    This paper describes the use of on-line ion chromatography as a tool for chemistry reaction studies in small volume systems. The technique was used to study chemistry behavior in a high temperature and high pressure autoclave system. A dual analyzer, multi-channel on-line ion chromatograph (IC) was configured to automate the sampling and analysis. Analytical channels were set up for analysis of inorganic anions, monovalent cations, conductivity, and pH. Conductivity and pH were measured using the IC as a flow injection analyzer. Use of the IC system provides significant advantages over conventional sampling and analysis techniques: Reduction in sample volume, a closed sampling system that protects air or light sensitive analytes from breakdown, around-the-clock test performance combined with automatic calibration and quality control checking, and detection and tracking of reaction products or unexpected contaminants. Methods used to correct measured concentrations for the effects of sampling and for calculation of control chemical loss half-lives are presented. A limited evaluation of the flow injection analysis methods for conductivity and pH is provided

  14. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    Science.gov (United States)

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Juan C. Gonzalez-Rivera

    2015-01-01

    Full Text Available We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10−2 cm s−1 to 2.1 × 10−4 cm s−1, respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C, pH (4.5, injection flow rate (200 µL min−1, and applied potential (0.4 V. Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM and sensitivity (0.2341 nA µM−1 for ABTS than previous laccase-based biosensors and the in situ operation capacity.

  16. Effectiveness of In-Vessel Retention Strategies and Minimum Safety Injection Flow over Postulated Severe Accidents of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joong; Seo, Seungwon; Lee, Seongnyeon [Hanyang Univ., Seoul (Korea, Republic of); KIm, Hwan Yeol; Ha, Kwang Soon; Park, Jonghwa; Park, Raejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The objective of this study is first to evaluate various serious severe accident scenarios of OPR1000 with and without in-vessel retention strategies using MELCOR code. Second is to develop a mechanistic model of minimum safety injection flow using the thermal-hydraulic parameters of CET and collapsed water level obtained from the MELCOR simulation results. Effectiveness of RCS depressurization of OPR1000 is investigated for postulated severe accidents of SBLOCA, SBO, and TLOF. It is seen that timely operator action is important to achieve the best mitigation. Also The MELCOR simulation results of SBLOCA, SBO, and TLOFW are utilized to develop a model for minimum safety injection flow. The model suggests that if HPSI is available with RCS pressure lower than 120 bars, the core coolability can be guaranteed. In this study, several MELCOR simulations are conducted in search for effective in-vessel retention strategies over postulated severe accidents of SBLOCA, SBO, and TLOFW of OPR1000. Detailed accident sequences are presented and indicative parameters diagnosing the reactor thermal-hydraulic state are interrogated to provide useful information to the operator actions. To properly assist operator's action during the severe accident, the thermal-hydraulic parameters should be virtual, intuitive, and reliable. In addition, the parameters should be collected through the instrumentations close to the reactor core. In this regard, Core Exit Temperature (CET) and collapsed core water level are deemed as the commensurate parameters.

  17. Effectiveness of In-Vessel Retention Strategies and Minimum Safety Injection Flow over Postulated Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Kim, Sung Joong; Seo, Seungwon; Lee, Seongnyeon; KIm, Hwan Yeol; Ha, Kwang Soon; Park, Jonghwa; Park, Raejoon

    2013-01-01

    The objective of this study is first to evaluate various serious severe accident scenarios of OPR1000 with and without in-vessel retention strategies using MELCOR code. Second is to develop a mechanistic model of minimum safety injection flow using the thermal-hydraulic parameters of CET and collapsed water level obtained from the MELCOR simulation results. Effectiveness of RCS depressurization of OPR1000 is investigated for postulated severe accidents of SBLOCA, SBO, and TLOF. It is seen that timely operator action is important to achieve the best mitigation. Also The MELCOR simulation results of SBLOCA, SBO, and TLOFW are utilized to develop a model for minimum safety injection flow. The model suggests that if HPSI is available with RCS pressure lower than 120 bars, the core coolability can be guaranteed. In this study, several MELCOR simulations are conducted in search for effective in-vessel retention strategies over postulated severe accidents of SBLOCA, SBO, and TLOFW of OPR1000. Detailed accident sequences are presented and indicative parameters diagnosing the reactor thermal-hydraulic state are interrogated to provide useful information to the operator actions. To properly assist operator's action during the severe accident, the thermal-hydraulic parameters should be virtual, intuitive, and reliable. In addition, the parameters should be collected through the instrumentations close to the reactor core. In this regard, Core Exit Temperature (CET) and collapsed core water level are deemed as the commensurate parameters

  18. Chemiluminescent determination of vanadium(IV) using a cinchomeronic hydrazide-H2O2 system and flow injection analysis

    International Nuclear Information System (INIS)

    Pradana Perez, J.A.; Alegria, J.S. Durand; Hernando, P. Fernandez; Sierra, A. Narros

    2005-01-01

    This paper proposes a new chemiluminescent flow injection analysis (FIA) method for the determination of vanadium(IV) ions in aqueous media. The method is based on the chemiluminescent reaction that occurs between cinchomeronic hydrazide (CH) and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. The chemical and physical variables involved in the flow injection system are optimised using a modified simplex method. Vanadium ions can be detected in the 0.08 and 1.00 μg mL -1 range; the detection limit for a signal-to-noise ratio of 3 is 0.08 μg mL -1 . Great variations in the quantum yield were observed when cobalt(II), chromium(III), copper(II) and/or nickel(II) were present in the reaction medium. The proposed method is selective and simple, and can be successfully used to analyse water samples without the need for separation or preconcentration processes

  19. Autologous Pure Platelet-Rich Plasma Dermal Injections for Facial Skin Rejuvenation: Clinical, Instrumental, and Flow Cytometry Assessment.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Cordone, Iole; Abril, Elva; Masi, Serena; Foddai, Maria Laura

    2017-06-01

    Platelet-rich plasma (PRP) is an emerging treatment in dermatology recently proposed for skin rejuvenation. To evaluate the efficacy and safety of autologous pure PRP dermal injections on facial skin rejuvenation, investigating the cellularity of PRP samples. Twelve patients underwent 3 sessions of PRP injection at 1-month intervals. The clinical and instrumental outcomes were evaluated before (T0) and 1 month (T1) after the end of treatment by means of transepidermal water loss, corneometry, Cutometer, Visioscan, and Visioface. A flow cytometry characterization on PRP and peripheral blood (PB) samples was performed. Clinical and patient evaluation showed improvement of skin texture. Skin gross elasticity, skin smoothness parameters, skin barrier function, and capacitance were significantly improved. No difference between PRP and PB lymphocyte immunological asset was observed. A leukocyte population (mainly CD3) and neutrophils depletion were documented in all the PRP samples. This instrumental study demonstrated that PRP poor in leukocytes can provide objective improvements in skin biostimulation. Flow cytometry showed no variability among the PRP samples using a reproducible separation system and a low content in proinflammatory cells. Although a pilot study, it may be helpful for future investigations on PRP cellularity.

  20. On-line moisture analysis

    CERN Document Server

    Cutmore, N G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk mater...

  1. Exploiting the bead-injection approach in the integrated sequential injection Lab-on-Valve format using hydrophobic packing materials for on-line matrix removal and preconcentration of trace levels of cadmium in environmental and biological samples via formation of non-charged chelates prior

    DEFF Research Database (Denmark)

    Miró, Manuel; Jonczyk, Sylwia; Wang, Jianhua

    2003-01-01

    The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption spectrome......The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption...

  2. Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dilgin, Yusuf; Canarslan, Seda; Ayyildiz, Onder; Ertek, Bensu; Nişli, Gürel

    2012-01-01

    A new approach for photoelectrocatalytic determination of sulphide in a flow injection analysis (FIA) system was studied using a poly-methylene blue modified glassy carbon electrode (poly-MB/GCE). Results from electrochemical measurements have revealed that poly-MB/GCE is capable of signalling electrocatalytic and photoelectrocatalytic activity towards sulphide oxidation. When the surface of poly-MB/GCE was irradiated with a light source (250 W Halogen lamp), the electrocatalytic current increased substantially. A homemade flow electrochemical cell with a suitable transparent window for the irradiation of the electrode surface was used to perform the photoelectrocatalytic determination of sulphide in FIA system. The currents obtained from the photoamperometric measurements in the FIA system at optimum conditions (carrier solution: pH 9.0 Britton Robinson buffer solution containing 0.1 M KCl; flow rate: 1.3 mL min −1 ; transmission tubing length: 10 cm; injection volume: 100 μL; and constant applied potential: +150 mV vs. Ag/AgCl/KCl sat ) were linearly correlated with the sulphide concentration. The calibration curves were obtained for sulphide concentrations in a range of 0.5–500 μM. The detection limits were found to be 0.27 and 0.15 μM for amperometric and photoamperometric methods, respectively. The proposed method was successfully applied to different wastewaters such as municipal sewage or tannery wastewater. Finally, results from the sulphide measurements by poly-MB/GCE were in good agreement with those attained using spectrophotometric method.

  3. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  4. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    Science.gov (United States)

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  5. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  6. Impact of the shape of the implantable ports on their efficiency of flow (injection and flushing

    Directory of Open Access Journals (Sweden)

    Guiffant G

    2014-09-01

    Full Text Available Gérard Guiffant,1 Patrice Flaud,1 Jean Jacques Durussel,1 Jacques Merckx1,2 1Université Paris Diderot, Paris, France; 2University Teaching Hospital Necker-Enfants Malades, Paris, FranceAbstract: Now widely used, totally implantable venous access devices allow mid- and long-term, frequent, repeated, or continuous injection of therapeutic products by vascular, cavitary, or perineural access. The effective flushing of these devices is a key factor that ensures their long-lasting use. We present experimental results and a numerical simulation to demonstrate that the implementation of rounded edge wall cavities improves flushing efficiency. We use the same approaches to suggest that the deposit amount may be reduced by the use of rounded edge wall cavities. Keywords: implantable ports, totally implantable venous access devices, flushing, obstruction, prevention

  7. Optimum cadmium reactor designs for colorimetric determination of nitrate with flow injection and gas-segmented continuous flow analyzers

    International Nuclear Information System (INIS)

    Patton, C.J.

    1989-01-01

    Cadmium reactor types can be grouped into four categories: packed bed; filamentous; open tubular; and planar. Packed bed cadmium reactors, in the form of cadmium filings, granules, powder, or electrolytically precipitated needles packed into glass or polymeric tubes, are by far the most widely used for both FIA and CFA methods. Surprisingly, filamentous cadmium reactors, in the form of cadmium wire slipped into flexible polymeric tubing, have been reported for CFA applications only. Open tubular cadmium reactors, in the form of small diameter cadmium tubing coiled into a helix, have been fully characterized and described for CFA applications. A preliminary description of planar cadmium reactors, in the form of cadmium foil sandwiched between continuous flow dialyzer blocks has also been reported. In this presentation, each reactor type is evaluated in terms of cost, ease of use, reduction efficiency, and long-term stability. Factors that make some reactors more applicable to FIA than to CFA (or the reverse) are also discussed, and experimental data are presented

  8. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    Science.gov (United States)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  9. Numerical Analysis on the Influence of Thermal Effects on Oil Flow Characteristic in High-Pressure Air Injection (HPAI Process

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2012-01-01

    Full Text Available In previous laboratory study, we have shown the thermal behavior of Keke Ya light crude oil (Tarim oilfield, branch of CNPC for high-pressure air injection (HPAI application potential study. To clarify the influences of thermal effects on oil production, in this paper, we derived a mathematical model for calculating oil flow rate, which is based on the heat conduction property in porous media from the combustion tube experiment. Based on remarkably limited knowledge consisting of very global balance arguments and disregarding all the details of the mechanisms in the reaction zone, the local governing equations are formulated in a dimensionless form. We use finite difference method to solve this model and address the study by way of qualitative analysis. The time-space dimensionless oil flow rate (qD profiles are established for comprehensive studies on the oil flow rate characteristic affected by thermal effects. It also discusses how these findings will impact HPAI project performances, and several guidelines are suggested.

  10. Numerical analysis of water hammer induced by injection of subcooled water into steam flow in a horizontal pipe

    International Nuclear Information System (INIS)

    Minato, Akihiko; Nagoyoshi, Takuji; Nakamura, Akira; Fujii, Yuzo; Aya, Izuo; Yamane, Kenji

    2004-01-01

    Subcooled water injection into steam flow in piping systems may generate a water column containing a large steam slug. The steam slug collapses due to rapid condensation and interfaces on both sides collides with each other. Water hammer takes place and sharp pressure pulse propagates through the pipe. The purpose of this study is to show capability of the present numerical simulation method for predictions of pressure transient and loads on a piping system following steam slug collapse. A three-dimensional computer code for transient gas-liquid two-phase flow was applied to simulate an experiment of steam-condensation-induced water hammer with a horizontal polycarbonate pipe. The code was based on the extended two-fluid model, which treated interface motion using the VOF (Volume of Fluid) technique. The Godunov scheme of highly compressible single-phase flow was modified for application to the Riemann problem solution of gas-liquid mixture. Analysis of local steam slug collapse resulted in comparable peak pressure and pulse width of pressure transients with the observation. The calculation of pressure pulse propagation and impact load on piping system showed the quasi-steady pressure load was imposed especially on elbow at 1/10 of water hammer peak pressure. (author)

  11. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    Science.gov (United States)

    2016-09-02

    impact a wide range of applications, including the analysis of biological and social networks, study of traffic flows, and design of robust power grids...graph sparsification, we orient the edges of the original weighted undirected graph G with N vertices and M edges. We can represent any directed graph...a vertical tail using synthetic jet actuators. AIAA Journal 52 (4). Robinson, K., Cohen, T. & Colijn, C. 2012 The dynamics of sexual contact networks

  12. The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation

    Science.gov (United States)

    Michal, Tomášek; Richard, Matas; Tomáš, Syka

    2017-09-01

    This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.

  13. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Jill P.; Emmert, Gary L., E-mail: gemmert@memphis.edu

    2013-08-20

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag{sup +} or I{sub 2} residuals in recycled drinking water. •Method detection limits of Ag{sup +} of 52 μg L{sup −1} and I{sub 2} of 2 μg L{sup −1}. •Mean % recoveries for Ag{sup +} of 104 ± 1% and for I{sub 2} of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag{sup +} of 1.4% and for I{sub 2} of 5.7%. •Bias measurements agreed to 11.3 μg L{sup −1} for Ag{sup +} and to 27.3 μg L{sup −1} for I{sub 2}. -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag{sup +} and I{sub 2} are 52 μg L{sup −1} Ag{sup +} and 2 μg L{sup −1} I{sub 2}; the mean percent recoveries were 104% and 96.2% for Ag{sup +} and I{sub 2} respectfully; and percent relative standard deviations were estimated at 1.4% for Ag{sup +} and 5.7% for I{sub 2}. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates.

  14. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  15. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  16. On-line nuclear orientation

    International Nuclear Information System (INIS)

    Krane, K.S.

    1990-01-01

    This grant has as its overall goal the pursuit of on-line nuclear orientation experiments for the purpose of eliciting details of nuclear structure from the decays of neutron-deficient nuclei, such as those produced by the Holifield Heavy-Ion Research Facility at Oak Ridge and extracted by the UNISOR Isotope Separator. This paper discusses: refrigerator development; the decay of 184 Au; the decay of 191 Hg to 191 Au; the decay of 189 Pt to 189 Ir; the decays of 109,111 Pd; the decay of 172 Er; and solid angle corrections

  17. Workshop report - A validation study of Navier-Stokes codes for transverse injection into a Mach 2 flow

    Science.gov (United States)

    Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff

    1992-01-01

    A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.

  18. Intake flow and time step analysis in the modeling of a direct injection Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zancanaro Junior, Flavio V.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: zancanaro@mecanica.ufrgs.br, vielmoh@mecanica.ufrgs.br

    2010-07-01

    This paper discusses the effects of the time step on turbulence flow structure in the intake and in-cylinder systems of a Diesel engine during the intake process, under the motored condition. The three-dimensional modeling of a reciprocating engine geometry comprising a bowl-in-piston combustion chamber, intake port of shallow ramp helical type and exhaust port of conventional type. The equations are numerically solved, including a transient analysis, valves and piston movements, for engine speed of 1500 rpm, using a commercial Finite Volumes CFD code. A parallel computation is employed. For the purpose of examining the in-cylinder turbulence characteristics two parameters are observed: the discharge coefficient and swirl ratio. This two parameters quantify the fluid flow characteristics inside cylinder in the intake stroke, therefore, it is very important their study and understanding. Additionally, the evolution of the discharge coefficient and swirl ratio, along crank angle, are correlated and compared, with the objective of clarifying the physical mechanisms. Regarding the turbulence, computations are performed with the Eddy Viscosity Model k-u SST, in its Low-Reynolds approaches, with standard near wall treatment. The system of partial differential equations to be solved consists of the Reynolds-averaged compressible Navier-Stokes equations with the constitutive relations for an ideal gas, and using a segregated solution algorithm. The enthalpy equation is also solved. A moving hexahedral trimmed mesh independence study is presented. In the same way many convergence tests are performed, and a secure criterion established. The results of the pressure fields are shown in relation to vertical plane that passes through the valves. Areas of low pressure can be seen in the valve curtain region, due to strong jet flows. Also, it is possible to note divergences between the time steps, mainly for the smaller time step. (author)

  19. Down scaled Kjeldahl digestion and flow injection conductometric system for determination of protein content in some traditional northern Thai foods.

    Science.gov (United States)

    Yanu, Pattama; Jakmunee, Jaroon

    2017-09-01

    A flow injection conductometric (FIC) system for determination of total Kjeldahl nitrogen (TKN) was developed for estimating total protein content in food. A small scale Kjeldahl digestion was performed with a short digestion time of only 20min. The digested solution was injected into the FIC system, and TKN was converted to ammonia gas in an alkaline donor stream of the system. The gas diffused through a membrane and dissolved into an acceptor stream causing an increase in conductivity as detected by a detector and recorded as a peak. Under the optimum condition, a linear calibration graph in the range of 4.00-100.00mgL -1 was obtained with LOD of 0.05mgL -1 . A good precision (0.04% RSD, n=11, 30.00mgNL -1 ) and high sample throughput of 72h -1 was achieved. The method was applied for determination of protein in some traditional northern Thai foods, revealing that they are good sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Polarographic study of acrolein and its determination by flow injection with amperometric detection at a mercury electrode.

    Science.gov (United States)

    Naranjo Rodríguez, I; Muñoz Leyva, J A; Hidalgo Hidalgo de Cisneros, J L

    1996-07-01

    A study of the electrochemical behavior of acrolein at a dropping mercury electrode using different polarographic techniques is described. Theoretical studies of the reversibility of the wave of acrolein were carried out using two different polarographic techniques: direct current tast and differential pulse. Differential pulse polarography may be used to determine acrolein concentration in a Britton-Robinson buffer solution of pH 10 in the ranges 2 x 10(-7)10(-8) and 5 x 10(-8)-10(-4) mol dm(-3) and a coefficient of variation of 1.7% for a concentration of 10(-5)mol dm(-3). A flow injection method with amperometric detection at a potential of -1.4V using a mercury electrode is also described. Before each injection, any drop hanging from the tip of the capillary needs to be dislodged and a new electrode drop dispensed; three different drop sizes were tested. A linear relationship between peak intensity and acrolein concentration was obtained in the range 10(-5)-10(-7) mol dm(-3), with a detection limit of 9.8 x 10(-8) mol dm(-) 3 and a coefficient of variation of 2.9% for a 2 x 10(-7) mol dm(-3) concentration. Several organic and inorganic species were tested in order to ascertain whether they interfered with the signal for acrolein. The proposed methods were applied to the determination of acrolein in seawater samples.

  1. FLOW INJECTION ANALYSIS SYSTEM COUPLED WITH ICP-EOS FOR DETERMINATION OF SOME METALLIC ELEMENTS IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Cristina Dinu

    2009-06-01

    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  2. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    Science.gov (United States)

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Lamas-Ardisana, Pedro Jose; Hernandez-Santos, David; Costa-Garcia, Agustin

    2009-01-01

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10 -6 M to 1 x 10 -3 M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10 -7 M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10 -5 M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  4. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain); Hernandez-Santos, David [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin, E-mail: costa@fq.uniovi.es [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain)

    2009-04-13

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10{sup -6} M to 1 x 10{sup -3} M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10{sup -7} M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10{sup -5} M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  5. Determination of trace elements in seawater by air-flow injection/ICP-MS with chelating resin preconcentration

    International Nuclear Information System (INIS)

    Lee, Kyue-Hyung; Ohshima, Mitsuko; Motomizu, Shoji

    2002-01-01

    Multielement determination of major to trace metals in a deep seawater malt was accomplished by inductively coupled plasma-mass spectrometry (ICP-MS) together with inductively coupled plasma-atomic emission spectrometry (ICP-AES). Major elements, such as Na, K, Mg, and Ca, were measured by ICP-AES and normal continuos nebulization ICP-MS after sample dilution by 10 3 -10 6 fold. Fifteen trace elements in the concentrated metal solutions pretreated with cation-exchange resin or chelating resin could be simultaneously determined by air-flow injection/ICP-mass spectrometry (AFI/ICP-MS). Since the injection volume for AFI/ICP-MS was 25 μl, final samples volumes less than 500 μl were enough for several replicate measurements. Three different preconcentration methods assisted with AFI/ICP-MS were examined and could be successfully applied to a deep seawater malt. The analytical results of rate earth elements (REEs) and Co, Ni, Cu, Zn, Cd, and Pb obtained by AFI/ICP-MS coupled with disk filtration method using iminodiacetate (IDA)-type chelating resin were favorably agreed with the data obtained by AFI/ICP-MS coupled with column preconcentration method using chitosan-based chelating resin. (author)

  6. The cerebral blood flow measurement without absolute input function value for PET O-15 injection method

    International Nuclear Information System (INIS)

    Matsuda, Tadashige

    2004-01-01

    This paper shows the method of the measurement for the region of interest's (ROI's) cerebral blood flow (CBF) using PET data and the input function without the absolute density value of the radio activity. The value of the input function and the output function are fixed from the clinical data by regression analysis. The input function and the output function are transformed by the Fourier transform. The transfer function of the differential equation of the compartment model is got by these Fourier transforms. The CBF can be estimated by the transfer function regression analysis. Results are compared between the proposal and conventional methods. (author)

  7. A multi-channel photometric detector for multi-component analysis in flow injection analysis.

    Science.gov (United States)

    Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.

  8. Numerical simulation of effects of a non-ionized fluid injection and suction on the MHD flow in a circular channel

    International Nuclear Information System (INIS)

    Rahimi Eosboee, M.; Pourmahmoud, N.; Mirzaie, I.; Mohajeri Khameneh, P.; Majidyfar, S.

    2012-01-01

    Control of a fluid flow velocity profile by injection and suction of a non-ionized fluid in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel walls are assumed to be non-conducting and porous. They are subjected to a uniform steady magnetic field which is perpendicular to the axis of channel, then and suction and injection are applied at the walls. The well known equations of Magnetohydrodynamics are governed to the motion of an electrically conducting fluid flow that is subjected to magnetic field. The numerical solution is carried out by finite difference approach. The results of present numerical simulation shown that the flow injection and suction through the wall can be controlled effectively, the main flow in channel especially in industrial purposes. The results are obtained for different values of the injected and sucked non-ionized flow rate and the effect of Hartman number on the velocity profile is investigated. Finally, a good agreement is seen between the presented results and the corresponding data of finite element method.

  9. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    Science.gov (United States)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  10. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Fırat

    2018-05-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  11. Assessment of effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    V. V. Neroev

    2014-07-01

    Full Text Available Purpose: To evaluate the effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular agerelatedmacular degeneration (AMD.Methods: 35 patients with wet AMD undergone intravitreal 0.5 mg ranibizumab injection. Color Doppler Imaging (CDI and dopplerographywere used to measure hemodynamic parameters including the peak systolic velocity (Vsyst, cm / s, end-diastolic velocity (V diast, cm / s, and resistance index (RI of blood flow in the central retinal artery (CRA, the short posterior ciliary arteries (PCA, and the ophthalmic artery (OA. All patients were examined before and after injection on day 1‑7 and 30 day during the 3‑month follow up period.Results: Before intravitreal injection Vsyst was decreased in short PCA (p<0.05, RI in CRA and in short PCA significantly increased in comparison with normal index in same vessels. The peak systolic velocity in OA, in CRA and in short PCA was not significantly changed. After second injection resistance index in CRA and in short PCA was normalized.Conclusion: There was not impairment of ocular blood flow in retinal and choroidal after monthly intravitreal injection of ranibizumab during the 3‑month follow up period.

  12. Assessment of effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    V. V. Neroev

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular agerelatedmacular degeneration (AMD.Methods: 35 patients with wet AMD undergone intravitreal 0.5 mg ranibizumab injection. Color Doppler Imaging (CDI and dopplerographywere used to measure hemodynamic parameters including the peak systolic velocity (Vsyst, cm / s, end-diastolic velocity (V diast, cm / s, and resistance index (RI of blood flow in the central retinal artery (CRA, the short posterior ciliary arteries (PCA, and the ophthalmic artery (OA. All patients were examined before and after injection on day 1‑7 and 30 day during the 3‑month follow up period.Results: Before intravitreal injection Vsyst was decreased in short PCA (p<0.05, RI in CRA and in short PCA significantly increased in comparison with normal index in same vessels. The peak systolic velocity in OA, in CRA and in short PCA was not significantly changed. After second injection resistance index in CRA and in short PCA was normalized.Conclusion: There was not impairment of ocular blood flow in retinal and choroidal after monthly intravitreal injection of ranibizumab during the 3‑month follow up period.

  13. On-line neutron activation analyzers

    International Nuclear Information System (INIS)

    Flahaut, V.; Colmon, A.

    1999-01-01

    A neutronic analyser has been designed to determine the composition of the flow of raw materials entering a cement factory on the conveyor belt. This new system gives a reliable analysis of the whole cargo that outdates the sampling or the usual surface analysis based on fluorescence spectrometry. The accuracy is about 1%.The neutrons interact with the materials on an average depth of 25 cm and are absorbed by nuclei, these nuclei produce photons whose energy is characteristic of the chemical element itself. The composition can be deduced by measuring the number of photons emitted and their energy. The analysis is made on-line and can concern the search for about 10 compounds. In the case of cement the list of compounds is: SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, TiO 2 , S, Mn 2 O 3 , K 2 O, and H 2 O. The neutron generator involves a deuterium ion source whose deuterium ions are accelerated by means of an electrical field and impinge on a tritiated target, the nuclear reactions between deuterium and tritium produce 14 MeV neutrons. This neutron analysing technique can be adapted to any need of on-line composition determination. (A.C.)

  14. On-line moisture analysis

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Mijak, D.G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk material. Nuclear-based analysers measure the total hydrogen content in the sample and do not differentiate between free and combined moisture. Such analysers may also be sensitive to material presentation and elemental composition. Very low frequency electromagnetic probes, such as capacitance or conductance probes, operate in the frequency region where the DC conductivity dominates much of the response, which is a function not only of moisture content but also of ionic composition and chemistry. These problems are overcome using microwave transmission techniques, which also have the following advantages, as a true bulk moisture analysis is obtained, because a high percentage of the bulk material is analysed; the moisture estimate is mostly insensitive to any biased presentation of moisture, for example due to stratification of bulk material with different moisture content and because no physical contact is made between the sensor and the bulk material. This is

  15. Second-order Data by Flow Injection Analysis with Spectrophotometric Diode-array Detection and Incorporated Gel-filtration Chromatographic Column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard

    1997-01-01

    A flow injection analysis (FIA) system furnished with a gel-filtration chromatographic column and with photodiode-array detection was used for the generation of second-order data. The system presented is a model system in which the analytes are blue dextran, potassium hexacyanoferrate(III) and he......A flow injection analysis (FIA) system furnished with a gel-filtration chromatographic column and with photodiode-array detection was used for the generation of second-order data. The system presented is a model system in which the analytes are blue dextran, potassium hexacyanoferrate...

  16. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, A., E-mail: andrea.ulrich@empa.ch [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Ott, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); EPFL-Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Tournier-Fillon, A. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Homazava, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Swiss Centre for Applied Ecotoxicology, Eawag/EPFL, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schmutz, P. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2011-07-15

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  17. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    International Nuclear Information System (INIS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-01-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  18. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Science.gov (United States)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  19. Monitoring and control of enzymic sucrose hydrolysis using on-line biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Buelow, L; Danielsson, B; Mosbach, K

    1985-02-01

    Previously reported flow microcalorimeter devices for enzymic reaction heat measurement, enzyme thermistors, have here been extended with systems for on-line sample treatment. Glucose analysis was performed by intermittent flow injection of 50 ..mu..l samples through such an enzyme thermistor device containing immobilized glucose oxidase and catalase. Sucrose analysis was performed by allowing diluted samples to continuously pass through an additional enzyme thermistor containing immobilized invertase. The reaction heats were recorded as temperature changes in the order of 10-50 m degrees C for concentration of 0.05-0.30 M glucose or sucrose present in the original non-diluted samples. The performance of this system was investigated by its ability to follow concentration changes obtained from a gradient mixer. The system was applied to monitoring and controlling the hydrolysis of sucrose to glucose and fructose in a plug-flow reactor with immobilized invertase. The reactor was continuously fed by a flow of sucrose of up to 0.3 M (100 g/l). Glucose and remaining sucrose were monitored in the effluent of the column. By using flow rate controlled feed pumps for sucrose and diluent the influent concentration of sucrose was varied while the overall flow rate remained constant. On-line control of the effluent concentration of glucose and sucrose was achieved by a proportional and integral regulator implemented on a microcomputer. Present concentration of glucose in the effluent could be maintained over an extended period of time despite changes in the overall capacity of the invertase reactor. Long delay times in the sensor system and the enzyme column made it necessary to carefully tune the control parameters. Changes of set-point value and temperature disturbances were used to verify accuracy of controlling performance. 32 references.

  20. Detection of Total Phenol in Green and Black Teas by Flow Injection System and Unmodified Screen Printed Electrode

    Directory of Open Access Journals (Sweden)

    Ivanildo Luiz de Mattos

    2010-01-01

    Full Text Available A flow injection system using an unmodified gold screen-printed electrode was employed for total phenol determination in black and green teas. In order to avoid passivation of the electrode surface due to the redox reaction, preoxidation of the sample was realized by hexacyanoferrate(III followed by addition of an EDTA solution. The complex formed in the presence of EDTA minimizes or avoids polymerization of the oxidized phenols. The previously filtered tea sample and hexacyanoferrate(III reagent were introduced simultaneously into two-carrier streams producing two reproducible zones. At confluence point, the pre-oxidation of the phenolic compounds occurs while this zone flows through the coiled reactor and receives the EDTA solution before phenol detection. The consumption of ferricyanide was monitorized at 360 mV versus Ag/AgCl and reflected the total amount of phenolic compounds present in the sample. Results were reported as gallic acid equivalents (GAEs. The proposed system is robust, versatile, environmentally-friendly (since the reactive is used only in the presence of the sample, and allows the analysis of about 35–40 samples per hour with detection limit = 1 mg/L without the necessity for surface cleaning after each measurement. Precise results are in agreement with those obtained by the Folin-Ciocalteu method.

  1. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Directory of Open Access Journals (Sweden)

    Christian León-Celi

    2016-12-01

    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  2. On-line Analysis of Catalytic Reaction Products Using a High-Pressure Tandem Micro-reactor GC/MS.

    Science.gov (United States)

    Watanabe, Atsushi; Kim, Young-Min; Hosaka, Akihiko; Watanabe, Chuichi; Teramae, Norio; Ohtani, Hajime; Kim, Seungdo; Park, Young-Kwon; Wang, Kaige; Freeman, Robert R

    2017-01-01

    When a GC/MS system is coupled with a pressurized reactor, the separation efficiency and the retention time are directly affected by the reactor pressure. To keep the GC column flow rate constant irrespective of the reaction pressure, a restrictor capillary tube and an open split interface are attached between the GC injection port and the head of a GC separation column. The capability of the attached modules is demonstrated for the on-line GC/MS analysis of catalytic reaction products of a bio-oil model sample (guaiacol), produced under a pressure of 1 to 3 MPa.

  3. Stall margin improvement of an axial flow fan with end wall injection and suction; Hekimen fukidashi suidashi ni yoru han'yo jikuryu sofuki no shissoku kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, K.; Kuroda, H.; Obata, S.; Chimura, O. [National Defense Academy, Kanagawa (Japan)

    1999-06-25

    The experimental studies are conducted to reveal the mechanism of stall margin improvement of an axial flow fan by injection or suction from the end wall. In case of injection, the largest improvement is obtained by the injection at about 0. 14 {approx} 0 .21 times axial chord length downstream from leading edge. The reason for large improvement is that stall vortex, shed intermittent separation vortex and tip leakage vortex are dissipated by this injection, and also that this blowing suppresses the separation of boundary layer. In case of suction, the largest improvement is found for the suction from the end wall near leading edge. The amplitude of periodic static pressure after stall inception becomes smaller in comparison with injection cases. These effects are increased with the increase of suction flow rate, because the discharge of the vortex occurs more easily. On the other hand, the suction from the upstream of leading edge reduces the axial velocity near rotor tip, and then it induces stall. Also we tried to visualize the tip region flow, The suppression mechanism is discussed based on the visualization. The suppression of stall is successfully photographed. (author)

  4. On-line data display

    Science.gov (United States)

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli

    1993-05-01

    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  5. A New Method of On-line Grid Impedance Estimation for PV Inverter

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede

    2004-01-01

    for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...

  6. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    Directory of Open Access Journals (Sweden)

    Suad Mustafa Al-Araji

    2011-01-01

    Full Text Available Plasticised poly(vinyl chloride-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD, dibenzo-18-crown-6 (DB18C6 and dibenzo-30-crown-10 (DB30C10 were evaluated for their potentiometric response towards promethazine (PM in a flow injection analysis (FIA set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl borate (KTPB was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl adipate (BEHA and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 x 10−5 to 1 x 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 x 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose. FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream were also studied when the best sensor was used (based on β-CD. The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules.

  7. Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis-atmospheric pressure chemical ionisation mass spectrometry

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Smittenberg, R.H.; Hopmans, E.C.; Schouten, S.

    2002-01-01

    Repeated semi-preparative normal-phase HPLC was performed to isolate selected biomarkers from sediment extracts for radiocarbon analysis. Flow injection analysis mass spectrometry was used for rapid analysis of collected fractions to evaluate the separation procedure, taking only 1 min per fraction.

  8. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  9. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  10. A simulation of the SDC on-line processing farm

    International Nuclear Information System (INIS)

    Wang, C.; Chen, Y.; Dorenbosch, J.; Lee, J.; Sayle, R.

    1993-10-01

    In the Solenoidal Detector Collaboration (SDC) data acquisition system (DAQ), an enormous amount of data flows into a processor farm for extraction of interesting physics events. To design an efficient on-line filter, the operations in the farm must be carefully modeled. The authors present a simulation model developed at the Superconducting Super Collider Laboratory which efficiently allocates physics events to the farm

  11. Clinical studies on the lymph flow of the esophagus by injecting sup(99m)Tc-rhenium colloid into the esophageal wall

    International Nuclear Information System (INIS)

    Baba, Masamichi; Tanabe, Gen; Nishi, Mitsumasa

    1985-01-01

    Using 29 operative cases lymph flow of the esophagus was investigated by injecting endoscopically sup(99m)Tc-Rhenium colloid. Rhenium colloid lymphoscintigraphy was made, and 30 -- 32 hours after injection RI up take (cpm/g) of resected lymph nodes was counted by scintillation counter. 1. RI up take of resected lymph nodes correspond with the lymphoscintigraphy of resected lymph nodes therefore, RI up take count was available to study the extra-mural lymph flow of the esophagus. 2. In the cases injected at upper part of the esophagus, the high counted RI up take was noted in bifurcation lymph nodes, upper mediastinal lymph nodes and bilateral supraclavicular lymph nodes. In the cases injected at middle part of the esophagus, bilateral supraclavicular lymph nodes, upper mediastinal lymph nodes and left gastric artery lymph nodes revealed the high RI up takes. In the cases injected at lower part of the esophagus, RI up take was highly noted in bifurcation lymph nodes, left gastric artery lymph nodes and celiac axis lymph nodes. In the cases injected at esophago-gastric junction, the high counted RI up take was noted in left gastric artery lymph nodes, celiac axis lymph nodes and the lymph nodes around the left renal vein. 3. In the cases injected at upper, middle parts of the esophagus, bilateral supraclavicular lymph nodes revealed the high RI up take. Some of these lymph nodes are regarded as directly connected with the extra-mural lymph vessls of the esophagus. Therefore, it was suggested that existence of ''direct lymph flow'' from which upper, middle intrathoracic esophagus directly connected to right supraclavicular lymph nodes. 4. It is important to perform bilateral modified neck dissection in case of upper, middle intrathoracic esophageal cancer and is important to dissect the lymph nodes around the left renal vein in case of esophago-gastric cancer and lower intrathoracic esophageal cancer. (J.P.N.)

  12. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  13. Multicommuted flow injection method for fast photometric determination of phenolic compounds in commercial virgin olive oil samples.

    Science.gov (United States)

    Lara-Ortega, Felipe J; Sainz-Gonzalo, Francisco J; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-01-15

    A multicommuted flow injection method has been developed for the determination of phenolic species in virgin olive oil samples. The method is based on the inhibitory effect of antioxidants on a stable and colored radical cation formation from the colorless compound N,N-dimethyl-p-phenylenediamine (DMPD(•+)) in acidic medium in the presence of Fe(III) as oxidant. The signal inhibition by phenolic species and other antioxidants is proportional to their concentration in the olive oil sample. Absorbance was recorded at 515nm by means of a modular fiber optic spectrometer. Oleuropein was used as the standard for phenols determination and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was the reference standard used for total antioxidant content calculation. Linear response was observed within the range of 250-1000mg/kg oleuropein, which was in accordance with phenolic contents observed in commercial extra virgin olive oil in the present study. Fast and low-volume liquid-liquid extraction of the samples using 60% MeOH was made previous to their insertion in the flow multicommuted system. The five three-way solenoid valves used for multicommuted liquid handling were controlled by a homemade electronic interface and Java-written software. The proposed approach was applied to different commercial extra virgin olive oil samples and the results were consistent with those obtained by the Folin Ciocalteu (FC) method. Total time for the sample preparation and the analysis required in the present approach can be drastically reduced: the throughput of the present analysis is 8 samples/h in contrast to 1sample/h of the conventional FC method. The present method is easy to implement in routine analysis and can be regarded as a feasible alternative to FC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    Science.gov (United States)

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  15. An automatic flow injection analysis procedure for photometric determination of ethanol in red wine without using a chromogenic reagent.

    Science.gov (United States)

    Borges, Sivanildo S; Frizzarin, Rejane M; Reis, Boaventura F

    2006-05-01

    An automatic reagentless photometric procedure for the determination of ethanol in red wine is described. The procedure was based on a falling drop system that was implemented by employing a flow injection analysis manifold. The detection system comprised an infrared LED and a phototransistor. The experimental arrangement was designed to ensure that the wine drop grew between these devices, thus causing a decrease in the intensity of the radiation beam coming from the LED. Since ethanol content affected the size of the wine drop this feature was exploited to develop an analytical procedure for the photometric determination of ethanol in red wine without using a chromogenic reagent. In an attempt to prove the usefulness of the proposed procedure, a set of red wines were analysed. No significant difference between our results and those obtained with a reference method was observed at the 95% confidence level. Other advantages of our method were a linear response ranging from 0.17 up to 5.14 mol L(-1) (1.0 up to 30.0%) ethanol (R = 0.999); a limit of detection of 0.05 mol L(-1) (0.3%) ethanol; a relative standard deviation of 2.5% (n = 10) using typical wine sample containing 2.14 mol L(-1) (12.5%) ethanol; and a sampling rate of 50 determinations per hour.

  16. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  17. Flow-Injection Solid Phase Partial Least-Squares Spectrophotometric Simultaneous Determination of Iron, Nickel and Zinc

    Directory of Open Access Journals (Sweden)

    Teixeira Leonardo S. G.

    2002-01-01

    Full Text Available A PLS-2 multivariate calibration method has been developed for the simultaneous determination of iron, nickel and zinc in ternary mixtures by solid phase spectrophotometry associated with flow injection analysis. Fe(II, Ni(II and Zn(II form color complexes with 1-(2-thiazolylazo-2-naphthol (TAN, immobilized on a C18 bonded silica support, at pH 6.4. The proposed procedure is based on the different reaction/retention ratios of the studied ions on the solid support. Bilinear spectrophotometric data of the analytes, fixed in the solid support, were recorded in the 400-800 nm wavelength range as a function of time and a partial least squares (PLS-2 algorithm was used to predict results of synthetic samples. The calibration set employed was integrated by 8 ternary mixture standards and a blank solution. Mixtures containing 0.040 to 0.20 mg L-1, of each species, were successfully resolved, using 3 factors for each analyte and a restricted number of absorbance data obtained in the wavelength range from 560 to 650 nm.

  18. Sequential determination of multi-nutrient elements in natural water samples with a reverse flow injection system.

    Science.gov (United States)

    Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei

    2017-05-15

    An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    Science.gov (United States)

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Determination of hydrogen peroxide in water by chemiluminescence detection, (1). Flow injection type hydrogen peroxide detection system

    International Nuclear Information System (INIS)

    Yamashiro, Naoya; Uchida, Shunsuke; Satoh, Yoshiyuki; Morishima, Yusuke; Yokoyama, Hiroaki; Satoh, Tomonori; Sugama, Junichi; Yamada, Rie

    2004-01-01

    A flow injection type hydrogen peroxide detection system with a sub-ppb detection limit has been developed to determine hydrogen peroxide concentration in water sampled from a high temperature, high pressure hydrogen peroxide water loop. The hydrogen peroxide detector is based on luminol chemiluminescence spectroscopy. A small amount of sample water (20 μl) is mixed with a reagent mixture, an aqueous solution of luminol and Co 2+ catalyst, in a mixing cell which is installed just upstream from the detection cell. The optimum values for pH and the concentrations of luminol and Co 2+ ion have been determined to ensure a lower detectable limit and a higher reproducibility. The photocurrent detected by the detection system is expressed by a linear function of the hydrogen peroxide concentration in the region of lower concentration ([H 2 O 2 ] 2 O 2 ] in the region of higher concentration ([H 2 O 2 ] > 10 ppb). The luminous intensity of luminol chemiluminescence is the highest when pH of the reagent mixture is 11.0. Optimization of the major parameters gives the lowest detectable limit of 0.3 ppb. (author)

  1. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Hosny [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt)]. E-mail: dr_hosny@yahoo.com

    2005-07-27

    The utility of carbon paste electrode modified with silver ethylmercurythiosalicylate (silver thimerosal) in both static mode and flow injection analysis (FIA) is demonstrated. The electrode was fully characterized in terms of composition, response time, thermal stability, usable pH and ionic strength ranges. It has been shown that diisononyl phthalate (DINP) acts as more suitable solvent mediator for preparation of the electrode, which exhibits linear response range to Ag(I) extending from 5.0 x 10{sup -7} to 1.0 x 10{sup -3} M with detection limit of 2.5 x 10{sup -7} M and Nernstian slope of 59.3 {+-} 1.0 mV/decade. The proposed chemically modified carbon paste electrode shows a very good selectivity for Ag(I) over a wide variety of metal ions and successfully used for the determination of the silver content of silver sulphadiazine (burning cream) and developed radiological films. The electrode was also used as an indicator electrode in the potentiometric titration of thiopental and thimerosal with AgNO{sub 3}.

  2. Spectrophotometric flow-injection determination of sulphite in white wines involving gas diffusion through a concentric tubular membrane

    Directory of Open Access Journals (Sweden)

    Melo Denise

    2003-01-01

    Full Text Available A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8, reaction with Malachite green (MG and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100% enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC. The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 muL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2 in agreement with those obtained by an alternative procedure.

  3. Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.

    Science.gov (United States)

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2010-01-01

    A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. Copyright (c) 2009 John Wiley & Sons, Ltd.

  4. Flow Injection Photosensitized Chemiluminescence of Luminol with Cu(II-Rose Bengal: Mechanistic Approach and Vitamin A and C Determination

    Directory of Open Access Journals (Sweden)

    Muhammad Asgher

    2014-01-01

    Full Text Available Rose Bengal photosensitized flow injection chemiluminescence method is reported using luminol-Cu(II for the determination of vitamins A and C in pharmaceutical formulations. The reaction is based on the enhancement effect of analyte in the production of anion radicals of Rose Bengal (RB•− which rapidly interact with dissolved oxygen and generate superoxide anions radicals (O2•− and hydrogen peroxide (H2O2. Highly reactive hydroxyl radicals (•OH were produced via dismutation of H2O2 by catalyst (Cu2+. The generated superoxide anions radicals and hydroxyl radicals thus oxidize luminol in alkaline medium to generate strong chemiluminescence. The limit of detection (3s of the blank, n=6 of vitamins A and C and RB was found to be 0.008, 0.005, and 0.05 μg mL−1, respectively. The sample throughput of 70 h−1 for vitamins A and C and 30 h−1 for RB was found. Calibration curve was linear in the range of 0.05–15, 0.01–20, and 0.1–50 μg mL−1 for vitamins A and C and RB, respectively, with relative standard deviations (RSDs; n=3 in the range 1.6–3.6%. The method was successfully applied to pharmaceutical formulations and the results obtained were in good agreement with the labeled values.

  5. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    Science.gov (United States)

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A simple and selective spectrophotometric flow injection determination of trace amounts of ruthenium by catalytic oxidation of safranin-O

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-84111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Keyvanfard, Mohsen [Faculty of Science, Majlesi Campus, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2008-03-01

    In this work, a simple, selective and rapid flow injection method has been developed for determination of ruthenium. The method is based on its catalytic effect on the oxidation of safranin-O by metaperiodate. The reaction was monitored spectrophotometrically by measuring safranin-O absorbance at {lambda}{sub max} = 521. The reagents and manifold variables, which have influences on the sensitivity, were investigated and the optimum conditions were established. The optimized conditions made it possible to determine ruthenium in the ranges of 0.4-20.0 ng/mL ({delta}A = 0.2819C{sub Ru} + 1.1840) and 20.0-100.0 ng/mL ({delta}A = 0.0984C{sub Ru} + 7.9391) with a detection limit of 0.095 ng/mL and a sample rate of 30 {+-} 5 samples/h. Relative standard deviation for the five replicate measurements was less than 1.84%. The proposed method has been successfully applied for analysis of ultra trace amounts of ruthenium in real samples.

  7. A simple and selective spectrophotometric flow injection determination of trace amounts of ruthenium by catalytic oxidation of safranin-O

    International Nuclear Information System (INIS)

    Rezaei, Behzad; Keyvanfard, Mohsen

    2008-01-01

    In this work, a simple, selective and rapid flow injection method has been developed for determination of ruthenium. The method is based on its catalytic effect on the oxidation of safranin-O by metaperiodate. The reaction was monitored spectrophotometrically by measuring safranin-O absorbance at λ max = 521. The reagents and manifold variables, which have influences on the sensitivity, were investigated and the optimum conditions were established. The optimized conditions made it possible to determine ruthenium in the ranges of 0.4-20.0 ng/mL (ΔA = 0.2819C Ru + 1.1840) and 20.0-100.0 ng/mL (ΔA = 0.0984C Ru + 7.9391) with a detection limit of 0.095 ng/mL and a sample rate of 30 ± 5 samples/h. Relative standard deviation for the five replicate measurements was less than 1.84%. The proposed method has been successfully applied for analysis of ultra trace amounts of ruthenium in real samples

  8. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2015-01-01

    The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimer's disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  10. Successful management with glue injection of arterial rupture seen during embolization of an arteriovenous malformation using a flow-directed catheter: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Won; Baik, Seung Kug; Shin, Mi Jung; Choi, Han Yong; Kim, Bong Gi [Wallace Memorial Baptist Hospital, Pusan (Korea, Republic of)

    2000-12-01

    We present a case in which an arterial rupture occurring during embolization of an arteriovenous malformation of the left occipital lobe with a flow-directed micro-catheter, was successfully sealed with a small amount of glue. We navigated a 1.8-Fr Magic catheter through the posterior cerebral artery, and during superselective test injection, extravasation was observed at the parieto-occipital branch. The catheter was not removed and the perforation site was successfully sealed with a small amount of glue injected through the same catheter. Prompt recognition and closure of the perforation site is essential for good prognosis. (author)

  11. Comparison of on-line flow-cell and off-line solvent-elimination interfaces for size-exclusion chromatography and Fourier-transform infrared spectroscopy in polymer analysis

    NARCIS (Netherlands)

    Kok, S.J.; Wold, C.A.; Hankemeier, Th.; Schoenmakers, P.J.

    2003-01-01

    Two commercial liquid chromatography-Fourier-transform infrared spectroscopy interfaces (LC-FTIR), viz. a flow cell and a solvent-elimination interface have been assessed for use in size-exclusion chromatography (SEC) with respect to their chromatographic integrity (i.e. peak asymmetry,

  12. A custom on-line ultrasonic gas mixture analyzer with simultaneous flowmetry developed for use in the LHC-ATLAS experiment, with wide application in high and low flow gas delivery systems

    International Nuclear Information System (INIS)

    Bates, R.; Bitadze, A.; Battistin, M.; Berry, S.; Berthoud, J.; Bonneau, P.; Botelho- Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Da Riva, E.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Deterre, C.; Doubek, M.; Vacek, V.; Vitek, M.; Degeorge, C.; Katunin, S.; Langevin, N.; McMahon, S.; Nagai, K.; Robinson, D.; Rossi, C.

    2013-06-01

    We describe a combined ultrasonic instrument for continuous gas flow measurement and simultaneous real-time binary gas mixture analysis. In the instrument, sound bursts are transmitted in opposite directions, which may be aligned with the gas flow path or at an angle to it, the latter configuration being the best adapted to high flow rates. Custom electronics based on Microchip R dsPIC and ADuC847 micro-controllers transmits 50 kHz ultrasound pulses and measures transit times in the two directions together with the process gas temperature and pressure. The combined flow measurement and mixture analysis algorithm exploits the phenomenon whereby the sound velocity in a binary gas mixture at known temperature and pressure is a unique function of the molar concentration of the two components. The instrument is central to a possible upgrade to the present ATLAS silicon tracker cooling system in which octafluoro-propane (C 3 F 8 ) evaporative cooling fluid would be replaced by a blend containing up to 25% hexafluoro-ethane (C 2 F 6 ). Such a blend will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider (LHC) increases. The instrument has been developed in two geometries following computational fluid dynamics studies of various mechanical layouts. An instrument with 45 crossing angle has been built in stainless steel and installed for commissioning in the ATLAS silicon tracker evaporative fluorocarbon cooling system. It can be used in gas flows up to 20000 l.min -1 , and has demonstrated a flow resolution of 2.3% of full scale for linear flow velocities up to 10 m.s-1 in preliminary studies with air. Other instruments are currently used to detect low levels of C 3 F 8 vapour leaking into the N 2 environmental gas surrounding the ATLAS silicon tracker. Gas from several

  13. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  14. Steady flow in a porous layer subjected to a stream uniformly injecting from a plane; Ichiyo ni men kara fukidasu nagare ni sarasareta takoshitsu sonai no teijo nagare

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, E; Horiguchi, Y; Kitazawa, K [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-08-25

    A steady flow in an non-deformable porous layer subjected to a fluid stream is studied analytically and numerically. One side of the layer of sponge is bounded by a solid wall and the other by a layer of fluid. The fluid is injected uniformly from a plane, through which the fluid can pass, set up parallel to the sponge layer. The flow in the sponge layer is assumed to be governed by Darcy`s law. The problem considered is solved in terms of a similarity solution. The equations governing the fluid flows in both the porous layer and the fluid layer are reduced to a system of the ordinary differential equations. These equations are solved analytically for three cases ideal fluid flow, low Reynolds number flow and high Reynolds number flow. On the other hand, these equations are solved numerically for the general case by using the finite difference method. The distributions of the velocity and the pressure in both layers are found for various parameters. In particular, the speed which the fluid intrudes into the sponge layer due to the injection of the stream from the plane is found to be a function of dimensionless parameters. To find this speed is essential to the understanding of porous material. 15 refs., 9 figs.

  15. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501.970 Porto Alegre, RS (Brazil); Santos, Clarissa M.M. dos; Flores, Erico M.M. [Departamento de Quimica Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Pozebon, Dirce, E-mail: dircepoz@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501.970 Porto Alegre, RS (Brazil)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ultrasound was investigated and applied for red wine samples preparation. Black-Right-Pointing-Pointer Aliquots of 50 {mu}L of sample were nebulized and transported to plasma. Black-Right-Pointing-Pointer FI and pneumatic nebulization/aerosol desolvation were used. Black-Right-Pointing-Pointer LODs of the ICP-MS method for lanthanides determination were at ng L{sup -1} level. Black-Right-Pointing-Pointer Lanthanides concentration allowed red wines classification. - Abstract: This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 {mu}L of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L{sup -1}, respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration.

  16. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Santos, Clarissa M.M. dos; Flores, Érico M.M.; Pozebon, Dirce

    2012-01-01

    Highlights: ► Ultrasound was investigated and applied for red wine samples preparation. ► Aliquots of 50 μL of sample were nebulized and transported to plasma. ► FI and pneumatic nebulization/aerosol desolvation were used. ► LODs of the ICP-MS method for lanthanides determination were at ng L −1 level. ► Lanthanides concentration allowed red wines classification. - Abstract: This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L −1 , respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration.

  17. Arterio-venous concentration difference of [51Cr]EDTA after a single injection in man. Significance of renal function and local blood flow

    DEFF Research Database (Denmark)

    Rehling, M; Hyldstrup, L; Henriksen, Jens Henrik Sahl

    1989-01-01

    , whereas the difference was very sensitive to even small changes in forearm blood flow within the physiological range. For measurement of renal plasma clearance it is recommended to use one long period: from the time of injection until 300 min p.i. or longer. If the clearance period is too short, the use...... introduced in the measurement of renal plasma clearance and total plasma clearance by using venous blood samples instead of arterial. In 13 patients with GFR ranging from 29 to 150 ml min-1, Ca was higher than Cv immediately after the injection. After mean 38 min (range 12-82 min) the two curves crossed...... of venous samples will overestimate the true renal clearance. Plasma clearance determined by venous and arterial blood samples does not differ significantly as long as the concentration is followed from the time of injection and a long period is applied. When simplified plasma clearance techniques are used...

  18. A novel automatic flow method with direct-injection photometric detector for determination of dissolved reactive phosphorus in wastewater and freshwater samples.

    Science.gov (United States)

    Koronkiewicz, Stanislawa; Trifescu, Mihaela; Smoczynski, Lech; Ratnaweera, Harsha; Kalinowski, Slawomir

    2018-02-12

    The novel automatic flow system, direct-injection detector (DID) integrated with multi-pumping flow system (MPFS), dedicated for the photometric determination of orthophosphates in wastewater and freshwater samples is for the first time described. All reagents and the sample were injected simultaneously, in counter-current into the reaction-detection chamber by the system of specially selected for this purpose solenoid micro-pumps. The micro-pumps provided good precision and accuracy of the injected volumes. For the determination of orthophosphates, the molybdenum blue method was employed. The developed method can be used to detect orthophosphate in the range 0.1-12 mg L -1 , with the repeatability (RSD) about 2.2% at 4 mg L -1 and a very high injection throughput of 120 injections h -1 . It was possible to achieve a very small consumption of reagents (10 μL of ammonium molybdate and 10 μL of ascorbic acid) and sample (20 μL). The volume of generated waste was only 440 μL per analysis. The method has been successfully applied, giving a good accuracy, to determination of orthophosphates in complex matrix samples: treated wastewater, lake water and reference sample of groundwater. The developed system is compact, small in both size and weight, requires 12 V in supply voltage, which are desirable for truly portable equipment used in routine analysis. The simplicity of the system should result in its greater long-time reliability comparing to other flow methods previously described.

  19. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Deepak [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injection volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.

  20. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    Directory of Open Access Journals (Sweden)

    C. Rueda

    2007-07-01

    Full Text Available A flow-injection pulse amperometric method for determining tacrine, based onion transfer across a plasticized poly(vinyl chloride (PVC membrane, was developed. Afour-electrode potentiostat with ohmic drop compensation was used, while a flow-throughcell incorporated the four electrodes and the membrane, which containedtetrabutylammonium tetraphenylborate. The influence of the applied potential and of theflow-injection variables on the determination of tacrine was studied. In the selectedconditions, a linear relationship between peak height and tacrine concentration was foundup to 4x10-5M tacrine. The detection limit was 1x10-7M. Good repeatability was obtained.Some common ions and pharmaceutical excipients did not interfere.

  1. A similar solution for an unsteady free convection flow past an impulsively started vertical plate with mass transfer and suction or injection

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1990-12-01

    A similar solution for the flow past a vertical plate started impulsively in its own plane in a viscous incompressible fluid is presented on taking into account the effects of variable suction and/or injection and mass transfer. To solve the momentum, energy and concentration equations, a time dependent length scale is introduced, which leads to the driving parameters γ(=G r /R σ 2 ) and γ*(=G r */R σ 2 ), where G r and G r * are respectively the Grashof and modified Grashof numbers while R σ is the Reynolds number. The resulting locally similar momentum equation is then solved by the method of superposition. The effects of the parameters and that of suction/injection on the flow and on the wall shear-stress of the plate are shown graphically for different values of Schmidt number and transpiration parameter. (author). 24 refs, 11 figs

  2. Application of a field flow preconcentration system with a minicolumn packed with amberlite XAD-4/1-(2-pyridylazo)-2-naphtol and a flow injection-flame atomic adsorption spectrometric system for lead determination in sea water

    International Nuclear Information System (INIS)

    Carmen Yebra, M. del; Rodriguez, L.; Puig, L.; Moreno-Cid, A.

    2002-01-01

    A field flow preconcentration technique involving a minicolumn containing Amberlite XAD-4 impregnated with the complexing agent 1-(2-pyridylazo)-2-naphthol was used to preconcentrate lead from seawater. Elution of retained lead on the minicolumns was performed by a flow-injection-flame atomic absorption spectrometric system. Factorial designs have been used to optimize the field flow preconcentration system and the flow injection elution process. Factors such as sample pH, sample flow-rate, eluent concentration and volume (hydrochloric acid), elution flow-rate and minicolumn diameter were considered. The results suggest that the sample flow-rate and the eluent volume are statistically significant factors. The detection limit (3σ) of the procedure was 5 ng/L for a sample volume of 1000 ml. The precision (expressed as relative standard deviation) for eleven independent determinations reached values of 4.0-3.1 % in lead solutions of 50-200 ng/L. This procedure has been successfully applied to the determination of lead in seawater from Galicia (Spain). (author)

  3. Project development and commercialization of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    1997-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems are licensed to Australian companies, Amdel Ltd and Mineral Control Instrumentation Ltd. Both systems are used by industry worldwide, and are the market leaders for radioisotope gauges in their application field. The third system, the multiphase flow meter, was licensed in 1997 to Kvaerner FSSL Ltd of Aberdeen. This meter has even greater potential than the other two systems for economic benefit from its used and for numbers of installations. The on-line analysis systems have been developed to increase the productivity of the Australian mineral and energy industries, and to provide economic benefit to Australia. The economic benefit sought is predominantly improved process control based on use of the instrument, rather than from its sale. Sales of instruments are significant, however, with about A$80 million from the analysis systems and their derivatives since the 1970s. Some of the issues associated with the development of the on-line analysis system are outlined

  4. Chemical reaction effect on an unsteady MHD free convection flow past a vertical porous plate in the presence of suction or injection

    Directory of Open Access Journals (Sweden)

    Shivaiah S.

    2012-01-01

    Full Text Available The objective of this paper is to analyze the effect of chemical reaction on unsteady magneto hydrodynamic free convective fluid flow past a vertical porous plate in the presence of suction or injection. The governing equations of the flow field are solved numerically by a finite element method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-friction coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.

  5. Development of an automated technique for the speciation of arsenic using flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Ruede, T.R. (Inst. of Petrography and Geochemistry, Univ. of Karlsruhe (Germany)); Puchelt, H. (Inst. of Petrography and Geochemistry, Univ. of Karlsruhe (Germany))

    1994-09-01

    An automated method for the determination of arsenic acid (AsV), arsenous acid (AsIII), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) was developed using a commercial available flow injection hydride generation system. By carrying out the hydride generation in selected acid media the determination of As(III) alone, of MMAA and DMAA by sum and by different sensitivities, and of all four species is possible. (orig.)

  6. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography

    International Nuclear Information System (INIS)

    Diamantis, V.; Melidis, P.; Aivasidis, A.

    2006-01-01

    Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer

  7. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Deepak [ORNL; Van Berkel, Gary J [ORNL

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45 min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  8. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    Science.gov (United States)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  9. Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.

    Science.gov (United States)

    Riccardi Sirtori, Federico; Caronni, Dannica; Colombo, Maristella; Dalvit, Claudio; Paolucci, Mauro; Regazzoni, Luca; Visco, Carlo; Fogliatto, Gianpaolo

    2015-08-30

    ESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer. In particular, reference compounds, with a broad range of dissociation constants from 40pM to 100μM, were tested to assess the reliability of ESI-MS for the study of protein-ligand complexes. A good agreement was found between the values measured with a fluorescence polarization displacement assay and those determined by mass spectrometry. After this validation step we describe the setup of a medium throughput screening method, based on ESI-MS, suitable to explore interactions of therapeutic relevance biopolymers with chemical libraries. Our approach is based on an automated flow injection ESI-MS method (AFI-MS) and has been applied to screen the Nerviano Medical Sciences proprietary fragment library of about 2000 fragments against Hsp90. In order to discard false positive hits and to discriminate those of them interacting with the N-terminal ATP binding site, competition experiments were performed using a reference inhibitor. Gratifyingly, this group of hits matches with the ligands previously identified by NMR FAXS techniques and confirmed by X-ray co-crystallization experiments. These results support the use of AFI-MS for the screening of medium size libraries, including libraries of small molecules with low affinity typically used in fragment based drug discovery. AFI-MS is a valid alternative to other techniques with the additional opportunities to identify compounds interacting with

  10. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Science.gov (United States)

    Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana

    2014-05-01

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  11. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    NARCIS (Netherlands)

    Giskes, Ella; Verschoof, Ruben A.; Segerink, Frans B.; Venner, Cornelis H.

    2017-01-01

    Benefiting from the development of increasingly advanced high speed cameras, flow visualization and analysis nowadays yield detailed data of the flow field in many applications. Notwithstanding this progress, for high speed and supersonic flows it is still not trivial to capture high quality images.

  12. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, L.L.; Leal, L.O. [Renewable Energy and Environmental Protection Department, Advanced Materials Research Center (CIMAV), Chihuahua, Chihuahua (Mexico); Ferrer, L.; Cerda, V. [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain)

    2012-09-15

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 {mu}g L{sup -1}, respectively. The repeatability values accomplished were of 2.4 and 1.8 %, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation. (orig.)

  13. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  14. Shawnee Mission's On-Line Cataloging System

    Directory of Open Access Journals (Sweden)

    Ellen Wasby Miller

    1971-03-01

    Full Text Available An on-line cataloging pilot project for two elementary schools is discussed. The system components are 2740 terminals, upper-lower-case input, IBM's FASTER generalized software package, and usual cards/labels output. Reasons for choosing FASTER, software and hardware features, operating procedures, system performance and costs are detailed. Future expansion to cataloging 100,000 annual K-12 acquisitions, on-line circulation, retrospective conversion, and union book catalogs is set forth.

  15. INIS retrieval service, towards on-line

    International Nuclear Information System (INIS)

    Ebinuma, Yukio; Komatsubara, Yasutoshi

    1983-01-01

    Japan Atomic Energy Research Institute executes the retrieval service of INIS atomic energy information by batch system in cooperation with Genshiryoku Kozaikai. This service is very popular to the users in whole Japan, but the demand of on-line service has increased recently. Therefore, it was decided to begin the INIS on-line service from January, 1984, through the on-line information retrieval system of the Japan Information Center of Science and Technology. It is expected that when the operation will be started, the utilization of INIS atomic energy information in Japan will drastically increase. Also Japan Atomic Energy Research Institute has carried out the retrieval service by on-line system for those in the institute besides the batch system, accordingly, at this opportunity, the state of utilization of both systems and their distinction to use effectively, and the operation and the method of utilization of the on-line information retrieval system of JICST are explained. In the on-line system, the users are accessible to the data base themselves, and immediate information retrieval is possible, while in the batch system, the related information can be retrieved without fail, and the troublesome operation of equipment is not necessary. (Kako, I.)

  16. On-line data processing apparatus for spectroscopic measurements of atomic uranium

    International Nuclear Information System (INIS)

    Miron, E.; Levin, L.A.; Erez, G; Baumatz, D; Goren, I.; Shpancer, I.

    1977-01-01

    A computer-based apparatus for on-line spectroscopic measurements of atomic uranium is described. The system is capable of enhancing the signal-to-noise ratio by averaging, and performing calculations. Computation flow charts and programs are included

  17. Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S., E-mail: susantamaiti@gmail.com [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India); Singh, S.K. [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Kumar, A.V. [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India)

    2016-12-01

    Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.

  18. Flow Injection Potentiometric Determination of Cd2+ Ions Using a Coated Graphite Plasticized PVC-Membrane Electrode Based on 1, 3-Bis(2-cyanobenzene)triazene.

    Science.gov (United States)

    Shamsipur, Mojtaba; Sahari, Shokat; Payehghadr, Mahmood; Alizadeh, Kamal

    2011-09-01

    1, 3-Bis(2-cyanobenzene)triazene, L, was used as a suitable ionophore for the fabrication of a new PVC-based polymeric membrane coated graphite electrode for selective sensing of Cd2+ ion. The electrode exhibited a selective linear Nernstian response to Cd2+ ion at an optimal pH range of 6-9 with a limit of detection of 8.0 × 10-6 M and a fast response time of about 2 s. The electrode was used as a proper detection system in flow-injection potentiometry of cadmium ion and resulted in well defined peaks for cadmium ions with stable baseline, excellent reproducibility and high sampling rates of over 100 injections per hour. It showed good stability, reproducibility and fast response time. The practical utility of the proposed system has also been reported.

  19. Analytical and numerical solution of three-dimensional channel flow in presence of a sinusoidal fluid injection and a chemical reaction

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-06-01

    Full Text Available Modeling of three-dimensional channel flow in a chemically-reacting fluid between two long vertical parallel flat plates in the presence of a transverse magnetic field is presented. The stationary plate is subjected to a transverse sinusoidal injection velocity distribution while the uniformly moving plate is subjected to a constant suction and slip boundary conditions. Due to this type of injection velocity, the flow becomes three dimensional. Comparisons with previously published work are performed and the results are found to be in excellent agreement. An increase in the permeability/magnetic parameter is found to escalate the velocity near the plate in motion. Growing Reynolds number or magnetic parameter enhances the x-component and reduces the z-component of the skin-friction at the wall at rest. The acquired knowledge in our study can be used by designers to control MHD flow as suitable for certain applications which include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.

  20. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    Science.gov (United States)

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  2. Numerical and Experimental Investigations of Steady Micro-Tip Injection on a Subsonic Axial-Flow Compressor Rotor

    Directory of Open Access Journals (Sweden)

    Xingen Lu

    2006-01-01

    tip-clearance flow manipulation. The repositioning of the tip-clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip-clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.

  3. Construction and performance characterization of ion-selective electrodes for potentiometric determination of pseudoephedrine hydrochloride applying batch and flow injection analysis techniques.

    Science.gov (United States)

    Zayed, Sayed I M; Issa, Yousry M; Hussein, Ahmed

    2006-01-01

    New pseudoephedrine selective electrodes have been constructed of the conventional polymer membrane type by incorporation of pseudoephedrine-phosphotungstate (PE-PT) or pseudoephedrine-silicotungstate (PE-SiT) ion-associates in a poly vinyl chloride (PVC) membrane plasticized with dibutyl phthalate (DBP). The electrodes were fully characterized in terms of the membrane composition, temperature, and pH. The electrodes exhibited mean slopes of calibration graphs of 57.09 and 56.10 mV concentration decade(-1) of PECl at 25 degrees C for (PE-PT) and (PE-SiT) electrodes, respectively. The electrodes showed fast, stable, and near-Nernstian response over the concentration ranges 6.31 x 10(-6)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-PT applying batch and flow injection (FI) analysis, respectively, and 1.00 x 10(-5)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-SiT for batch and FI analysis system, respectively. Detection limit was 5.01x 10(-6) M for PE-PT electrode and 6.31x10(-6) M for PE-SiT electrode. The electrodes were successfully applied for the potentiometric determination of pseudoephedrine hydrochloride (PECl) in pharmaceutical preparations with mean recovery 101.13 +/- 0.85% and 100.77+0.79% in case of PE-PT applying batch and flow injection systems, respectively, and 100.75+0.85% and 100.79 +/- 0.77% in case of PE-SiT for batch and flow injection systems, respectively. The electrodes exhibited good selectivity for PECl with respect to a large number of inorganic cations, sugars and amino acids.

  4. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  5. Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis-atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Smittenberg, Rienk H; Hopmans, Ellen C; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2002-11-29

    Repeated semi-preparative normal-phase HPLC was performed to isolate selected biomarkers from sediment extracts for radiocarbon analysis. Flow injection analysis-mass spectrometry was used for rapid analysis of collected fractions to evaluate the separation procedure, taking only 1 min per fraction. In this way 100-1000 microg of glycerol dialkyl glycerol tetraethers, sterol fractions and chlorophyll-derived phytol were isolated from typically 100 g of marine sediment, i.e., in sufficient quantities for radiocarbon analysis, without significant carbon isotopic fractionation or contamination.

  6. On-line application of the PANTHER advanced nodal code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1992-01-01

    Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW

  7. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  8. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  9. On-line signal trend identification

    International Nuclear Information System (INIS)

    Tambouratzis, T.; Antonopoulos-Domis, M.

    2004-01-01

    An artificial neural network, based on the self-organizing map, is proposed for on-line signal trend identification. Trends are categorized at each incoming signal as steady-state, increasing and decreasing, while they are further classified according to characteristics such signal shape and rate of change. Tests with model-generated signals illustrate the ability of the self-organizing map to accurately and reliably perform on-line trend identification in terms of both detection and classification. The proposed methodology has been found robust to the presence of white noise

  10. On line routing per mobile phone

    DEFF Research Database (Denmark)

    Bieding, Thomas; Görtz, Simon; Klose, Andreas

    2009-01-01

    On-line routing is concerned with building vehicle routes in an ongoing fashion in such a way that customer requests arriving dynamically in time are efficiently and effectively served. An indispensable prerequisite for applying on-line routing methods is mobile communication technology....... Additionally it is of utmost importance that the employed communication system is suitable integrated with the firm’s enterprise application system and business processes. On basis of a case study, we describe in this paper a system that is cheap and easy to implement due to the use of simple mobile phones...

  11. On-line atomic data access

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R. [Oak Ridge National Lab., TN (United States); Nash, J.K. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The need for atomic data is one which continues to expand in a wide variety of applications including fusion energy, astrophysics, laser- produced plasma research, and plasma processing. Modern computer database and communications technology nables this data to be placed on-line and obtained by users of the Internet. Presented here is a summary of the observations and conclusions regarding such on-line atomic data access derived from a forum held at the Tenth APS Topical Conference on Atomic Processes in Plasmas.

  12. Optimisation of dialysate flow in on-line hemodiafiltration

    Directory of Open Access Journals (Sweden)

    Francisco Maduell

    2015-09-01

    Conclusion: Qd variations in OL-HDF do not change convective volume. A higher Qd was associated to a slightly increased urea clearance with no change being observed for medium and large molecules. Qd optimisation to the minimal level assuring an adequate dialysis dose and allowing water and dialysate use to be rationalised should be recommended.

  13. On-line measurement of food viscosity during flow

    DEFF Research Database (Denmark)

    Mason, Sarah Louise; Friis, Alan

    2006-01-01

    Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....

  14. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  15. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  16. Injection of nano-particles in mitigating flow accelerated corrosion (FAC) damage in the secondary system of nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Lim, Dong Seok; Ku, Hee Kwon; Cho, Jae Seon

    2015-01-01

    NPPs produces electric energy through phase transition of water. According to this, a piping, which is flow path, integrity is essential for safety functions. Erosion, FAC and fittings are corrosion failure mechanism by increasing service life. Especially, there are 10-kilometers of piping in secondary systems. It needs to estimate FAC and apply periodic management. Iron oxides produced by FAC cause power reduction and Loss Of Coolant Accident (LOCA) will be occurred through the continued piping wall thinning. In this study, corrosion rate of pipe materials with carbon steel(SA106.Gr.B) and low-alloy steel (SA335.P22) was evaluated for pipe configuration and dissolved oxygen concentration on 150 °C, pH 9.5∼10.0 and flow velocity of 5m/s. Temperature of 150°C is well known that causes high FAC rate and pH consider a NPPs in-service condition. Further corrosion rate test was performed to develop FAC reduction technology through Pt-nanoparticle injection. In this study, corrosion rate is evaluated by weight depletion method. The results of material impact assessment show that corrosion rate of carbon steel is more higher than that of low-alloy steel because of Cr content. And also, the results of pipe configuration test show that case with 90° elbow had maximum wall thinning than with 180° horizontal pipe. The dissolved oxygen concentration test shows that low oxygen condition, ≤5 ppb, had high corrosion rate compared to normal condition and the corrosion rate decreased 50% at Pt-nanoparticle injection test on maximum corrosion rate condition compared to maximum wall thinning condition without Pt-nanoparticle injection. In this study, samples provided by each test case had analyzed through SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy). Behavior evaluation for oxide film was performed and Electrochemical corrosion potential (ECP) was measured for electrochemistry evaluation. To apply Pt-nanoparticle injection technology on nuclear

  17. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Spatially and time-resolved element-specific in situ corrosion investigations with an online hyphenated microcapillary flow injection inductively coupled plasma mass spectrometry set-up

    International Nuclear Information System (INIS)

    Homazava, N.; Ulrich, A.; Kraehenbuehl, U.

    2008-01-01

    A novel technique for in situ spatial, time-resolved element-specific investigations of corrosion processes is developed. The technique is based on an online hyphenation of a specially designed microflow-capillary set-up to inductively coupled plasma mass spectrometry (ICP-MS) using flow injection sample introduction. Detailed aspects of the method development, optimization of the sample microflow introduction and flow injection characteristics for the localized corrosion analysis are described. Moreover, specific challenges of the ICP-MS analysis as applied to the analysis of corrosion sample probes, e.g. high matrix load and limited sample volume, are discussed. The efficiency of the developed technique is proved by corrosion susceptibility analysis of a commercial Al alloy. Results of the corrosion experiments of the aluminum alloy AA 6111 are presented to demonstrate the influence of various factors such as exposure time and pH value of the corrosive medium on the element-specific dissolution rates of the alloy. This novel technique provides new aspects in corrosion science and sheds new light on corrosion mechanisms

  19. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    International Nuclear Information System (INIS)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%∼100.9% for Iron, 92.50%∼108.0% for Copper, 93.00%∼110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%∼12.1%. The sampling rate is 45 samples h -1 . The determination results of the food samples were in good agreement between the proposed method and ICP-AES

  20. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Energy Technology Data Exchange (ETDEWEB)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying [West China School of Public Health, Sichuan University, Chengdu, 610041 (China)

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%{approx}100.9% for Iron, 92.50%{approx}108.0% for Copper, 93.00%{approx}110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%{approx}12.1%. The sampling rate is 45 samples h{sup -1}. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.