WorldWideScience

Sample records for flow injection flame

  1. Thermal fluid characteristics in diffusion flame formed by coaxial flow configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Kumamoto (Japan). Dept. of Mechanical Engineering and Materials Science

    2005-07-01

    A numerical and experimental study was performed on the thermal transport phenomena of turbulent jet diffusion flames formed by coaxial flow configuration. Consideration was given to the effect of the flow rates of air and fuel on the flame morphology. It was noted that as the air flow rate increases, the augmentation of flow shear effect exerted on the shear layer form between the flame jet and the air flow induced the fuel-to-air mixture. Thermal diffusion was amplified with an increase in the Reynolds number. As the velocity ratio was increased, the streamwise velocity gradient along the radial axis was intensified, resulting in an amplification of thermal diffusion. Details of the experimental apparatus and method were provided, along with governing equations and numerical methods. It was concluded that the suppression of the flame length and an extension of flame blowoff limit caused an annular jet diffusion flame. An increase in the velocity ratio of air to fuel showed the blue flame. When cold and hot gases are injected along the same direction from the annular channel, the flow pattern and isotherms are affected by the velocity ratio. The streamwise velocity gradient along the r axis was intensified with an increase in N. The trend became larger in the vicinity of the injection nozzle. 15 refs., 9 figs.

  2. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  3. Minicolumn field preconcentration and flow-injection flame atomic absorption spectrometric determination of cadmium in seawater

    International Nuclear Information System (INIS)

    Yebra-Biurrun, M.C.; Moreno-Cid, A.; Puig, L.

    2004-01-01

    A simple method for the continuous field preconcentration of trace dissolved cadmium in seawater samples has been developed based on the minicolumn field sampling technique. For this purpose, minicolumns containing Chelite P (aminomethylphosphonic groups) were connected to a field flow preconcentration system (FFPS). Once in the laboratory, these minicolumns are sequentially inserted into a flow-injection system for on-line cadmium elution and detection by flame atomic absorption spectrometry. Factorial designs have been used to optimise the FFPS and the flow-injection elution process. Six experimental variables were optimised: sample pH, sample flow-rate, eluent concentration, eluent volume, eluent flow-rate and minicolumn diameter. The detection limit (3F) of the procedure was 2.7 ng l -1 for a sample volume of 300 ml. The precision (expressed as relative standard deviation) for 11 independent determinations was 0.5-9.4% for cadmium solutions of 10-300 ng l -1 . Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified values. This procedure has been successfully applied to the determination of cadmium in seawater samples from Galicia (Spain)

  4. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    International Nuclear Information System (INIS)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il

    2009-01-01

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame

  5. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il [Chungang University, Seoul (Korea, Republic of)

    2009-04-15

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

  6. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  7. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  8. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  9. Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

    Directory of Open Access Journals (Sweden)

    Abd Rashid Abd Aziz

    2017-07-01

    Full Text Available An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG fuel in a direct injection (DI engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA after top dead center (TDC for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure, while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV. Using an endoscopic intensified CCD (ICCD camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl resulted in the highest rate of flame growth.

  10. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  11. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  12. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  13. Application of a field flow preconcentration system with a minicolumn packed with amberlite XAD-4/1-(2-pyridylazo)-2-naphtol and a flow injection-flame atomic adsorption spectrometric system for lead determination in sea water

    International Nuclear Information System (INIS)

    Carmen Yebra, M. del; Rodriguez, L.; Puig, L.; Moreno-Cid, A.

    2002-01-01

    A field flow preconcentration technique involving a minicolumn containing Amberlite XAD-4 impregnated with the complexing agent 1-(2-pyridylazo)-2-naphthol was used to preconcentrate lead from seawater. Elution of retained lead on the minicolumns was performed by a flow-injection-flame atomic absorption spectrometric system. Factorial designs have been used to optimize the field flow preconcentration system and the flow injection elution process. Factors such as sample pH, sample flow-rate, eluent concentration and volume (hydrochloric acid), elution flow-rate and minicolumn diameter were considered. The results suggest that the sample flow-rate and the eluent volume are statistically significant factors. The detection limit (3σ) of the procedure was 5 ng/L for a sample volume of 1000 ml. The precision (expressed as relative standard deviation) for eleven independent determinations reached values of 4.0-3.1 % in lead solutions of 50-200 ng/L. This procedure has been successfully applied to the determination of lead in seawater from Galicia (Spain). (author)

  14. Diffusion Flame Extinction in a Low Strain Flow

    Science.gov (United States)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. Many parameters significantly affect the flame structure, shape and stability, of particular importance are the constraints imposed by geometrical boundaries. Physical boundaries determine the characteristics of the flow, affect heat, fuel, and oxidizer transport from and towards the flame and can act as heat sinks or heat sources. As a result, the existence of a flame, its shape and nature are intimately related to the geometrical characteristics of the environment that surrounds it. The counter-flow configuration provides a constant strain flow, therefore, is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in micro-gravity conditions have begun to explore the low strain regimes. The main objective of these on-going studies is to determine the effect of radiative heat losses and variable strain on the structure and radiation-induced extinction of diffusion flames. For these programs, size, geometry, and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. Whether is the burning of condensed or gaseous fuels, for most real situations the boundaries impose a significant effect on the nature of the flame. There is, therefore, a need to better understand the effect that geometrical constraints (i.e. flow nonperpendicular to a fuel surface, heat losses to the boundaries, etc.) might have on the final characteristics of a diffusion flame. Preliminary experiments have shown that, in the absence of gravity, and depending on the distance from the flame to the boundary, three characteristically different regimes can be observed. Close to the boundary, the flame is parabolic, very thin and blue, almost soot-less. Diffusion is the main

  15. Method and apparatus for generating highly luminous flame

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1992-05-12

    A combustion process and apparatus are provided for generating a variable high temperature, highly luminous flame with low NOx emission by burning gaseous and liquid materials with oxygen and air. More particularly, the invention provides a process in which there is initial control of fuel, oxygen, and air flows and the delivery of the oxidizers to a burner as two oxidizing gases having different oxygen concentrations (for example, pure oxygen and air, or oxygen and oxygen-enriched air). A first oxidizing gas containing a high oxygen concentration is injected as a stream into the central zone of a combustion tunnel or chamber, and part of the fuel (preferably the major part) is injected into the central pyrolysis zone to mix with the first oxidizing gas to create a highly luminous high-temperature flame core containing microparticles of carbon of the proper size for maximum luminosity and high temperature, and a relatively small amount of hydrocarbon radicals. In addition, part of the fuel (preferably the minor part) is injected in a plurality of streams about the flame core to mix with a second oxidizing gas (containing a lower oxygen concentration than the first oxidizing gas) and injecting the second oxidizing mixture about the flame core and the minor fuel flow to mix with the minor fuel flow. This creates a plurality of fuel-lean (oxygen-rich) flames which are directed toward the luminous flame core to form a final flame pattern having high temperature, high luminosity, and low NOx content. 6 figs.

  16. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    Science.gov (United States)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  17. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  18. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    Science.gov (United States)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  19. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  20. Flame dynamics in a micro-channeled combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk [Department of Mechanical Engineering, University College London, London (United Kingdom); Markides, Christos N. [Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  1. Reactive flow analysis with fluorine thermal dissociation in a FLUOREX flame reactor

    International Nuclear Information System (INIS)

    Ohtsuka, Masaya; Tagawa, Hisato; Sasahira, Akira; Hoshino, Kuniyoshi; Kawamura, Fumio; Homma, Shunji; Amano, Osamu

    2004-01-01

    A reactive flow analysis method for flame reactors of the FLUOREX (Hybrid Process of Fluoride Volatility and Solvent Extraction) method was been developed. Transport equations for UO 2 /PuO 2 mixed particles were formulated in the Lagrangian framework and several fluid/particles interactions were modeled using mass, momentum and energy exchanges through surface chemical reactions, forces and heat transfers. The coal combustion model was modified without devolatilization and the char burnout model was replaced by the UO 2 /PuO 2 fluorination model. Overall reaction rates were calculated using the combined model of the surface reaction rate and the diffusion rate of F2 and F. Fluid flows were modeled through incompressible flows using the k-ε turbulent model in the Euler framework. A cylindrical flame reactor (φ 80 mm x 500mm was analyzed where 99%UO 2 +1%PuO 2 mixed particles were injected with Ar and 5% excess F 2 flow. The average particle diameter was 4 μm and the flow rate was 300 g/h. The fluorination reaction of PuO 2 was limited through fluorine molecular reaction but was accelerated due to fluorine thermal dissociation. The simulated corresponded to the experimental result in that both UO 2 and PuO 2 were almost completely fluorinated. (author)

  2. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    Science.gov (United States)

    2015-09-01

    the flow direction and (b) typical flame length scales seen in the OH-PLIF image with Mach 4.5 freestream (high turbulence) at P0 = 0.65 bar, T0...flame structures (3 mm) are observed at the upstream location of area 1 where the combustion localization first appears. The typical flame length scale

  3. Theory of the propagation dynamics of spiral edges of diffusion flames in von Karman swirling flows

    Energy Technology Data Exchange (ETDEWEB)

    Urzay, Javier; Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States); Nayagam, Vedha [National Center for Space Exploration Research, NASA Glenn Research Center, Cleveland, OH 44135 (United States)

    2011-02-15

    This analysis addresses the propagation of spiral edge flames found in von Karman swirling flows induced in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the framework of one-step chemistry with large activation energies. Edge-flame propagation regimes are obtained by scaling analyses of the conservation equations and exemplified by numerical simulations of straight two-dimensional edge flames near a cold porous wall, for which lateral heat losses to the disk and large strains induce extinction of the trailing diffusion flame but are relatively unimportant in the front region, consistent with the existence of the cooling tail found in the experiments. The propagation dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic Markstein length is much smaller than the distance from the center at which the spiral tip is anchored. An asymptotic description of the edge tangential structure is obtained, spiral edge shapes are calculated, and an expression is found that relates the spiral rotational velocity to the rest of the parameters. A quasiestatic stability analysis of the edge shows that the edge curvature at extinction in the tip

  4. Shear layer flame stabilization sensitivities in a swirling flow

    Directory of Open Access Journals (Sweden)

    Christopher Foley

    2017-03-01

    Full Text Available A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble. Each of these different configurations, in turn, has different thermoacoustic sensitivities and influences on combustor emissions, nozzle durability, and liner heating. This paper presents findings on the sensitivities of the outer shear layer- stabilized flames to a range of parameters, including equivalence ratio, bulkhead temperature, flow velocity, and preheat temperature. There is significant hysteresis for flame attachment/detachment from the outer shear layer and this hysteresis is also described. Results are also correlated with extinction stretch rate calculations based on detailed kinetic simulations. In addition, we show that the bulkhead temperature near the flame attachment point has significant impact on outer shear layer detachment. This indicates that understanding the heat transfer between the edge flame stabilized in the shear layer and the nozzle hardware is needed in order to predict shear layer flame stabilization limits. Moreover, it shows that simulations cannot simply assume adiabatic boundary conditions if they are to capture these transitions. We also show that the reference temperature for correlating these transitions is quite different for attachment and local blow off. Finally, these results highlight the deficiencies in current understanding of the influence of fluid mechanic parameters (e.g. velocity, swirl number on shear layer flame attachment. For example, they show that the seemingly simple matter of scaling flame transition points with changes in flow velocities is not understood.

  5. A study of transient flow turbulence generation during flame/wall interactions in explosions

    Science.gov (United States)

    Hargrave, G. K.; Jarvis, S.; Williams, T. C.

    2002-07-01

    Experimental data are presented for the turbulent velocity field generated during flame/solid wall interactions in explosions. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. In congested process plant, any flame propagating through an accidental release of flammable mixture will encounter obstructions in the form of walls, pipe-work or storage vessels. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake/recirculation, whereby the flame can be wrapped in on itself, increasing the surface area available for combustion. Particle image velocimetry (PIV) was used to characterize the turbulent flow field in the wake of the obstacles placed in the path of propagating flames. This allowed the quantification of the interaction of the propagating flame and the generated turbulent flow field. Due to the accelerating nature of the explosion flow field, the wake flows develop `transient' turbulent fields and PIV provided data to define the spatial and temporal variation of the velocity field ahead of the propagating flame, providing an understanding of the direct interaction between flow and flame.

  6. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor

    International Nuclear Information System (INIS)

    Noroozifar, M.; Khorasani-Motlagh, M.; Hosseini, S.-N.

    2005-01-01

    A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L -1 with a detection limit 0.2 mg L -1 and sampling rate 72 h -1 . The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%

  7. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  9. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  10. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  11. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    Science.gov (United States)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  12. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  13. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  14. CFD predictions of wake-stabilised jet flames in a cross-flow

    International Nuclear Information System (INIS)

    Lawal, Mohammed S.; Fairweather, Michael; Gogolek, Peter; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed; Williams, Alan

    2013-01-01

    This study describes an investigation into predicting the major flow properties in wake-stabilised jet flames in a cross flow of air using first- and second-order turbulence models, applied within a RANS (Reynolds-averaged Navier–Stokes) modelling framework. Standard and RNG (re-normalisation group) versions of the k-ε turbulence model were employed at the first-order level and the results compared with a second-moment closure, or RSM (Reynolds stress model). The combustion process was modelled using the laminar flamelet approach together with a thermal radiation model using the discrete ordinate method. The ability of the various turbulence models to reproduce experimentally established flame appearance, profiles of velocity and turbulence intensity, as well as the combustion efficiency of such flames is reported. The results show that all the turbulence models predict similar velocity profiles over the majority of the flow domain considered, except in the wake region, where the predictions of the RSM and RNG k-ε models are in closer agreement with experimental data. In contrast, the standard k-ε model over-predicts the peak turbulence intensity. Also, it is found that the RSM provides superior predictions of the planar recirculation and flame zones attached to the release pipe in the wake region. - Highlights: ► We investigated the prediction of the major properties in wake-stabilised methane jet flames in a cross flow. ► The ability of the various turbulence models to reproduce experimentally established flame parameters is reported. ► All the turbulence models considered predict similar velocity profiles, except in the wake region

  15. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Cigdem Arpa, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey); Tokgoez, Ilknur; Bektas, Sema [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey)

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. The micellar solution was heated above 50 {sup o}C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L{sup -1} H{sub 2}SO{sub 4} and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL{sup -1}, the limits of quantification (10s) were 2.2 and 1.0 ng mL{sup -1} for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL{sup -1} iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  16. Computational Flow Field in Energy Efficient Engine (EEE)

    Science.gov (United States)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  17. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, C.; Escudie, D. [Universite de Lyon, CNRS, CETHIL, INSA-Lyon, UMR5008, F-69621 Cedex (France)

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)

  18. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  19. Reductions of PAH and Soot by Center Air Injection

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2014-07-01

    Full Text Available In this study, to reduce the amount of pollutant PAH and soot in the flame, we examined the burner system equipped with a center air injection. For this purpose, by using PAH-LIF and soot LII, we evaluated relative PAH and soot amounts in both the triple port burner and the conventional co-axial burner (double port burner to discuss effects of center air injection on the formation of PAH and soot. The fuel was propane. In the triple port burner, two different blue flames are observed near the burner rim, followed by bright luminous flames with soot. The flame length is longer when the fuel flow velocity is increased. On the other hand, the flame length is shorter with an increase in internal air flow velocity. As for PAH and soot, these amounts of the triple port burner are much smaller than those of the double port burner. For the triple port burner, due to the center air injection, the fuel consumption occurs in both inner and outer flames. On the other hand, for the double port burner, the oxygen is supplied from one side air, and as a result, the fuel consumption rate is relatively lower. Hence, by the center air injection, the fuel consumption is largely accelerated, resulting in the reduction of PAH and soot.

  20. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    Science.gov (United States)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR

  1. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  3. Structure analysis of low velocity reactive flows on a flat plate: the case of the laminar diffusion flame in a low gravity environment; Analyse de la structure des ecoulements reactifs a faible vitesse sur une plaque plane: cas de la flamme de diffusion laminaire sous un environnement de gravite reduite

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, P.

    2003-09-01

    The combustion of a flat plate in a boundary layer under microgravity conditions, which was first described by Emmons, is studied using a gaseous burner. Magnitude of injection and blowing velocities are chosen to be characteristic of pyrolyzing velocity of solid fuels and of ventilation systems in space stations. These velocities are about 10 cm/s for oxidizer flow and 0.4 cm/s for fuel flow. In this configuration, flame layout results from a coupled interaction between oxidizer flow, fuel flow and thermal expansion. Influences of these parameters are studied by means of flame length and standoff distance measurements using CH* chemiluminescence's and visible emission of the flame. Flow was also studied with Particle Image Velocimetry (PIV). At first with inert flows, with and without injection to identify burner effects on it, and then with a reacting flow in a microgravity environment. Thermal expansion effects have been shown by means of the acceleration of oxidizer flow. Three dimensional effects, which are strongly marked for high injection velocities did not were studied, but three dimensional tools adaptability (wavelength and polarizing coding laser tomography) to parabolic flights particular conditions were investigate. Flame sensitivity to g-jitters was studied using a local modified Richardson number introduced by Torero and g-jitters effect on flame were investigated according to g-jitters frequency and range involved by parabolic flights. (author)

  4. LES of the interaction between a premixed flame and complex turbulent swirling flow

    International Nuclear Information System (INIS)

    Iudiciani, P; Duwig, C; Szasz, R Z; Fuchs, L; Gutmark, E

    2011-01-01

    In this paper the Triple Annular Research Swirler, a fuel injector characterized by complex design with three concentric air passages, has been studied numerically. A swirl-stabilized lean premixed flame has been simulated by means of Large Eddy Simulation. The computations characterize successfully the dynamics of the flame and their interactions with the complex swirling flow. The flame is stabilized upstream the fuel injector exit, and the dynamics are led by a Precessing Vortex Core which seems to originate in the inner air passage. The results obtained by Proper Orthogonal Decomposition analysis are in agreement with previous findings in the context of swirling flows/flames.

  5. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  6. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  7. Two different approaches for creating a prescribed opposed-flow velocity field for flame spread experiments

    Directory of Open Access Journals (Sweden)

    Carmignani Luca

    2015-01-01

    Full Text Available Opposed-flow flame spread over solid fuels is a fundamental area of research in fire science. Typically combustion wind tunnels are used to generate the opposing flow of oxidizer against which a laminar flame spread occurs along the fuel samples. The spreading flame is generally embedded in a laminar boundary layer, which interacts with the strong buoyancy-induced flow to affect the mechanism of flame spread. In this work, two different approaches for creating the opposed-flow are compared. In the first approach, a vertical combustion tunnel is used where a thin fuel sample, thin acrylic or ashless filter paper, is held vertically along the axis of the test-section with the airflow controlled by controlling the duty cycles of four fans. As the sample is ignited, a flame spreads downward in a steady manner along a developing boundary layer. In the second approach, the sample is held in a movable cart placed in an eight-meter tall vertical chamber filled with air. As the sample is ignited, the cart is moved downward (through a remote-controlled mechanism at a prescribed velocity. The results from the two approaches are compared to establish the boundary layer effect on flame spread over thin fuels.

  8. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  9. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    International Nuclear Information System (INIS)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-01-01

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated

  10. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir

    2015-01-01

    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  11. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  12. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    Science.gov (United States)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in

  13. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  14. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  15. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  16. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  17. Near limit flame spread over thick fuels in a concurrent forced flow

    International Nuclear Information System (INIS)

    Di Blasi, C.; Crescitelli, S.; Russo, G.

    1988-01-01

    The influence of the ambient level of oxygen concentration on the flow assisted flame spread over thick solid fuels and the extinction of the fame is studied by means of numerical modeling. The pyrolysis spread rate decreases with the oxygen concentration, showing qualitative agreement with experimental data. In fact, as the oxygen level decreases, the flame temperature decreases, causing lower heat fluxes at the fuel surfaces and lower pyrolysis mass rates so that the spread process is slowed. The effects due to finite kinetics are of increasing importance as extinction is approached. These effects appear mainly at the upstream flame leading edge, where the extinction length (distance of the flame leading edge from the edge of the fuel slab) increases. However, the spread process continues, that is, the flame and pyrolysis lengths increase with time, until the pyrolysis spread rate is greater than the upstream extinction rate. Complete extinction occurs when the extinction distance extends to the position of the pyrolysis front

  18. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  19. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  20. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  1. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  2. A Comparison of Flame Spread Characteristics over Solids in Concurrent Flow Using Two Different Pyrolysis Models

    Directory of Open Access Journals (Sweden)

    Ya-Ting Tseng

    2011-01-01

    Full Text Available Two solid pyrolysis models are employed in a concurrent-flow flame spread model to compare the flame structure and spreading characteristics. The first is a zeroth-order surface pyrolysis, and the second is a first-order in-depth pyrolysis. Comparisons are made for samples when the spread rate reaches a steady value and the flame reaches a constant length. The computed results show (1 the mass burning rate distributions at the solid surface are qualitatively different near the flame (pyrolysis base region, (2 the first-order pyrolysis model shows that the propagating flame leaves unburnt solid fuel, and (3 the flame length and spread rate dependence on sample thickness are different for the two cases.

  3. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  4. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  5. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  6. Quantitative Infrared Image Analysis Of Simultaneous Upstream and Downstream Microgravity Flame Spread over Thermally-Thin Cellulose in Low Speed Forced Flow

    Science.gov (United States)

    Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2013-01-01

    The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.

  7. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    Science.gov (United States)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  8. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct

    Directory of Open Access Journals (Sweden)

    DengKe Li

    2015-01-01

    Full Text Available To study the fuel gas combustion hazards, the methane/air flame structure and flow characteristic in an open duct influenced by a rectangular obstacle were explored by experiment and realizable k-∊ model (RKE. In the test, the high-speed schlieren photography technology and dynamic detection technology were applied to record the flame propagation behavior. Meanwhile, the interaction between flame front and flame flow field induced by the obstacle was disclosed. In addition, the laminar-turbulence transition was also taken into consideration. The RKE and eddy dissipation concept (EDC premixed combustion model were applied to obtain an insight into the phenomenon of flow change and wrinkle appearing, which potently explained the experimental observations. As a result, the obstacle blocked the laminar flame propagation velocity and increased pressure a little in an open duct. Some small-scale vortices began to appear near the obstacle, mainly due to Kelvin-Helmholtz instability (KHI, and gradually grew into large-scale vortices, which led to laminar-turbulent transition directly. The vortices thickened the reaction area and hastened the reaction rate; reversely, the higher reaction rate induced larger vortices. The RKE model result fitted the test data well and explained the wrinkle forming mechanism of two special vortices in the case.

  9. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  10. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    Science.gov (United States)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  11. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tiegang Fang; Robert E. Coverdill; Chia-fon F. Lee; Robert A. White [North Carolina State University, Raleigh, NC (United States). Department of Mechanical and Aerospace Engineering

    2008-11-15

    Effects of injection angles and injection pressure on the combustion processes employing multiple injection strategies in a high-speed direct-injection (HSDI) diesel engine are presented in this work. Whole-cycle combustion and liquid spray evolution processes were visualized using a high-speed video camera. NOx emissions were measured in the exhaust pipe. Different heat release patterns are seen for two different injectors with a 70-degree tip and a 150-degree tip. No evidence of fuel-wall impingement is found for the first injection of the 150-degree tip, but for the 70-degree tip, some fuel impinges on the bowl wall and a fuel film is formed. For the second injection, a large amount of fuel deposition is observed for the 70-degree tip. Weak flame is seen for the first injection of the 150-degree tip while two sorts of flames are seen for the first injection of the 70-degree tip including an early weak flame and a late luminous film combustion flame. Ignition occurs near the spray tip in the vicinity of the bowl wall for the second injection events of the 150-degree tip, however, it is near the injector tip in the central region of the bowl for the 70-degree tip. The flame is more homogeneous for the 150-degree tip with higher injection pressure with little soot formation similar to a premixed-charge-compression-ignition (PCCI) combustion. For other cases, liquid fuel is injected into flames showing diffusion flame combustion. More soot luminosity is seen for the 70-degree tip due to significant fuel film deposition on the piston wall with fuel film combustion for both injection events. Lower NOx emissions were obtained for the narrow-angle injector due to the rich air-fuel mixture near the bowl wall during the combustion process. 30 refs., 11 figs., 3 tabs.

  12. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  13. The impact of interpreted flow regimes during constant head injection tests on the estimated transmissivity from injection tests and difference flow logging

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Ludvigsson, Jan-Erik; Harrstroem, Johan [Geosigma AB, Uppsala (Sweden)

    2013-04-15

    A large number of constant head injection tests were carried out in the site investigation at Forsmark using the Pipe String System, PSS3. During the original evaluation of the tests the dominating transient flow regimes during both the injection and recovery period were interpreted together with estimation of hydraulic parameters. The flow regimes represent different flow and boundary conditions during the tests. Different boreholes or borehole intervals may display different distributions of flow regimes. In some boreholes good agreement was obtained between the results of the injection tests and difference flow logging with Posiva flow log (PFL) but in other boreholes significant discrepancies were found. The main objective of this project is to study the correlation between transient flow regimes from the injection tests and other borehole features such as transmissivity, depth, geology, fracturing etc. Another subject studied is whether observed discrepancies between estimated transmissivity from difference flow logging and injection tests can be correlated to interpreted flow regimes. Finally, a detailed comparison between transient and stationary evaluation of transmissivity from the injection tests in relation to estimated transmissivity from PFL tests in corresponding sections is made. Results from previous injection tests in 5 m sections in boreholes KFM04, KFM08A and KFM10A were used. Only injection tests above the (test-specific) measurement limit regarding flow rate are included in the analyses. For all of these tests transient flow regimes were interpreted. In addition, results from difference flow logging in the corresponding 5 m test sections were used. Finally, geological data of fractures together with rock and fracture zone properties have been used in the correlations. Flow regimes interpreted from the injection period of the tests are generally used in the correlations but deviations between the interpreted flow regimes from the injection and

  14. Control of confined nonpremixed flames using a microjet

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2005-01-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO x and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices

  15. Control of confined nonpremixed flames using a microjet

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.; Puri, I.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Ganguly, R. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Jadavpur Univ., Calcutta (India). Dept. of Power Engineering

    2005-06-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO{sub x} and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices. (Author)

  16. Experimental and numerical study of temperature fields and flows in flame during the diffusion combustion of certain liquid fuels

    Science.gov (United States)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.

    2017-11-01

    The paper represents experimental studying the pulsations of temperature fields and the structure of a flow in the flame formed during the combustion of certain fuels. Also, the paper provides the mathematical modeling of a flow in the flame formed during the combustion of diesel fuels, as well as the comparison with experimental data and the estimation of the scale for turbulent vortices in flame. The experimental results are in satisfactory agreement with numerical modeling, which confirms the hypothesis of similarity for the pulsations of hydrodynamic and thermodynamic parameters.

  17. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    International Nuclear Information System (INIS)

    Chen Yunyun; Li Zhenhua; Song Yang; He Anzhi

    2009-01-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  18. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  19. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  20. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  1. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.

    2016-01-01

    of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some

  2. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  3. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  4. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  5. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  6. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  7. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  8. Investigations on the self-excited oscillations in a kerosene spray flame

    Energy Technology Data Exchange (ETDEWEB)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P. [Engineering Department, Cambridge University, Trumpington Street, CB2 1PZ, Cambridge (United Kingdom)

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer function between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)

  9. An experimental study on the effects of swirling oxidizer flow and diameter of fuel nozzle on behaviour and light emittance of propane-oxygen non-premixed flame

    Directory of Open Access Journals (Sweden)

    Javareshkian Alireza

    2017-01-01

    Full Text Available In this study, the stability and the light emittance of non-premixed propane-oxygen flames have been experimentally evaluated with respect to swirling oxidizer flow and variations in fuel nozzle diameter. Hence, three types of the vanes with the swirl angles of 30°, 45°, and 60° have been chosen for producing the desired swirling flows. The main aims of this study are to determine the flame behaviour, light emittance, and also considering the effect of variation in fuel nozzle diameter on combustion phenomena such as flame length, flame shape, and soot free length parameter. The investigation into the flame phenomenology was comprised of variations of the oxidizer and fuel flow velocities (respective Reynolds numbers and the fuel nozzle diameter. The results showed that the swirl effect could change the flame luminosity and this way could reduce or increase the maximum value of the flame light emittance in the combustion zone. Therefore, investigation into the flame light emittance can give a good clue for studying the mixing quality of reactants, the flame phenomenology (blue flame or sooty flame, localized extinction, and the combustion intensity in non-premixed flames.

  10. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    Science.gov (United States)

    AbstractThe effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  11. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck; Speth, Raymond L.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2013-01-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  12. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck

    2013-08-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  13. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    Science.gov (United States)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  14. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions

    KAUST Repository

    Elbaz, Ayman M.

    2015-12-19

    Detailed measurements are presented of the turbulent flow field, gas species concentrations and temperature field in a non-premixed methane swirl flame. Attention is given to the effect of the quarl geometry on the flame structure and emission characteristics due to its importance in gas turbine and industrial burner applications. Two different quarls were fitted to the burner exit, one a straight quarl and the other a diverging quarl of 15° half cone angle. Stereoscopic Particle Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity on a vertical plane immediately downstream of the quarl exit. Temperature and gaseous species measurements were made both inside and downstream of the quarls, using a fine wire thermocouple and sampling probe, respectively. This work provides experimental verification by complementary techniques. The results showed that although the main flame structures were governed by the swirl motion imparted to the air stream, the quarl geometry, fuel loading and air loading also had a significant effect on the flow pattern, turbulence intensity, mixture formation, temperature distribution, emissions and flame stabilization. Particularly, in the case of the straight quarl flame, the flow pattern leads to strong, rapid mixing and reduces the residence time for NO formation within the internal recirculation zone (IRZ). However, for the diverging quarl flames, the recirculation zone is shifted radially outward, and the turbulent interaction between the central fuel jet and the internal recirculation zone IRZ induces another small vortex between these two flow features. Less mixing near the diverging quarl exit is observed, with a higher concentration of NO and CO in the post-combustion zone. The instantaneous flow field for both flames showed the existence of small scale vortical structure near the shear layers which were not apparent in the time averaged flow field. These structures, along with high levels

  15. Opposed-Flow Flame Spread in a Narrow Channel Apparatus over Thin PMMA Sheets

    Science.gov (United States)

    Bornand, G. R.; Olson, Sandra L.; Miller, F. J.; Pepper, J. M.; Wichman, I. S.

    2013-01-01

    Flame spread tests have been conducted over polymethylmethacrylate (PMMA) samples in San Diego State University's Narrow Channel Apparatus (SDSU NCA). The Narrow Channel Apparatus (NCA) has the ability to suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression achieved with a NCA allows for tests to be conducted in a simulated microgravity atmosphere-a characteristic that Test 1 lacks since flames present in Test 1 are buoyantly driven. The SDSU NCA allows for flame spread tests to be conducted with varying opposed flow oxidizer velocities, oxygen percent by volume, and total pressure. Also, since the test sample is placed symmetrically between two confining plates so that there is a gap above and below the sample, this gap can be adjusted. This gap height adjustment allows for a compromise between heat loss from the flame to the confining boundaries and buoyancy suppression achieved by those boundaries. This article explores the effect gap height has on the flame spread rate for 75 µm thick PMMA at 1 atm pressure and 21% oxygen concentration by volume in the SDSU NCA. Flame spread results from the SDSU NCA for thin cellulose fuels have previously been compared to results from tests in actual microgravity at various test conditions with the same sample materials and were found to be in good agreement. This article also presents results from the SDSU NCA for PMMA at 1 atm pressure, opposed oxidizer velocity ranging from 3 to 35 cm/s, oxygen concentration by volume at 21%, 30 %, and 50% and fuel thicknesses of 50 and 75 µm. These results are compared to results obtained in actual microgravity for PMMA obtained at the 4.5s drop tower of MGLAB in Gifu, Japan, and the 5.2s drop tower at NASA's Zero-Gravity Research Facility in Cleveland, OH. This comparison confirms

  16. An experimental study of flame stability in a directly-fueled wall cavity with a supersonic free stream

    Science.gov (United States)

    Rasmussen, Chadwick Clifford

    An extensive study of flame stability in a cavity-based fuel injector/flameholder has been performed. Flames were stabilized in cavities with two different aft wall configurations and length to depth ratios of 3 and 4. Fuel was injected directly into the cavity using two injector configurations. Fuel injected from the aft wall of the cavity entered directly into the recirculation zone and provided desirable performance near the lean blowout limit. At high fuel flowrates, the cavity became flooded with fuel and rich blowout occurred. When fuel was injected from the floor of the cavity, excess fuel was directed out of the cavity which allowed for flame stabilization at extremely high fuel flowrates; however, this phenomenon also resulted in suboptimal performance near the lean limit where the blowout point was less predictable. Images of planar laser-induced fluorescence (PLIF) of CH, OH, and formaldehyde give insight into the flameholding mechanisms. CH layers in the cavity are thin and continuous and show structure that is comparable to lifted jet flames, while broad CH zones are sometimes observed in the shear layer. OH PLIF images show that hot recirculated products are always present at the location of flame stabilization, whereas images of formaldehyde indicate that partial premixing takes place in the shear layer portion of the flame. Nonreacting measurements of the boundary layer and the free stream velocity profiles were obtained to provide necessary boundary conditions for computational modeling. Mean and instantaneous velocity profiles were determined for the nonreacting flow using particle image velocimetry (PIV). A correlation of the blowout points for a directly-fueled cavity in a supersonic flow was accomplished using a Damkohler number and an equivalence ratio based upon an effective air mass flowrate. The chemical time was formulated using a generic measure of the reaction rate, tauc ˜ alpha/ S2L , which was found to be adequate for correlating lean

  17. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  18. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  19. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  20. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  1. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  2. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  3. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    Science.gov (United States)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  4. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  5. Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification

    Directory of Open Access Journals (Sweden)

    A. Huber

    2009-06-01

    Full Text Available For the analysis of thermoacoustic instabilities it is most important to determine the dynamic flame response to acoustic disturbances. Premixed flames are often modelled as single-input single-output system, where the “output” (the overall rate of heat release responds to a single “input” variable (often the velocity at the exit of the burner nozzle. However, for practical premixed flames, where perturbations of pressure or velocity at the fuel injector will modulate the fuel equivalence ratio, the heat release rate will respond to fluctuations of equivalence ratio as well as nozzle mass flow rate. In this case, a multiple-input, single-output (MISO model structure for the flame is appropriate. Such a model structure is developed in the present paper. Staged fuel injection as well as fuel line impedances can be taken into account, the integration with low-order or finite-element based models for stability analysis is straightforward. In order to determine unit impulse and frequency response functions for such a model structure, an identification scheme based on unsteady CFD calculation with broadband excitation followed by correlation analysis is proposed and validated successfully. Identification of MISO model coefficients is a challenging task, especially in the presence of noise. Therefore criteria are introduced which allow to ascertain a posteriori how well the identified model represents the true system dynamics. Using these criteria, it is investigated how excitation signal type, time series length and signal-to-noise ratio influence the results of the identification process. Consequences for passive design strategies based on multi-stage fuel injection and experimental work on practical premixed flame dynamics are discussed.

  6. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  7. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  9. Phenomenology and numerical calculations of lean hydrogen-air premixed flame propagation in a turbulent flow

    International Nuclear Information System (INIS)

    Faix-Gantier, A.

    2001-12-01

    This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)

  10. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  11. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  12. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.

    1982-01-01

    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  13. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  14. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Yoon, Sung Hwan; Lu, Shouxiang; Delichatsios, Michael; Chung, Suk-Ho

    2015-01-01

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow

  15. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  16. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  17. Acoustic scattering behavior of a 2D flame with heat exchanger in cross-flow

    NARCIS (Netherlands)

    Chen, L.S.; Polifke, W.; Hosseini, N.; Teerling, O. J.; Arteaga, I.L.; Kornilov, V.; De Goey, P.

    2016-01-01

    In practical heat production systems, premixed flames with cold heat exchanger in cross-flow is a widely used configuration. Self-excited thermoacoustic instabilities often occur in such systems. A practical way to predict the presence of the instabilities is the network model approach. In the

  18. An Optical Study of Processes in Hydrogen Flame in a Tube

    Science.gov (United States)

    2002-07-01

    growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a

  19. Flow Injection Analysis in Industrial Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2009-01-01

    Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...

  20. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  1. Reynolds averaged modelling of low momentum propane jet diffusion flames in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, A.J.; Chui, E.H. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Kostiuk, L.W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2003-07-01

    It is common practice to use continuous low flow rate flares to dispose of unwanted or by-product combustible gases resulting from the manufacturing process or oil recovery operations. This study evaluates the usefulness of computational fluid dynamics (CFD) modelling in the context of low momentum flux reacting jets. The experimental data was gathered at the University of Alberta's Combustion Wind Tunnel. This data was used to compare data obtained from the CFD simulations. Only a small subset of the experimental conditions was used for the computational model. No attempt was made to fine tune any of the individual models. They were all part of the commercial CFD software package CFX-TASC flow, by ANSYS Inc. Flame length and angle results compared favourably with experiments. The shape of the plume changed significantly in the far field. This could be explained by distortion caused by the turbulence model used. A flame front model was incorporated in an effort to estimate combustion efficiency. The results obtained were not conclusive. 20 refs., 4 figs.

  2. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  3. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  4. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  5. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  6. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  7. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  8. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai

    2016-10-17

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  9. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai; Seidel, Lars; Wang, Yu; Selim, Hatem; Sarathy, Mani; Mauss, Fabian; Hansen, Nils

    2016-01-01

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  10. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-05

    Under an electric field, ions in the reaction zone of a flame generate a bulk flow motion called ionic wind. Because the majority of ions are positive, ionic wind is commonly considered to be unidirectional toward the cathode. A more thorough understanding of the effects of electric fields on flames could be obtained by clarifying the role of minor negative ions in the ionic wind. Here, we report on the effects of direct current on nonpremixed counterflow flames by visualizing the ionic wind. We found that the original flow field separates near the flame when it locates at a flow stagnation plane, resulting in a double-stagnant flow configuration. This evidences a bidirectional ionic wind blowing from the flame to both the cathode and the anode due to the positive and the negative ions, respectively. Meanwhile, an electric body force pulls the flame toward the cathode. Thus, the electric field affects the strain rate and the axial location of the stoichiometry, which are important for characterizing nonpremixed counterflow flames. In addition, measurement of the electric current density roughly showed a nearly saturated current when these flames restabilized under relatively high voltage. Detailed explanations of flame behavior, electric currents, and flow characteristics of various fuels are discussed in this study.

  11. Sequential injection lab-on-valve: the third generation of flow injection analysis

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    Termed the third generation of flow injection analysis, sequential injection (SI)-lab-on-valve (LOV) has specific advantages and allows novel, unique applications - not least as a versatile front end to a variety of detection techniques. This review presents snd discusses progress to date of the ...

  12. Online preconcentration and determination of trace levels cadmium in water samples using flow injection systems coupled with flame AAS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Songlin; Liang, Huading; Yan, Hua; Yan, Zhengzhong; Chen, Suqing; Zhu, Xiandi; Cheng, Miaoxian [School of Pharmaceutical and Chemical Engineering, Taizhou University (China)

    2010-02-15

    A rapid and sensitive method for the determination of trace levels cadmium in water samples by flame atomic absorption spectrometry was developed. It is based on the online sorption of Cd(II) ions on a microcolumn packed with HCl treated bamboo charcoal. In a pH range of 5.0-7.5, Cd(II) ions were effectively retained on the microcolumn, which exhibited fast kinetics, permitting the use of high sample flow rates up to at least 12.8 mL/min without the loss of retention efficiency. The retained Cd(II) ions were quantitatively eluted with HCl (2.0 mol/L) for an online determination. With a preconcentration time of 80 s at a sample loading flow rate of 8.6 mL/min, a sensitivity enhancement factor of 63 was obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The calibration graph using the preconcentration system for cadmium was linear with a correlation coefficient of 0.9997, at levels from 1-40 ng/mL. The precision (RSD) for 11 replicate measurements were 3.2% for the determination of 5 ng/mL Cd(II) and 1.8% for 20 ng/mL Cd(II), respectively, and the detection limit (3s) was 0.36 ng/mL. The accuracy was assessed through the determination of a certified reference material, and also through recovery experiments. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    downstream of the slot. The flame length increases as the blowing ratio increases as a result of the greater mass of air which reacts. Ignition of...attributed to the greater penetration of the jet into the cross-stream. It is noted that the flame lengths are similar for the different blowing ratios

  14. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  15. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  16. Automated injection of slurry samples in flow-injection analysis

    NARCIS (Netherlands)

    Hulsman, M.H.F.M.; Hulsman, M.; Bos, M.; van der Linden, W.E.

    1996-01-01

    Two types of injectors are described for introducing solid samples as slurries in flow analysis systems. A time-based and a volume-based injector based on multitube solenoid pinch valves were built, both can be characterized as hydrodynamic injectors. Reproducibility of the injections of dispersed

  17. Aerothermodynamic properties of stretched flames in enclosures

    Science.gov (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  18. Flow injection analysis in inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Rosias, Maria F.G.G.

    1995-10-01

    The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs

  19. Flow improvers for water injection based on surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Oskarsson, H.; Uneback, I.; Hellsten, M.

    2006-03-15

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  20. Simulation analysis of within-day flow fluctuation effects on trout below flaming Gorge Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Railsback, S. F.; Hayse, J. W.; LaGory, K. E.; Environmental Science Division; EPRI

    2006-01-01

    In addition to being renewable, hydropower has the advantage of allowing rapid load-following, in that the generation rate can easily be varied within a day to match the demand for power. However, the flow fluctuations that result from load-following can be controversial, in part because they may affect downstream fish populations. At Flaming Gorge Dam, located on the Green River in northeastern Utah, concern has been raised about whether flow fluctuations caused by the dam disrupt feeding at a tailwater trout fishery, as fish move in response to flow changes and as the flow changes alter the amount or timing of the invertebrate drift that trout feed on. Western Area Power Administration (Western), which controls power production on submonthly time scales, has made several operational changes to address concerns about flow fluctuation effects on fisheries. These changes include reducing the number of daily flow peaks from two to one and operating within a restricted range of flows. These changes significantly reduce the value of the power produced at Flaming Gorge Dam and put higher load-following pressure on other power plants. Consequently, Western has great interest in understanding what benefits these restrictions provide to the fishery and whether adjusting the restrictions could provide a better tradeoff between power and non-power concerns. Directly evaluating the effects of flow fluctuations on fish populations is unfortunately difficult. Effects are expected to be relatively small, so tightly controlled experiments with large sample sizes and long study durations would be needed to evaluate them. Such experiments would be extremely expensive and would be subject to the confounding effects of uncontrollable variations in factors such as runoff and weather. Computer simulation using individual-based models (IBMs) is an alternative study approach for ecological problems that are not amenable to analysis using field studies alone. An IBM simulates how a

  1. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  2. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  3. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  4. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  5. Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes

    International Nuclear Information System (INIS)

    Cespon-Romero, R.M.; Yebra-Biurrun, M.C.

    2007-01-01

    A flow injection procedure involving continuous acid leaching for lead and cadmium determination in hair samples of persons in permanent contact with a polluted workplace environment by flame atomic absorption spectrometry is proposed. Variables such as sonication time, nature and concentration of the acid solution used as leaching solution, leaching temperature, flow-rate of the continuous manifold, leaching solution volume and hair particle size were simultaneously studied by applying a Plackett-Burman design approach. Results showed that nitric acid concentration (leaching solution), leaching temperature and sonication time were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using a central composite design. The proposed procedure allowed the determination of cadmium and lead with limits of detection 0.1 and 1.0 μg g -1 , respectively. The accuracy of the developed procedure was evaluated by the analysis of a certified reference material (CRM 397, human hair, from the BCR). The proposed method was applied with satisfactory results to the determination of Cd and Pb in human hair samples of workers exposed to welding fumes

  6. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  7. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea)

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  8. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  9. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  10. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area...

  11. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...

  12. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan

    2011-06-01

    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  13. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed Anwar

    2016-02-01

    Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an

  14. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  15. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    Science.gov (United States)

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  16. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  17. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, J.F., E-mail: tyson@chem.umass.edu [Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Palmer, C.D. [Lead Poisoning Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509 (United States)

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3 s) for selenium was 10 {mu}g L{sup -1}, and for sulfide was 70 {mu}g L{sup -1} (200-{mu}L injection volume). The calibration was linear for selenium up to 2 mg L{sup -1} and to 10 mg L{sup -1} for sulfide. The throughput was 180 h{sup -1}. The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  18. Premixed direct injection nozzle for highly reactive fuels

    Science.gov (United States)

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  19. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  20. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  1. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  2. Turbulent Premixed Flame Propagation in Microgravity

    Science.gov (United States)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  3. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    Science.gov (United States)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and

  4. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  5. On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

    OpenAIRE

    DALALI, Nasser; JAVADI, Nasrin; AGRAWAL, Yadvendra KUMAR

    2008-01-01

    A cloud point extraction method was incorporated into a flow injection system, coupled with flame atomic absorption spectrometry, for determination of trace amounts of silver. The analyte in the aqueous solution was acidified with 0.2 mol L-1 sulfuric acid and complexed with dithizone. The cloud point extraction was performed using the non-ionic surfactant Triton X-114. After obtaining the cloud point, the surfactant-rich phase containing the dithizonate complex was collected in a m...

  6. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  7. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  8. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  9. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  10. Numerical study of influences of crosswind and additional steam on the flow field and temperature of propane non-premixed turbulence flame

    Science.gov (United States)

    Wusnah; Bindar, Y.; Yunardi; Nur, F. M.; Syam, A. M.

    2018-03-01

    This paper presents results the process of combustion propane using computational fluid dynamics (CFD) to simulate the turbulent non-premixed flame under the influences of crosswinds and the ratio of fuel (propane) to steam, S. Configuration, discretization and boundary conditions of the flame are described using GambitTM software and integrated with FluentTM software for calculations of flow and reactive fields. This work focuses on the influence of various crosswind speeds (0–10 m/s) and values of S (0.14–2.35) while the velocity of fuel issued from the nozzle was kept constant at 20 m/s. A turbulence model, k-ɛ standard and combustion model, Eddy Dissipation model were employed for the calculation of velocity and temperature fields, respectively. The results are displayed in the form of predictive terrain profile of the propane flame at different crosswind speeds. The results of the propane flame profile demonstrated that the crosswind significantly affect the structure velocity and position of the flame which was off-center moving towards the direction of crosswind, eventually affect the temperature along the flame. As the values of S is increasing, the flame contour temperature decreases, until the flame was extinguished at S equals to 2.35. The combustion efficiency for a variety of crosswind speeds decreases with increasing values of S.

  11. Automatic, non-intrusive, flame detection in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.D.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Al-Himyary, T.J. [Al-Himyary Consulting Inc., Calgary, AB (Canada)

    2004-07-01

    Flames have been known to occur within small diameter pipes operating under conditions of high turbulent flow. Although there are several methods of flame detection, few offer remote, non-line-of-site detection. In particular, combustion cannot be detected in cases where flammable mixtures are carried in flare lines, storage tank vents, air drilling or improperly designed purging operations. Combustion noise is being examined as a means to address this problem. A study was conducted in which flames within a small diameter tube were automatically detected using high speed pressure measurements and a newly developed algorithm. Commercially available, high-pressure, dynamic-pressure transducers were used for the measurements. The results of an experimental study showed that combustion noise can be distinguished from other sources of noise by its inverse power law relationship with frequency. This paper presented a newly developed algorithm which provides early detection of flames when combined with high-speed pressure measurements. The algorithm can also separate combustion noise automatically from other sources of noise when combined with other filters. In this study, the noise generated by a fluttering check valve was attenuated using a stop band filter. This detection method was found to be very reliable under the conditions tests, as long as there was no flow restriction between the sensor and the flame. A flow restriction would have resulted in the detection of only the strongest flame noise. It was shown that acoustic flame detection can be applied successfully in flare stacks, industrial burners and turbine combustors. It can be 15 times more sensitive than optical or electrical methods in diagnosing combustion problems with lean burning combustors. It may also be the only method available in applications that require remote, non-line-of-sight detection. 11 refs., 3 tabs., 15 figs.

  12. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  13. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine

    2008-03-15

    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  14. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    Science.gov (United States)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  15. Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-05-15

    A strained flamelet model is proposed for turbulent premixed flames using scalar dissipation rate as a parameter. The scalar dissipation rate of reaction progress variable is a suitable quantity to describe the flamelet structure since it is governed by convection-diffusion-reaction balance and it is defined at every location in the flamelets, which are represented by laminar flames in reactant-to-product opposed flow configuration. The mean reaction rate is obtained by using the flamelets reaction rate and the joint pdf of the progress variable and its dissipation rate. The marginal pdf of the progress variable is presumed to be {beta}-pdf and the pdf of the conditional dissipation rate is taken to be log-normal. The conditional mean dissipation rate is obtained from modelled mean dissipation rate. This reaction rate closure is assessed using RANS calculations of statistically planar flames in the corrugated flamelets and thin reaction zones regimes. The flame speeds calculated using this closure are close to the experimental data of Abdel-Gayed et al. (1987) for flames in both the regimes. Comparisons with other reaction rate closures showed the benefits of the strained flamelets approach. (author)

  16. Response of a swirl-stabilized flame to transverse acoustic excitation

    Science.gov (United States)

    O'Connor, Jacqueline

    This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of

  17. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  18. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2013-01-01

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree

  19. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  20. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  1. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  2. Experimental Studies of Premixed Flame Structure and Propagation Characteristics in Compressible Flow

    Science.gov (United States)

    2015-07-14

    turbulence levels resulted in higher values for both curvature and flame length . The curvature values shown in Figure 124 are determined first finding the all...and the product the maximum FSD and brush thickness (right). Figure 133: Instantaneous flame length histograms for t = 1.842ms for M = 0.2 (left) and M...0.3 (center). Mean flame length verse time is also shown (right) with error bars for standard deviations. Figure 133 shows the instantaneous flame

  3. Development of flow injection analysis technique for uranium estimation

    International Nuclear Information System (INIS)

    Paranjape, A.H.; Pandit, S.S.; Shinde, S.S.; Ramanujam, A.; Dhumwad, R.K.

    1991-01-01

    Flow injection analysis is increasingly used as a process control analytical technique in many industries. It involves injection of the sample at a constant rate into a steady flowing stream of reagent and passing this mixture through a suitable detector. This paper describes the development of such a system for the analysis of uranium (VI) and (IV) and its gross gamma activity. It is amenable for on-line or automated off-line monitoring of uranium and its activity in process streams. The sample injection port is suitable for automated injection of radioactive samples. The performance of the system has been tested for the colorimetric response of U(VI) samples at 410 nm in the range of 35 to 360mg/ml in nitric acid medium using Metrohm 662 Photometer and a recorder as detector assembly. The precision of the method is found to be better than +/- 0.5%. This technique with certain modifications is used for the analysis of U(VI) in the range 0.1-3mg/ailq. by alcoholic thiocynate procedure within +/- 1.5% precision. Similarly the precision for the determination of U(IV) in the range 15-120 mg at 650 nm is found to be better than 5%. With NaI well-type detector in the flow line, the gross gamma counting of the solution under flow is found to be within a precision of +/- 5%. (author). 4 refs., 2 figs., 1 tab

  4. Are Flow Injection-based Approaches Suitable for Automated Handling of Solid Samples?

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Cerdà, Victor

    Flow-based approaches were originally conceived for liquid-phase analysis, implying that constituents in solid samples generally had to be transferred into the liquid state, via appropriate batch pretreatment procedures, prior to analysis. Yet, in recent years, much effort has been focused...... electrolytic or aqueous leaching, on-line dialysis/microdialysis, in-line filtration, and pervaporation-based procedures have been successfully implemented in continuous flow/flow injection systems. In this communication, the new generation of flow analysis, including sequential injection, multicommutated flow.......g., soils, sediments, sludges), and thus, ascertaining the potential mobility, bioavailability and eventual impact of anthropogenic elements on biota [2]. In this context, the principles of sequential injection-microcolumn extraction (SI-MCE) for dynamic fractionation are explained in detail along...

  5. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  6. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  7. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  8. Combustion modelling of a fuel oil flame; Modelisation de la combustion d`une flamme de fuel

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Mechitouan, N.

    1996-10-01

    The combustion modelling of a fuel oil flame has been realised in the scope of the R and D `Combustion Turbines`. This report presents the results of the 2D simulation of a fuel oil flame (n-octane), at atmospherical pressure, without swirl, realised using the Eulerian two-phase flow software Melodif. This calculation has been defined in collaboration with IFP, using experimental data from the IFRP. The hollow cone spray of liquid fuel is injected in the middle of the combustion chamber, with a co-flowing annular air. The furnace diameter is 2 meter and its length is 6,25 meter. A large recirculation zone is induced by the air flow, and leads to take into account the whole furnace, in order to avoid some problems with the limit conditions at the outlet. This calculation deals with droplets evaporation, gaseous phase combustion and radiation heat transfer. Predictions concerning gaseous axial mean velocity and mean temperature gradient in the flame, are in good agreement with measurements. However the temperature is too low in the peripheral zone of the flow. This is probably due to the fact that heat exchanges at the wall furnace are not correctly represented, because of a lack of detailed limit conditions for the walls. The mean radial velocity is not so well predicted, but this measurement is also quite difficult in a strongly longitudinal flow. The results concerning the dispersed phase will not be compared, because no measurements on the liquid fuel were available. As it has been experimentally observed, the simulation shows that the fuel oil spray quickly evaporates as it enters the combustion chamber. This result allows to propose to use an homogeneous approach (hypothesis of no-slipping between the two phases) in an Eulerian one-phase flow code, in case of a 3D simulation of liquid fuel turbine. (authors)

  9. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  10. Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame via DNS

    Directory of Open Access Journals (Sweden)

    Haiou Wang

    2013-09-01

    Full Text Available A fully compressible 3D solver for reacting flows has been developed and applied to investigate a turbulent lifted jet flame in a vitiated coflow by means of direct numerical simulation (DNS to validate the solver and analyze the flame characteristics. An eighth-order central differencing scheme is used for spatial discretization and a fourth-order Runge-Kutta method is employed for time integration. The DNS results agree well with the experimental measurements for the conditional means of reactive scalars. However, the lift-off height is under predicted. The mean axial velocity develops into a self-similar profile after x/D = 6. The normalized flame index is employed to characterize the combustion regime. It is found that at the flame base the gradients of the reactants are opposed and diffusion combustion is dominant. Further downstream, the contribution of premixed combustion increases and peaks at x/D = 8. Finally, the stabilization process is examined. The turbulent lifted flame is proved to stabilize in the lean mixtures and low scalar dissipation rate regions.

  11. Retro-review of flow injection analysis

    DEFF Research Database (Denmark)

    Ruzicka, Jaromir; Hansen, Elo Harald

    2008-01-01

    It is indeed unusual for authors to review their own monograph – J. Ruzicka, E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, Chichester, West Sussex, UK, 1988. – and even more so if the book was published 20 years ago. Yet such an exercise might yield a perspective on the progress of an...

  12. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  13. Gaseous diffusion flames: simple structures and their interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A. [Universita degli Studi Federico II, Naples (Italy). Dip. di Ingegneria Chimica; Ragucci, R. [Istituto di Ricerche sulla Combustione C,N.R., Naples (Italy)

    2001-07-01

    This is a synoptic overview of a selection of works dealing with single diffusive structures, with their mutual interaction in simple flows and their statistical modeling in complex flows. The focus is on reacting conditions pertaining to gaseous diffusion flames, but isothermal structures are also described when they are of some conceptual interest. This paper considers only few representative works for each subject, which are functional in explaining the key characteristics of the diffusive structures. The extension, given to single subjects, is not weighed according to the number of related publications but on the relevance to the basic understanding of the general framework concerning diffusion flames. One-dimensional structures are first discussed. They are ordered according to the number of balance equation terms needed for their description. Two-dimensional (2D) structures are then introduced following an order based on their convolution level. Some pioneering work on three-dimensional structures is further quoted. The temporal evolution of simple structures in quiescent or simple flowing 2D systems is considered. The latter case is exploited to present classification of diffusion-controlled mixing regimes. Modeling characterization approach of turbulent diffusion flames is also described in order to yield a self-sufficient didactic presentation. The approach based on the flame surface density model is specifically discussed because of its potential use in the determination of qualitative and quantitative features of simple diffusion flames. (author)

  14. Modified and reverse radiometric flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-06-01

    Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.

  15. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    Science.gov (United States)

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  16. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  17. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  18. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  19. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    International Nuclear Information System (INIS)

    Wang, H Y; Merino, J L Florenciano; Dagaut, P

    2011-01-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as C q = V F /V ox where V F is the fuel injection velocity, and V ox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of C q ; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing V F or decreasing V ox , favouring soot formation. Along a semi-infinite fuel zone, the ratio, d f /d b , where d f is the flame standoff distance, and d b the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  20. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  1. An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion

    Directory of Open Access Journals (Sweden)

    Chih-Pin Chiu

    2017-07-01

    Full Text Available For industrial applications, we propose a concept of clean and efficient combustion through burning syngas on an impinging burner. We performed experimental measurements of particle image velocimetry, OH radical (OH* chemiluminescence, flame temperature, and CO emission to examine the fuel mixing and reaction of premixed impinging flames of CH4/syngas/air with H2/CO in varied proportions. The velocity distribution of the combustion flow field showed that a deceleration area in the main flow formed through the mutual impingement of two jet flows, which enhanced the mixing of fuel and air because of an increased momentum transfer. The deceleration area expanded with an increased CO proportion, which indicated that the mixing of fuel and air also increased with the increased CO proportion. Our examination of the OH* chemiluminescence demonstrated that its intensity increased with increased CO proportion, which showed that the reaction between fuel and air accordingly increased. CO provided in the syngas hence participated readily in the reaction of the CH4/syngas/air premixed impinging flames when the syngas contained CO in a large proportion. Although the volume flow rate of the provided CO quadrupled, the CO emission increased by only 12% to 15%. The results of this work are useful to improve the feasibility of fuel-injection systems using syngas as an alternative fuel.

  2. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-11-01

    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  3. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    Energy Technology Data Exchange (ETDEWEB)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M. [German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany); Bonaldo, A. [Siemens Industrial Turbomachinery Ltd., Combustion Group, P. O. Box 1, Waterside South, Lincoln LN5 7FD (United Kingdom)

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  4. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results

    Energy Technology Data Exchange (ETDEWEB)

    Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Ghoneim, Z.A. [Ain Shams Univ., Abassia (Egypt)

    1996-09-01

    Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.

  5. Formation and stabilization of multiple ball-like flames at Earth gravity

    KAUST Repository

    Zhou, Zhen

    2018-03-20

    Near-limit low-Lewis-number premixed flame behavior is studied experimentally and numerically for flames of H–CH–air mixtures that are located in a 55 mm diameter tube and below a perforated plate in a downward mixture flow. A combustion regime diagram is experimentally identified in terms of equivalence ratio and ratio of H to CH (variation of fuel Lewis number). Planar flames, cell-like flames, distorted cap-like flames, and arrays of ball-like flames are progressively observed in the experiments as the equivalence ratio is decreased. The experimentally observed ball-like lean limit flames experience chaotic motion, which is accompanied by sporadic events of flame splitting and extinction, while the total number of simultaneously burning flamelets remains approximately the same. In separate experiments, the multiple ball-like lean limit flames are stabilized by creating a slightly non-uniform mixture flow field. The CH* chemiluminescence distributions of the lean limit flames are recorded, showing that the ball-like lean limit flame front becomes more uniform in intensity and its shape approaches a spherical one with the increase of H content in the fuel. Numerical simulations are performed for single representative flames of the array of stabilized flamelets observed in the experiments. The simulated ball-like lean limit flame is further contrasted with the single ball-like flame that forms in a narrow tube (13.5 mm inner diameter) with an iso-thermal wall. The numerical results show that the ball-like lean limit flames present in the array of ball-like flames are more affected by the buoyancy-induced recirculation zone, compared with that in the narrow tube, revealing why the shape of the ball-like flame in the array deviates more from a spherical one. All in all, the wall confinement is not crucial for the formation of ball-like flames at terrestrial gravity.

  6. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  7. Trends and perspectives of flow injection/sequential injection on-line sample-pretreatment schemes coupled to ETAAS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2005-01-01

    Flow injection (FI) analysis, the first generation of this technique, became in the 1990s supplemented by its second generation, sequential injection (SI), and most recently by the third generation (i.e.,Lab-on-Valve). The dominant role played by FI in automatic, on-line, sample pretreatments in ...

  8. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    Experiments to determine the Limiting Oxygen Concentration (LOC) of a flame spread over electric wire insulation were carried out in microgravity provided by parabolic flights. The difference between the LOC in opposed and concurrent flows was evidenced. Polyethylene insulated Copper (Cu) wires...... and polyethylene insulated Nickel-Chrome (NiCr) wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were examined with external flow velocities ranging from 50mm/s to 200mm/s. The results for the Copper wires show that with increasing external flow velocity, the LOC monotonically...... decreased for the concurrent flow conditions and the LOC first decreased and then increased (“U” trend) for the opposed flow conditions. Similar trends were found in the experiments with NiCr wires. Also, in terms of the minimum LOC value, the minimum LOC was comparable for both wire types in both flow...

  9. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  10. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  11. Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Bobba, Mohan K.

    A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF

  12. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  13. A New Perspective on the Flame Describing Function of a Matrix Flame

    Directory of Open Access Journals (Sweden)

    Maria Heckl

    2015-06-01

    Full Text Available This paper considers a fundamental thermoacoustic test rig developed by Noiray (“Linear and nonlinear analysis of combustion instabilities, application to multipoint injection systems and control strategies”, PhD thesis, École Centrale Paris, 2007 and models it with an entirely analytical approach. The test rig is treated as a system of two coupled elements: an acoustic resonator and a flame with oscillating rate of heat release. We describe the acoustics of the combustion rig in terms of modes, and derive a governing equation for one such mode. This turns out to be the equation for a damped harmonic oscillator, forced by the heat release rate from the flame. In order to model the heat release rate, and in particular its nonlinear aspects, we develop a generalised nτ-law with amplitude-dependent coefficients and multiple time-lag. The coefficients are determined from Noiray's measured flame describing function. Stability predictions are made by evaluating the sign of the damping coefficient in the governing equation. These predictions are in excellent qualitative agreement with the measured stability behaviour. Finally, the physical mechanisms of the amplitude-dependence are explored.

  14. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  15. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    Science.gov (United States)

    Boxx, Isaac G.

    An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect

  16. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  17. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang; Huang, Ronghua

    2015-01-01

    Highlights: • A 5D PDF table was used to model the dual-fuel turbulence–chemistry interactions. • The cooling effect of ethanol direct injection (EDI) was examined. • The higher flame speed of ethanol in EDI + GPI increased the thermal efficiency. • The partially premixed combustion in EDI + GPI reduced the combustion temperature. • Ethanol’s low evaporation rate in low temperature led to incomplete combustion. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k−ε turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence–chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in EDI + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of

  18. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    Science.gov (United States)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  19. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    Science.gov (United States)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  20. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  1. Experimental study of an oxygen-hydrogen diffusion flame laden with solid alumina particles; Etude experimentale d'une flamme de diffusion oxygene-hydrogene ensemencee en particules solides d'alumine

    Energy Technology Data Exchange (ETDEWEB)

    Labor, S.

    2003-07-15

    Monocrystalline sapphire microspheres are generated through the melting of alumina (AL{sub 2}O{sub 3}) particles in a flame. The alumina particles are injected in a very peculiar O{sub 2}/H{sub 2} confined diffusion flame as it is a downwards vertical flame having fuel in periphery of a central powdered oxygen jet. Quantitative measurements were carried out (ADL, PIV) and supplemented by a numerical study (N3S-Natur). (1) The laminar behavior of the isothermal conditions is kept through reactive flow. Therefore, particles will mainly collide due to speed gradients. (2) It has been shown that an axial particle will have a transit time int the high temperature zone very different to that of an off-line one. (3) The PIV date proved that the particle density was not homogeneous. (4) The hydrogen jet hardly influences the flame aerodynamic structure. Conversely, the central oxygen jet is at premium due to its effect on both the flame speed and temperature distribution. (author)

  2. Direct numerical simulation of two-phases turbulent combustion: application to study of propagation and structure of flames; Simulation numerique directe de la combustion turbulente diphasique: application a l'etude de la propagation et de la structure des flammes

    Energy Technology Data Exchange (ETDEWEB)

    Canneviere, K.

    2003-12-15

    This work is devoted to the study of the propagation and the structure of two-phases turbulent flames. To this end, Direct Numerical Simulations (DNS) are used. First, numerical systems for two-phases flow simulations is presented along with a specific chemical model. Then, a study of laminar spray flames is carried out. An analytical study related to the dynamics of evaporation of droplets is first proposed where the influence on the equivalence ratio of the ratio between the heating delay of the droplet and the evaporation delay is detailed. The simulation of a propagating flame through a cloud of droplets is carried out and a pulsating behavior is highlighted. A study of these flames according to the topology of liquid fuel enabled us to characterize a double flame structure composed of a premixed flame and a diffusion flame. Our last study is devoted to spray turbulent flames. Two-phase combustion of turbulent jets has been simulated. By varying the spray injection parameters (density, equivalence ratio), a database has been generated. This database allowed us to describe local and global flame regimes appearing in the combustion of sprays. They have been categorized in four main structures: open and closed external regime, group combustion and mixed combustion. Eventually, a combustion diagram has been developed. It involves the spray vaporization time, the mean inter-space between droplets or group of droplets and eventually the injected equivalence ratio. (author)

  3. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Robert [Purdue Univ., West Lafayette, IN (United States); Anderson, William [Purdue Univ., West Lafayette, IN (United States)

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  4. Dual-pump CARS measurements in a hydrogen diffusion flame in cross-flow with AC dielectric barrier discharge

    Science.gov (United States)

    Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.

    2018-03-01

    This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.

  5. An Investigation on Flame Shape and Size for a High-Pressure Turbulent Non-Premixed Swirl Combustion

    Directory of Open Access Journals (Sweden)

    Zhongya Xi

    2018-04-01

    Full Text Available Flame shape and size for a high-pressure turbulent non-premixed swirl combustion were experimentally investigated over a wide range of varying parameters including fuel mass flow rate, combustor pressure, primary-air mass flow rate, and nozzle exit velocity. A CFD simulation was conducted to predict the flame profile. Meanwhile, a theoretical calculation was also performed to estimate flame length. It was observed that flame length increased linearly with increasing fuel mass flow rate but decreased with the increment of combustor pressure in the power function. The flame diminished at a larger primary-air mass flow rate but remained unaffected by the increasing nozzle exit velocity. Considering the global effect of all parameters at a particular pressure, the flame length generally decreased as the primary-air to fuel ratio increased. This was attributed to the reduced air entrainment required to dilute the fuel to stoichiometric proportions. The CFD simulation offered a good prediction of the variation trends of flame length, although some deviations from experimental values were observed. The theoretical calculation estimated the trends of flame length variation particularly well. Nevertheless the difference between the theoretical and experimental results was found to be due to the swirl influence. Hence, a swirl factor was proposed to be added to the original equation for swirl flames.

  6. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  7. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Science.gov (United States)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  8. NEAR-BLOWOFF DYNAMICS OF BLUFF-BODY-STABILIZED PREMIXED HYDROGEN/AIR FLAMES IN A NARROW CHANNEL

    KAUST Repository

    Lee, Bok Jik

    2015-06-07

    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  9. Large Eddy simulations of flame/acoustics interactions in a swirl flow; Simulation aux grandes echelles des interactions flamme / acoustique dans un ecoulement vrille

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.

    2004-01-15

    Swirl flows exhibit a large variety of topologies, depending on the ratio of the flux axial momentum to the axial flux of tangential momentum: this ratio is called swirl number. Above a given critical value for the swirl number, the pressure gradient reverses the flow on the axis of rotation. This central recirculation zone is used in turbines for flame stabilization. And yet, reacting-swirled flows can exhibit combustion instabilities resulting from the coupling between acoustics and unsteady heat release. Combustion instabilities can lead to loss of control or even complete destruction of the system. Their prediction is impossible with standard engineering tools. The work presented here investigates the capabilities of numerical research tools for the prediction of combustion instabilities. Large-Eddy Simulation (LES) is implemented in a code solving the Navier-Stokes equations for compressible-multi-components fluids (code AVBP developed at CERFACS). This method takes into account for the major ingredients of combustion instabilities such as acoustics and flame / vortex interaction. The LES methodology is validated in the swirled flow from a complex industrial burner (SIEMENS PG). Both reactive and non-reactive regimes are successfully compared with experimental data in terms of mean temperature and mean and RMS velocities. Experimental measurements were performed at the university of Karlsruhe (Germany). A detailed analysis of the acoustics and its interaction with the flame front is performed with the code AVSP, also developed at CERFACS. (author)

  10. Image processing analysis of combustion for D. I. diesel engine with high pressure fuel injection. ; Effects of air swirl and injection pressure. Nensho shashin no gazo shori ni yoru koatsu funsha diesel kikan no nensho kaiseki. ; Swirl oyobi funsha atsuryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, I. (Japan Automobile Research Institute, Inc., Tsukuba (Japan)); Tsujimura, K.

    1994-02-25

    This paper reports an image processing analysis of combustion for a high-pressure direct injection diesel engine on the effects of air swirl and injection pressure upon combustion in the diesel engine. The paper summarizes a method to derive gas flow and turbulence strengths, and turbulent flow mixing velocity. The method derives these parameters by detecting movement of brightness unevenness on two flame photographs through utilizing the mutual correlative coefficients of image concentrations. Five types of combustion systems having different injection pressures, injection devices, and swirl ratios were used for the experiment. The result may be summarized as follows: variation in the average value of the turbulent flow mixing velocities due to difference in the swirl ratio is small in the initial phase of diffusion combustion; the difference is smaller in the case of high swirl ratio than in the case of low swirl ratio after the latter stage of the injection; the average value is larger with the higher the injection pressure during the initial stage of the combustion; after termination of the injection, the value is larger in the low pressure injection; and these trends agree with the trend in the time-based change in heat generation rates measured simultaneously. 6 refs., 14 figs., 2 tabs.

  11. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    OpenAIRE

    Jaroon Jakmunee

    2008-01-01

    A stopped-flow injection (FI) spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product z...

  12. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  13. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames

    International Nuclear Information System (INIS)

    Worth, Nicholas A; Dawson, James R

    2013-01-01

    The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex–flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex–flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. (paper)

  14. The turbulence structure in an unconfined swirling diffusion flame

    International Nuclear Information System (INIS)

    Finzenhagen, F.; Doherty, T.O.; Bates, C.; Wirtz, S.; Kremer, H.

    1999-01-01

    Turbulent swirling flows are used in many practical combustion systems. The swirl improves the flame stability as a result of the formation of a central recirculation zone combined with fast mixing at the boundaries of this zone. Knowledge about swirl flames has increased over the last few decades as a result of practical experience and fundamental research. Some important questions concerning the influence of the turbulence structure on the flame stability and chemical kinetics of the combustion process remain unresolved. The structure of turbulence, especially turbulent scales and time dependent effects, at the outlet zone controls the mixing process and therefore the flame properties. Understanding of these complex phenomena is far from complete. The present work describes the results of an experimental study of the turbulence structure of a swirled diffusion flame using laser-optical measurement techniques, e.g. Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PW). All the processed information available from the burst-mode Laser Doppler Anemometry (LDA) measurements has been combined and compared with high spatial resolution PIV measurements of the flow. The extensive statistical post processing of the data has enabled the turbulent microstructure to be characterised. (author)

  15. Sensitive flow-injection spectrophotometric analysis of bromopride

    Science.gov (United States)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  16. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  17. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  18. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  19. Acoustic radiation from weakly wrinkled premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham, [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.

  20. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  1. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  2. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu

    2017-01-05

    The flame-vortex interaction enables the study of basic phenomena that control the coupling between combustion and turbulence. Employing a gas phase reaction mechanism considering polycyclic aromatic hydrocarbons (PAH), a two dimensional counterflow ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a prescribed decaying random velocity field is being investigated. Counterflow nonpremixed flames at low strain rate sooting conditions are considered. Effects of vortices are studied on the flame structures and its sensitivity on the soot formation characteristics. As the vortex rolls up the flame, integrated soot volume fraction is found to be larger for the air-side vortex. A detailed analysis on the flame structure and its influence on the formation of soot were carried out. The results indicate that the larger PAH species contributes to the soot formation in the airside perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation.

  3. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... the point of sample injection/introduction to the point of detection. Hence, in FI-fAAS this feature allows not only to obtain improved repeatability but also improved accuracy, and because the wash to sample ratio is high it permits the handling of samples with elevated salt contents - which...

  4. Flow Injection/Sequential Injection Analysis Systems: Potential Use as Tools for Rapid Liver Diseases Biomarker Study

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Flow injection/sequential injection analysis (FIA/SIA systems are suitable for carrying out automatic wet chemical/biochemical reactions with reduced volume and time consumption. Various parts of the system such as pump, valve, and reactor may be built or adapted from available materials. Therefore the systems can be at lower cost as compared to other instrumentation-based analysis systems. Their applications for determination of biomarkers for liver diseases have been demonstrated in various formats of operation but only a few and limited types of biomarkers have been used as model analytes. This paper summarizes these applications for different types of reactions as a guide for using flow-based systems in more biomarker and/or multibiomarker studies.

  5. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  6. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv

    2016-01-01

    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  7. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  8. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  9. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  10. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho

    2016-01-01

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames

  11. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  12. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  13. Radiometric flow injection analysis with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.

  14. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  15. The effects of overwinter flows on the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah

    International Nuclear Information System (INIS)

    Magnusson, A.K.; LaGory, K.E.; Hayse, J.W.

    2010-01-01

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: (ge)400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming

  16. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  17. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2016-01-01

    to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little

  18. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  19. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  20. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  1. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  2. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    Science.gov (United States)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ 1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low injection rates; most industrial-scale injection

  3. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  4. Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the

  5. Acoustic-hydrodynamic-flame coupling—A new perspective for zero and low Mach number flows

    Science.gov (United States)

    Pulikkottil, V. V.; Sujith, R. I.

    2017-04-01

    A combustion chamber has a hydrodynamic field that convects the incoming fuel and oxidizer into the chamber, thereby causing the mixture to react and produce heat energy. This heat energy can, in turn, modify the hydrodynamic and acoustic fields by acting as a source and thereby, establish a positive feedback loop. Subsequent growth in the amplitude of the acoustic field variables and their eventual saturation to a limit cycle is generally known as thermo-acoustic instability. Mathematical representation of these phenomena, by a set of equations, is the subject of this paper. In contrast to the ad hoc models, an explanation of the flame-acoustic-hydrodynamic coupling, based on fundamental laws of conservation of mass, momentum, and energy, is presented in this paper. In this paper, we use a convection reaction diffusion equation, which, in turn, is derived from the fundamental laws of conservation to explain the flame-acoustic coupling. The advantage of this approach is that the physical variables such as hydrodynamic velocity and heat release rate are coupled based on the conservation of energy and not based on an ad hoc model. Our approach shows that the acoustic-hydrodynamic interaction arises from the convection of acoustic velocity fluctuations by the hydrodynamic field and vice versa. This is a linear mechanism, mathematically represented as a convection operator. This mechanism resembles the non-normal mechanism studied in hydrodynamic theory. We propose that this mechanism could relate the instability mechanisms of hydrodynamic and thermo-acoustic systems. Furthermore, the acoustic-hydrodynamic interaction is shown to be responsible for the convection of entropy disturbances from the inlet of the chamber. The theory proposed in this paper also unifies the observations in the fields of low Mach number flows and zero Mach number flows. In contrast to the previous findings, where compressibility is shown to be causing different physics for zero and low Mach

  6. Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huahua; Wang, Qingsong; He, Xuechao; Sun, Jinhua; Yao, Liyin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China)

    2010-02-15

    Hydrogen is a promising energy in the future, and it is desirable to characterize the combustion behavior of its blends with air. The premixed hydrogen/air flame microstructure and propagation in a horizontal rectangular closed duct were recorded using high-speed video and Schlieren device. Numerical simulation was also performed on Fluent CFD code to compare with the experimental result. A tulip flame is formed during the flame propagating, and then the tulip flame formation mechanism was proposed based on the analysis. The induced reverse flow and vortex motion were observed both in experiment and simulation. The interactions among the flame, reverse flow and vortices in the burned gas change the flame shape and ultimately it develops into a tulip flame. During the formation of the tulip flame, the tulip cusp slows down and stops moving after its slightly forward moving, and then, it starts to move backward and keeps on a longer time, after that, it moves forward again. The structure of the tulip flame is becoming less stable with its length decreasing in flame propagation direction. The flame thickness increases gradually which is due to turbulence combustion. (author)

  7. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  8. Imaging hydrogen flames by two-photon, laser-induced fluorescence

    Science.gov (United States)

    Miles, R.; Lempert, W.; Kumar, V.; Diskin, G.

    1991-01-01

    A nonintrusive multicomponent imaging system is developed which can image hydrogen, hot oxygen, and air simultaneously. An Ar-F excimer laser is injection-locked to cover the Q1 two-photon transition in molecular hydrogen which allows the observation of both hot oxygen and cold hydrogen. Rayleigh scattering from the water molecules occurs at the same frequency as the illuminating laser allowing analysis of the air density. Images of ignited and nonignited hydrogen jets are recorded with a high-sensitivity gated video camera. The images permit the analysis of turbulent hydrogen-core jet, the combustion zone, and the surrounding air, and two-dimensional spatial correlations can be made to study the turbulent structure and couplings between different regions of the flow field. The method is of interest to the study of practical combustion systems which employ hydrogen-air diffusion flames.

  9. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  10. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  11. Development and application of a computer model for large-scale flame acceleration experiments

    International Nuclear Information System (INIS)

    Marx, K.D.

    1987-07-01

    A new computational model for large-scale premixed flames is developed and applied to the simulation of flame acceleration experiments. The primary objective is to circumvent the necessity for resolving turbulent flame fronts; this is imperative because of the relatively coarse computational grids which must be used in engineering calculations. The essence of the model is to artificially thicken the flame by increasing the appropriate diffusivities and decreasing the combustion rate, but to do this in such a way that the burn velocity varies with pressure, temperature, and turbulence intensity according to prespecified phenomenological characteristics. The model is particularly aimed at implementation in computer codes which simulate compressible flows. To this end, it is applied to the two-dimensional simulation of hydrogen-air flame acceleration experiments in which the flame speeds and gas flow velocities attain or exceed the speed of sound in the gas. It is shown that many of the features of the flame trajectories and pressure histories in the experiments are simulated quite well by the model. Using the comparison of experimental and computational results as a guide, some insight is developed into the processes which occur in such experiments. 34 refs., 25 figs., 4 tabs

  12. Influence of Flame Retardants on the Melt Dripping Behaviour of Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Melissa Matzen

    2015-08-01

    Full Text Available Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate (PBT, polypropylene (PP, polypropylene modified with ethylene-propylene rubber (PP-EP and polyamide 6 (PA 6, is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC, thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed.

  13. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  14. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.; Mannaa, O.; Chung, Suk-Ho

    2015-01-01

    and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff

  15. Experimental and numerical study of cap-like lean limit flames in H 2 -CH 4 -air mixtures

    KAUST Repository

    Zhou, Zhen

    2017-11-15

    Lean limit flames of H2-CH4-air mixtures stabilized inside a tube with an inner diameter of 30 mm in a downward flow are studied experimentally and numerically. A transition from bubble-like flames, with a long decaying skirt, to cap-like flames with a sharp visible flame edge at the bottom is observed as the lean flammability limit is approached. This transition is accompanied by formation of a secondary weak flame front inside the cap-like flame. The CH* chemiluminescence distribution of the studied flames is recorded and the velocity field of the lean limit flames is measured using Particle Image Velocimetry (PIV). The flame temperature field is measured utilizing the Rayleigh scattering method. Numerical prediction with a mixture-averaged transport model and skeletal mechanism for CH4 qualitatively reproduces the above experimentally observed phenomena. The presence of negative flame displacement speed for the entire leading edge of the cap-like flames is numerically predicted and experimentally demonstrated. The secondary weak flame front is located in a region with reverse upward flow of the recirculation zone, which is found to support the propagation of the leading edge with a negative flame displacement speed. Furthermore, radiative heat loss has a significant influence on the lean flammability limit of the cap-like flames.

  16. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    Science.gov (United States)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  17. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  18. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  19. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  20. Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.

  1. The development of kilohertz planar laser diagnostics for applications in high power turbulent flames

    Science.gov (United States)

    Slabaugh, Carson Daniel

    In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the

  2. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2015-01-01

    to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized

  3. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  4. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  5. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  6. Effect of Lewis number on ball-like lean limit flames

    KAUST Repository

    Zhou, Zhen

    2017-10-13

    The lean limit flames for three different fuel compositions premixed with air, representing three different mixture Lewis numbers, stabilized inside a tube in a downward flow are examined by experiments and numerical simulations. The CH* chemiluminescence distribution in CH4–air and CH4–H2–air flames and the OH* chemiluminescence distribution in H2–air flames are recorded in the experiments. Cell-like flames are observed for the CH4–air mixture for all tested equivalence ratios. However, for CH4–H2–air and H2–air flames, ball-like lean limit flames are observed. Flame temperature fields are measured using Rayleigh scattering. The experimentally observed lean limit flames are predicted qualitatively by numerical simulation with the mixture-averaged transport model and skeletal mechanism of CH4. The results of the simulations show that the entire lean limit flames of CH4–H2–air and H2–air mixtures are located inside a recirculation zone. However, for the lean limit CH4–air flame, only the leading edge is located inside the recirculation zone. A flame structure with negative flame displacement speed is observed for the leading edges of the predicted lean limit flames with all three different fuel compositions. As compared with 1D planar flames, the fuel transport caused by convection is less significant in the present 2D lean limit flames for the three different fuel compositions. For the trailing edges of the three predicted lean limit flames, a diffusion dominated flame structure is observed.

  7. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    Science.gov (United States)

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-06

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  9. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  10. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  11. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    Science.gov (United States)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  12. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments

    Science.gov (United States)

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-01

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.

  13. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    International Nuclear Information System (INIS)

    Long, E J; Hargrave, G K; Jarvis, S; Justham, T; Halliwell, N

    2006-01-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths

  14. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Long, E J; Hargrave, G K; Jarvis, S; Justham, T; Halliwell, N [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  15. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    Science.gov (United States)

    Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.

    2006-07-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  16. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows

    International Nuclear Information System (INIS)

    Rust, T C; DiBella, E V R; McGann, C J; Christian, P E; Hoffman, J M; Kadrmas, D J

    2006-01-01

    Quantification of myocardial blood flows at rest and stress using 13 N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13 N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r = 0.998, mean absolute difference = 0.06 ml min -1 g -1 ). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use

  17. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  18. Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame

    OpenAIRE

    松山, 新吾; Matsuyama, Shingo

    2014-01-01

    This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...

  19. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.

    2017-07-04

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  20. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.; Elbaz, Ayman M.; Gong, C.; Bai, X.S.; Zheng, H.T.; Roberts, William L.

    2017-01-01

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  1. Flow Injection Analysis: A Revolution in Modern Analytical Chemistry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    A review is made of the fundamentals of Flow Injection Analysis (FIA), and the versatility and applicability of this analytical concept is demonstrated by a series of examples, comprizing the use of different types of FIA-manifolds and various detection devices (optical and electrochemical...

  2. Temperature and Concentration Traces of Spray Flows During Motion in a Flame

    Directory of Open Access Journals (Sweden)

    Antonov Dmitry V.

    2016-01-01

    Full Text Available Heat and mass transfer models are developed on the base of experimental data and using Ansys Fluent software. These models allow prediction of the temperature and concentration traces of droplets. Transfer mechanisms of water droplets from different flames of flammable liquid (ethanol, kerosene И benzine with temperature gases 450–850 К are analyzed. The paper considers aerosol flows with droplets sizes of 0.04–0.4 mm and concentration of 3.8·10-5 –10.3·10-5 m3 of droplets/m3 of gas. The maximum gas temperature reduction in the trace of a moving liquid is ranged from 850 K to 600 K. The times of keeping the low temperature of the gas-vapor mixture in the droplets trace are from 13 s to 25 s relative to the initial gas temperature.

  3. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture

    Science.gov (United States)

    Mameri, A.; Tabet, F.; Hadef, A.

    2017-08-01

    This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.

  4. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  5. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko

    2013-01-01

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  6. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  7. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  8. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  9. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Directory of Open Access Journals (Sweden)

    Li Chen

    2010-10-01

    Full Text Available Aryl polyphosphonates (ArPPN have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed.

  10. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    NARCIS (Netherlands)

    Zhou, Z.; Shoshyn, Y.; Hernandez Perez, F.E.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with

  11. 3D velocity measurements in a premixed flame by tomographic PIV

    International Nuclear Information System (INIS)

    Tokarev, M P; Sharaborin, D K; Lobasov, A S; Chikishev, L M; Dulin, V M; Markovich, D M

    2015-01-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV. (paper)

  12. Measurements of a high-luminosity flame structure by a shuttered PIV system

    International Nuclear Information System (INIS)

    Li, Yueh-Heng; Wu, Chih-Yung; Chen, Bi-Chian; Chao, Yei-Chin

    2008-01-01

    It is difficult to measure the velocity distribution inside a high-luminosity flame by using the particle image velocimetry (PIV) system with a double-shutter mode CCD camera. The second raw image of the PIV image pair is usually contaminated by flame emission. The main cause of the problem is an excess exposure time which lets the flame emission overlap the particle image in the second frame. If the flame-contamination problem is not significant, for example in faint flames, digital image processing can improve the image to an acceptable level. Nevertheless, when the PIV technique is applied to high-luminosity flames, the second raw particle image would be contaminated by flame emission. In this paper, incorporating a mechanical shutter in the PIV system with a double-shutter CCD camera is proposed to improve PIV measurements in high-luminosity flames. Measurements in faint, high-luminosity as well as very bright flames were tested. The results show that the present setup can accurately resolve the flow velocity field inside the flame cone, through the flame and in the post flame zone for all the flame conditions analyzed. The velocity distributions and streamline patterns measured by the present equipment are reasonable and meaningful

  13. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  14. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  15. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  16. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  17. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    Science.gov (United States)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  18. Flow injection analysis using carbon film resistor electrodes for amperometric determination of ambroxol.

    Science.gov (United States)

    Felix, Fabiana S; Brett, Christopher M A; Angnes, Lúcio

    2008-06-30

    Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5x10(-7) to 3.5x10(-4) mol L(-1), in 0.1 mol L(-1) sulfuric acid electrolyte, as well as high sensitivity, 0.110 Amol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6x10(-8) mol L(-1) and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 microL and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0x10(-6) and 6.0x10(-5) mol L(-1) ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis.

  19. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2014-01-01

    recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time

  20. Investigation of mass transfer in swirling turbulent flames

    International Nuclear Information System (INIS)

    Sharaborin, D; Abdurakipov, S; Dulin, V

    2016-01-01

    The present paper reports on analysis of flow structure and turbulent transport in swirling flames. The particle image velocimetry and spontaneous Raman scattering techniques were used for the measurements of 2D velocity and density distributions. The focus was placed on comparison between low- and high-swirl flows. A pronounced bubble-type vortex breakdown with strong flow precession took place in the latter case. (paper)

  1. Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder

    KAUST Repository

    Richter, David; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2011-01-01

    Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re = 3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy. © 2011 American Society of Mechanical Engineers.

  2. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  3. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    Science.gov (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  5. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  6. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu; Im, Hong G.

    2017-01-01

    ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a

  7. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  8. Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples

    International Nuclear Information System (INIS)

    Lemos, Valfredo Azevedo; Novaes, Cleber Galvao; Lima, Adriana da Silva; Vieira, Daniel Rodrigues

    2008-01-01

    A solid-phase extraction method combined with flow injection (FI) on-line flame atomic absorption spectrometry (FAAS) for the determination of cadmium and nickel in tobacco samples is presented. The 2-aminothiophenol functionalized Amberlite XAD-4 (AT-XAD) resin was synthesized by covalent coupling of the ligand with the copolymer through a methylene group. A minicolumn packed with AT-XAD was connected into the automated on-line preconcentration system. Elution of metal ions from minicolumn can be made with 0.50 mol L -1 hydrochloric acid solution. With a consumption of 21.0 mL of sample solution, detection limits (3 s) of 0.3 (Cd) and 0.8 μg L -1 (Ni) were achieved at a sample throughput of 18 h -1 . Enrichment factors (EF) of 99 (cadmium) and 43 (nickel) were obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The contents of Cd and Ni in a certified reference material (NIST 1570a, spinach leaves) determined by the present method was in good agreement with the certified value. The developed procedure was also successfully applied to the determination of Cd and Ni in local tobacco samples

  9. Optical investigation of gas-phase KCl/KOH sulfation in post flame conditions

    DEFF Research Database (Denmark)

    Weng, Wubin; chen, Shuang; Wu, Hao

    2018-01-01

    A counter-flow reactor setup was designed to investigate the gas-phase sulfation and homogeneous nucleation of potassium salts. Gaseous KOH and KCl were introduced into the post-flame zone of a laminar flat flame. The hot flame products mixed in the counter-flow with cold N2, with or without....... Depending on the potassium speciation in the inlet and the presence of SO2, they consisted of K2SO4, KCl, or K2CO3, respectively. The experiments showed that KOH was sulphated more readily than KCl, resulting in larger quantities of aerosols. The sulfation process in the counter-flow setup was simulated...... using a chemical kinetic model including a detailed subset for the Cl/S/K chemistry. Similar to the experimental results, much more potassium sulfate was predicted when seeding KOH compared to seeding KCl. For both KOH and KCl, sulfation was predicted to occur primarily through the reactions among...

  10. Hydrogen-hydrocarbon turbulent non-premixed flame structure

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [ANSYS-Benelux, 4 Avenue Pasteur, B-1300 Wavre (Belgium); Sarh, B.; Goekalp, I. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 1 C avenue de la recherche scientifique, Orleans 45071 Cedex 2 (France)

    2009-06-15

    In this study, the structure of turbulent non-premixed CH{sub 4}-H{sub 2}/air flames is analyzed with a special emphasis on mixing and air entrainment. The amount of H{sub 2} in the fuel mixture varies under constant volumetric fuel flow. Mixing is described by mixture fraction and its variance while air entrainment is characterized by the ratio of gas mass flow to fuel mass flow at the inlet section. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by the computational fluid dynamics (CFD) code. The slow chemistry aspect of NO{sub x} is handled by solving an additional transport equation with a source term derived from flamelet library. The results obtained show an improvement of mixing with hydrogen addition leading to a strong consumption of CH{sub 4} and a high air entrainment into the centerline region. As a global effect of this, the composite fuels burn faster and thereby reduce the residence time which ultimately shortens the flame length and thickness. On the other hand, hydrogen is found to increase NO{sub x} level. (author)

  11. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    Science.gov (United States)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  12. Combustion instabilities in sudden expansion oxy-fuel flames

    Energy Technology Data Exchange (ETDEWEB)

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  13. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  14. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  15. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.

    2018-05-16

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  16. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Byung Chul; Chung, Suk-Ho

    2018-01-01

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  17. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  18. Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    KAUST Repository

    Taamallah, Soufien; LaBry, Zachary A.; Shanbhogue, Santosh J.; Habib, Mohamed A. M.; Ghoniem, Ahmed F.

    2014-01-01

    Copyright © 2015 by ASME. In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure - or flame brush spatial distribution - and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane-air in the range of equivalence ratio (Φ) from the lean blowout limit to Φ = 0. 75. First, we observe the different dynamic modes in this lean range as Φ is raised. We also document the effect of Φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length - by downstream truncation - without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor - which occurs simultaneously with the onset of instability at the fundamental frequency - happens at similar Φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with Φ. The spectral

  19. Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-12-23

    Copyright © 2015 by ASME. In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure - or flame brush spatial distribution - and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane-air in the range of equivalence ratio (Φ) from the lean blowout limit to Φ = 0. 75. First, we observe the different dynamic modes in this lean range as Φ is raised. We also document the effect of Φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length - by downstream truncation - without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor - which occurs simultaneously with the onset of instability at the fundamental frequency - happens at similar Φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with Φ. The spectral

  20. Study of process parameters on two phase flow agitated by top blowing lance injection into a bath

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jiliang; Ahokainen, T.; Holappa, L.

    1998-12-31

    Numerical investigation has been carried out for two phase flow in a bath agitated by top blowing lance injection. Eulerian two phase flow model is used. Lance immersion depth, injection gas flow rate, nozzle diameter, and bubble size have been systematically changed to examine their influence on the flow characteristics in the bath. It is found that there appear three typical flow patterns: one-vortex, two-vortex, and three-vortex type, with changing the injection gas flow rate or/and the nozzle diameter at moderate lance immersion depth. Predicted velocities are in a good agreement with Iguchi et al.`s experimental data and the main findings are also consistent with the measurements and observations of Chatterjee and Hsiao and Lehner. (orig.) 24 refs. Computational Fluid Dynamics Technology Programme

  1. Spatial and radiative properties of an open-flame hydrogen plume

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2006-08-15

    Considerable effort is being directed toward updating safety codes and standards in preparation for production, distribution, and retail of hydrogen as a consumer energy source. In the present study, measurements were performed in large-scale, vertical flames to characterize the dimensional and radiative properties of an ignited hydrogen jet. These data are relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel. Specifically, the data will provide a technological basis for determining hazardous length scales associated with unintended releases at hydrogen storage and distribution centers. Visible and infrared video and ultraviolet flame luminescence imaging were used to evaluate flame length, diameter and structure. Radiometer measurements allowed determination of the radiant heat flux from the flame. The results show that flame length increases with total jet mass flow rate and jet nozzle diameter. When plotted as a function of Froude number, which measures the relative importance of jet momentum and buoyancy, the measured flame lengths for a range of operating conditions collapse onto the same curve. Good comparison with hydrocarbon jet flame lengths is found, demonstrating that the non-dimensional correlations are valid for a variety of fuel types. The radiative heat flux measurements for hydrogen flames show good agreement with non-dimensional correlations and scaling laws developed for a range of fuels and flame conditions. This result verifies that such correlations can be used to predict radiative heat flux from a wide variety of hydrogen flames and establishes a basis for predicting a priori the characteristics of flames resulting from accidental releases. (author)

  2. Three-dimensional temporally resolved measurements of turbulence-flame interactions using orthogonal-plane cinema-stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam Michael; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2009-09-15

    A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence-flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor's hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame-vortex configurations. (orig.)

  3. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  4. Investigating the effects of critical phenomena in premixed methane-oxygen flames at cryogenic conditions

    Science.gov (United States)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2017-11-01

    Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.

  5. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    concentric low-NOx configuration. The measurements focus on a single 30 MWth flame and include: Quantification of the gas temperature, the gas phase composition: O2, CO, CO2, H2O, and light hydrocarbons by intrusive probe measurements. It also includes both seeded and unseeded 2D laser doppler anemometry...... of a full-scale burner and provide a comprehensive data set that quantifies key parameters: Gas phase temperature, composition, and flow field required in order to evaluate the performance of CFD simulations of complex combustion systems...

  6. Mathematical modeling of flow-injection techniques and their applications for environmental monitoring

    International Nuclear Information System (INIS)

    Begum, N.N.; Ahmed, J.

    2006-01-01

    A classification of the existing mathematical models of flow-injection (FI) manifolds based on the main principles on which they are built, have been proposed. Numerous mathematical models of FI systems employing ideas from different scientific areas (e.g. mathematical statistics, chemical engineering, chromatography) have been developed so far. The models have been compared with respect to their predictive power, the complexity of their mathematical treatment, and the requirements for computation time when applied to single-line, multi-channel and conjugated two-line FI systems. It is concluded that the axially dispersed plug flow model deserves special attention because it offers an acceptable compromise between the conflicting requirements for maximal possible mathematical simplicity and maximal possible precision. Applicability of these existing flow-injection models to single-line, multi-channel and conjugated two-line systems for environmental monitoring have been discussed. (author)

  7. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  8. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    Science.gov (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  9. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  10. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    Science.gov (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  11. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  12. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  13. Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

  14. Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Hall, Carrie [Illinois Inst. of Technology, Chicago, IL (United States); Miers, Scott [Michigan Technological Univ., Houghton, MI (United States)

    2016-04-05

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best

  15. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  16. Gas chromatography-flame ionization determination of benzaldehyde in non-steroidal anti-inflammatory drug injectable formulations using new ultrasound-assisted dispersive liquid-liquid micro extraction

    International Nuclear Information System (INIS)

    Mashayekhi, H.A.; Pourshamsian, K.

    2012-01-01

    Summary: In this study, simple and efficient ultrasound-assisted dispersive liquid-liquid micro extraction combined with gas chromatography (GC) was developed for the preconcentration and determination of benzaldehyde in injectable formulations of the non-steroidal anti-inflammatory drugs, diclofenac, Vitamin B-complex and Voltaren injection solutions. Fourteen microliters of toluene was injected slowly into 10 mL home-designed centrifuge glass vial containing an aqueous sample without salt addition that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 macro L of separated toluene was injected into a gas chromatographic system equipped with a flame ionization detector (GC-FID) for analysis. Several factors influencing the extraction efficiency as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation time were investigated and optimized. Using optimum extraction conditions a detection limit of 0.3 macro g L/sup -1/ and a good linearity in a calibration range of 2.0-1000 macro g L/sup -1/ were achieved for analyte. This proposed method was successfully applied to the analysis of benzaldehyde in three injection formulations and relative standard deviation (RSD) of analysis (n=3), before spiking with standard benzaldehyde were 3.3, 2.0 and 1.3% for Na-diclofenac, vitamin B-complex and voltaren, respectively and after spiking of standard benzaldehyde (0.3 mg L/sup -1/), the RSD were 6.5, 3.6 and 2.8% for Na-diclofenac, vitamin B-complex and voltaren, respectively. (author)

  17. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.

    2014-04-23

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  18. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  19. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  20. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  1. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    Science.gov (United States)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  2. The efficacy of IntraFlow intraosseous injection as a primary anesthesia technique.

    Science.gov (United States)

    Remmers, Todd; Glickman, Gerald; Spears, Robert; He, Jianing

    2008-03-01

    The purpose of this study was to compare the efficacy of intraosseous injection and inferior alveolar (IA) nerve block in anesthetizing mandibular posterior teeth with irreversible pulpitis. Thirty human subjects were randomly assigned to receive either intraosseous injection using the IntraFlow system (Pro-Dex Inc, Santa Ana, CA) or IA block as the primary anesthesia method. Pulpal anesthesia was evaluated via electric pulp testing at 4-minute intervals for 20 minutes. Two consecutive 80/80 readings were considered successful pulpal anesthesia. Anesthesia success or failure was recorded and groups compared. Intraosseous injection provided successful anesthesia in 13 of 15 subjects (87%). The IA block provided successful anesthesia in 9 of 15 subjects (60%). Although this difference was not statistically significant (p = 0.2148), the results of this preliminary study indicate that the IntraFlow system can be used as the primary anesthesia method in teeth with irreversible pulpitis to achieve predictable pulpal anesthesia.

  3. Jet flow analysis of liquid poison injection in a CANDU reactor using source term

    International Nuclear Information System (INIS)

    Chae, Kyung Myung; Choi, Hang Bok; Rhee, Bo Wook

    2001-01-01

    For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system number 2 (SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate the flow field and poison concentration formed inside the CANDU reactor calandria. As the ratio of calandria shell radius over injection nozzle hole diameter is so large (1055), it is impractical to develop a full-size model encompassing the whole calandria shell. In order to reduce the model to a manageable size, a quarter of one-pitch length segment of the shell was modeled using symmetric nature of the jet; and the injected jet was treated as a source term to avoid the modeling difficulty caused by the big difference of the hole sizes. For the analysis of an actual CANDU-6 SDS2 poison injection, the grid structure was determined based on the results of two-dimensional real- and source-jet simulations. The maximum injection velocity of the liquid poison is 27.8 m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation results have shown well-established jet flow field. In general, the jet develops narrowly at first but stretches rapidly. Then, the flow recirculates a little in r-x plane, while it recirculates largely in r-θ plane. As the time goes on, the adjacent jets contact each other and form a wavy front such that the whole jet develops in a plate form. his study has shown that the source term model can be effectively used for the analysis of the poison injection and the simulation result of the CANDU reactor is consistent with the model currently being used for the safety analysis. In the future, it is strongly recommended to analyze the transient (from helium tank to injection nozzle hole) of the poison injection by applying Bernoulli equation with real boundary conditions

  4. Fluoroscopically Guided Extraforaminal Cervical Nerve Root Blocks: Analysis of Epidural Flow of the Injectate with Respect to Needle Tip Position

    Science.gov (United States)

    Shipley, Kyle; Riew, K. Daniel; Gilula, Louis A.

    2013-01-01

    Study Design Retrospective evaluation of consecutively performed fluoroscopically guided cervical nerve root blocks. Objective To describe the incidence of injectate central epidural flow with respect to needle tip position during fluoroscopically guided extraforaminal cervical nerve root blocks (ECNRBs). Methods Between February 19, 2003 and June 11, 2003, 132 consecutive fluoroscopically guided ECNRBs performed with contrast media in the final injected material (injectate) were reviewed on 95 patients with average of 1.3 injections per patient. Fluoroscopic spot images documenting the procedure were obtained as part of standard quality assurance. An independent observer not directly involved in the procedures retrospectively reviewed the images, and the data were placed into a database. Image review was performed to determine optimal needle tip positioning for injectate epidural flow. Results Central epidural injectate flow was obtained in only 28.9% of injections with the needle tip lateral to midline of the lateral mass (zone 2). 83.8% of injectate went into epidural space when the needle tip was medial to midline of the lateral mass (zone 3). 100% of injectate flowed epidurally when the needle tip was medial to or at the medial cortex of the lateral mass (zone 4). There was no statistically significant difference with regards to central epidural flow and the needle tip position on lateral view. Conclusion To ensure central epidural flow with ECNRBs one must be prepared to pass the needle tip medial to midplane of the lateral mass or to medial cortex of the lateral mass. Approximately 16% of ECNRBs with needle tip medial to midline of the lateral mass did not flow into epidural space. One cannot claim a nerve block is an epidural block unless epidural flow of injectate is observed. PMID:24494176

  5. Development of an automated flow injection analysis system for determination of phosphate in nutrient solutions.

    Science.gov (United States)

    Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa

    2018-01-25

    A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2  = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  7. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  8. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  9. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  10. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  11. Experimental and kinetic study of the iodine reactivity in low pressure H2/O2/H2O/HI/Ar premixed flames

    International Nuclear Information System (INIS)

    Delicat, Y.G.

    2012-01-01

    To assess kinetics aspects of iodine chemistry in an environment of a severe accident in a Pressurized Water Reactor (PWR), at the laboratory scale, an experimental reactor named 'flat flame burner' has been implemented. Low pressure flames of H 2 /O 2 /Ar premixed gas seeded with known amounts of iodhydric acid and steam were studied. The quantification of chemical species (HI, H 2 O, OH) in such environment was obtained by specific analytical techniques (Fourier Transform Infrared absorption spectrometry, FTIR and Laser Induced Fluorescence, LIF), the evolution of the temperature was determined by LIF and by thermocouple measurements. Further assays were performed in a flow reactor in which gaseous molecular iodine was injected and transported in a stream or hydrogen flow and a strong temperature gradient, representative of the primary circuit in the case of a severe accident. The resulting gaseous species (I 2 and HI) were quantified by ICP-MS and UV-Visible spectrometry. This experimental database has been used as a support to develop a detailed kinetic mechanism for the {I, O, H} system. It is composed of 37 reversible reactions involving 5 iodinated species. The thermo-kinetic parameter database has been actualized by using theoretical chemistry tools and also completed with data found in the literature. Modelling was performed by using the PREMIX code for flame assays, and with the in IRSN's severe accident simulation code ASTEC/SOPHAREOS code for flow reactor assays. The comparison between experiment and modelling shows that this detailed mechanism is able to reproduce the iodine chemistry in conditions representative of a PWR severe accident. (author)

  12. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  13. O-(β-hydroxyethylrutosides determination by micellar flow injection (FI-spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Cecilia Mariana Peralta

    2014-12-01

    Full Text Available A simple, eco-friendly, sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethylrutosides. The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethylrutosides fluorescence enhancement, increasing considerably the sensitivity of detection. All the variables affecting the fluorescence intensity were studied and optimized. The flow rate was 5 mL/min with detection at 450 nm (after excitation at 346 nm. A linear correlation between drug amount and peak area was established for O-(β-hydroxyethylrutosides in the range of 0.01–200 µg/mL with a detection limit of 0.001 µg/mL (s/n=3. Validation processes were performed by recovering studies with satisfactory results. The new methodology can be employed for the routine analysis of O-(β-hydroxyethylrutosides in bulks as well as in commercial formulations. Keywords: O-(β-hydroxyethylrutosides, Micellar enhancement, Flow injection, Spectrofluorimetry, Pharmaceuticals

  14. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  15. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    International Nuclear Information System (INIS)

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H 2 ), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H 2 with obstacles and no transverse venting. 67 refs., 62 figs

  16. Effects of pressure fluctuations on the combustion process in turbulent premixed flames

    Science.gov (United States)

    Beardsell, Guillaume; Lapointe, Simon; Blanquart, Guillaume

    2016-11-01

    The need for a thorough understanding of turbulence-combustion interactions in compressible flows is driven by recent technological developments in propulsion as well as renewed interest in the development of next generation supersonic and hypersonic vehicles. In such flows, pressure fluctuations displaying a wide range of length and timescales are present. These fluctuations are expected to impact the combustion process to varying degrees, depending amongst other things on the amplitude of the pressure variations and the timescales of the chemical reactions taking place in the flame. In this context, numerical simulations of these flows can provide insight into the impact of pressure fluctuations on the combustion process. In the present work, we analyze data from simulations of statistically-flat premixed n-heptane/air flames at high Karlovitz numbers. The compressible Navier-Stokes equations are solved exactly (DNS) and results obtained with both detailed kinetic modeling and one-step chemistry are considered. The effects of pressure fluctuations on the fuel burning rate are investigated. The findings are compared with results obtained from simulations of one-dimensional premixed flames subjected to various pressure waves.

  17. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  18. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  19. Home-Made Micro Valve for Determining Malachite Green Dye by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Amal Saadoon Majeed

    2017-07-01

    Full Text Available The research is included studying and designing micro flow injection system which is characterized with rapidity, simplicity, and low cost for the determination of green malachite dye. The study of flow rate of carrier stream, repeatability, dispersion coefficient, and calibration graph are conducted. It is found that the optimum conditions for the determination of mentioned dye are flow rate 4.200 mL/min, sampling rate 102 sample/h, limit of detection 0.05 ppm, linear range (0.05-18.00 ppm with linearity (R2=0.9700, RSD is 0.355, the repeatability for seven successive injections is studied for the two concentrations 5 ppm and 12 ppm, and the dispersion coefficient values are 1.73 and 1.28 at the two concentrations 2 ppm and 9 ppm respectively.

  20. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    Directory of Open Access Journals (Sweden)

    Jaroon Jakmunee

    2008-06-01

    Full Text Available A stopped-flow injection (FI spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product zone. When the flow started again, a concentrated product zone was pushed into a flow cell and a signal profile due to light absorption of the product was recorded. Employing a lab-built semi-automatic stopped-FI analyser, the analysis can be performed with higher degree of automation and low chemical consumption. Linear calibration graph in the range of 5-50 mg ClO3- L-1 was obtained, with detection limit of 1.4 mg ClO3- L-1. Relative standard deviation of 2.2% (30 mg ClO3- L-1, n=10 and sample throughput of about 20 h-1 were achieved. The system was applied to soil samples and validated by batch spectrophotometric and standard titrimetric methods.

  1. Analysis of flame acceleration in open or vented obstructed pipes

    Science.gov (United States)

    Bychkov, Vitaly; Sadek, Jad; Akkerman, V'yacheslav

    2017-01-01

    While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008), 10.1103/PhysRevLett.101.164501] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv:1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008) 10.1002/prs.10242]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.

  2. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  3. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Science.gov (United States)

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  4. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  5. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun

    2012-01-01

    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  6. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    laminar-turbulent transition on slender bodies in a hypersonic flow at small angles of attack is caused by amplification of acoustic waves trapped in...x decreases and slowly approaches the no-blow distribution. These CFD data demonstrate that the injection strongly affects the near-wall flow...conclusion. Figure 10 shows that the spatial growth rates ( )  are maximal for mode 0 corresponding to the Mack second mode – typical for hypersonic

  7. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  8. Theoretical considerations of Flow Injection Analysis in the Absence of Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters are associa...... that any deviation from the features of the present model and the results of a tentative chemical reaction with one of the test compounds, is related to chemical kinetics.......The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters...

  9. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames

    Science.gov (United States)

    Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas

    2017-05-01

    Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.

  10. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  11. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2015-01-01

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed

  12. Impact of Equivalence Ratio on the Macrostructure of Premixed Swirling CH 4 /Air and CH 4 /O 2 /CO 2 Flames

    KAUST Repository

    Watanabe, Hirotatsu

    2015-06-15

    Premixed CH4/O2/CO2 flames (oxy-flames) and CH4/air flames (air-flames) were experimentally studied in a swirl-stabilized combustor. For comparing oxy and air flames, the same equivalence ratio and adiabatic flame temperature were used. CO2 dilution was adjusted to attain the same adiabatic temperature for the oxy-flame and the corresponding air-flame while keeping the equivalence ratio and Reynolds number (=20,000) the same. For high equivalence ratios, we observed flames stabilized along the inner and outer shear layers of the swirling flow and sudden expansion, respectively, in both flames. However, one notable difference between the two flames appears as the equivalence ratio reaches 0.60. At this point, the outer shear layer flame disappears in the air-flame while it persists in the oxy-flame, despite the lower burning velocity of the oxy-flame. Prior PIV measurements (Ref. 9) showed that the strains along the outer shear layer are higher than along the inner shear layer. Therefore, the extinction strain rates in both flames were calculated using a counter-flow premixed twin flame configuration. Calculations at the equivalence ratio of 0.60 show that the extinction strain rate is higher in the oxy than in the air flame, which help explain why it persists on the outer shear layer with higher strain rate. It is likely that extinction strain rates contribute to the oxy-flame stabilization when air flame extinguish in the outer shear layer. However, the trend reverses at higher equivalence ratio, and the cross point of the extinction strain rate appears at equivalence ratio of 0.64.

  13. CFD analysis of a scramjet combustor with cavity based flame holders

    Science.gov (United States)

    Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat

    2018-03-01

    Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.

  14. Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-10-01

    Full Text Available To reveal the inner mechanism of gas explosion dynamic behavior affected by gas equivalent concentration, a high speed Schlieren image system and flow field measurement technology was applied to record the gas explosion flame propagation and flame structure transition. The results show that a flame front structure transition occurs, followed by a flame accelerating propagation process. The laminar to turbulence transition was the essential cause of the flame structure changes. The laminar flame propagation behavior was influenced mainly by gas expansion and fore-compressive wave effect, while the turbulent flame speed mostly depended on turbulence intensity, which also played an important role in peak value of the explosive pressure and flame speed. On the condition that the laminar-turbulent transition was easier to form, the conclusion was drawn that, the lowest CH4 concentration for maximum overpressure can be obtained, which was the essential reason why the ideal explosive concentration differs under different test conditions.

  15. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  16. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.

  17. Determination of albumin in bronchoalveolar lavage fluid by flow-injection fluorometry using chromazurol S.

    Science.gov (United States)

    Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Saito, Yutaka; Nagai, Sonoko

    2008-03-01

    A highly sensitive flow injection fluorometry for the determination of albumin was developed and applied to the determination of albumin in human bronchoalveolar lavage fluids (BALF). This method is based on binding of chromazurol S (CAS) to albumin. The calibration curve was linear in the range of 5-200 microg/ml of albumin. A highly linear correlation (r=0.986) was observed between the albumin level in BALF samples (n=25) determined by the proposed method and by a conventional fluorometric method using CAS (CAS manual method). The IgG interference was lower in the CAS flow injection method than in the CAS manual method. The albumin level in BALF collected from healthy volunteers (n=10) was 58.5+/-13.1 microg/ml. The albumin levels in BALF samples obtained from patients with sarcoidosis and idiopathic pulmonary fibrosis were increased. This finding shows that the determination of albumin levels in BALF samples is useful for investigating lung diseases and that CAS flow injection method is promising in the determination of trace albumin in BALF samples, because it is sensitive and precise.

  18. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  19. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  20. Transport of inertial particles in a turbulent premixed jet flame

    International Nuclear Information System (INIS)

    Battista, F; Picano, F; Casciola, C M; Troiani, G

    2011-01-01

    The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.

  1. Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study

    International Nuclear Information System (INIS)

    Vincent-Randonnier, Axel; Teixeira, David

    2010-01-01

    This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m·s -1 bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m·s -1 (power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10 -5 s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

  2. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  3. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Amir; Tabejamaat, Sadegh [Department of Aerospace engineering, Amirkabir university of technology (Tehran polytechnic), Hafez Ave., PO. Box: 15875-4413, Tehran (Iran)

    2010-10-15

    Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH{sub 4}+H{sub 2} jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154]. In general, the modelling is carried out using the EDC model, to describe turbulence-chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H{sub 2}/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H{sub 2}+95%CH{sub 4}, 10%H{sub 2}+90%CH{sub 4} and 20% H{sub 2}+80%CH{sub 4}(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release. (author)

  4. MECHANISMS OF NITROUS OXIDE FORMATION IN COAL FLAMES

    Science.gov (United States)

    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  5. On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    A novel and miniaturized micro-sequential injection bead injection lab-on-valve (μSI-BI-LOV) fractionation system was developed for in-line microcolumn soil extraction under simulated environmental scenarios and accurate monitoring of the content of easily mobilisable hexavalent chromium in soil...... environments at the sub-low parts-per-million level. The flow system integrates dynamic leaching of hexavalent chromium using deionized water as recommended by the German Standard DIN 38414-S4 method; on-line pH adjustment of the extract by a 0.01 mol L-1 Tris-HNO3 buffer solution; isolation of the chromate...... polluted agricultural soil material (San Joaquin Soil-Baseline Trace Element Concentrations) with water-soluble Cr(VI) salts at different concentration levels. The potential of the μSI-BI-LOV set-up with renewable surfaces for flame-AAS determination of high levels of readily bioavailable chromate...

  6. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  7. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari

    2017-12-01

    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  8. Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Yang, Wenming; Liu, Yangxian; Bani, Stephen; Chen, Wei

    2017-01-01

    Highlights: • For injection timing, the fuel movement is controlled by the intensity of the vortex I. • For injection duration, the fuel movement is controlled by the value of jet flux. • The ideal fuel distribution at ignition timing for high combustion rate is studied. • The optimal injection strategy had an increase in the peak pressure and NO emissions. - Abstract: This work aimed to numerically study the influence of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine. On the base of a 3D dynamic simulation model which was established in our previous work, some critical information was obtained, which was difficult to obtain through experiment, in terms of the flow field, the fuel distribution, the temperature field and the concentration fields of some intermediates. Simulation results showed that for mixture formation, the movements of fuel in injection stage were mainly controlled by the intensity of the vortex I for injection timing, and the value of jet flux for injection duration respectively. With retarded injection timing, the decreasing intensity of the vortex I resulted in less fuel moving toward the back of the combustion chamber. With the extension in injection duration, the decreasing value of jet flux resulted in more fuel staying at the back of the combustion chamber. For combustion process, the overall combustion rate for injection strategy which had an injection timing of 390 °CA (BTDC) and injection duration of 51.5 °CA (case ID4) was the fastest. This was mainly due to the fact that the accumulation area of fuel was at the middle and front of the combustion chamber. Meanwhile, fuel concentration near the leading and trailing spark plugs was conducive for the flame kernel formation. Compared with the injection strategy which had an injection timing of 450 °CA (BTDC) and an injection duration of 55 °CA (case IT1), the improved combustion rate of case ID4 had a 23% increase in

  9. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  10. Entropy Generation in a Rotating Couette Flow with Suction/Injection

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-05-01

    Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.

  11. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.

    Science.gov (United States)

    Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B

    1993-08-01

    A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.

  12. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  13. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  14. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  15. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    OpenAIRE

    Juha-Pekka Nikkanen; Helmi Keskinen; Mikko Aromaa; Mikael Järn; Tomi Kanerva; Erkki Levänen; Jyrki M. Mäkelä; Tapio Mäntylä

    2008-01-01

    The liquid flame spray (LFS) method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K) H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical compositi...

  16. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and selectivity. Either in order to separate/preconcentrate the analyte material, or because of the presence of potentially interfering matrix constituents. Such pretreatments are advantageously performed in flow injection (FI) or sequential injection (SI) manifolds, where all appropriate unit operations can...

  17. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    Science.gov (United States)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  18. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  19. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarasimhan, K.; Ezekoye, O.A. [University of Texas at Austin, Department of Mechanical Engineering, Austin, TX (United States); Clemens, N.T. [University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, Austin, TX (United States)

    2006-10-15

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  20. Lagrangian Investigation of Auto-ignition in a Hydrogen Jet Flame in a Vitiated Co-flow: Animations of Particle Trajectories in Composition Space from PDF Model Calculations

    OpenAIRE

    Wang, Haifeng; Pope, Stephen B.

    2007-01-01

    PDF model calculations have been performed of the Cabra lifted hydrogen flame in a vitiated co-flow. Particle trajectories are extracted from the Lagrangian particle method used to solve the modeled PDF equation. The particle trajectories in the mixture fraction-temperature plane reveal (at successive downstream locations): essentially inert mixing between the cold fuel jet and the hot co-flow; the auto-ignition of very lean particles; and, subsequent mixing and reaction, leading to near-equi...

  1. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey

    2015-03-01

    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  2. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low equivalence ratios, the time-averaged RZ is comprised of two counter rotating eddies: a primary eddy (PE) between the shear layer and the bottom wall; and a secondary eddy (SE) between the vertical step wall and the PE. The flame stabilizes downstream of the saddle point of the dividing streamline between the two eddies. As equivalence ratio is raised, the flame moves upstream, pushing the saddle point with it and reducing the size of the SE. Higher temperature of the products reduces the velocity gradient in the shear layer and thus the reattachment length. As equivalence ratio approaches a critical value, the saddle point reaches the step and the SE collapses while the flame starts to exhibit periodic flapping motions, suggesting a correlation between the RZ structure and flame anchoring. The overall trend in the flow field is the same as we add hydrogen to the fuel at a fixed equivalence ratio, demonstrating the impact of fuel composition on the flow field. We show that the reattachment lengths (LR), which are shown to encapsulate the mean RZ structure, measured over a range of fuel composition and equivalence ratio collapse if plotted against the strained consumption speed (Sc). Results indicate that for the flame to remain anchored, the RZ structure should satisfy lR,isothermal/L R,reacting · S c/U ∞ ∼ 0.1. If this criterion cannot be met, the flame blows off, flashes back or becomes thermoacoustically unstable, suggesting a Damköhler-like criterion for

  3. Optimization of a flow injection analysis system for multiple solvent extraction

    International Nuclear Information System (INIS)

    Rossi, T.M.; Shelly, D.C.; Warner, I.M.

    1982-01-01

    The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables

  4. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  5. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    OpenAIRE

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders; Schramm, Jesper

    2013-01-01

    This paper presents the computational fluid dynamics modelling of a laminar premixed flame. A specific solver named ’rareLTSFoam’ is developed using OpenFOAM ® code. The solver is used to simulate experimental stoichiometric and rich laminar premixed flames. The modelling is carried out for thermal flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-...

  6. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  7. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  8. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  9. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong

    2017-01-05

    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  10. Effects of premixed flames on turbulence and turbulent scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Lipatnikov, A.N.; Chomiak, J. [Department of Applied Mechanics, Chalmers University of Technology, 412 75 Goeteborg (Sweden)

    2010-02-15

    Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research. (author)

  11. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (China)

    2011-02-15

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO{sub x} formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO{sub x} emission under rich conditions. The comparison of EINO{sub x} and EICO shows that the PMF-s has lower level of NO{sub x} emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF

  12. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    International Nuclear Information System (INIS)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S.

    2011-01-01

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO x formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO x emission under rich conditions. The comparison of EINO x and EICO shows that the PMF-s has lower level of NO x emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF-s has higher overall

  13. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  14. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  15. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  16. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  17. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  18. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  19. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  20. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  1. Improvement of flame resistance of non-flame retardant cables by applying fire protection measures

    International Nuclear Information System (INIS)

    Takemura, Yujiro; Segoshi, Yoshinori; Jinno, Susumu; Mii, Kazuki

    2017-01-01

    The new regulatory requirements, which were put in force after the Fukushima Daiichi accident, impose the use of flame retardant cables on the plant components having safety functions for the purpose of fire protection. However, some Japanese nuclear power plants built in the early days use non-flame retardant cables that do not pass the demonstration test to check for the flame resistance. To cope with the new regulatory requirements, a fire protection measure for non-flame retardant cables was introduced to assure flame resistance of non-flame retardant cables equivalent to or higher than that of flame retardant cables. To illustrate the fire protection measure, both non-flame retardant cables and its cable tray are covered with fire protection sheet fabricated from incombustible material to form an assembly. Considering the demonstration test results, it can be concluded that flame resistance performance of non-flame retardant cables equivalent to or higher than that of flame retardant cables can be assured by forming the assembly even if an external fire outside the assembly and internal cable fire inside the assembly are assumed. This paper introduces the design of the assembly consisting of a bundle of cables and a cable tray and summarizes the results of demonstration tests. (author)

  2. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  3. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung; Kuk Kim, Hyung; Chung, Suk-Ho

    2012-01-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  4. Irreversibility analysis of magneto-hydrodynamic nanofluid flow injected through a rotary disk

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The non-linear Navier-Stokes equations governed on the nanofluid flow injected through a rotary porous disk in the presence of an external uniform vertical magnetic field can be changed to a system of non-linear partial differential equations by applying similar parameter. In this study, partial differential equations are analytically solved by the modified differential transform method, Pade differential transformation method to obtain self-similar functions of motion and temperature. A very good agreement is observed between the obtained results of Pade differential transformation method and those of previously published ones. Then it has become possible to do a comprehensive parametric analysis on the entropy generation in this case to demonstrate the effects of physical flow parameters such as magnetic interaction parameter, injection parameter, nanoparticle volume fraction, dimensionless temperature difference, rotational Brinkman number and the type of nanofluid on the problem.

  5. The effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.G.; Na, I.H.; Lee, J.W.; Chae, T.Y.; Yang, W. [Korea Insitute of Industrial Technology, Seoul (Korea, Republic of). Energy System R and D Dept.

    2013-07-01

    This study is aimed to derive effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion system. Temperature distribution and flue gas composition were observed for various air and oxy-fuel conditions such as effect of various O{sub 2} concentration of total oxidant, O{sub 2} concentration of primary stream and O{sub 2} direct injection through 0-D heat and mass balance calculation and experiments in the oxy-PC combustion system of 0.3 MW scale in KITECH (Korea Institute of Industrial Technology). Flame attachment characteristic related to O{sub 2} direct injection was also observed experimentally. We found that FEGT (furnace exit gas temperature) of 100% de-humidification to oxidizer is lower than humidification condition; difference between two conditions is lower than 20 C in all cases. The efficiency changing of combustion was negligible in O{sub 2} direct injection. But O{sub 2} direct injection should be carefully designed to produce a stable flame.

  6. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  7. Spectrofluorimetric determination of cerium by flow injection analysis

    International Nuclear Information System (INIS)

    Liu Shaorong; Meng Jian; Liu Wenhua

    1990-01-01

    A spectrofluorimetric method for the determination of cerium (λ ex/em:251/365 nm) in hydrochloric acid solution by flow injection analysis is presented. It has well developed the normal spectrofluorimetric method for determination of cerium and has made: 1, the determination procedure shortened; 2, the determination speed increased to about 180 samples per hour; 3, the determination range widened to 0.05-100.0 ppm CeO 2 , abouot two times as wide as the normal spectrofluorimetric method; and 4, the relative standard deviation lessened (about 0.47% for 0.1 ppm CeO 2 , n = 13)

  8. Mixture preparation by cool flames for diesel-reforming technologies

    Science.gov (United States)

    Hartmann, L.; Lucka, K.; Köhne, H.

    The separation of the evaporation from the high-temperature reaction zone is crucial for the reforming process. Unfavorable mixtures of liquid fuels, water and air lead to degradation by local hot spots in the sensitive catalysts and formation of unwanted by-products in the reformer. Furthermore, the evaporator has to work with dynamic changes in the heat transfer, residence times and educt compositions. By using exothermal pre-reactions in the form of cool flames it is possible to realize a complete and residue-free evaporation of liquid hydrocarbon mixtures. The conditions whether cool flames can be stabilised or not is related to the heat release of the pre-reactions in comparison to the heat losses of the system. Examinations were conducted in a flow reactor at atmospheric pressure and changing residence times to investigate the conditions under which stable cool flame operation is possible and auto-ignition or quenching occurs. An energy balance of the evaporator should deliver the values of heat release by cool flames in comparison to the heat losses of the system. The cool flame evaporation is applied in the design of several diesel-reforming processes (thermal and catalytic partial oxidation, autothermal reforming) with different demands in the heat management and operation range (air ratio λ, steam-to-carbon ratio, SCR). The results are discussed at the end of this paper.

  9. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  10. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa......Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified...... by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase...... associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents...

  11. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  12. Principles and Applications of Flow Injection Analysis in Biosensors

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    In practical applications biosensors are often forced to operate under less than optimal conditions. Because of their construction, and the physical processes and chemical reactions involved in their operation, compromise conditions are frequently required to synchronize all events taking place....... Therefore, and in order to implement functions such as periodic calibration, conditioning and possible regeneration of the biosensor, and, very importantly, to yield the freedom to select the optimum detection means, it is advantageous to use these devices in a flow-through mode, particularly by employing...... the flow injection (FI) approach. The capacity of FI, as offering itself as a complementary facility to augment the performance of biosensors, and in many cases as an attractive alternative, is demonstrated by reference to selected examples, comprising assays based on enzymatic procedures with optical...

  13. MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the influence of thermal radiation and chemical reaction on two dimensional steady magnetohydrodynamic flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of suction/injection. We considered nanofluid volume fraction on the boundary is submissive controlled, which makes the present study entirely different from earlier studies and physically more realistic. The equations governing the flow are solved numerically. Effects of non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. Also, coefficient of skin friction and local Nusselt number is investigated for stretching/shrinking and suction/injection cases separately and presented through tables. Comparisons with existed results are presented. Present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that the enhancement in Brownian motion and thermophoresis parameters depreciates the nanoparticle concentration and increases the mass transfer rate. Dual solutions exist only for certain range of stretching/shrinking and suction/injection parameters.

  14. Spectrophotometric flow injection catalytic determination of molybdenum in plant digest using ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1987-03-01

    A spectrophotometric flow injection analytical method based on the catalytic action of molybdenum on the oxidation of iodide by hydrogen peroxide in acidic medium is proposed for the molybdenum determination in plant digests. A cation exchange resin column is incorporated into a flow injection system for removal of interferents. The following system variables were investigated and optimized: reagent concentrations, sample injection volume, mixing and reaction coil lengths, temperature, sampling time, pumping rate and concentration of eluting agents. The effects of interfering species and of the acidity of samples on the molybdenum retention by the ion exchange resin column were investigated. The proposed method is characterized by good precision (r.s.d. (2.0%), a sampling rate of about 40 samples per hour, and permits the determination of molybdenum in plant digests in the range 1.0 to 40.0 μg/l. The results compare well with those obtained by graphite furnace atomic absorption spectrometry. (author) [pt

  15. Investigation of Dual-Vortical-Flow Hybrid Rocket Engine without Flame Holding Mechanism

    Directory of Open Access Journals (Sweden)

    A. Lai

    2018-01-01

    Full Text Available A 250 kgf thrust hybrid rocket engine was designed, tested, and verified in this work. Due to the injection and flow pattern of this engine, this engine was named dual-vortical-flow engine. This propulsion system uses N2O as oxidizer and HDPE as fuel. This engine was numerically investigated using a CFD tool that can handle reacting flow with finite-rate chemistry and coupled with the real-fluid model. The engine was further verified via a hot-fire test for 12 s. The ground Isp of the engine was 232 s and 221 s for numerical and hot-fire tests, respectively. An oscillation frequency with an order of 100 Hz was observed in both numerical and hot-fire tests with less than 5% of pressure oscillation. Swirling pattern on the fuel surface was also observed in both numerical and hot-fire test, which proves that this swirling dual-vortical-flow engine works exactly as designed. The averaged regression rate of the fuel surface was found to be 0.6~0.8 mm/s at the surface of disk walls and 1.5~1.7 mm/s at the surface of central core of the fuel grain.

  16. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  17. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  18. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine"

    Science.gov (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas

    2017-04-01

    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  19. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  20. Flame Retardancy and Mechanical Properties of Kenaf Filled Polypropylene (PP) Containing Ammonium Polyphosphate (APP)

    International Nuclear Information System (INIS)

    Atikah Ismail; Azman Hassan; Aznizam Abu Bakar; Jawaid, M.

    2013-01-01

    The effects of ammonium polyphosphate (APP) as flame retardant and kenaf as fillers on flammability, thermal and mechanical properties of polypropylene (PP) composites were determined. Test specimens were prepared by using a co-rotating twin screw extruder for the compounding process followed by injection molding. The flame retardancy of the composites was determined by using limiting oxygen index (LOI) test. Addition of flame retardant into kenaf-PP composites significantly increased the LOI values that indicated the improvement of flame retardancy. Thermogravimetric analysis was done to examine the thermal stability of the composites. The addition of kenaf fiber in PP composites decreased the thermal stability significantly but the influence of APP on thermal properties of the kenaf-filled PP composites was not significant. The flexural strength and modulus of composites increased with the addition of APP into kenaf filled PP composite. The addition of APP into kenaf filled PP causes increase in the impact strength while increasing the APP content in the kenaf filled PP composite show decrease in impact strength. (author)

  1. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    Science.gov (United States)

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  2. Three-dimensional simulation of flow and combustion for pulverised coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.Y.; Zulli, P.; Rogers, H.; Mathieson, J.G.; Yu, A.B. [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    A three-dimensional numerical model of pulverised coal injection has been developed for simulating coal flow and combustion in the tuyere and raceway of a blast furnace. The model has been used to simulate previously reported combustion tests, which feature an inclined co-axial lance with an annular cooling gas. The predicted coal burnout agrees well with that measured for three coals with volatile contents and particle size ranging between 20.2-36.4% and particle sizes 1-200 {mu}m. Many important phenomena including flow asymmetry, recirculating flow and particle dispersion in the combustion chamber have been predicted. The current model can reproduce the experimental observations including the effects on burnout of coal flowrate and the introduction of methane for lance cooling.

  3. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    Science.gov (United States)

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  4. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  5. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming; Sudholt, Alena; Lee, Dongjoon; Egolfopoulos, Fokion N.; Pitsch, Heinz G.; Westbrook, Charles K.; Sarathy, Mani

    2014-01-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  6. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming

    2014-03-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  7. Stability of diffusion flame formed in a laminar flat plate boundary layer. Effect of fuel dilution; Soryu heiban kyokai sonai ni keiseisareru kakusan kaen no anteisei. Nenryo kishaku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M [National Institute for Resources and Environment, Tsukuba (Japan); Ueda, T; Mizumoto, M [Keio University, Tokyo (Japan). Faculty of Science and Technology; Amari, T [Keio University, Tokyo (Japan)

    1998-10-25

    A stability limit of the diffusion flame with fuel injection from a porous wall in a laminar flat plate boundary layer is measured as functions of fuel (CH4) concentration of CH4/N2 injectant mixture ({chi}) and its injection velocity (v). The free stream velocity (U{infinity}) is set as 0.6 m/s. The thermal condition at the wall is controlled by setting temperature at the upstream end of the porous wall as a reference temperature. When v >20 mm/s, the flame becomes unstable with the separation of leading flame edge with decreasing {chi}. The value of {chi} at the stability limit is constant without regard to v as long as the wall temperature is kept constant. As the wall temperature is decreased the value of {chi} increases. The separation is supposed to take place as a result of the limit of the reaction rate. When v <20 mm/s, the flame becomes unstable with the oscillation. The value of {chi} at the stability limit increases drastically with decreasing v. The oscillation takes place mainly due to the repeat of the extinction due to heat loss to the wall and the flame propagation in the combustible layer. 10 refs., 8 figs., 1 tab.

  8. Effect of pressure on the transfer functions of premixed methane and propane swirl flames

    KAUST Repository

    Di Sabatino, Francesco

    2018-04-24

    This paper reports on the effect of pressure on the response of methane–air and propane–air swirl flames to acoustic excitation of the flow. These effects are analyzed on the basis of the flame transfer function (FTF) formalism, experimentally determined from velocity and global OH* chemiluminescence measurements at pressures up to 5 bar. In parallel, phase-locked images of OH* chemiluminescence are collected and analyzed in order to determine the associated flame dynamics. Flame transfer functions and visual flame dynamics at atmospheric pressure are found to be similar to previous studies with comparable experimental conditions. Regardless of pressure, propane flames exhibit a much larger FTF gain than methane flames. For both fuels, the effect of pressure primarily is to modify the gain response at the local maximum of the FTF, at a Strouhal number around 0.5 (176 Hz). For methane flames, this gain maximum increases monotonically with pressure, while for propane flames it increases from 1 to 3 bar and decreases from 3 to 5 bar. At this frequency and regardless of pressure, the flame motion is driven by flame vortex roll-up, suggesting that pressure affects the FTF by modifying the interaction of the flame with the vortex detached from the injector rim during a forcing period. The complex heat transfer, fluid dynamics, and combustion coupling in this configuration does not allow keeping the vortex properties constant when pressure is increased. However, the different trends of the FTF gain observed for methane and propane fuels with increasing pressure imply that intrinsic flame properties and fuel chemistry, and their variation with pressure, play an important role in controlling the response of these flames to acoustic forcing.

  9. Interaction of turbulent deflagrations with representative flow obstacles

    International Nuclear Information System (INIS)

    Durst, B.; Ardey, N.; Mayinger, F.

    1997-01-01

    In the case of a gradual release of hydrogen in the course of an assumed, severe accident in a light water reactor, the combustion will normally start out as a slow deflagration. Acceleration of an initially slow flame due to interactions of chemical kinetics and turbulent heat and mass transfer can result in very high flame speeds. Therefore, in order to assess hydrogen mitigation techniques, detailed knowledge about flame acceleration and interaction of flames with obstacles is required. The reported investigations are aimed at the investigation of the mechanisms responsible for turbulent flame acceleration and improving present correlations for estimates and models for numerical simulations of hydrogen combustion processes. A medium-scale square cross-section setup is employed, using flow obstacles with shapes representative for reactor containments. The global flame speed is deduced from measurements using thermocouples, pressure transducers and photodiodes. Measurements using a two-component LDA-system are being carried through in order to correlate global flame spread and local turbulence parameters. Results indicate that low blockage-ratio obstacles only marginally influence the flame, as disturbances which are induced remain local to the vicinity of the obstacle and die out very quickly downstream thereof. Flow visualizations by means of a Schlieren setup indicate very complex flow structures in the vicinity of obstacles. The results are being used to validate turbulent reaction models. A model based on probability density functions (pdf) of assumed shape has been developed and initial calculations are presented. (author)

  10. Numerical simulation of effects of a non-ionized fluid injection and suction on the MHD flow in a circular channel

    International Nuclear Information System (INIS)

    Rahimi Eosboee, M.; Pourmahmoud, N.; Mirzaie, I.; Mohajeri Khameneh, P.; Majidyfar, S.

    2012-01-01

    Control of a fluid flow velocity profile by injection and suction of a non-ionized fluid in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel walls are assumed to be non-conducting and porous. They are subjected to a uniform steady magnetic field which is perpendicular to the axis of channel, then and suction and injection are applied at the walls. The well known equations of Magnetohydrodynamics are governed to the motion of an electrically conducting fluid flow that is subjected to magnetic field. The numerical solution is carried out by finite difference approach. The results of present numerical simulation shown that the flow injection and suction through the wall can be controlled effectively, the main flow in channel especially in industrial purposes. The results are obtained for different values of the injected and sucked non-ionized flow rate and the effect of Hartman number on the velocity profile is investigated. Finally, a good agreement is seen between the presented results and the corresponding data of finite element method.

  11. Effects of coflow temperature and composition on ethanol spray flames in hot-diluted coflow

    International Nuclear Information System (INIS)

    Correia Rodrigues, H.; Tummers, M.J.; Veen, E.H. van; Roekaerts, D.J.E.M.

    2015-01-01

    Highlights: • Comprehensive experimental study of spray flames in hot-diluted coflow. • Application of coherent anti-Stokes Raman in spray flames. • Identification of relevant phenomena determining the lift-off behavior of spray flames in hot-diluted coflow. - Abstract: Ethanol pressure-swirl sprays issuing in a hot-diluted oxidizer coflow with different temperature and composition were studied. The bulk coflow temperature was varied together with the oxygen volume fraction. The bulk coflow temperature was changed from 1480 K to 1225 K and the oxygen volume fraction from 7.1% to 10.1%. The liquid mass flow rates were chosen to yield spray flames with nearly identical Weber number. Laser Doppler anemometry, phase Doppler anemometry and coherent anti-Stokes Raman scattering were applied in the spray region and the coflow inlet. The current measurements provide a thorough description of the spray structure, droplet dispersion and gas temperature fields as well as a comprehensive database useful for validation of numerical models. Visual observations of the flame luminescence reveal that the lift-off height depends on the liquid mass flow rates as well as the coflow conditions. The lift-off height is shown to increase for lower coflow temperatures and higher liquid mass flow rates. It is found that lift-off behavior depends on the droplet convective, vaporization and chemical time scales prior to ignition. Phase Doppler anemometry results indicate that the droplet mean size and velocity distribution close to the atomizer are not influenced by the coflow conditions. A flame-front develops at the outer region of the spray where a low density of large droplets are present. A significant number of peak temperatures samples above 2000 K is observed at this location. Decrease of the coflow temperature leads to a reduction of the local peak temperatures. Closer to the center axis, the local mixture composition becomes increasingly rich and the heat-release is lower than

  12. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  13. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, N.H.; Alwahabi, Z.T.; King, K.D. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chan, Q.N. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Nathan, G.J. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Roekaerts, D. [Department of Multi-Scale Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg, 1, NL-2628 CJ Delft (Netherlands)

    2009-07-15

    Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

  14. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  15. Modeling and Simulation of Swirl Stabilized Turbulent Non-Premixed Flames

    Science.gov (United States)

    Badillo-Rios, Salvador; Karagozian, Ann

    2017-11-01

    Flame stabilization is an important design criterion for many combustion chambers, especially at lean conditions and/or high power output, where insufficient stabilization can result in dangerous oscillations and noisy or damaged combustors. At high flow rates, swirling flow can offer a suitable stabilization mechanism, although understanding the dynamics of swirl-stabilized turbulent flames remains a significant challenge. Utilizing the General Equation and Mesh Solver (GEMS) code, which solves the Navier-Stokes equations along with the energy equation and five species equations, 2D axisymmetric and full 3D parametric studies and simulations are performed to guide the design and development of an experimental swirl combustor configuration and to study the effects of swirl on statistically stationary combustion. Results show that as the momentum of air is directed into the inner air inlet rather than the outer inlet of the swirl combustor, the central recirculating region becomes stronger and more unsteady, improving mixing and burning efficiency in that region. A high temperature region is found to occur as a result of burning of the trapped fuel from the central toroidal vortex. The effects of other parameters on flowfield and flame-stabilization dynamics are explored. Supported by ERC, Inc. (PS150006) and AFOSR (Dr. Chiping Li).

  16. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  17. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  18. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen

    2017-05-25

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  19. Dispersion-convolution model for simulating peaks in a flow injection system.

    Science.gov (United States)

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  20. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  1. Aspects on prediction of two-phase reacting flow in a swirl-stabilized pulverized coal flame

    Energy Technology Data Exchange (ETDEWEB)

    Wennerberg, D. (LSTM, Erlangen (Germany))

    1991-01-01

    Knowledge of NO{sub x} formation routes in a pulverized coal flame is essential for understanding the problematics. Coal-bound N is the dominated source of NO{sub x} in a pf flame. The so-called 'thermal' NO{sub x} plays a minor role, since the temperature level is lower in a pf flame than in a gas - or oilfired flame. The coalbound N is mainly released along with the volatiles in the coal as HCN. This release takes place in the central recirculation zone when the coal is first heated up. The continued reaction processes of the HCN take different paths, dependent on whether the burner near field zone is fuel-rich or fuel-lean: Under fuel-rich conditions: HCN {yields} CN {yields} N{sub 2}. Under fuel-lean conditions: HCN {yields} NH/NCO {yields} NO. This reaction scheme is strongly simplified in order to clarify the main influence of the aerodynamics on the NO{sub x} formation. Concentration of radicals O, OH, H are also important for the reaction routes as well as the residence time for the coal particles under respective conditions. The conditions for reactions are however determined largely by the aerodynamics of the near-field burner zone. (orig./GL).

  2. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  3. Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla Univ. Daejeon (Korea, Republic of)

    2017-10-15

    In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the 1st - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

  4. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  5. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  6. Inertial particles in a turbulent premixed Bunsen flame

    International Nuclear Information System (INIS)

    Battista, F.; Picano, F.; Casciola, C.M.

    2012-01-01

    Many fields of engineering and physics are characterized by reacting flows seeded with particles of different inertia and dimensions, e.g. solid-propellant rockets, reciprocating engines where carbon particles form due to combustion, vulcano eruptions. Particles are also used as velocity transducers in Particle Image Velocimetry (PIV) of turbulent flames. The effects of combustion on inertial particle dynamics is still poorly understood, despite its relevance for its effects on particle collisions and coalescence, phenomena which have a large influence in soot formation and growth. As a matter of fact, the flame front induces abrupt accelerations of the fluid in a very thin region which particles follow with different lags depending on their inertia. This phenomenon has a large impact on the particle spatial arrangement. The issuing clustering is here analyzed by a DNS of Bunsen turbulent flame coupled with particle Lagrangian tracking with the aim of evaluating the effect of inertia on particle spatial localization in combustion applications. The Eulerian algorith is based on Low-Mach number expansion of Navier-Stokes equations that allow arbitrary density variations neglecting acoustics waves. (orig.)

  7. Inertial particles in a turbulent premixed Bunsen flame

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Picano, F.; Casciola, C.M. [Sapienza Univ., Rome (Italy). Dipt. di Meccanica e Aeronautica; Troiani, G. [ENEA C.R. Casaccia, Rome (Italy)

    2012-07-01

    Many fields of engineering and physics are characterized by reacting flows seeded with particles of different inertia and dimensions, e.g. solid-propellant rockets, reciprocating engines where carbon particles form due to combustion, vulcano eruptions. Particles are also used as velocity transducers in Particle Image Velocimetry (PIV) of turbulent flames. The effects of combustion on inertial particle dynamics is still poorly understood, despite its relevance for its effects on particle collisions and coalescence, phenomena which have a large influence in soot formation and growth. As a matter of fact, the flame front induces abrupt accelerations of the fluid in a very thin region which particles follow with different lags depending on their inertia. This phenomenon has a large impact on the particle spatial arrangement. The issuing clustering is here analyzed by a DNS of Bunsen turbulent flame coupled with particle Lagrangian tracking with the aim of evaluating the effect of inertia on particle spatial localization in combustion applications. The Eulerian algorith is based on Low-Mach number expansion of Navier-Stokes equations that allow arbitrary density variations neglecting acoustics waves. (orig.)

  8. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Dongmei; Li Qing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); East China University of Science and Technology, Shanghai 200237 (China); Zhang Lingxia; Qian Rong; Zhu Yan; Qu Haiyun [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Du Yiping [East China University of Science and Technology, Shanghai 200237 (China)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer A modified SBA-15 mesoporous silica material (NH{sub 2}-SBA-15) was synthesized as sorbent. Black-Right-Pointing-Pointer The material was used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Black-Right-Pointing-Pointer The NH{sub 2}-SBA-15 enables retain Cr (VI) with an enrichment factor of 44. Black-Right-Pointing-Pointer The micro-column of NH{sub 2}-SBA-15 underwent more than 100 adsorption/desorption cycles. - Abstract: A modified SBA-15 mesoporous silica material NH{sub 2}-SBA-15 was synthesized successfully by grafting {gamma}-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L{sup -1} NH{sub 3}{center_dot}H{sub 2}O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min{sup -1} sample loading (300 s) and an elution flow rate of 2.0 mL min{sup -1} (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 {mu}g L{sup -1} level with a detection limit of 0.2 {mu}g L{sup -1} (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).

  9. Wavelet transform for the evaluation of peak intensities in flow-injection analysis

    NARCIS (Netherlands)

    Bos, M.; Hoogendam, E.

    1992-01-01

    The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio

  10. Wavelett transform for the evaluation of peak intensities in flow-injection analysis

    NARCIS (Netherlands)

    Bos, M.; Hoogendam, E.; Hoogendam, E.

    1992-01-01

    The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio

  11. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  12. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-06-19

    The mechanism behind improved flame propagation speeds under electric fields is not yet fully understood. Although evidence supports that ion movements cause ionic wind, how this wind affects flame propagation has not been addressed. Here, we apply alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame displacement speed decreased with applied AC voltage, and, depending on the applied AC frequency, the trailing flame body took on an oscillatory wavy motion. When flame displacement speeds were corrected using measured unburned flow velocities, we found no significant difference in flame propagation speeds, indicating no thermal or chemical effects by electric fields on the burning velocity. Thus, we conclude that the generation of bidirectional ionic wind is responsible for the impact of electric fields on flames and that an interaction between this bidirectional ionic wind and the flame parameters creates visible and/or measurable phenomenological effects. We also explain that the presence of trailing flame bodies is a dynamic response to an electric body force on a reaction zone, an area that can be considered to have a net positively charged volume. In addition, we characterize the wavy motion of the transient flame as a relaxation time independent of mixture strength, strain rate, and Lewis number.

  13. A dilute-and-shoot flow-injection tandem mass spectrometry method for quantification of phenobarbital in urine.

    Science.gov (United States)

    Alagandula, Ravali; Zhou, Xiang; Guo, Baochuan

    2017-01-15

    Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized. This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample to mass spectrometer. Quantification and detection of phenobarbital were achieved by an electrospray negative ionization MS/MS system operated in the multiple reaction monitoring (MRM) mode with the stable-isotope-labeled drug as internal standard. The dilute-and-shoot flow-injection method developed was linear with a dynamic range of 50-2000 ng/mL of phenobarbital and correlation coefficient > 0.9996. The coefficients of variation and relative errors for intra- and inter-assays at four quality control (QC) levels (50, 125, 445 and 1600 ng/mL) were 3.0% and 5.0%, respectively. The total run time to quantify one sample was 2 min, and the sensitivity and specificity of the method did not deteriorate even after 1200 consecutive injections. Our method can accurately and robustly quantify phenobarbital in urine without LC separation. Because of its 2 min run time, the method can process 720 samples per day. This feasibility study shows that the dilute-and-shoot flow-injection method can be a general way for fast analysis of drugs in urine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. A novel approach for determination of free fatty acids in vegetable oils by a flow injection system with manual injection.

    Science.gov (United States)

    Ayyildiz, H Filiz; Kara, Huseyin; Sherazi, S T H

    2011-12-01

    A non-aqueous flow injection method for determining free fatty acid (FFA) content in corn and sunflower oil samples was developed. A single-line manifold system was built by modification of an HPLC for flow injection analysis (FIA). Without pre-treatment, oil samples were injected into a n-propanol solution containing KOH and phenolphthalein (PHP). The main parameters, such as flow rate of carrier phase, length, geometry, inner diameters of the coils and reagent concentration were all optimized. The proposed FIA method was validated for precision, accuracy, linear region, limit of detection (LOD) and limit of quantification (LOQ). The intra- and inter-day measurements of the precision of the method were found to be within the limits of acceptance criteria (RSD analyst. The linear concentration range was calculated as 0.09-1.50 and 0.07-1.40 FFA% for corn and sunflower oils, correspondingly. The LOD and LOQ were found to be 7.53 × 10(-4)-2.28 × 10(-3) oleic acid % and 7.11 × 10(-4)-2.23 × 10(-3) oleic acid % for corn and sunflower oils, respectively. The results were compared with those obtained by the AOCS (Ca-5a-40) method using statistical t and F tests, and a significant difference was not observed between the methods at a 95% confidence level. The proposed method is suitable for quality control of routine applications due to its simplicity, high sample throughput, and economy of solvents and sample, offering considerable promise as a low cost analytical system that needs minimum human intervention over long periods of time.

  15. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  16. The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body

    KAUST Repository

    Kedia, Kushal S.

    2015-01-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the unsteady response of a bluff-body stabilized laminar premixed flame to harmonic inlet velocity excitation. A time series analysis was performed to analyze the physical sequence of events at a fixed longitudinal forcing frequency of 100 Hz for cases with (1) two different equivalence ratios and (2) two different thermal properties of the stabilizing bluff-body. It was observed that conjugate heat exchange between the heat conducting bluff-body and the surrounding reacting flow has a crucial impact on the dynamic response. The flame area and anchoring location, the net conjugate heat transfer and the total heat release underwent significant oscillations. The latter was mean shifted and had multiple frequencies. The burning velocity varied significantly along the flame length and the recirculation zone underwent complex changes in its shape and size during an unsteady cycle. The lower equivalence ratio case exhibited vortex shedding after an initial symmetric response with periodic flame extinction and re-ignition along its surface, unlike the higher equivalence ratio case. The metal/ceramic bluff-body showed a net heat transfer directed from/to the bluff-body, to/from the reacting flow during an unsteady cycle, resulting in a significantly different flame response for the two otherwise equivalent cases.

  17. Flame acceleration due to wall friction: Accuracy and intrinsic limitations of the formulations

    Science.gov (United States)

    Demirgok, Berk; Sezer, Hayri; Akkerman, V.'Yacheslav

    2015-11-01

    The analytical formulations on the premixed flame acceleration induced by wall friction in two-dimensional (2D) channels [Bychkov et al., Phys. Rev. E 72 (2005) 046307] and cylindrical tubes [Akkerman et al., Combust. Flame 145 (2006) 206] are revisited. Specifically, pipes with one end closed are considered, with a flame front propagating from the closed pipe end to the open one. The original studies provide the analytical formulas for the basic flame and fluid characteristics such as the flame acceleration rate, the flame shape and its propagation speed, as well as the flame-generated flow velocity profile. In the present work, the accuracy of these approaches is verified, computationally, and the intrinsic limitations and validity domains of the formulations are identified. Specifically, the error diagrams are presented to demonstrate how the accuracy of the formulations depends on the thermal expansion in the combustion process and the Reynolds number associated with the flame propagation. It is shown that the 2D theory is accurate enough for a wide range of parameters. In contrast, the zeroth-order approximation for the cylindrical configuration appeared to be quite inaccurate and had to be revisited. It is subsequently demonstrated that the first-order approximation for the cylindrical geometry is very accurate for realistically large thermal expansions and Reynolds numbers. Consequently, unlike the zeroth-order approach, the first-order formulation can constitute a backbone for the comprehensive theory of the flame acceleration and detonation initiation in cylindrical tubes. Cumulatively, the accuracy of the formulations deteriorates with the reduction of the Reynolds number and thermal expansion.

  18. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  19. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Fansler, Todd D. [Univ. of Wisconsin, Madison, WI (United States); Reuss, D. L. [Univ. of Michigan, Ann Arbor, MI (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sick, V. [Univ. of Michigan, Ann Arbor, MI (United States); Dahms, R. N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  20. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-01-01

    temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.