WorldWideScience

Sample records for flow index predicts

  1. Recruitable collateral blood flow index predicts coronary instent restenosis after percutaneous coronary intervention

    Jensen, Lisette Okkels; Thayssen, Per; Lassen, Jens Flensted

    2007-01-01

    AIMS: Collateral flow may influence long-term results after percutaneous coronary intervention (PCI) because of haemodynamic forces compete with the antegrade flow through the dilated lesion. The aim of the study was to assess the influence of recruitable collateral blood flow on restenosis...... in patients undergoing PCI with bare metal stents and using optimal antithrombotic treatment. METHODS AND RESULTS: In 95 patients, 95 de novo lesions were treated with PCI and a bare metal stent. Fractional flow reserve (FFR) at maximum hyperaemia induced by intravenous adenosine was determined. The pressure.......02-1.12, P = 0.016). CONCLUSION: Recruitable collateral blood flow measured during balloon inflation predicts angiographic instent restenosis in PCI patients treated with bare metal stents. Udgivelsesdato: 2007-Aug...

  2. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index.

    Roca, Oriol; Messika, Jonathan; Caralt, Berta; García-de-Acilu, Marina; Sztrymf, Benjamin; Ricard, Jean-Damien; Masclans, Joan R

    2016-10-01

    The purpose of the study is to describe early predictors and to develop a prediction tool that accurately identifies the need for mechanical ventilation (MV) in pneumonia patients with hypoxemic acute respiratory failure (ARF) treated with high-flow nasal cannula (HFNC). This is a 4-year prospective observational 2-center cohort study including patients with severe pneumonia treated with HFNC. High-flow nasal cannula failure was defined as need for MV. ROX index was defined as the ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate. One hundred fifty-seven patients were included, of whom 44 (28.0%) eventually required MV (HFNC failure). After 12 hours of HFNC treatment, the ROX index demonstrated the best prediction accuracy (area under the receiver operating characteristic curve 0.74 [95% confidence interval, 0.64-0.84]; Pfailure in whom therapy can be continued after 12 hours. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Stock market index prediction using neural networks

    Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok

    1994-03-01

    A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.

  4. Development of an Integrated Moisture Index for predicting species composition

    Louis R. Iverson; Charles T. Scott; Martin E. Dale; Anantha Prasad

    1996-01-01

    A geographic information system (GIS) approach was used to develop an Integrated Moisture Index (IMI), which was used to predict species composition for Ohio forests. Several landscape features (a slope-aspect shading index, cumulative flow of water downslope, curvature of the landscape, and the water-holding capacity of the soil) were derived from elevation and soils...

  5. Climate Prediction Center - Site Index

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Means Bulletins Annual Winter Stratospheric Ozone Climate Diagnostics Bulletin (Most Recent) Climate (Hazards Outlook) Climate Assessment: Dec. 1999-Feb. 2000 (Seasonal) Climate Assessment: Mar-May 2000

  6. Predicting fiber refractive index from a measured preform index profile

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  7. Prediction of massive bleeding. Shock index and modified shock index.

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  8. Predicting waist circumference from body mass index.

    Bozeman, Samuel R; Hoaglin, David C; Burton, Tanya M; Pashos, Chris L; Ben-Joseph, Rami H; Hollenbeak, Christopher S

    2012-08-03

    Being overweight or obese increases risk for cardiometabolic disorders. Although both body mass index (BMI) and waist circumference (WC) measure the level of overweight and obesity, WC may be more important because of its closer relationship to total body fat. Because WC is typically not assessed in clinical practice, this study sought to develop and verify a model to predict WC from BMI and demographic data, and to use the predicted WC to assess cardiometabolic risk. Data were obtained from the Third National Health and Nutrition Examination Survey (NHANES) and the Atherosclerosis Risk in Communities Study (ARIC). We developed linear regression models for men and women using NHANES data, fitting waist circumference as a function of BMI. For validation, those regressions were applied to ARIC data, assigning a predicted WC to each individual. We used the predicted WC to assess abdominal obesity and cardiometabolic risk. The model correctly classified 88.4% of NHANES subjects with respect to abdominal obesity. Median differences between actual and predicted WC were -0.07 cm for men and 0.11 cm for women. In ARIC, the model closely estimated the observed WC (median difference: -0.34 cm for men, +3.94 cm for women), correctly classifying 86.1% of ARIC subjects with respect to abdominal obesity and 91.5% to 99.5% as to cardiometabolic risk.The model is generalizable to Caucasian and African-American adult populations because it was constructed from data on a large, population-based sample of men and women in the United States, and then validated in a population with a larger representation of African-Americans. The model accurately estimates WC and identifies cardiometabolic risk. It should be useful for health care practitioners and public health officials who wish to identify individuals and populations at risk for cardiometabolic disease when WC data are unavailable.

  9. Predicting waist circumference from body mass index

    Bozeman Samuel R

    2012-08-01

    Full Text Available Abstract Background Being overweight or obese increases risk for cardiometabolic disorders. Although both body mass index (BMI and waist circumference (WC measure the level of overweight and obesity, WC may be more important because of its closer relationship to total body fat. Because WC is typically not assessed in clinical practice, this study sought to develop and verify a model to predict WC from BMI and demographic data, and to use the predicted WC to assess cardiometabolic risk. Methods Data were obtained from the Third National Health and Nutrition Examination Survey (NHANES and the Atherosclerosis Risk in Communities Study (ARIC. We developed linear regression models for men and women using NHANES data, fitting waist circumference as a function of BMI. For validation, those regressions were applied to ARIC data, assigning a predicted WC to each individual. We used the predicted WC to assess abdominal obesity and cardiometabolic risk. Results The model correctly classified 88.4% of NHANES subjects with respect to abdominal obesity. Median differences between actual and predicted WC were − 0.07 cm for men and 0.11 cm for women. In ARIC, the model closely estimated the observed WC (median difference: − 0.34 cm for men, +3.94 cm for women, correctly classifying 86.1% of ARIC subjects with respect to abdominal obesity and 91.5% to 99.5% as to cardiometabolic risk. The model is generalizable to Caucasian and African-American adult populations because it was constructed from data on a large, population-based sample of men and women in the United States, and then validated in a population with a larger representation of African-Americans. Conclusions The model accurately estimates WC and identifies cardiometabolic risk. It should be useful for health care practitioners and public health officials who wish to identify individuals and populations at risk for cardiometabolic disease when WC data are unavailable.

  10. Prediction of base flows from catchment characteristics: a case study from Zimbabwe

    Mazvimavi, D.; Meijerink, A.M.J.; Stein, A.

    2004-01-01

    Base flows make up the flows of most rivers in Zimbabwe during the dry season. Prediction of base flows from basin characteristics is necessary for water resources planning of ungauged basins. Linear regression and artificial neural networks were used to predict the base flow index (BFI) from basin

  11. Comparison of peak flow velocity through the left ventricular outflow tract and effective orifice area indexed to body surface area in Golden Retriever puppies to predict development of subaortic stenosis in adult dogs.

    Javard, Romain; Bélanger, Marie-Claude; Côté, Etienne; Beauchamp, Guy; Pibarot, Philippe

    2014-12-15

    To evaluate the usefulness of Doppler-derived peak flow velocity through the left ventricular outflow tract (LVOT Vmax) and effective orifice area indexed to body surface area (EOAi) in puppies to predict development of subaortic stenosis (SAS) in the same dogs as adults. Prospective, longitudinal, observational study. 38 Golden Retrievers. Cardiac auscultation and echocardiography were performed on 2- to 6-month-old puppies, then repeated at 12 to 18 months. Subaortic stenosis was diagnosed when LVOT Vmax was ≥ 2.3 m/s in adult dogs with left basilar systolic murmurs. All puppies with EOAi 2.3 m/s in puppyhood was 63% sensitive and 100% specific for SAS in adulthood. In puppies, LVOT Vmax was more strongly associated with a future diagnosis of SAS (area under the curve [AUC], 0.89) than was EOAi (AUC, 0.80). In puppies, the combination of LVOT Vmax and EOAi yielded slightly higher sensitivity (69%) and specificity (100%) for adult SAS than did LVOT Vmax alone. In unaffected and affected dogs, LVOT Vmax increased significantly from puppyhood to adulthood but EOAi did not. In Golden Retriever puppies, LVOT Vmax > 2.3 m/s and EOAi < 1.46 cm(2)/m(2) were both associated with a diagnosis of SAS at adulthood. The combination of these 2 criteria may result in higher sensitivity for SAS screening. Unlike LVOT Vmax, EOAi did not change during growth in either unaffected Golden Retrievers or those with SAS.

  12. Climate Prediction Center Southern Oscillation Index

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and Sea Surface Temperature (SST)Indices. It contains Southern Oscillation Index which is standardized sea level...

  13. New social adaptability index predicts overall mortality.

    Goldfarb-Rumyantzev, Alexander; Barenbaum, Anna; Rodrigue, James; Rout, Preeti; Isaacs, Ross; Mukamal, Kenneth

    2011-08-01

    Definitions of underprivileged status based on race, gender and geographic location are neither sensitive nor specific; instead we proposed and validated a composite index of social adaptability (SAI). Index of social adaptability was calculated based on employment, education, income, marital status, and substance abuse, each factor contributing from 0 to 3 points. Index of social adaptability was validated in NHANES-3 by association with all-cause and cause-specific mortality. Weighted analysis of 19,593 subjects demonstrated mean SAI of 8.29 (95% CI 8.17-8.40). Index of social adaptability was higher in Whites, followed by Mexican-Americans and then the African-American population (ANOVA, p adaptability with a strong association with mortality, which can be used to identify underprivileged populations at risk of death.

  14. Noninvasive measurement of an index of renal blood flow

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  15. Predicting Covariance Matrices with Financial Conditions Indexes

    A. Opschoor (Anne); D.J.C. van Dijk (Dick); M. van der Wel (Michel)

    2013-01-01

    textabstractWe model the impact of financial conditions on asset market volatility and correlation. We propose extensions of (factor-)GARCH models for volatility and DCC models for correlation that allow for including indexes that measure financial conditions. In our empirical application we

  16. The correlation of vascularization index and flow index of thyroid cancer ultrasound with tumor malignancy

    Bing Liao

    2017-06-01

    Full Text Available Objective: To study the correlation of ultrasound vascularization index and flow index of thyroid cancer with tumor malignancy. Methods: A total of 140 patients with thyroid nodule who accepted surgical resection in our hospital between May 2013 and June 2016 were selected as the research subjects, the patients with malignant thyroid nodule were included in the malignant group of the research and patients with benign thyroid nodule were included in the benign group of research. Three-dimensional power Doppler ultrasonography was conducted before operation to determine vascularization index (VI, flow index (FI and vascularization flow index (VFI; tumor tissues were collected after operation to detect the expression of angiogenesis as well as cell proliferation, apoptosis and invasion-related molecules. Results: VI, FI and VFI levels of tumor tissue of malignant group were significantly higher than those of benign group; VEGF, MK, Ang-2, IGF-II, Bcl-2, Livin, Wip1, S100A4, TCF, β-catenin and SATB1 protein expression in tumor tissue of malignant group were significantly higher than those of benign group and positively correlated with VI, FI and VFI levels while CCNG2 and p27 protein expression were significantly lower than those of benign group and negatively correlated with VI, FI and VFI levels. Conclusion: Ultrasound vascularization index and flow index of thyroid cancer increase significantly and are closely related to the angiogenesis as well as cell proliferation, apoptosis and invasion.

  17. Climate Prediction Center - Monitoring & Data Index

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Oceanic & Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface

  18. On the prediction of turbulent secondary flows

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  19. Climate Prediction Center - Expert Assessments Index

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are

  20. Climate Prediction Center - Monitoring and Data Index

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices

  1. Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve

    Chu, Miao; von Birgelen, Clemens; Li, Yingguang

    2018-01-01

    BACKGROUND AND AIMS: The relation between FFR and local coronary flow patterns is incompletely understood. We aimed at developing a novel hemodynamic index to quantify disturbed coronary flow, and to investigate its relationship with lesion-associated pressure-drop, and fractional flow reserve (F...

  2. Rehabilitation after stroke: predictive power of Barthel Index versus a cognitive and a motor index

    Engberg, A; Bentzen, L; Garde, B

    1995-01-01

    The aim of the present study was to investigate the predictive power of ratings of Barthel Index at Day 40 post stroke, compared with and/or combined with simultaneous ratings from a mobility scale (EG motor index) and a rather simple cognitive test scale (CT50). The parameter to be individually...... predicted was the need for special living facilities and support at discharge from a rehabilitation hospital, as well as six months later; 53 stroke patients with age median 68 years were included in this prospective study. It was shown that a combination of Barthel Index and CT50 had a stronger predictive...

  3. Climate Prediction Center (CPC) Madden-Julian Oscillation (MJO) Index

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) Madden Julian Oscillation index (MJO) is a dataset that allows evaluation of the strength and phase of the MJO during the dataset...

  4. The Economic Value of Predicting Stock Index Returns and Volatility

    Marquering, W.; Verbeek, M.J.C.M.

    2000-01-01

    In this paper, we analyze the economic value of predicting index returns as well as volatility. On the basis of fairly simple linear models, estimated recursively, we produce genuine out-of-sample forecasts for the return on the S&P 500 index and its volatility. Using monthly data from 1954-1998, we

  5. Predictability of Returns and Cash Flows

    Ralph S.J. Koijen; Stijn Van Nieuwerburgh

    2010-01-01

    We review the literature on return and cash-flow growth predictability from the perspective of the present-value identity. We focus predominantly on recent work. Our emphasis is on U.S. aggregate stock return predictability, but we also discuss evidence from other asset classes and countries.

  6. Predicting Information Flows in Network Traffic.

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  7. Rehabilitation after stroke: predictive power of Barthel Index versus a cognitive and a motor index

    Engberg, A; Bentzen, L; Garde, B

    1995-01-01

    The aim of the present study was to investigate the predictive power of ratings of Barthel Index at Day 40 post stroke, compared with and/or combined with simultaneous ratings from a mobility scale (EG motor index) and a rather simple cognitive test scale (CT50). The parameter to be individually...

  8. Pulmonary edema predictive scoring index (PEPSI), a new index to predict risk of reperfusion pulmonary edema and improvement of hemodynamics in percutaneous transluminal pulmonary angioplasty.

    Inami, Takumi; Kataoka, Masaharu; Shimura, Nobuhiko; Ishiguro, Haruhisa; Yanagisawa, Ryoji; Taguchi, Hiroki; Fukuda, Keiichi; Yoshino, Hideaki; Satoh, Toru

    2013-07-01

    This study sought to identify useful predictors for hemodynamic improvement and risk of reperfusion pulmonary edema (RPE), a major complication of this procedure. Percutaneous transluminal pulmonary angioplasty (PTPA) has been reported to be effective for the treatment of chronic thromboembolic pulmonary hypertension (CTEPH). PTPA has not been widespread because RPE has not been well predicted. We included 140 consecutive procedures in 54 patients with CTEPH. The flow appearance of the target vessels was graded into 4 groups (Pulmonary Flow Grade), and we proposed PEPSI (Pulmonary Edema Predictive Scoring Index) = (sum total change of Pulmonary Flow Grade scores) × (baseline pulmonary vascular resistance). Correlations between occurrence of RPE and 11 variables, including hemodynamic parameters, number of target vessels, and PEPSI, were analyzed. Hemodynamic parameters significantly improved after median observation period of 6.4 months, and the sum total changes in Pulmonary Flow Grade scores were significantly correlated with the improvement in hemodynamics. Multivariate analysis revealed that PEPSI was the strongest factor correlated with the occurrence of RPE (p PEPSI to be a useful marker of the risk of RPE (cutoff value 35.4, negative predictive value 92.3%). Pulmonary Flow Grade score is useful in determining therapeutic efficacy, and PEPSI is highly supportive to reduce the risk of RPE after PTPA. Using these 2 indexes, PTPA could become a safe and common therapeutic strategy for CTEPH. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Prediction of cold flow properties of Biodiesel

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  10. Prediction of coronary artery bypass graft flow

    Tamiya, Eiji; Hada, Yoshiyuki; Asano, Ken-ichi; Iio, Masahiro.

    1991-01-01

    To predict the coronary artery bypass graft (CABG) flow based on the time density curve (TDC) obtained from the digital subtraction aortograms (DSA), we developed a pulsatile CABG model (perfusion pressure 60,130 mmHg, pulse rate 53,126/min, cardiac output 3-7 l/min, diameter of the graft 2.1∼6.0 mm). After positioning the regions of interest (ROI), we injected contrast medium(5∼40 ml/sec, 5∼40 ml) into the outlet conduit. Concerning the TDCs, we calculated appearance time (Ta), peak densities (Dp), peak time (Tp), disappearance time (Td), integral of TDC, ΔTp (difference of Tp between two ROI) and ΔTa (difference of Ta between two ROI). Perfusion pressure, graft flow and output curve were similar to those of patients with CABG. Ta, Tp, Td, and ΔTp were affected by both the injection rate and the volume of the contrast medium; while Dp and the TDC integral were only affected by the latter parameter. Under the same conditions of contrast medium injection, the TDC depended strongly on graft flow, diameter of the graft, output and pulse rate. 21.6+0.92π·d 2 /4·Δ1/ΔTp·60 provided the most accurate estimation of CABG flow (r=0.865, p<0.01). We conclude that densitometric analysis of DSA may be useful in the prediction of CABG flow. (author)

  11. Effectively Indexing Uncertain Moving Objects for Predictive Queries

    Zhang, Meihui; Chen, Su; Jensen, Christian Søndergaard

    2009-01-01

    in more complex and stochastic ways. This paper investigates the possibility of a marriage between moving-object indexing and probabilistic object modelling. Given the distributions of the current locations and velocities of moving objects, we devise an efficient inference method for the prediction...

  12. PASSENGER FLOWS PREDICTION IN MAJOR TRANSPORTATION HUBS

    O. O. Ozerova

    2013-11-01

    Full Text Available Purpose. An effective organization of passenger traffic, due to the reliability prediction of traffic flow in passenger transport hubs. In order to determine the parameters of prospective passenger transport areas it is essential to analyze the impact of various factors and determine the most influential ones. Methodology. The article presents the method of paired linear correlation for a more influential factors on passengers in intercity and commuter and possible use in predicting the linear regression equations. Passenger transport vessel areas and branches of industry are interconnected and are in the ratio of passengers and production. Findings. It is found that the coefficient of correlation is in complex dependence on the duration of the period of retrospective analysis. Evaluation of reliability correlation coefficients and coefficients of predictive models led to the conclusion that the population gives the most accurate prediction of passenger flows, providing account of changes in Ukraine during the period of transformation. Originality. Equations of dependence on the impact of macroeconomic indicators were obtained and the evaluation of the reliability results was received. Practical value. The results of analysis and calculations will make short-term forecasting of traffic flow.

  13. CFD Validation Studies for Hypersonic Flow Prediction

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  14. Predicted impact and evaluation of North Carolina's phosphorus indexing tool.

    Johnson, Amy M; Osmond, Deanna L; Hodges, Steven C

    2005-01-01

    Increased concern about potential losses of phosphorus (P) from agricultural fields receiving animal waste has resulted in the implementation of new state and federal regulations related to nutrient management. In response to strengthened nutrient management standards that require consideration of P, North Carolina has developed a site-specific P indexing system called the Phosphorus Loss Assessment Tool (PLAT) to predict relative amounts of potential P loss from agricultural fields. The purpose of this study was to apply the PLAT index on farms throughout North Carolina in an attempt to predict the percentage and types of farms that will be forced to change management practices due to implementation of new regulations. Sites from all 100 counties were sampled, with the number of samples taken from each county depending on the proportion of the state's agricultural land that occurs in that county. Results showed that approximately 8% of producers in the state will be required to apply animal waste or inorganic fertilizer on a P rather than nitrogen basis, with the percentage increasing for farmers who apply animal waste (approximately 27%). The PLAT index predicted the greatest amounts of P loss from sites in the Coastal Plain region of North Carolina and from sites receiving poultry waste. Loss of dissolved P through surface runoff tended to be greater than other loss pathways and presents an area of concern as no best management practices (BMPs) currently exist for the reduction of in-field dissolved P. The PLAT index predicted the areas in the state that are known to be disproportionately vulnerable to P loss due to histories of high P applications, high densities of animal units, or soil type and landscapes that are most susceptible to P loss.

  15. Void fraction prediction in saturated flow boiling

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  16. Statistical Approaches for Spatiotemporal Prediction of Low Flows

    Fangmann, A.; Haberlandt, U.

    2017-12-01

    An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be

  17. Compressor Part II: Volute Flow Predictions

    Yu-Tai Lee

    1999-01-01

    Full Text Available A numerical method that solves the Reynolds-averaged Navier-Stokes equations is used to study an inefficient component of a shipboard air-conditioning HCFC-124 compressor system. This high-loss component of the centrifugal compressor was identified as the volute through a series of measurements given in Part I of the paper. The predictions were made using three grid topologies. The first grid closes the connection between the cutwater and the discharge diffuser. The other two grids connect the cutwater area with the discharge diffuser. Experiments were performed to simulate both the cutwater conditions used in the predictions. Surface pressures along the outer wall and near the inlet of the volute were surveyed for comparisons with the predictions. Good agreements between the predicted results and the measurements validate the calculations. Total pressure distributions and flow stream traces from the prediction results support the loss distribution through the volute. A modified volute configuration is examined numerically for further loss comparison.

  18. The PAPAS index: a novel index for the prediction of hepatitis C-related fibrosis.

    Ozel, Banu D; Poyrazoğlu, Orhan K; Karaman, Ahmet; Karaman, Hatice; Altinkaya, Engin; Sevinç, Eylem; Zararsiz, Gökmen

    2015-08-01

    Several noninvasive tests have been developed to determine the degree of hepatic fibrosis in patients with chronic hepatitis C (CHC) without performing liver biopsy. This study aimed to determine the performance of the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index in patients with CHC for the prediction of significant fibrosis and cirrhosis and to compare it with other noninvasive tests. To date, no study has evaluated the application of the PAPAS index in CHC-associated liver fibrosis. This retrospective study included 137 consecutive patients with CHC who had undergone a percutaneous liver biopsy before treatment. The aspartate aminotransferase/platelet ratio (APRI), aspartate aminotransferase/alanine transaminase ratio (AAR), age-platelet index (API), FIB4, cirrhosis discriminate score (CDS), the Göteborg University cirrhosis index (GUCI), and PAPAS were calculated and compared with the diagnostic accuracies of all fibrosis indices between the groups F0-F2 (no-mild fibrosis) versus F3-F6 (significant fibrosis) and F0-F4 (no cirrhosis) versus F5-F6 (cirrhosis). To predict significant fibrosis, the area under curve (95% confidence interval) for FIB4 was 0.727 followed by GUCI (0.721), PAPAS≈APRI≈CDS (0.716), and API (0.68). To predict cirrhosis, the area under curve (95% confidence interval) for FIB4 was calculated to be 0.735, followed by GUCI (0.723), PAPAS≈APRI≈CDS≈(0.71), and API (0.66). No statistically significant difference was observed among these predictors to exclude both significant fibrosis and cirrhosis (P>0.05). The diagnostic capability of the PAPAS index has moderate efficiency and was not superior to other fibrosis markers for the identification of fibrosis in CHC patients. There is a need for more comprehensive prospective studies to help determine the diagnostic value of PAPAS for liver fibrosis.

  19. Sludge pipe flow pressure drop prediction using composite power ...

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  20. Predicting flow at work: investigating the activities and job characteristics that predict flow states at work.

    Nielsen, Karina; Cleal, Bryan

    2010-04-01

    Flow (a state of consciousness where people become totally immersed in an activity and enjoy it intensely) has been identified as a desirable state with positive effects for employee well-being and innovation at work. Flow has been studied using both questionnaires and Experience Sampling Method (ESM). In this study, we used a newly developed 9-item flow scale in an ESM study combined with a questionnaire to examine the predictors of flow at two levels: the activities (brainstorming, planning, problem solving and evaluation) associated with transient flow states and the more stable job characteristics (role clarity, influence and cognitive demands). Participants were 58 line managers from two companies in Denmark; a private accountancy firm and a public elder care organization. We found that line managers in elder care experienced flow more often than accountancy line managers, and activities such as planning, problem solving, and evaluation predicted transient flow states. The more stable job characteristics included in this study were not, however, found to predict flow at work. Copyright 2010 APA, all rights reserved.

  1. Empirical modelling to predict the refractive index of human blood

    Yahya, M.; Saghir, M. Z.

    2016-02-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  2. Empirical modelling to predict the refractive index of human blood

    Yahya, M; Saghir, M Z

    2016-01-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy. (paper)

  3. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index

    Zhi-Chao Lai

    2015-01-01

    Full Text Available Background: Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA. An >100% increase in middle cerebral artery velocity (MCAV after CEA is used to predict the cerebral hyperperfusion syndrome (CHS development, but the accuracy is limited. The increase in blood pressure (BP after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Methods: Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR] were compared for predicting CHS occurrence. Results: Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%. The area under the curve (AUC of receiver operating characteristic: AUC VBI = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC VR = 0.935, 95% CI 0.890-0.966, P = 0.02. Conclusions: The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  4. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index.

    Lai, Zhi-Chao; Liu, Bao; Chen, Yu; Ni, Leng; Liu, Chang-Wei

    2015-06-20

    Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA). An >100% increase in middle cerebral artery velocity (MCAV) after CEA is used to predict the cerebral hyperperfusion syndrome (CHS) development, but the accuracy is limited. The increase in blood pressure (BP) after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI) was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR]) were compared for predicting CHS occurrence. Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%). The area under the curve (AUC) of receiver operating characteristic: AUC(VBI) = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC(VR) = 0.935, 95% CI 0.890-0.966, P = 0.02. The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  5. Valuation of index-linked cash flows in a Heath-Jarrow-Morton framework

    Alm, Jonas; Lindskog, Filip

    2015-01-01

    In this paper, we study the valuation of stochastic cash flows that exhibit dependence on interest rates. We focus on insurance liability cash flows linked to an index, such as a consumer price index or wage index, where changes in the index value can be partially understood in terms of changes in the term structure of interest rates. Insurance liability cash flows that are not explicitly linked to an index may still be valued in our framework by interpreting index returns as so-called claims...

  6. AIR POLLUITON INDEX PREDICTION USING MULTIPLE NEURAL NETWORKS

    Zainal Ahmad

    2017-05-01

    Full Text Available Air quality monitoring and forecasting tools are necessary for the purpose of taking precautionary measures against air pollution, such as reducing the effect of a predicted air pollution peak on the surrounding population and ecosystem. In this study a single Feed-forward Artificial Neural Network (FANN is shown to be able to predict the Air Pollution Index (API with a Mean Squared Error (MSE and coefficient determination, R2, of 0.1856 and 0.7950 respectively. However, due to the non-robust nature of single FANN, a selective combination of Multiple Neural Networks (MNN is introduced using backward elimination and a forward selection method. The results show that both selective combination methods can improve the robustness and performance of the API prediction with the MSE and R2 of 0.1614 and 0.8210 respectively. This clearly shows that it is possible to reduce the number of networks combined in MNN for API prediction, without losses of any information in terms of the performance of the final API prediction model.

  7. Accuracy of Body Mass Index Versus Lean Mass Index for Prediction of Sarcopenia in Older Women.

    Benton, M J; Silva-Smith, A L

    2018-01-01

    We compared accuracy of body mass index (BMI) versus lean mass index (LMI) to predict sarcopenia in 58 community-dwelling women (74.1±0.9 years). Lean mass was measured with multi-frequency bioelectrical impedance analysis, and strength was measured with Arm Curl test, Chair Stand test, and handgrip dynamometry. Sarcopenia was defined as low LMI. When categorized by BMI, normal women had less absolute lean mass (37.6±1.0 vs. 42.6±0.9 kg; Plean mass (14.1±0.2 vs. 16.1±0.2 kg/m2; Plean mass (44.0±0.7 vs. 35.7±0.7 kg; Plean mass (16.2±0.2 vs. 13.8±0.2 kg/m2; Plean mass and strength. For clinical assessment, calculation of LMI rather than BMI is appropriate.

  8. The predictive content of CBOE crude oil volatility index

    Chen, Hongtao; Liu, Li; Li, Xiaolei

    2018-02-01

    Volatility forecasting is an important issue in the area of econophysics. The information content of implied volatility for financial return volatility has been well documented in the literature but very few studies focus on oil volatility. In this paper, we show that the CBOE crude oil volatility index (OVX) has predictive ability for spot volatility of WTI and Brent oil returns, from both in-sample and out-of-sample perspectives. Including OVX-based implied volatility in GARCH-type volatility models can improve forecasting accuracy most of time. The predictability from OVX to spot volatility is also found for longer forecasting horizons of 5 days and 20 days. The simple GARCH(1,1) and fractionally integrated GARCH with OVX performs significantly better than the other OVX models and all 6 univariate GARCH-type models without OVX. Robustness test results suggest that OVX provides different information from as short-term interest rate.

  9. The index of a holomorphic flow with an isolated singularity

    Verjovsky, A.; Gomez-Mont, X.; Seade, J.

    1987-05-01

    The index of a holomorphic vector field Z defined on a germ of a hypersurface V with an isolated singularity is defined. The index coincides with the Hopf index in the smooth case. Formulae for the index in terms of the ideals defining Z and V are given. Topological invariance of the index and the Chern class as well as formulae relating global invariants of the Poincare-Hopf type are proven. (author). 26 refs

  10. An efficient link prediction index for complex military organization

    Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing

    2017-03-01

    Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.

  11. Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation?

    Wang, Yun; Yue, Yun; Sun, Yong-hai; Wu, An-shi

    2006-06-05

    Some patients still suffer from implicit memory of intraoperative events under adequate depth of anaesthesia. The elimination of implicit memory should be a necessary aim of clinical general anaesthesia. However, implicit memory cannot be tested during anaesthesia yet. We propose bispectral index (BIS) and auditory evoked potential index (AEPI), as predictors of implicit memory during anaesthesia. Thirty-six patients were equally divided into 3 groups according to the Observer's Assessment of Alertness/Sedation Score: A, level 3; B, level 2; and C, level 1. Every patient was given the first auditory stimulus before sedation. Then every patient received the second auditory stimulus after the target level of sedation had been reached. BIS and AEPI were monitored before and after the second auditory stimulus presentation. Four hours later, the inclusion test and exclusion test were performed on the ward using process dissociation procedure and the scores of implicit memory estimated. In groups A and B but not C, implicit memory estimates were statistically greater than zero (P memory scores in group A did not differ significantly from those in group B (P > 0.05). Implicit memory scores correlated with BIS and AEPI (P AEPI. The 95% cutoff points of BIS and AEPI for predicting implicit memory are 47 and 28, respectively. Implicit memory does not disappear until the depth of sedation increases to level 1 of OAA/S score. Implicit memory scores correlate well with BIS and AEPI during sedation. BIS is a better index for predicting implicit memory than AEPI during propofol induced sedation.

  12. Extremes of shock index predicts death in trauma patients

    Stephen R Odom

    2016-01-01

    Full Text Available Context: We noted a bimodal relationship between mortality and shock index (SI, the ratio of heart rate to systolic blood pressure. Aims: To determine if extremes of SI can predict mortality in trauma patients. Settings and Designs: Retrospective evaluation of adult trauma patients at a tertiary care center from 2000 to 2012 in the United States. Materials and Methods: We examined the SI in trauma patients and determined the adjusted mortality for patients with and without head injuries. Statistical Analysis Used: Descriptive statistics and multivariable logistic regression. Results: SI values demonstrated a U-shaped relationship with mortality. Compared with patients with a SI between 0.5 and 0.7, patients with a SI of 1.3 had an odds ratio of death of 3.1. (95% CI 1.6–5.9. Elevated SI is associated with increased mortality in patients with isolated torso injuries, and is associated with death at both low and high values in patients with head injury. Conclusion: Our data indicate a bimodal relationship between SI and mortality in head injured patients that persists after correction for various co-factors. The distribution of mortality is different between head injured patients and patients without head injuries. Elevated SI predicts death in all trauma patients, but low SI values only predict death in head injured patients.

  13. Prediction of Massive Transfusion in Trauma Patients with Shock Index, Modified Shock Index, and Age Shock Index

    Cheng-Shyuan Rau

    2016-07-01

    Full Text Available Objectives: The shock index (SI and its derivations, the modified shock index (MSI and the age shock index (Age SI, have been used to identify trauma patients with unstable hemodynamic status. The aim of this study was to evaluate their use in predicting the requirement for massive transfusion (MT in trauma patients upon arrival at the hospital. Participants: A patient receiving transfusion of 10 or more units of packed red blood cells or whole blood within 24 h of arrival at the emergency department was defined as having received MT. Detailed data of 2490 patients hospitalized for trauma between 1 January 2009, and 31 December 2014, who had received blood transfusion within 24 h of arrival at the emergency department, were retrieved from the Trauma Registry System of a level I regional trauma center. These included 99 patients who received MT and 2391 patients who did not. Patients with incomplete registration data were excluded from the study. The two-sided Fisher exact test or Pearson chi-square test were used to compare categorical data. The unpaired Student t-test was used to analyze normally distributed continuous data, and the Mann-Whitney U-test was used to compare non-normally distributed data. Parameters including systolic blood pressure (SBP, heart rate (HR, hemoglobin level (Hb, base deficit (BD, SI, MSI, and Age SI that could provide cut-off points for predicting the patients’ probability of receiving MT were identified by the development of specific receiver operating characteristic (ROC curves. High accuracy was defined as an area under the curve (AUC of more than 0.9, moderate accuracy was defined as an AUC between 0.9 and 0.7, and low accuracy was defined as an AUC less than 0.7. Results: In addition to a significantly higher Injury Severity Score (ISS and worse outcome, the patients requiring MT presented with a significantly higher HR and lower SBP, Hb, and BD, as well as significantly increased SI, MSI, and Age SI. Among

  14. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized

  15. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  16. Lunar Global Heat Flow: Predictions and Constraints

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  17. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements

    Geoghegan, P. H.; Buchmann, N. A.; Spence, C. J. T.; Moore, S.; Jermy, M.

    2012-05-01

    A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young's modulus of the elastomer. Data for the dependence of Young's modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water-glycerol mixtures) are also presented.

  18. Prediction Center (CPC) Polar Eurasia Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Polar-Eurasia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  19. Climate Prediction Center (CPC) Pacific Transition Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Pacific Transition teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  20. Climate Prediction Center (CPC) East Atlantic Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Atlantic Teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  1. Prediction Center (CPC) Tropical/ Northern Hemisphere Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Tropical/ Northern Hemisphere teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  2. Climate Prediction Center (CPC) West Pacific Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the West Pacific (WP) teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  3. Climate Prediction Center (CPC) Scandinavia Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Scandinavia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal component...

  4. Nuclear Division Index may Predict Neoplastic Colorectal Lesions.

    Ionescu, Mirela E; Ciocirlan, Mihai; Becheanu, Gabriel; Nicolaie, Tudor; Ditescu, Cristina; Teiusanu, Adriana G; Gologan, Serban I; Arbanas, Tudor; Diculescu, Mircea M

    2011-07-01

    Colorectal cancer (CRC) develops by accumulation of multiple genetic damages leading to genetic instability that can be evaluated by cytogenetic methods. In the current study we used Cytokinesis-Blocked Micronucleus Assay (CBMN) technique to assess the behavior of Nuclear Division Index(NDI) in peripheral lymphocytes of patients with CRC and polyps versus patients with normal colonoscopy. Blood samples were collected from patients after informed consent. By CBMN technique we assessed the proportion of mono-nucleated, bi-nucleated, tri-nucleated and tetra-nucleated cells/500 cells, to calculate NDI. Data were statistically analyzed using the SPSS 11.0 package. 45 patients were available for analysis, 23 men and 22 women, with a mean age of 58.7±13.5. 17 had normal colonoscopy, 17 colonic polyps and 11 CRC. The mean NDI values were significantly smaller for patients with CRC or polyps than in patients with normal colonoscopy (1.57 vs 1.73, p=0.013). The difference persisted for patients with neoplastic lesions (adenomas and carcinomas) when compared with patients with normal colonoscopy or non neoplastic (hyperplastic) polyps (1.56 vs.1.71, p=0.018). The NDI cut-off value to predict the presence of adenomas or carcinomas was equal to 1.55 with a 54.2% sensitivity and 81% specificity of lower values (p=0.019). The NDI cut off value to predict the presence of advanced adenomas or cancer was 1.525 for a sensitivity of 56.3% and a specificity of 82.8% (p=0.048). NDI may be useful in screening strategies for colorectal cancer as simple, noninvasive, inexpensive cytogenetic biomarker.

  5. Flow Simulation and Performance Prediction of Centrifugal Pumps ...

    With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the product development process of pumps. In this paper a commercial CFD code was used to solve the governing equations of the flow field. A 2-D simulation of turbulent fluid flow is ...

  6. Unified flow regime predictions at earth gravity and microgravity

    Crowley, C.J.

    1990-01-01

    This paper illustrates the mechanistic models developed to predict flow regime transitions at earth gravity for various pipe inclinations can be successfully applied to existing microgravity flow regime data from several experiments. There is a tendency in the literature for flow regime comparisons in several inclination ranges and at various gravity (acceleration) levels to be treated by separate models, resulting in a proliferation of models for the prediction of flow regimes. One set of mechanistic models can be used to model the transitions between stratified, slug, bubbly, and annular flow regimes in pipes for all acceleration vectors and magnitudes from earth gravity to microgravity

  7. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Seyed Hadi Hosseini

    2014-10-01

    Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.

  8. Predicting pavement condition index using international roughness index in Washington DC.

    2014-09-01

    A number of pavement condition indices are used to conduct pavement management assessments, two of which are the : International Roughness Index (IRI) and Pavement Condition Index (PCI). The IRI is typically measured using specialized : equipment tha...

  9. Valuation of Index-Linked Cash Flows in a Heath–Jarrow–Morton Framework

    Jonas Alm

    2015-09-01

    Full Text Available In this paper, we study the valuation of stochastic cash flows that exhibit dependence on interest rates. We focus on insurance liability cash flows linked to an index, such as a consumer price index or wage index, where changes in the index value can be partially understood in terms of changes in the term structure of interest rates. Insurance liability cash flows that are not explicitly linked to an index may still be valued in our framework by interpreting index returns as so-called claims inflation, i.e., an increase in claims cost per sold insurance contract. We focus primarily on the case when a deep and liquid market for index-linked contracts is absent or when the market price data are unreliable. Firstly, we present an approach for assigning a monetary value to a stochastic cash flow that does not require full knowledge of the joint dynamics of the cash flow and the term structure of interest rates. Secondly, we investigate in detail model selection, estimation and validation in a Heath–Jarrow–Morton framework. Finally, we analyze the effects of model uncertainty on the valuation of the cash flows and how forecasts of cash flows and interest rates translate into model parameters and affect the valuation.

  10. Radiosurgery for brain metastases: a score index for predicting prognosis

    Weltman, Eduardo; Salvajoli, Joao Victor; Brandt, Reynaldo Andre; Morais Hanriot, Rodrigo de; Prisco, Flavio Eduardo; Cruz, Jose Carlos; Oliveira Borges, Sandra Regina de; Wajsbrot, Dalia Ballas

    2000-01-01

    Purpose: To analyze a prognostic score index for patients with brain metastases submitted to stereotactic radiosurgery (the Score Index for Radiosurgery in Brain Metastases [SIR]). Methods and Materials: Actuarial survival of 65 brain metastases patients treated with radiosurgery between July 1993 and December 1997 was retrospectively analyzed. Prognostic factors included age, Karnofsky performance status (KPS), extracranial disease status, number of brain lesions, largest brain lesion volume, lesions site, and receiving or not whole brain irradiation. The SIR was obtained through summation of the previously noted first five prognostic factors. Kaplan-Meier actuarial survival curves for all prognostic factors, SIR, and recursive partitioning analysis (RPA) (RTOG prognostic score) were calculated. Survival curves of subsets were compared by log-rank test. Application of the Cox model was utilized to identify any correlation between prognostic factors, prognostic scores, and survival. Results: Median overall survival from radiosurgery was 6.8 months. Utilizing univariate analysis, extracranial disease status, KPS, number of brain lesions, largest brain lesion volume, RPA, and SIR were significantly correlated with prognosis. Median survival for the RPA classes 1, 2, and 3 was 20.19 months, 7.75 months, and 3.38 months respectively (p = 0.0131). Median survival for patients, grouped under SIR from 1 to 3, 4 to 7, and 8 to 10, was 2.91 months, 7.00 months, and 31.38 months respectively (p = 0.0001). Using the Cox model, extracranial disease status and KPS demonstrated significant correlation with prognosis (p 0.0001 and 0.0004 respectively). Multivariate analysis also demonstrated significance for SIR and RPA when tested individually (p = 0.0001 and 0.0040 respectively). Applying the Cox Model to both SIR and RPA, only SIR reached independent significance (p = 0.0004). Conclusions: Systemic disease status, KPS, SIR, and RPA are reliable prognostic factors for patients

  11. Prediction of flow instability during natural convection

    Farhadi, Kazem

    2005-01-01

    The occurrence of flow excursion instability during passive heat removal for Tehran Research Reactor (TRR) has been analyzed at low-pressure and low-mass rate of flow conditions without boiling taking place. Pressure drop-flow rate characteristics in the general case are determined upon a developed code for this purpose. The code takes into account variations of different pressure drop components caused by different powers as well as different core inlet temperatures. The analysis revealed the fact that the instability can actually occur in the natural convection mode for a range of powers per fuel plates at a predetermined inlet temperature with fixed geometry of the core. Low mass rate of flow and high sub-cooling are the two important conditions for the occurrence of static instability in the TRR. The calculated results are compared with the existing data in the literature. (author)

  12. Climate Prediction Center (CPC) Northern and Southern Hemisphere Blocking Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Atmospheric blocking is commonly referred to as the situation when the normal zonal flow is interrupted by strong and persistent meridional flow. The normal eastward...

  13. Applying reaction condition index to predict sandstone type uranium deposit

    Chen Gongxin; Liu Jinhui; Cheng Hai

    2002-01-01

    On the basic of the explanation of reaction condition index, the deduction of reaction condition index calculation principle, the hydrogeological setting in Gongpoquan basin in Baishan, Gansu province and the study of reaction condition index of its water source point, the north Luotuoquan area in Gongpoquan basin seems to be a favourable place for sandstone type uranium deposit, and the prospect area for sandstone type uranium deposit is delimitated

  14. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  15. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  16. Climate Prediction Center - Outlooks: Current UV Index Forecast Map

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Service NOAA Center for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate Prediction Center Internet Team Disclaimer

  17. prediction of inception prediction of inception length of flow over ...

    eobe

    used to safely transmit flood flow downstream of a dam fely transmit ... 2,500 years [2]. The recent ... Vol. 34 No. 3, July 2015 632 .... Theme D, San Francisco, USA,. 1997, pp. ... slopes", Transactions of the American Society of Civil. Engineers ...

  18. Climate Prediction Center(CPC)Daily GOES Precipitation Index (GPI)

    National Oceanic and Atmospheric Administration, Department of Commerce — GOES Precipitation Index (GPI) is a precipitation estimation algorithm. The GPI technique estimates tropical rainfall using cloud-top temperature as the sole...

  19. Climate Prediction Center (CPC)Oceanic Nino Index

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oceanic Nino Index (ONI) is one of the primary indices used to monitor the El Nino-Southern Oscillation (ENSO). The ONI is calculated by averaging sea surface...

  20. Sludge pipe flow pressure drop prediction using composite power ...

    2011-09-30

    Sep 30, 2011 ... 3Department of Chemical Engineering, IIT Kanpur, India. Abstract. When predicting pressure gradients for the flow of sludges in pipes, the rheology of the fluid ..... implicit in the stability analysis of Ryan and Johnson (1959).

  1. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.

  2. Potential predictability of a Colombian river flow

    Córdoba-Machado, Samir; Palomino-Lemus, Reiner; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the predictability of an important Colombian river (Cauca) has been analysed based on the use of climatic variables as potential predictors. Cauca River is considered one of the most important rivers of Colombia because its basin supports important productive activities related with the agriculture, such as the production of coffee or sugar. Potential relationships between the Cauca River seasonal streamflow anomalies and different climatic variables such as sea surface temperature (SST), precipitation (Pt), temperature over land (Tm) and soil water (Sw) have been analysed for the period 1949-2009. For this end, moving correlation analysis of 30 years have been carried out for lags from one to four seasons for the global SST, and from one to two seasons for South America Pt, Tm and Sw. Also, the stability of the significant correlations have been also studied, identifying the regions used as potential predictors of streamflow. Finally, in order to establish a prediction scheme based on the previous stable correlations, a Principal Component Analysis (PCA) applied on the potential predictor regions has been carried out in order to obtain a representative time series for each predictor field. Significant and stable correlations between the seasonal streamflow and the tropical Pacific SST (El Niño region) are found for lags from one to four (one-year) season. Additionally, some regions in the Indian and Atlantic Oceans also show significant and stable correlations at different lags, highlighting the importance that exerts the Atlantic SST on the hydrology of Colombia. Also significant and stable correlations are found with the Pt, Tm and Sw for some regions over South America, at lags of one and two seasons. The prediction of Cauca seasonal streamflow based on this scheme shows an acceptable skill and represents a relative improvement compared with the predictability obtained using the teleconnection indices associated with El Niño. Keywords

  3. Statistical models to predict flows at monthly level in Salvajina

    Gonzalez, Harold O

    1994-01-01

    It thinks about and models of lineal regression evaluate at monthly level that they allow to predict flows in Salvajina, with base in predictions variable, like the difference of pressure between Darwin and Tahiti, precipitation in Piendamo Cauca), temperature in Port Chicama (Peru) and pressure in Tahiti

  4. Predicting volatility and correlations with Financial Conditions Indexes

    Opschoor, A.; van Dijk, D.; van der Wel, M.

    2014-01-01

    We model the impact of financial conditions on asset market volatilities and correlations. We extend the Spline-GARCH model for volatility and DCC model for correlation to allow for inclusion of indexes that measure financial conditions. In our empirical application we consider daily stock returns

  5. Predicting Volatility and Correlations with Financial Conditions Indexes

    A. Opschoor (Anne); D.J.C. van Dijk (Dick); M. van der Wel (Michel)

    2014-01-01

    textabstractWe model the impact of financial conditions on asset market volatilities and correlations. We extend the Spline-GARCH model for volatility and DCC model for correlation to allow for inclusion of indexes that measure financial conditions. In our empirical application we consider daily

  6. Genetically Predicted Body Mass Index and Breast Cancer Risk

    Guo, Yan; Warren Andersen, Shaneda; Shu, Xiao-Ou

    2016-01-01

    BACKGROUND: Observational epidemiological studies have shown that high body mass index (BMI) is associated with a reduced risk of breast cancer in premenopausal women but an increased risk in postmenopausal women. It is unclear whether this association is mediated through shared genetic or enviro...

  7. Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position.

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. [Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position].

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Predicting bifurcation angle effect on blood flow in the microvasculature.

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An Approach to Predict Debris Flow Average Velocity

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  11. Linear predictions of supercritical flow instability in two parallel channels

    Shah, M.

    2008-01-01

    A steady state linear code that can predict thermo-hydraulic instability boundaries in a two parallel channel system under supercritical conditions has been developed. Linear and non-linear solutions of the instability boundary in a two parallel channel system are also compared. The effect of gravity on the instability boundary in a two parallel channel system, by changing the orientation of the system flow from horizontal flow to vertical up-flow and vertical down-flow has been analyzed. Vertical up-flow is found to be more unstable than horizontal flow and vertical down flow is found to be the most unstable configuration. The type of instability present in each flow-orientation of a parallel channel system has been checked and the density wave oscillation type is observed in horizontal flow and vertical up-flow, while the static type of instability is observed in a vertical down-flow for the cases studied here. The parameters affecting the instability boundary, such as the heating power, inlet temperature, inlet and outlet K-factors are varied to assess their effects. This study is important for the design of future Generation IV nuclear reactors in which supercritical light water is proposed as the primary coolant. (author)

  12. Prediction of Shanghai Index based on Additive Legendre Neural Network

    Yang Bin

    2017-01-01

    Full Text Available In this paper, a novel Legendre neural network model is proposed, namely additive Legendre neural network (ALNN. A new hybrid evolutionary method besed on binary particle swarm optimization (BPSO algorithm and firefly algorithm is proposed to optimize the structure and parameters of ALNN model. Shanghai stock exchange composite index is used to evaluate the performance of ALNN. Results reveal that ALNN performs better than LNN model.

  13. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  14. Prediction of monthly average global solar radiation based on statistical distribution of clearness index

    Ayodele, T.R.; Ogunjuyigbe, A.S.O.

    2015-01-01

    In this paper, probability distribution of clearness index is proposed for the prediction of global solar radiation. First, the clearness index is obtained from the past data of global solar radiation, then, the parameters of the appropriate distribution that best fit the clearness index are determined. The global solar radiation is thereafter predicted from the clearness index using inverse transformation of the cumulative distribution function. To validate the proposed method, eight years global solar radiation data (2000–2007) of Ibadan, Nigeria are used to determine the parameters of appropriate probability distribution for clearness index. The calculated parameters are then used to predict the future monthly average global solar radiation for the following year (2008). The predicted values are compared with the measured values using four statistical tests: the Root Mean Square Error (RMSE), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and the coefficient of determination (R"2). The proposed method is also compared to the existing regression models. The results show that logistic distribution provides the best fit for clearness index of Ibadan and the proposed method is effective in predicting the monthly average global solar radiation with overall RMSE of 0.383 MJ/m"2/day, MAE of 0.295 MJ/m"2/day, MAPE of 2% and R"2 of 0.967. - Highlights: • Distribution of clearnes index is proposed for prediction of global solar radiation. • The clearness index is obtained from the past data of global solar radiation. • The parameters of distribution that best fit the clearness index are determined. • Solar radiation is predicted from the clearness index using inverse transformation. • The method is effective in predicting the monthly average global solar radiation.

  15. Does the arrival index predict physiological stress reactivity in children.

    de Veld, Danielle M J; Riksen-Walraven, J Marianne; de Weerth, Carolina

    2014-09-01

    Knowledge about children's stress reactivity and its correlates is mostly based on one stress task, making it hard to assess the generalizability of the results. The development of an additional stress paradigm for children, that also limits stress exposure and test time, could greatly advance this field of research. Research in adults may provide a starting point for the development of such an additional stress paradigm, as changes in salivary cortisol and alpha-amylase (sAA) over a 1-h pre-stress period in the laboratory correlated strongly with subsequent reactivity to stress task (Balodis et al., 2010, Psychoneuroendocrinology 35:1363-73). The present study examined whether such strong correlations could be replicated in 9- to 11-year-old children. Cortisol and sAA samples were collected from 158 children (83 girls) during a 2.5-h visit to the laboratory. This visit included a 1-h pre-stress period in which children performed some non-stressful tasks and relaxed before taking part in a psychosocial stress task (TSST-C). A higher cortisol arrival index was significantly and weakly correlated with a higher AUCg but unrelated to cortisol reactivity to the stressor. A higher sAA arrival index was significantly and moderately related to lower stress reactivity and to a lower AUCi. Children's personality and emotion regulation variables were unrelated to the cortisol and sAA arrival indices. The results of this study do not provide a basis for the development of an additional stress paradigm for children. Further replications in children and adults are needed to clarify the potential meaning of an arrival index.

  16. Contingency management of power system with Interline Power Flow Controller using Real Power Performance Index and Line Stability Index

    Akanksha Mishra

    2016-03-01

    Full Text Available As a result of privatization of the electrical industry the power transmission lines have to transfer power at their maximum transmission limits because of the competitive scenario of the electrical market. Hence, secured operation of power system has become one of the most important issues of modern era. In this paper, a probability of severity based placement strategy for Interline Power Flow Controller (IPFC has been proposed based on Composite Severity Index (CSI. The composite severity index provides an exact measure of stress in the line in terms of mega watt overloading and voltage instability. IPFC is placed on the line which has the highest probability of severity during the occurrence of different outages. The IPFC has been tuned for a multi-objective function using Differential Evolution (DE and the results have been compared with genetic Algorithm (GA. To verify the proposed method, it has been tested and implemented on IEEE 14 and 57 bus systems.

  17. The c-index is not proper for the evaluation of $t$-year predicted risks.

    Blanche, Paul; Kattan, Michael W; Gerds, Thomas A

    2018-02-16

    We show that the widely used concordance index for time to event outcome is not proper when interest is in predicting a $t$-year risk of an event, for example 10-year mortality. In the situation with a fixed prediction horizon, the concordance index can be higher for a misspecified model than for a correctly specified model. Impropriety happens because the concordance index assesses the order of the event times and not the order of the event status at the prediction horizon. The time-dependent area under the receiver operating characteristic curve does not have this problem and is proper in this context.

  18. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia

    Corte, Tamera J.; Wort, Stephen J.; MacDonald, Peter S.; Edey, Anthony; Hansell, David M.; Renzoni, Elisabetta; Maher, Toby M.; Nicholson, Andrew G.; Bandula, Steven; Bresser, Paul; Wells, Athol U.

    2012-01-01

    Background and objective: Pulmonary hypertension (PH) is associated with increased mortality in fibrotic idiopathic interstitial pneumonia (IIP). We hypothesize that baseline KCO (diffusing capacity of carbon monoxide/alveolar volume) and 6-month decline in KCO reflect PH, thus predicting mortality

  19. The Renal Arterial Resistance Index Predicts Worsening Renal Function in Chronic Heart Failure Patients

    Iacoviello, Massimo; Monitillo, Francesco; Leone, Marta; Citarelli, Gaetano; Doronzo, Annalisa; Antoncecchi, Valeria; Puzzovivo, Agata; Rizzo, Caterina; Lattarulo, Maria Silvia; Massari, Francesco; Caldarola, Pasquale; Ciccone, Marco Matteo

    2016-01-01

    Background/Aim The renal arterial resistance index (RRI) is a Doppler measure, which reflects abnormalities in the renal blood flow. The aim of this study was to verify the value of RRI as a predictor of worsening renal function (WRF) in a group of chronic heart failure (CHF) outpatients. Methods We enrolled 266 patients in stable clinical conditions and on conventional therapy. Peak systolic velocity and end diastolic velocity of a segmental renal artery were obtained by pulsed Doppler flow, and RRI was calculated. Creatinine serum levels were evaluated at baseline and at 1 year, and the changes were used to assess WRF occurrence. Results During follow-up, 34 (13%) patients showed WRF. RRI was associated with WRF at univariate (OR: 1.13; 95% CI: 1.07–1.20) as well as at a forward stepwise multivariate logistic regression analysis (OR: 1.09; 95% CI: 1.03–1.16; p = 0.005) including the other univariate predictors. Conclusions Quantification of arterial renal perfusion provides a new parameter that independently predicts the WRF in CHF outpatients. Its possible role in current clinical practice to better define the risk of cardiorenal syndrome progression is strengthened. PMID:27994601

  20. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Mingyue Qiu

    Full Text Available In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA. We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  1. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  2. Modelling hydrodynamic parameters to predict flow assisted corrosion

    Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.

    1992-01-01

    During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model

  3. Numerical prediction of flow, heat transfer, turbulence and combustion

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  4. Improving urban wind flow predictions through data assimilation

    Sousa, Jorge; Gorle, Catherine

    2017-11-01

    Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian wind comfort, air quality, optimal building ventilation strategies, and wind loading on buildings. However, the significant variability and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the wind flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current wind flow predictions. We consider the incoming wind direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic density function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.

  5. Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem

    Gamst, Mette; Jensen, Peter Neergaard; Pisinger, David

    2010-01-01

    The multicommodity flow problem (MCFP) considers the efficient routing of commodities from their origins to their destinations subject to capacity restrictions and edge costs. Baier et al. [G. Baier, E. Köhler, M. Skutella, On the k-splittable flow problem, in: 10th Annual European Symposium...... of commodities has to be satisfied at the lowest possible cost. The problem has applications in transportation problems where a number of commodities must be routed, using a limited number of distinct transportation units for each commodity. Based on a three-index formulation by Truffot et al. [J. Truffot, C...... on Algorithms, 2002, 101–113] introduced the maximum flow multicommodity k-splittable flow problem (MCkFP) where each commodity may use at most k paths between its origin and its destination. This paper studies the -hard minimum cost multicommodity k-splittable flow problem (MCMCkFP) in which a given flow...

  6. predicted peak expiratory flow in human and the clinical implication ...

    DR. AMINU

    predicted PEF varied widely across formulae and choice of a particular formula may alter guideline- base care. This work has therefore accepted a recently published population-base equation proposed as the reference standard for future asthma guidelines. Keywords: Peak expiratory flow, Asthma, Practice guidelines, ...

  7. Downstream flow top width prediction in a river system | Choudhury ...

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  8. A fear index to predict oil futures returns

    Chevallier, Julien; Sevi, Benoit

    2013-01-01

    This paper evaluates the predictability of WTI light sweet crude oil futures by using the variance risk premium, i.e. the difference between model-free measures of implied and realized volatilities. Additional regressors known for their ability to explain crude oil futures prices are also considered, capturing macro-economic, financial and oil-specific influences. The results indicate that the explanatory power of the (negative) variance risk premium on oil excess returns is particularly strong (up to 25% for the adjusted R-squared across our regressions). It complements other financial (e.g. default spread) and oil-specific (e.g. US oil stocks) factors highlighted in previous literature. (authors)

  9. Amniotic fluid index predicts the relief of variable decelerations after amnioinfusion bolus.

    Spong, C Y; McKindsey, F; Ross, M G

    1996-10-01

    Our purpose was to determine whether intrapartum amniotic fluid index before amnioinfusion can be used to predict response to therapeutic amnioinfusion. Intrapartum patients (n = 85) with repetitive variable decelerations in fetal heart rate that necessitated amnioinfusion (10 ml/min for 60 minutes) underwent determination of amniotic fluid index before and after bolus amnioinfusion. The fetal heart tracing was scored (scorer blinded to amniotic fluid index values) for number and characteristics of variable decelerations before and 1 hour after initiation of amnioinfusion. The amnioinfusion was considered successful if it resulted in a decrease of > or = 50% in total number of variable decelerations or a decrease of > or = 50% in the rate of atypical or severe variable decelerations after administration of the bolus. Spontaneous vaginal births before completion of administration of the bolus (n = 18) were excluded from analysis. The probability of success of amnioinfusion in relation to amniotic fluid index was analyzed with the chi(2) test for progressive sequence. The mean amniotic fluid index before amnioinfusion was 6.2 +/- 3.3 cm. An amniotic fluid index of amnioinfusion decreased with increasing amniotic fluid index before amnioinfusion (76% [16/21] when initial amniotic fluid index was 0 to 4 cm, 63% [17/27] when initial amniotic fluid index was 4 to 8 cm, 44% [7/16] when initial amniotic fluid index was 8 to 12 cm, and 33% [1/3] when initial amniotic fluid index was > 12 cm, p = 0.03). The incidence of nuchal cords or true umbilical cord knots increased in relation to amniotic fluid index before amnioinfusion. Amniotic fluid index before amnioinfusion can be used to predict the success of amnioinfusion for relief of variable decelerations in fetal heart rate. Failure of amnioinfusion at a high amniotic fluid index before amnioinfusion may be explained by the increased prevalence of nuchal cords or true knots in the umbilical cord.

  10. A new body shape index predicts mortality hazard independently of body mass index.

    Nir Y Krakauer

    Full Text Available Obesity, typically quantified in terms of Body Mass Index (BMI exceeding threshold values, is considered a leading cause of premature death worldwide. For given body size (BMI, it is recognized that risk is also affected by body shape, particularly as a marker of abdominal fat deposits. Waist circumference (WC is used as a risk indicator supplementary to BMI, but the high correlation of WC with BMI makes it hard to isolate the added value of WC.We considered a USA population sample of 14,105 non-pregnant adults (age ≥ 18 from the National Health and Nutrition Examination Survey (NHANES 1999-2004 with follow-up for mortality averaging 5 yr (828 deaths. We developed A Body Shape Index (ABSI based on WC adjusted for height and weight: ABSI ≡ WC/(BMI(2/3height(1/2. ABSI had little correlation with height, weight, or BMI. Death rates increased approximately exponentially with above average baseline ABSI (overall regression coefficient of +33% per standard deviation of ABSI [95% confidence interval: +20%-+48%, whereas elevated death rates were found for both high and low values of BMI and WC. 22% (8%-41% of the population mortality hazard was attributable to high ABSI, compared to 15% (3%-30% for BMI and 15% (4%-29% for WC. The association of death rate with ABSI held even when adjusted for other known risk factors including smoking, diabetes, blood pressure, and serum cholesterol. ABSI correlation with mortality hazard held across the range of age, sex, and BMI, and for both white and black ethnicities (but not for Mexican ethnicity, and was not weakened by excluding deaths from the first 3 yr of follow-up.Body shape, as measured by ABSI, appears to be a substantial risk factor for premature mortality in the general population derivable from basic clinical measurements. ABSI expresses the excess risk from high WC in a convenient form that is complementary to BMI and to other known risk factors.

  11. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  12. Assessment of the de Hirsch Predictive Index Tests of Reading Failure.

    Askov, Warren; And Others

    The predictive validity and the general usability of a battery of 10 tests reported by de Hirsch, Jansky, and Langford, the de Hirsch Predictive Index Tests of reading failure, were examined. The de Hirsch battery was administered to 433 kindergarten children in six public schools. When the pupils entered first grade, the Metropolitan Readiness…

  13. Predicting nosocomial lower respiratory tract infections by a risk index based system

    Chen, Yong; Shan, Xue; Zhao, Jingya; Han, Xuelin; Tian, Shuguang; Chen, Fangyan; Su, Xueting; Sun, Yansong; Huang, Liuyu; Grundmann, Hajo; Wang, Hongyuan; Han, Li

    2017-01-01

    Although belonging to one of the most common type of nosocomial infection, there was currently no simple prediction model for lower respiratory tract infections (LRTIs). This study aims to develop a risk index based system for predicting nosocomial LRTIs based on data from a large point-prevalence

  14. Construction of prediction intervals for Palmer Drought Severity Index using bootstrap

    Beyaztas, Ufuk; Bickici Arikan, Bugrayhan; Beyaztas, Beste Hamiye; Kahya, Ercan

    2018-04-01

    In this study, we propose an approach based on the residual-based bootstrap method to obtain valid prediction intervals using monthly, short-term (three-months) and mid-term (six-months) drought observations. The effects of North Atlantic and Arctic Oscillation indexes on the constructed prediction intervals are also examined. Performance of the proposed approach is evaluated for the Palmer Drought Severity Index (PDSI) obtained from Konya closed basin located in Central Anatolia, Turkey. The finite sample properties of the proposed method are further illustrated by an extensive simulation study. Our results revealed that the proposed approach is capable of producing valid prediction intervals for future PDSI values.

  15. Ventilator flow data predict bronchopulmonary dysplasia in extremely premature neonates

    Mariann H. Bentsen

    2018-03-01

    Full Text Available Early prediction of bronchopulmonary dysplasia (BPD may facilitate tailored management for neonates at risk. We investigated whether easily accessible flow data from a mechanical ventilator can predict BPD in neonates born extremely premature (EP. In a prospective population-based study of EP-born neonates, flow data were obtained from the ventilator during the first 48 h of life. Data were logged for >10 min and then converted to flow–volume loops using custom-made software. Tidal breathing parameters were calculated and averaged from ≥200 breath cycles, and data were compared between those who later developed moderate/severe and no/mild BPD. Of 33 neonates, 18 developed moderate/severe and 15 no/mild BPD. The groups did not differ in gestational age, surfactant treatment or ventilator settings. The infants who developed moderate/severe BPD had evidence of less airflow obstruction, significantly so for tidal expiratory flow at 50% of tidal expiratory volume (TEF50 expressed as a ratio of peak tidal expiratory flow (PTEF (p=0.007. A compound model estimated by multiple logistic regression incorporating TEF50/PTEF, birthweight z-score and sex predicted moderate/severe BPD with good accuracy (area under the curve 0.893, 95% CI 0.735–0.973. This study suggests that flow data obtained from ventilators during the first hours of life may predict later BPD in premature neonates. Future and larger studies are needed to validate these findings and to determine their clinical usefulness.

  16. Spatial statistics for predicting flow through a rock fracture

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs

  17. Simple methods for predicting gas leakage flows through cracks

    Ewing, D.J.F.

    1989-01-01

    This report presents closed-form approximate analytical formulae with which the flow rate out of a through-wall crack can be estimated. The crack is idealised as a rough, tapering, wedgeshaped channel and the fluid is idealised as an isothermal or polytropically-expanding perfect gas. In practice, uncertainties about the wall friction factor dominate over uncertainties caused by the fluid-dynamics simplifications. The formulae take account of crack taper and for outwardly-diverging cracks they predict flows within 12% of mathematically more accurate one-dimensional numerical models. Upper and lower estimates of wall friction are discussed. (author)

  18. Prediction of strongly-heated internal gas flows

    McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki

    1997-01-01

    The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions

  19. Prediction of unsteady separated flows on oscillating airfoils

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  20. Flow-covariate prediction of stream pesticide concentrations.

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin

    2018-01-01

    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  1. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  2. Mechanisms and predictions for subcooled flow boiling CHF

    Liu, Wei; Nariai, Hideki; Inasaka, Fujio

    2000-01-01

    Corresponding to the two kinds of flow pattern reported in literature for subcooled flow boiling, two kinds of CHF triggering mechanism are considered existing with working in different working scope. On the base of a criterion proposed recently by the present authors, subcooled flow boiling data firstly are categorized into two groups by judging whether the first kind or the second kind of flow pattern is established. Possible CHF triggering mechanisms and prediction methods for the two kinds of flow pattern condition are discussed. By considering both the flow pattern development and CHF triggering mechanism, a detailed data categorization is carried out. The corresponding CHF occurrence properties in different data groups are summarized. Parametric trends are reviewed for the first and second kind of data group working condition respectively. Mass flux, pressure, inlet subcooling and inner diameter show almost same effects in the two different working conditions, while the ratio of heated length to diameter's effects on CHF show to be different. Research for the L/D effect on the CHF transverse the interface of the different data groups is carried out. (author)

  3. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  4. Predictive model for convective flows induced by surface reactivity contrast

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  5. ASSERT and COBRA predictions of flow distribution in vertical bundles

    Tahir, A.; Carver, M.B.

    1983-01-01

    COBRA and ASSERT are subchannel codes which compute flow and enthalpy distributions in rod bundles. COBRA is a well known code, ASSERT is under development at CRNL. This paper gives a comparison of the two codes with boiling experiments in vertical seven rod bundles. ASSERT predictions of the void distribution are shown to be in good agreement with reported experimental results, while COBRA predictions are unsatisfactory. The mixing models in both COBRA and ASSERT are briefly discussed. The reasons for the failure of COBRA-IV and the success of ASSERT in simulating the experiments are highlighted

  6. A conservative fully implicit algorithm for predicting slug flows

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  7. Fatty liver index and hepatic steatosis index for prediction of non-alcoholic fatty liver disease in type 1 diabetes.

    Sviklāne, Laura; Olmane, Evija; Dzērve, Zane; Kupčs, Kārlis; Pīrāgs, Valdis; Sokolovska, Jeļizaveta

    2018-01-01

    Little is known about the diagnostic value of hepatic steatosis index (HSI) and fatty liver index (FLI), as well as their link to metabolic syndrome in type 1 diabetes mellitus. We have screened the effectiveness of FLI and HSI in an observational pilot study of 40 patients with type 1 diabetes. FLI and HSI were calculated for 201 patients with type 1 diabetes. Forty patients with FLI/HSI values corresponding to different risk of liver steatosis were invited for liver magnetic resonance study. In-phase/opposed-phase technique of magnetic resonance was used. Accuracy of indices was assessed from the area under the receiver operating characteristic curve. Twelve (30.0%) patients had liver steatosis. For FLI, sensitivity was 90%; specificity, 74%; positive likelihood ratio, 3.46; negative likelihood ratio, 0.14; positive predictive value, 0.64; and negative predictive value, 0.93. For HSI, sensitivity was 86%; specificity, 66%; positive likelihood ratio, 1.95; negative likelihood ratio, 0.21; positive predictive value, 0.50; and negative predictive value, 0.92. Area under the receiver operating characteristic curve for FLI was 0.86 (95% confidence interval [0.72; 0.99]); for HSI 0.75 [0.58; 0.91]. Liver fat correlated with liver enzymes, waist circumference, triglycerides, and C-reactive protein. FLI correlated with C-reactive protein, liver enzymes, and blood pressure. HSI correlated with waist circumference and C-reactive protein. FLI ≥ 60 and HSI ≥ 36 were significantly associated with metabolic syndrome and nephropathy. The tested indices, especially FLI, can serve as surrogate markers for liver fat content and metabolic syndrome in type 1 diabetes. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Predicting Jakarta composite index using hybrid of fuzzy time series and support vector regression models

    Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin

    2018-03-01

    The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.

  9. Pulmonary venous flow index as a predictor of pulmonary vascular resistance variability in congenital heart disease with increased pulmonary flow: a comparative study before and after oxygen inhalation.

    Rivera, Ivan Romero; Mendonça, Maria Alayde; Andrade, José Lázaro; Moises, Valdir; Campos, Orlando; Silva, Célia Camelo; Carvalho, Antonio Carlos

    2013-09-01

    There is no definitive and reliable echocardiographic method for estimating the pulmonary vascular resistance (PVR) to differentiate persistent vascular disease from dynamic pulmonary hypertension. The aim of this study was to analyze the relationship between the pulmonary venous blood flow velocity-time integral (VTIpv) and PVR. Eighteen patients (10 females; 4 months to 22 years of age) with congenital heart disease and left to right shunt were studied. They underwent complete cardiac catheterization, including measurements of the PVR and Qp:Qs ratio, before and after 100% oxygen inhalation. Simultaneous left inferior pulmonary venous flow VTIpv was obtained by Doppler echocardiography. The PVR decreased significantly from 5.0 ± 2.6 W to 2.8 ± 2.2 W (P = 0.0001) with a significant increase in the Qp:Qs ratio, from 3.2 ± 1.4 to 4.9 ± 2.4 (P = 0.0008), and the VTIpv increased significantly from 22.6 ± 4.7 cm to 28.1 ± 6.2 cm (P = 0.0002) after 100% oxygen inhalation. VTIpv correlated well with the PVR and Qp:Qs ratio (r = -0.74 and 0.72, respectively). Diagnostic indexes indicated a sensitivity of 86%, specificity of 75%, accuracy of 83%, a positive predictive value of 92% and a negative predictive value of 60%. The VTIpv correlated well with the PVR. The measurement of this index before and after oxygen inhalation may become a useful noninvasive test for differentiating persistent vascular disease from dynamic and flow-related pulmonary hypertension. © 2013, Wiley Periodicals, Inc.

  10. Methods for early prediction of lactation flow in Holstein heifers

    Vesna Gantner

    2010-12-01

    Full Text Available The aim of this research was to define methods for early prediction (based on I. milk control record of lactation flow in Holstein heifers as well as to choose optimal one in terms of prediction fit and application simplicity. Total of 304,569 daily yield records automatically recorded on a 1,136 first lactation Holstein cows, from March 2003 till August 2008., were included in analysis. According to the test date, calving date, the age at first calving, lactation stage when I. milk control occurred and to the average milk yield in first 25th, T1 (and 25th-45th, T2 lactation days, measuring monthcalving month-age-production-time-period subgroups were formed. The parameters of analysed nonlinear and linear methods were estimated for each defined subgroup. As models evaluation measures,adjusted coefficient of determination, and average and standard deviation of error were used. Considering obtained results, in terms of total variance explanation (R2 adj, the nonlinear Wood’s method showed superiority above the linear ones (Wilmink’s, Ali-Schaeffer’s and Guo-Swalve’s method in both time-period subgroups (T1 - 97.5 % of explained variability; T2 - 98.1 % of explained variability. Regarding the evaluation measures based on prediction error amount (eavg±eSD, the lowest average error of daily milk yield prediction (less than 0.005 kg/day, as well as of lactation milk yield prediction (less than 50 kg/lactation (T1 time-period subgroup and less than 30 kg/lactation (T2 time-period subgroup; were determined when Wood’s nonlinear prediction method were applied. Obtained results indicate that estimated Wood’s regression parameters could be used in routine work for early prediction of Holstein heifer’s lactation flow.

  11. Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density

    Metcalfe Chris

    2010-05-01

    Full Text Available Abstract Background Melanoma usually presents as an initial skin lesion without evidence of metastasis. A significant proportion of patients develop subsequent local, regional or distant metastasis, sometimes many years after the initial lesion was removed. The current most effective staging method to identify early regional metastasis is sentinel lymph node biopsy (SLNB, which is invasive, not without morbidity and, while improving staging, may not improve overall survival. Lymphatic density, Breslow's thickness and the presence or absence of lymphatic invasion combined has been proposed to be a prognostic index of metastasis, by Shields et al in a patient group. Methods Here we undertook a retrospective analysis of 102 malignant melanomas from patients with more than five years follow-up to evaluate the Shields' index and compare with existing indicators. Results The Shields' index accurately predicted outcome in 90% of patients with metastases and 84% without metastases. For these, the Shields index was more predictive than thickness or lymphatic density. Alternate lymphatic measurement (hot spot analysis was also effective when combined into the Shields index in a cohort of 24 patients. Conclusions These results show the Shields index, a non-invasive analysis based on immunohistochemistry of lymphatics surrounding primary lesions that can accurately predict outcome, is a simple, useful prognostic tool in malignant melanoma.

  12. PDW Index - A Simple Model for the Prediction of Liver Fibrosis in Chronic Viral Hepatitis

    Ashraf, S.; Ali, N.

    2013-01-01

    Objectives: To assess the accuracy of platelets, platelet morphological parameters, mean platelet volume(MPV) and platelet distribution width, (PDW) to diagnose advanced fibrosis. Study Design: Validation study. Place and Duration of Study: Combined Military Hospital, Malir, from Jun 2008 to Jun 2009. Patients and Methods: Simple laboratory tests, aspartate aminotransferase (AST) alanine aminotransferase (ALT) platelet count and platelet morphological parameters were measured in 91 chronic viral hepatitis patients. All patients had liver biopsy performed. A new index, PDW index was derived to detect the opposing effects of liver fibrosis on platelet count, MPV, and PDW. The predictive value of the index for advanced fibrosis (F3-F4) was assessed through descriptive statistics and area under the ROC curves. Results: Two cut-offs were chosen to qualify different stages of fibrosis. A value of > 8.00 predicted advanced fibrosis, F3-F4, with a specificity of 94% and positive predictive value of 78%. A value of < 6.00 ruled out advanced fibrosis with a negative predictive value of 93% and a sensitivity of 82%. The area under the ROC curve for advanced fibrosis was 0.840. PDW Index values outside of these cut-offs correctly classified 60% of patients. Conclusion: A simple index comprising platelet as only parameters have high diagnostic value for the advanced stages of fibrosis. (author)

  13. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  14. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo

    2015-01-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches

  15. Body mass index predicts risk for complications from transtemporal cerebellopontine angle surgery.

    Mantravadi, Avinash V; Leonetti, John P; Burgette, Ryan; Pontikis, George; Marzo, Sam J; Anderson, Douglas

    2013-03-01

    To determine the relationship between body mass index (BMI) and risk for specific complications from transtemporal cerebellopontine angle (CPA) surgery for nonmalignant disease. Case series with chart review. Tertiary-care academic hospital. Retrospective review of 134 consecutive patients undergoing transtemporal cerebellopontine angle surgery for nonmalignant disease from 2009 to 2011. Data were collected regarding demographics, body mass index, intraoperative details, hospital stay, and complications including cerebrospinal fluid leak, wound complications, and brachial plexopathy. One hundred thirty-four patients were analyzed with a mean preoperative body mass index of 28.58. Statistical analysis demonstrated a significant difference in body mass index between patients with a postoperative cerebrospinal fluid leak and those without (P = .04), as well as a similar significant difference between those experiencing postoperative brachial plexopathy and those with no such complication (P = .03). Logistical regression analysis confirmed that body mass index is significant in predicting both postoperative cerebrospinal fluid leak (P = .004; odds ratio, 1.10) and brachial plexopathy (P = .04; odds ratio, 1.07). Elevated body mass index was not significant in predicting wound complications or increased hospital stay beyond postoperative day 3. Risk of cerebrospinal fluid leak and brachial plexopathy is increased in patients with elevated body mass index undergoing surgery of the cerebellopontine angle. Consideration should be given to preoperative optimization via dietary and lifestyle modifications as well as intraoperative somatosensory evoked potential monitoring of the brachial plexus to decrease these risks.

  16. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  17. Options for refractive index and viscosity matching to study variable density flows

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a

  18. Coronary flow reserve index corrected by exercise load using Tl-201 SPECT

    Kubota, Yasushi; Sugihara, Hiroki; Azuma, Akihiro

    1990-01-01

    For simple, non-invasive evaluation of coronary flow reserve during exercise, we investigated the coronary flow reserve index using the ratio of change of fractional distribution in the regional myocardium to oxygen demand. The subjects included 24 patients with effort angina pectoris and 11 normal volunteers. PTCA was peformed for 11 patients. Using the biological properties of Tl-201 single photon emission computed tomography (SPECT) was performed at submaximal exercise and at rest by two successive injections of Tl-201 within a short time interval (double dose method). The correlation between the fractional distribution in the myocardium (Δ-Fract) and the oxygen demand during exercise and at rest were evaluated. Δ-Fract correlated well with the rate of change of the pressure rate product (Δ-PRP), and Δ-Fract/Δ-PRP (CRI) was a good indicator of the coronary flow reserve index. CRI in the ischemic region correlated well with the percent area stenosis of the supplying coronary artery and improved with resolution of percent area stenosis of the target coronary artery after PTCA, but in some cases they were not above the normal range. CRI as obtained by exercise SPECT using the double dose method is useful for non-invasively estimating the coronary flow reserve during exercise, and it can be used for evaluating the effect before and after PTCA. (author)

  19. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  20. Predicting transition in two- and three-dimensional separated flows

    Cutrone, L.; De Palma, P.; Pascazio, G.; Napolitano, M.

    2008-01-01

    This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is considered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is also used for comparison. Both models are implemented within a Reynolds-averaged Navier-Stokes solver employing a low-Reynolds-number k-ω turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incompressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all computations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows through the T106 linear turbine cascade

  1. Frequency prediction by linear stability analysis around mean flow

    Bengana, Yacine; Tuckerman, Laurette

    2017-11-01

    The frequency of certain limit cycles resulting from a Hopf bifurcation, such as the von Karman vortex street, can be predicted by linear stability analysis around their mean flows. Barkley (2006) has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency. This property was named RZIF by Turton et al. (2015); moreover they found that the traveling waves (TW) of thermosolutal convection have the RZIF property. They explained this as a consequence of the fact that the temporal Fourier spectrum is dominated by the mean flow and first harmonic. We could therefore consider that only the first mode is important in the saturation of the mean flow as presented in the Self-Consistent Model (SCM) of Mantic-Lugo et al. (2014). We have implemented a full Newton's method to solve the SCM for thermosolutal convection. We show that while the RZIF property is satisfied far from the threshold, the SCM model reproduces the exact frequency only very close to the threshold. Thus, the nonlinear interaction of only the first mode with itself is insufficiently accurate to estimate the mean flow. Our next step will be to take into account higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.

  2. Error estimation for CFD aeroheating prediction under rarefied flow condition

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  3. Indexed

    Hagy, Jessica

    2008-01-01

    Jessica Hagy is a different kind of thinker. She has an astonishing talent for visualizing relationships, capturing in pictures what is difficult for most of us to express in words. At indexed.blogspot.com, she posts charts, graphs, and Venn diagrams drawn on index cards that reveal in a simple and intuitive way the large and small truths of modern life. Praised throughout the blogosphere as “brilliant,” “incredibly creative,” and “comic genius,” Jessica turns her incisive, deadpan sense of humor on everything from office politics to relationships to religion. With new material along with some of Jessica’s greatest hits, this utterly unique book will thrill readers who demand humor that makes them both laugh and think.

  4. Prediction of Mortality with A Body Shape Index in Young Asians: Comparison with Body Mass Index and Waist Circumference.

    Lee, Da-Young; Lee, Mi-Yeon; Sung, Ki-Chul

    2018-06-01

    This paper investigated the impact of A Body Shape Index (ABSI) on the risk of all-cause mortality compared with the impact of waist circumference (WC) and body mass index (BMI). This paper reviewed data of 213,569 Korean adults who participated in health checkups between 2002 and 2012 at Kangbuk Samsung Hospital in Seoul, Korea. A multivariate Cox proportional hazard analysis was performed on the BMI, WC, and ABSI z score continuous variables as well as quintiles. During 1,168,668.7 person-years, 1,107 deaths occurred. As continuous variables, a significant positive relationship with the risk of all-cause death was found only in ABSI z scores after adjustment for age, sex, current smoking, alcohol consumption, regular exercise, presence of diabetes or hypertension, and history of cardiovascular diseases. In Cox analysis of quintiles, quintile 5 of the ABSI z score showed significantly increased hazard ratios (HRs) for mortality risk (HR [95% CI] was 1.32 [1.05-1.66]), whereas the risk for all-cause mortality, on the other hand, decreased in quintiles 3 through 5 of BMI and WC compared with their first quintiles after adjusting for several confounders. This study showed that the predictive value of ABSI for mortality risk was strong for a sample of young Asian participants and that its usefulness was better than BMI or WC. © 2018 The Obesity Society.

  5. Using the Speech Transmission Index for predicting non-native speech intelligibility

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Houtgast, T.; Steeneken, H.J.M.

    2004-01-01

    While the Speech Transmission Index ~STI! is widely applied for prediction of speech intelligibility in room acoustics and telecommunication engineering, it is unclear how to interpret STI values when non-native talkers or listeners are involved. Based on subjectively measured psychometric functions

  6. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO

    Manatsa, Desmond; Mushore, Terrence; Lenouo, Andre

    2017-01-01

    The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December-March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum's (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit

  7. [Evaluation of thermal comfort in a student population: predictive value of an integrated index (Fanger's predicted mean value].

    Catenacci, G; Terzi, R; Marcaletti, G; Tringali, S

    1989-01-01

    Practical applications and predictive values of a thermal comfort index (Fanger's PRV) were verified on a sample school population (1236 subjects) by studying the relationships between thermal sensations (subjective analysis), determined by means of an individual questionnaire, and the values of thermal comfort index (objective analysis) obtained by calculating the PMV index individually in the subjects under study. In homogeneous conditions of metabolic expenditure rate and thermal impedence from clothing, significant differences were found between the two kinds of analyses. At 22 degrees C mean radiant and operative temperature, the PMV values averaged 0 and the percentage of subjects who experienced thermal comfort did not exceed 60%. The high level of subjects who were dissatisfied with their environmental thermal conditions confirms the doubts regarding the use of the PMV index as a predictive indicator of thermal comfort, especially considering that the negative answers were not homogeneous nor attributable to the small thermal fluctuations (less than 0.5 degree C) measured in the classrooms.

  8. Theoretical prediction method of subcooled flow boiling CHF

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  9. Prediction of critical heat flux in vertical pipe flow

    Levy, S.; Healzer, J.M.; Abdollahian, D.

    1981-01-01

    A previously developed semi-empirical model for adiabatic two-phase annular flow ix extended to predict the critical heat flux (CHF) in a vertical pipe. The model exhibits a sharply declining curve of CHF versus steam quality (X) at low X, and is relatively independent of the heat flux distribution. In this region, vaporization of the liquid film controls. At high X, net deposition upon the liquid film becomes important and CHF versus X flattens considerably. In this zone, CHF is dependent upon the heat flux distribution. Model predictions are compared to test data and an empirical correlation. The agreement is generally good if one employs previously reported mass transfer coefficients. (orig.)

  10. Theoretical prediction method of subcooled flow boiling CHF

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  11. Six-SOMAmer Index Relating to Immune, Protease and Angiogenic Functions Predicts Progression in IPF.

    Shanna L Ashley

    Full Text Available Biomarkers in easily accessible compartments like peripheral blood that can predict disease progression in idiopathic pulmonary fibrosis (IPF would be clinically useful regarding clinical trial participation or treatment decisions for patients. In this study, we used unbiased proteomics to identify relevant disease progression biomarkers in IPF.Plasma from IPF patients was measured using an 1129 analyte slow off-rate modified aptamer (SOMAmer array, and patient outcomes were followed over the next 80 weeks. Receiver operating characteristic (ROC curves evaluated sensitivity and specificity for levels of each biomarker and estimated area under the curve (AUC when prognostic biomarker thresholds were used to predict disease progression. Both logistic and Cox regression models advised biomarker selection for a composite disease progression index; index biomarkers were weighted via expected progression-free days lost during follow-up with a biomarker on the unfavorable side of the threshold.A six-analyte index, scaled 0 to 11, composed of markers of immune function, proteolysis and angiogenesis [high levels of ficolin-2 (FCN2, cathepsin-S (Cath-S, legumain (LGMN and soluble vascular endothelial growth factor receptor 2 (VEGFsR2, but low levels of inducible T cell costimulator (ICOS or trypsin 3 (TRY3] predicted better progression-free survival in IPF with a ROC AUC of 0.91. An index score ≥ 3 (group ≥ 2 was strongly associated with IPF progression after adjustment for age, gender, smoking status, immunomodulation, forced vital capacity % predicted and diffusing capacity for carbon monoxide % predicted (HR 16.8, 95% CI 2.2-126.7, P = 0.006.This index, derived from the largest proteomic analysis of IPF plasma samples to date, could be useful for clinical decision making in IPF, and the identified analytes suggest biological processes that may promote disease progression.

  12. Monthly to seasonal low flow prediction: statistical versus dynamical models

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with

  13. Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology.

    Engdahl, Nicholas B; Benson, David A; Bolster, Diogo

    2014-11-01

    The ability for reactive constituents to mix is often the key limiting factor for the completion of reactions across a huge range of scales in a variety of media. In flowing systems, deformation and shear enhance mixing by bringing constituents into closer proximity, thus increasing reaction potential. Accurately quantifying this enhanced mixing is key to predicting reactions and typically is done by observing or simulating scalar transport. To eliminate this computationally expensive step, we use a Lagrangian stochastic framework to derive the enhancement to reaction potential by calculating the collocation probability of particle pairs in a heterogeneous flow field accounting for deformations. We relate the enhanced reaction potential to three well known flow topology metrics and demonstrate that it is best correlated to (and asymptotically linear with) one: the largest eigenvalue of the (right) Cauchy-Green tensor.

  14. Building waste management core indicators through Spatial Material Flow Analysis: net recovery and transport intensity indexes.

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-01

    In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution

    C. Lanni

    2012-11-01

    Full Text Available Topographic index-based hydrological models have gained wide use to describe the hydrological control on the triggering of rainfall-induced shallow landslides at the catchment scale. A common assumption in these models is that a spatially continuous water table occurs simultaneously across the catchment. However, during a rainfall event isolated patches of subsurface saturation form above an impeding layer and their hydrological connectivity is a necessary condition for lateral flow initiation at a point on the hillslope.

    Here, a new hydrological model is presented, which allows us to account for the concept of hydrological connectivity while keeping the simplicity of the topographic index approach. A dynamic topographic index is used to describe the transient lateral flow that is established at a hillslope element when the rainfall amount exceeds a threshold value allowing for (a development of a perched water table above an impeding layer, and (b hydrological connectivity between the hillslope element and its own upslope contributing area. A spatially variable soil depth is the main control of hydrological connectivity in the model. The hydrological model is coupled with the infinite slope stability model and with a scaling model for the rainfall frequency–duration relationship to determine the return period of the critical rainfall needed to cause instability on three catchments located in the Italian Alps, where a survey of soil depth spatial distribution is available. The model is compared with a quasi-dynamic model in which the dynamic nature of the hydrological connectivity is neglected. The results show a better performance of the new model in predicting observed shallow landslides, implying that soil depth spatial variability and connectivity bear a significant control on shallow landsliding.

  16. Subchannel friction factors for rod bundles: laminar flow predictions and their application to turbulent flows

    Robinson, D.P.

    1979-02-01

    For the calculation of friction factors the use of correlations validated for smooth circular tubes along with the duct hydraulic diameter is known to be inappropriate for certain non-circular geometries. In order to test the validity and range of application of such correlations to the subchannels of rod bundles a computer programme has been written for the prediction of subchannel laminar velocity distributions and friction coefficients for fully developed flow. The theoretical basis and development of the programme is described along with comparisons between predictions and existing solutions for some simple geometries. Using the computer programme a wide range of calculations have been carried out for flow sections representing edge, corner and internal subchannels of rod bundles with particular emphasis on those of in-line pin bundle geometries. Where comparison can be made the predicted laminar coefficients are in excellent agreement with existing solutions. Although the approach adopted here could be used as the basis of a model for the subchannel axial friction factor, careful account should be taken of enhanced turbulent momentum transfer in situations where the flow is not unidirectional. (UK)

  17. Power flow prediction in vibrating systems via model reduction

    Li, Xianhui

    This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.

  18. Flow discharge prediction in compound channels using linear genetic programming

    Azamathulla, H. Md.; Zahiri, A.

    2012-08-01

    SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

  19. Predictive Index The Incidence Of Tuberculosis Children In South Kalimantan Province

    Bahrul Ilmi

    2015-08-01

    Full Text Available The research objective to formulate predictive index of Tuberculosis Children in South Kalimantan province. Research methods combined mixed methods with a combination of research model Sequential Exploratory Design qualitative approach to support quantitative and centered on quantitative Sugiono 2012 case control design. The number of qualitative sample was 16 respondents to interviews and 48 respondents for FGD. The number of quantitative research sample was 216 consisted of 62 cases and 154 controls. Qualitative sampling by purposive sampling and quantitative Multi-stage Cluster random sampling on 3 stages. The analysis technique used is descriptive qualitative and Confirmatory Factor Analysis Confirmatory Factor Analysis measure the latent of variables by using path analysis path analysis with the program Linear Structural Relationships LISREL. The results showed a positive effect on the socio-cultural environment and significantly associated with the incidence of Tuberculosis Children. While the physical environment of the house positively and significantly with biological environments and the incidence of Tuberculosis Children and immunization and nutrition status of children positively and significantly to the incidence of Tuberculosis of the Child as well as to the biological environment positive and significant effect on the incidence of TB Children. Formulation Predictive Index of Tuberculosis Children in South Kalimantan province. is index 019 Physical Environment Home 044 053 Biological Environment Social Environment Culture 019 Status Immunization and Child Nutrition. The results of all the R-square value indicates that all of the R-square values 0.5. This means that a predictive model of TB Kids index has met the required Goodness of Fit. New findings from research of this dissertation are 1. Research Variable of social networks social support and collective efficacy were associated with the incidence of Tuberculosis Children. 2

  20. Reticulocyte maturity index by flow cytometry: its applicability in radioinduced bone marrow aplasia

    Dubner, D.; Gisone, P.; Perez, M.R.

    1995-01-01

    Flow cytometric reticulocyte quantification was assayed in ten patients undergoing bone marrow transplantation (BMT) with previous conditioning chemotherapy and total body irradiation (TBI). A reticulocyte maturity index (RMI) was determined taking into account the RNA content. With de aim of testing the utility of RMI as an early predictor of functional recovery in marrow aplasia, other haematological indicators as neutrophils count were comparatively evaluated. Mean time elapsed between BMT and engraftment evidence by RMI was 17,6 days. In six patients the RMI was the earliest indicator of functional recovery. The applicability of this assay in the following of radioinduced bone marrow aplasia is discussed. (author). 4 refs., 4 figs., 2 tabs

  1. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.

    Qian, K X; Feng, Z G; Ru, W M; Zeng, P; Yuan, H Y

    2007-01-01

    Previously it has been found by pump haemolysis testing that the flow rate has a remarkable effect on index of haemolysis (IH), while pressure head does not affect IH. Recent investigation with particle image velocimetry (PIV) technology has demonstrated that IH is directly related to the flow pattern of stream field in impeller vane channels. PIV is a visible approach showing the real flow status in the pump. The different positions of a tracer particle in two PIV pictures taken at 20 micros intervals decide the velocity value and direction. The velocity vectors of many particles draw the flow pattern of the stream field. The same pictures are taken at 2, 4 and 6 l min(-1) flow rates while the pressure head is kept unchanged at 100 mmHg; then the pictures are taken at 4 l min(-1) flow with different pressure heads of 80, 100 and 120 mmHg. Results reveal that the flow rate of 4 l min(-1) (IH = 0.030) has the best stream field, and neither turbulence nor separation can be seen. In other flow rates (IH: 0.048 - 0.082), there is obviously second flow. Meanwhile, no significant difference can be seen among the PIV pictures of different pressure heads pumped, which agrees with the results of haemolysis testing showing that pressure has no effect on pump haemolysis. It may be concluded that the haemolysis property of a centrifugal pump can be assessed approximately by PIV pictures, which are much easier to take than haemolysis tests.

  2. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Montri Inthachot

    2016-01-01

    Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  3. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  4. Predicting Extubation Outcome by Cough Peak Flow Measured Using a Built-in Ventilator Flow Meter.

    Gobert, Florent; Yonis, Hodane; Tapponnier, Romain; Fernandez, Raul; Labaune, Marie-Aude; Burle, Jean-François; Barbier, Jack; Vincent, Bernard; Cleyet, Maria; Richard, Jean-Christophe; Guérin, Claude

    2017-12-01

    Successful weaning from mechanical ventilation depends on the patient's ability to cough efficiently. Cough peak flow (CPF) could predict extubation success using a dedicated flow meter but required patient disconnection. We aimed to predict extubation outcome using an overall model, including cough performance assessed by a ventilator flow meter. This was a prospective observational study conducted from November 2014 to October 2015. Before and after a spontaneous breathing trial, subjects were encouraged to cough as strongly as possible before freezing the ventilator screen to assess CPF and tidal volume (V T ) in the preceding inspiration. Early extubation success rate was defined as the proportion of subjects not re-intubated 48 h after extubation. Diagnostic performance of CPF and V T was assessed by using the area under the curve of the receiver operating characteristic curve. Cut-off values for CPF and V T were defined according to median values and used to describe the performance of a predictive test combining them with risk factors of early extubation failure. Among 673 subjects admitted, 92 had a cough assessment before extubation. For the 81 subjects with early extubation success, the median CPF was -67.7 L/min, and median V T was 0.646 L. For the 11 subjects with early extubation failure, the median CPF was -57.3 L/min, and median V T was 0.448 L. Area under the curve was 0.61 (95% CI 0.37-0.83) for CPF and 0.64 (95% CI 0.42-0.84) for CPF/V T combined. After dichotomization (CPF 0.55 L), there was a synergistic effect to predict early extubation success ( P meter of an ICU ventilator was able to predict extubation success and to build a composite score to predict extubation failure. The results were close to that found in previous studies that used a dedicated flow meter. This could help to identify high-risk subjects to prevent extubation failure. (ClinicalTrials.gov registration NCT02847221.). Copyright © 2017 by Daedalus Enterprises.

  5. A behavioral economic reward index predicts drinking resolutions: moderation revisited and compared with other outcomes.

    Tucker, Jalie A; Roth, David L; Vignolo, Mary J; Westfall, Andrew O

    2009-04-01

    Data were pooled from 3 studies of recently resolved community-dwelling problem drinkers to determine whether a behavioral economic index of the value of rewards available over different time horizons distinguished among moderation (n = 30), abstinent (n = 95), and unresolved (n = 77) outcomes. Moderation over 1- to 2-year prospective follow-up intervals was hypothesized to involve longer term behavior regulation processes than abstinence or relapse and to be predicted by more balanced preresolution monetary allocations between short-term and longer term objectives (i.e., drinking and saving for the future). Standardized odds ratios (ORs) based on changes in standard deviation units from a multinomial logistic regression indicated that increases on this "Alcohol-Savings Discretionary Expenditure" index predicted higher rates of abstinence (OR = 1.93, p = .004) and relapse (OR = 2.89, p moderation outcomes. The index had incremental utility in predicting moderation in complex models that included other established predictors. The study adds to evidence supporting a behavioral economic analysis of drinking resolutions and shows that a systematic analysis of preresolution spending patterns aids in predicting moderation.

  6. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  7. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  8. A critical discussion on the applicability of Compound Topographic Index (CTI) for predicting ephemeral gully erosion

    Casalí, Javier; Chahor, Youssef; Giménez, Rafael; Campo-Bescós, Miguel

    2016-04-01

    The so-called Compound Topographic Index (CTI) can be calculated for each grid cell in a DEM and be used to identify potential locations for ephemeral gullies (e. g.) based on land topography (CTI = A.S.PLANC, where A is upstream drainage area, S is local slope and PLANC is planform curvature, a measure of the landscape convergence) (Parker et al., 2007). It can be shown that CTI represents stream power per unit bed area and it considers the major parameters controlling the pattern and intensity of concentrated surface runoff in the field (Parker et al., 2007). However, other key variables controlling e.g. erosion (e. g. e.) such as soil characteristics, land-use and management, are not had into consideration. The critical CTI value (CTIc) "represents the intensity of concentrated overland flow necessary to initiate erosion and channelised flow under a given set of circumstances" (Parker et al., 2007). AnnAGNPS (Annualized Agriculture Non-Point Source) pollution model is an important management tool developed by (USDA) and uses CTI to locate potential ephemeral gullies. Then, and depending on rainfall characteristics of the period simulated by AnnAGNPS, potential e. g. can become "actual", and be simulated by the model accordingly. This paper presents preliminary results and a number of considerations after evaluating the CTI tool in Navarre. CTIc values found are similar to those cited by other authors, and the e. g. networks that on average occur in the area have been located reasonably well. After our experience we believe that it is necessary to distinguish between the CTIc corresponding to the location of headcuts whose migrations originate the e. g. (CTIc1); and the CTIc necessary to represent the location of the gully networks in the watershed (CTIc2), where gully headcuts are located in the upstream end of the gullies. Most scientists only consider one CTIc value, although, from our point of view, the two situations are different. CTIc1 would represent the

  9. Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index

    Tura, Andrea; Chemello, Gaetano; Szendroedi, Julia

    2018-01-01

    that underwent both a clamp and an OGTT or meal test, thereby allowing calculation of both the M value and OGIS. The population was divided into a training and a validation cohort (n = 359 and n = 154, respectively). After a stepwise selection approach, the best model for M value prediction was applied......AIMS/HYPOTHESIS: The euglycaemic-hyperinsulinaemic clamp is the gold-standard method for measuring insulin sensitivity, but is less suitable for large clinical trials. Thus, several indices have been developed for evaluating insulin sensitivity from the oral glucose tolerance test (OGTT). However......, most of them yield values different from those obtained by the clamp method. The aim of this study was to develop a new index to predict clamp-derived insulin sensitivity (M value) from the OGTT-derived oral glucose insulin sensitivity index (OGIS). METHODS: We analysed datasets of people...

  10. Starch digestibility and predicted glycemic index of fried sweet potato cultivars

    Amaka Odenigbo

    2012-07-01

    Full Text Available Background: Sweet potato (Ipomoea batatas L. is a very rich source of starch. There is increased interest in starch digestibility and the prevention and management of metabolic diseases.Objective: The aim of this study was to evaluate the levels of starch fractions and predicted glycemic index of different cultivars of sweet potato. Material and Method: French fries produced from five cultivars of sweet potato (‘Ginseng Red’, ‘Beauregard’, ‘White Travis’, ‘Georgia Jet clone #2010’ and ‘Georgia Jet’ were used. The level of total starch (TS, resistant starch (RS, digestible starch (DS, and starch digestion index starch digestion index in the samples were evaluated. In vitro starch hydrolysis at 30, 90, and 120 min were determined enzymatically for calculation of rapidly digestible starch (RDS, predicted glycemic index (pGI and slowly digestible starch (SDS respectively. Results: The RS content in all samples had an inversely significant correlation with pGI (-0.52; P<0.05 while RDS had positive and significant influence on both pGI (r=0.55; P<0.05 and SDI (r= 0.94; P<0.01. ‘White Travis’ and ‘Ginseng Red’ had higher levels of beneficial starch fractions (RS and SDS with low pGI and starch digestion Index (SDI, despite their higher TS content. Generally, all the cultivars had products with low to moderate GI values. Conclusion: The glycemic index of these food products highlights the health promoting characteristics of sweet potato cultivars.

  11. Chaos game representation of the D st index and prediction of geomagnetic storm events

    Yu, Z.G.; Anh, V.V.; Wanliss, J.A.; Watson, S.M.

    2007-01-01

    This paper proposes a two-dimensional chaos game representation (CGR) for the D st index. The CGR provides an effective method to characterize the multifractality of the D st time series. The probability measure of this representation is then modeled as a recurrent iterated function system in fractal theory, which leads to an algorithm for prediction of a storm event. We present an analysis and modeling of the D st time series over the period 1963-2003. The numerical results obtained indicate that the method is useful in predicting storm events one day ahead

  12. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  13. Prediction of unsteady airfoil flows at large angles of incidence

    Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

    1992-01-01

    The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

  14. A Bimodel Algorithm with Data-Divider to Predict Stock Index

    Zhaoyue Wang

    2018-01-01

    Full Text Available There is not yet reliable software for stock prediction, because most experts of this area have been trying to predict an exact stock index. Considering that the fluctuation of a stock index usually is no more than 1% in a day, the error between the forecasted and the actual values should be no more than 0.5%. It is too difficult to realize. However, forecasting whether a stock index will rise or fall does not need to be so exact a numerical value. A few scholars noted the fact, but their systems do not yet work very well because different periods of a stock have different inherent laws. So, we should not depend on a single model or a set of parameters to solve the problem. In this paper, we developed a data-divider to divide a set of historical stock data into two parts according to rising period and falling period, training, respectively, two neural networks optimized by a GA. Above all, the data-divider enables us to avoid the most difficult problem, the effect of unexpected news, which could hardly be predicted. Experiments show that the accuracy of our method increases 20% compared to those of traditional methods.

  15. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    H. Sanikhani

    2016-02-01

    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  16. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index

    Chao Li

    2018-05-01

    Full Text Available Increasing temperature is a simple and convenient method to accelerate the self-healing process of bitumen. However, bitumen may not achieve the healing capability at lower temperature, and may be aged if temperature is too high. In addition, the bitumen is mixed with mineral filler and formed as asphalt mastic in asphalt concrete, so it is more accurate to study the initial self-healing from the perspective of asphalt mastic. The primary purpose of this research was to examine the initial self-healing temperature of asphalt mastic, which was determined by the flow behavior index obtained from the flow characteristics. Firstly, the texture and geometry characteristics of two fillers were analyzed, and then the initial self-healing temperature of nine types of asphalt mastic, pure bitumen (PB and styrene-butadiene-styrene (SBS modified bitumen were determined by the flow behavior index. Results demonstrate that the average standard deviation of gray-scale texture value of limestone filler (LF is 21.24% lower than that of steel slag filler (SSF, showing that the steel slag filler has a better particle distribution and geometry characteristics. Also the initial self-healing temperatures of asphalt mastics with 0.2, 0.4 and 0.6 LF-PB volume ratio are 46.5 °C, 47.2 °C and 49.4 °C, which are 1.4 °C, 0.8 °C and 0.4 °C higher than that of asphalt mastics with SSF-PB, but not suitable for the evaluation of asphalt mastic contained SBS modified bitumen because of unique structure and performance of SBS.

  17. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index.

    Li, Chao; Wu, Shaopeng; Tao, Guanyu; Xiao, Yue

    2018-05-29

    Increasing temperature is a simple and convenient method to accelerate the self-healing process of bitumen. However, bitumen may not achieve the healing capability at lower temperature, and may be aged if temperature is too high. In addition, the bitumen is mixed with mineral filler and formed as asphalt mastic in asphalt concrete, so it is more accurate to study the initial self-healing from the perspective of asphalt mastic. The primary purpose of this research was to examine the initial self-healing temperature of asphalt mastic, which was determined by the flow behavior index obtained from the flow characteristics. Firstly, the texture and geometry characteristics of two fillers were analyzed, and then the initial self-healing temperature of nine types of asphalt mastic, pure bitumen (PB) and styrene-butadiene-styrene (SBS) modified bitumen were determined by the flow behavior index. Results demonstrate that the average standard deviation of gray-scale texture value of limestone filler (LF) is 21.24% lower than that of steel slag filler (SSF), showing that the steel slag filler has a better particle distribution and geometry characteristics. Also the initial self-healing temperatures of asphalt mastics with 0.2, 0.4 and 0.6 LF-PB volume ratio are 46.5 °C, 47.2 °C and 49.4 °C, which are 1.4 °C, 0.8 °C and 0.4 °C higher than that of asphalt mastics with SSF-PB, but not suitable for the evaluation of asphalt mastic contained SBS modified bitumen because of unique structure and performance of SBS.

  18. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  19. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-01-01

    Highlights: ► Sustainability and proximity principles have a key role in waste management. ► Core indicators are needed in order to quantify and evaluate them. ► A systematic, step-by-step approach is developed in this study for their development. ► Transport may play a significant role in terms of environmental and economic costs. ► Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of

  20. Hemolysis is associated with low reticulocyte production index and predicts blood transfusion in severe malarial anemia.

    Rolf Fendel

    Full Text Available BACKGROUND: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA, a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM. METHODS AND FINDINGS: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU (interquartile range (IR: 2.2-9.6 vs. 2.1 AU (IR: 1.3-3.9, p<0.01. Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1, CD55 (decay acceleration factor and phosphatidylserine exposure (annexin-V-binding were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin, which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI: 8.9-427. Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05. CONCLUSIONS: Our results show the multifactorial pathophysiology of SMA

  1. Accuracy of shock index versus ABC score to predict need for massive transfusion in trauma patients.

    Schroll, Rebecca; Swift, David; Tatum, Danielle; Couch, Stuart; Heaney, Jiselle B; Llado-Farrulla, Monica; Zucker, Shana; Gill, Frances; Brown, Griffin; Buffin, Nicholas; Duchesne, Juan

    2018-01-01

    Various scoring systems have been developed to predict need for massive transfusion in traumatically injured patients. Assessments of Blood Consumption (ABC) score and Shock Index (SI) have been shown to be reliable predictors for Massive Transfusion Protocol (MTP) activation. However, no study has directly compared these two scoring systems to determine which is a better predictor for MTP activation. The primary objective was to determine whether ABC or SI better predicted the need for MTP in adult trauma patients with severe hemorrhage. This was a retrospective cohort study which included all injured patients who were trauma activations between January 1, 2009 and December 31, 2013 at an urban Level I trauma center. Patients ABC and SI were calculated for each patient. MTP was defined as need for >10 units PRBC transfusion within 24h of emergency department arrival. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were used to evaluate scoring systems' ability to predict effective MTP utilization. A total of 645 patients had complete data for analysis. Shock Index ≥1 had sensitivity of 67.7% (95% CI 49.5%-82.6%) and specificity of 81.3% (95% CI 78.0%-84.3%) for predicting MTP, and ABC score ≥2 had sensitivity of 47.0% (95% CI 29.8%-64.9%) and specificity of 89.8% (95% CI 87.2%-92.1%). AUROC analyses showed SI to be the strongest predictor followed by ABC score with AUROC values of 0.83 and 0.74, respectively. SI had a significantly greater sensitivity (P=0.035), but a significantly weaker specificity (PABC score. ABC score and Shock Index can both be used to predict need for massive transfusion in trauma patients, however SI is more sensitive and requires less technical skill than ABC score. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN Technique

    Awatif Soaded Alsaqqar

    2016-06-01

    Full Text Available In this research an Artificial Neural Network (ANN technique was applied for the prediction of Ryznar Index (RI of the flowing water from WTPs in Al-Karakh side (left side in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3 have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.

  3. [Reliability of the PROFUND index to predict 4-year mortality in polypathological patients].

    Díez-Manglano, Jesús; Del Corral Beamonte, Esther; Ramos Ibáñez, Rosa; Lambán Aranda, María Pilar; Toyas Miazza, Carla; Rodero Roldán, María Del Mar; Ortiz Domingo, Concepción; Munilla López, Eulalia; de Escalante Yangüela, Begoña

    2016-09-16

    To determine the usefullness of the PROFUND index to assess the risk of global death after 4 years in polypathological patients. Multicenter prospective cohort (Internal Medicine and Geriatrics) study. Polypathological patients admitted between March 1st and June 30th 2011 were included. For each patient, data concerning age, sex, living at home or in a nursing residence, polypathology categories, Charlson, Barthel and Lawton-Brody indexes, Pfeiffer questionnaire, socio-familial Gijon scale, delirium, number of drugs, hemoglobin and creatinine values were gathered, and the PROFUND index was calculated. The follow-up lasted 4 years. We included 441 patients, 324 from Internal Medicine and 117 from Geriatrics, with a mean age of 80.9 (8.7) years. Of them, 245 (55.6%) were women. Heart (62.7%), neurological (41.4%) and respiratory (37.3%) diseases were the most frequent. Geriatrics inpatients were older and more dependants and presented greater cognitive deterioration. After 4 years, 335 (76%) patients died. Mortality was associated with age, dyspnoea, Barthel index<60, delirium, advanced neoplasia and≥4 admissions in the last year. The area under the curve of the PROFUND index was 0.748, 95% CI 0.689-0.806, P<.001 in Internal Medicine and 0.517, 95% CI 0.369-0.666, P=.818 in Geriatrics patients, respectively. The PROFUND index is a reliable tool for predicting long-term global mortality in polypathological patients from Internal Medicine but not from Geriatrics departments. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  4. The TyG index may predict the development of cardiovascular events.

    Sánchez-Íñigo, Laura; Navarro-González, David; Fernández-Montero, Alejandro; Pastrana-Delgado, Juan; Martínez, Jose Alfredo

    2016-02-01

    Cardiovascular disease (CVD) is the worldwide leading cause of morbidity and mortality. An early risk detection of apparently healthy people before CVD onset has clinical relevance in the prevention of cardiovascular events. We evaluated the association between the product of fasting plasma glucose and triglycerides (TyG index) and CVD. A total of 5014 patients of the Vascular Metabolic CUN cohort (VMCUN cohort) were followed up during a median period of 10 years. We used a Cox proportional-hazard ratio with repeated measures to estimate the risk of incidence of CVD across quintiles of the TyG index, calculated as ln[fasting triglycerides (mg/dL) × fasting plasma glucose (mg(dL)/2], and plotted a receiver-operating characteristics (ROC) curve to compare a prediction model fitted on the variables used in the Framingham risk score, a new model containing the Framingham variables with the TyG index, and the risk of coronary heart disease. A higher level of TyG index was significantly associated with an increased risk of developing CVD independent of confounding factors with a value of 2·32 (95% CI: 1·65-3·26) for those in the highest quintile and 1·52 (95% CI: 1·07-2·16) for those in the fourth quintile. The areas under the curve (AUC) of the ROC plots were 0·708 (0·68-0·73) for the Framingham model and 0·719 (0·70-0·74) for the Framingham + TyG index model (P = 0·014). The TyG index, a simple measure reflecting insulin resistance, might be useful to early identify individuals at a high risk of developing a cardiovascular event. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Simple Modification of the Bladder Outlet Obstruction Index for Better Prediction of Endoscopically-Proven Prostatic Obstruction: A Preliminary Study.

    Jang Hee Han

    Full Text Available The bladder outlet obstruction index (BOOI, also known as the Abrams-Griffiths (AG number, is the most widely used index for predicting BOO. However, the obstructed prostatic urethra determined by the BOOI is often inconsistent with endoscopically-proven obstruction. We assessed abdominal straining pattern as a novel parameter for improving the prediction of BOO.We retrospectively reviewed the pressure-flow studies (PFS and cystourethroscopy in 176 BPH/LUTS patients who were unresponsive to medical therapy. During PFS, some groups of patients tried to urinate with abdominal straining, which can increases intravesical pressure and underestimate BOOI theoretically. Accordingly, the modified BOOI was defined as (PdetQmax+ΔPabd-2Qmax.Ultimately, 130 patients were eligible for the analysis. In PFS, ΔPabd (PabdQmax-initial Pabd was 11.81±13.04 cmH2O, and it was 0-9 cmH2O in 75 (57.7%, 10-19 cmH2O in 23 (17.7% and ≥20 cmH2O in 32 (24.6% patients. An endoscopically obstructed prostatic urethra in 92 patients was correctly determined in 47 patients (51.1% by the original BOOI versus 72 patients (78.3% based on the modified BOOI. Meanwhile, an "unobstructed" urethra according to the original BOOI was present in 11 patients (12.0%, whereas according to the modified BOOI, only 2 (2.1% would be labeled as "unobstructed". In receiver operating characteristic curves, the area under the curve was 0.906 using the modified BOOI number versus 0.849 in the original BOOI (p<0.05.The change in abdominal pressure was correlated with endoscopically-proven obstruction. Our simple modification of the BOOI on the basis of this finding better predicted bladder outlet obstruction and, therefore, should be considered when evaluating BOO in patients with LUTS/BPH.

  6. An improved liquid film model to predict the CHF based on the influence of churn flow

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  7. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments.

    Reshmi, S K; Sudha, M L; Shashirekha, M N

    2017-12-15

    The aim of this study was to evaluate the starch digestibility and predicted glycemic index in breads incorporated with pomelo fruit (Citrus maxima) segments. Volume of the white and brown breads supplemented with pomelo fresh segments increased, while the crumb firmness decreased. Bread with 20% fresh and 5% dry pomelo segments were sensorily acceptable. Bioactive components such as phenolics, flavonoids, naringin and carotenoids were retained to a greater extent in bread containing dry pomelo segments. The pomelo incorporated bread had higher levels of resistant starch fractions (3.87-10.96%) with low predicted glycemic index (62.97-53.13%), despite their higher total starch (69.87-75.47%) content compared to control bread. Thus pomelo segments in the product formulations lowered the glycemic index probably by inhibiting carbohydrate hydrolyzing enzyme activity which could be attributed to naringin. Hence fortified bread prepared from pomelo fruit segment is recommended to gain nutritional value and to decrease the risk of diabetes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Screening for Sleep Apnoea in Mild Cognitive Impairment: The Utility of the Multivariable Apnoea Prediction Index

    Georgina Wilson

    2014-01-01

    Full Text Available Purpose. Mild cognitive impairment (MCI is considered an “at risk” state for dementia and efforts are needed to target modifiable risk factors, of which Obstructive sleep apnoea (OSA is one. This study aims to evaluate the predictive utility of the multivariate apnoea prediction index (MAPI, a patient self-report survey, to assess OSA in MCI. Methods. Thirty-seven participants with MCI and 37 age-matched controls completed the MAPI and underwent polysomnography (PSG. Correlations were used to compare the MAPI and PSG measures including oxygen desaturation index and apnoea-hypopnoea index (AHI. Receiver-operating characteristics (ROC curve analyses were performed using various cut-off scores for apnoea severity. Results. In controls, there was a significant moderate correlation between higher MAPI scores and more severe apnoea (AHI: r=0.47, P=0.017. However, this relationship was not significant in the MCI sample. ROC curve analysis indicated much lower area under the curve (AUC in the MCI sample compared to the controls across all AHI severity cut-off scores. Conclusions. In older people, the MAPI moderately correlates with AHI severity but only in those who are cognitively intact. Development of further screening tools is required in order to accurately screen for OSA in MCI.

  9. Relationship between depression with FEV1 percent predicted and BODE index in chronic obstructive pulmonary disease

    Gunawan, H.; Hanum, H.; Abidin, A.; Hanida, W.

    2018-03-01

    WHO reported more than 3 million people die from COPD in 2012 and are expected to rank third after cardiovascular and cancer diseases in the future. Recent studies reported the prevalence of depression in COPD patients was higher than in control group. So, it’s important for clinicians to understand the relationship of depression symptoms with clinical aspects of COPD. For determining the association of depression symptoms with lung function and BODE index in patients with stable COPD, a cross-sectional study was in 98 stable COPD outpatients from January to June 2017. Data were analyzed using Independent t-test, Mann-Whitney test, and Spearman’s rank correlation. COPD patients with depression had higher mMRC scores, and lower FEV1 percent predicted, and then 6-Minutes Walk Test compared to those without depression. There was a moderate strength of correlation (r=-0.43) between depression symptoms and FEV1 percent predicted, and strong correlation (r=0.614) between depression symptoms and BODE index. It indicates that BODE index is more accurate to describe symptoms of depression in COPD patients.

  10. Development of a risk index for the prediction of chronic post-surgical pain.

    Althaus, A; Hinrichs-Rocker, A; Chapman, R; Arránz Becker, O; Lefering, R; Simanski, C; Weber, F; Moser, K-H; Joppich, R; Trojan, S; Gutzeit, N; Neugebauer, E

    2012-07-01

    The incidence of chronic post-surgical pain (CPSP) after various common operations is 10% to 50%. Identification of patients at risk of developing chronic pain, and the management and prevention of CPSP remains inadequate. The aim of this study was to develop an easily applicable risk index for the detection of high-risk patients that takes into account the multifactorial aetiology of CPSP. A comprehensive item pool was derived from a systematic literature search. Items that turned out significant in bivariate analyses were then analysed multivariately, using logistic regression analyses. The items that yielded significant predictors in the multivariate analyses were compiled into an index. The cut-off score for a high risk of developing CPSP with an optimal trade-off between sensitivity and specificity was identified. The data of 150 patients who underwent different types of surgery were included in the analyses. Six months after surgery, 43.3% of the patients reported CPSP. Five predictors multivariately contributed to the prediction of CPSP: capacity overload, preoperative pain in the operating field, other chronic preoperative pain, post-surgical acute pain and co-morbid stress symptoms. These results suggest that several easily assessable preoperative and perioperative patient characteristics can predict a patient's risk of developing CPSP. The risk index may help caregivers to tailor individual pain management and to assist high-risk patients with pain coping. © 2011 European Federation of International Association for the Study of Pain Chapters.

  11. Pressure-Flow During Exercise Catheterization Predicts Survival in Pulmonary Hypertension.

    Hasler, Elisabeth D; Müller-Mottet, Séverine; Furian, Michael; Saxer, Stéphanie; Huber, Lars C; Maggiorini, Marco; Speich, Rudolf; Bloch, Konrad E; Ulrich, Silvia

    2016-07-01

    Pulmonary hypertension manifests with impaired exercise capacity. Our aim was to investigate whether the mean pulmonary arterial pressure to cardiac output relationship (mPAP/CO) predicts transplant-free survival in patients with pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Hemodynamic data according to right heart catheterization in patients with PAH and CTEPH at rest and during supine incremental cycle exercise were analyzed. Transplant-free survival and predictive value of hemodynamics were assessed by using Kaplan-Meier and Cox regression analyses. Seventy patients (43 female; 54 with PAH, 16 with CTEPH; median (quartiles) age, 65 [50; 73] years; mPAP, 34 [29; 44] mm Hg; cardiac index, 2.8 [2.3; 3.5] [L/min]/m(2)) were followed up for 610 (251; 1256) days. Survival at 1, 3, 5, and 7 years was 89%, 81%, 71%, and 59%. Age, World Health Organization-functional class, 6-min walk test, and mixed-venous oxygen saturation (but not resting hemodynamics) predicted transplant-free survival. Maximal workload (hazard ratio [HR], 0.94 [95% CI, 0.89-0.99]; P = .027), peak cardiac index (HR, 0.51 [95% CI, 0.27-0.95]; P = .034), change in cardiac index, 0.25 [95% CI, 0.06-0.94]; P = .040), and mPAP/CO (HR, 1.02 [95% CI, 1.01-1.03]; P = .003) during exercise predicted survival. Values for mPAP/CO predicted 3-year transplant-free survival with an area under the curve of 0.802 (95% CI, 0.66-0.95; P = .004). In this collective of patients with PAH or CTEPH, the pressure-flow relationship during exercise predicted transplant-free survival and correlated with established markers of disease severity and outcome. Right heart catheterization during exercise may provide important complementary prognostic information in the management of pulmonary hypertension. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  12. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  13. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun

    2016-01-01

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  14. The use of the cardiopulmonary flow index to detect cardiac defects in man and animal

    Cilliers, G.D.

    1982-01-01

    The efficiency of the cardiopulmonary flow index (CPFI) to detect cardiac defects and to evaluate therapy in man and animal is tested. The CPFI seems to be sensitive enough to evaluate vasodilator and inotropic therapy during cardiac failure with 'gousiekte' sheep. Pulmonary emboli in sheep is induced by injecting coagulated blood into the pulmonary circulation. These pulmonary emboli caused a decrease in the CPFI. CPFI recordings were made on patients, before and after aorta- and mitralvalve replacements. The CPFI is sensitive enough to detect the valve inefficiency and also to detect the improvement in the pump efficiency of the heart after the double valve replacement. The results obtained prove that the CPFI could have a proper place in modern cardiology to evaluate therapy (clinical and surgical) and also to distinguish between cardiac defects and pulmonary emboli

  15. PIV study of flow through porous structure using refractive index matching

    Häfeli, Richard; Altheimer, Marco; Butscher, Denis; Rudolf von Rohr, Philipp

    2014-05-01

    An aqueous solution of sodium iodide and zinc iodide is proposed as a fluid that matches the refractive index of a solid manufactured by rapid prototyping. This enabled optical measurements in single-phase flow through porous structures. Experiments were also done with an organic index-matching fluid (anisole) in porous structures of different dimensions. To compare experiments with different viscosities and dimensions, we employed Reynolds similarity to deduce the scaling laws. One of the target quantities of our investigation was the dissipation rate of turbulent kinetic energy. Different models for the dissipation rate estimation were evaluated by comparing isotropy ratios. As in many other studies also, our experiments were not capable of resolving the velocity field down to the Kolmogorov length scale, and therefore, the dissipation rate has to be considered as underestimated. This is visible in experiments of different relative resolutions. However, being near the Kolmogorov scale allows estimating a reproducible, yet underestimated spatial distribution of dissipation rate inside the porous structure. Based on these results, the model was used to estimate the turbulent diffusivity. Comparing it to the dispersion coefficient obtained in the same porous structure, we conclude that even at the turbulent diffusivity makes up only a small part of mass transfer in axial direction. The main part is therefore attributed to Taylor dispersion.

  16. A simplified donor risk index for predicting outcome after deceased donor kidney transplantation.

    Watson, Christopher J E; Johnson, Rachel J; Birch, Rhiannon; Collett, Dave; Bradley, J Andrew

    2012-02-15

    We sought to determine the deceased donor factors associated with outcome after kidney transplantation and to develop a clinically applicable Kidney Donor Risk Index. Data from the UK Transplant Registry on 7620 adult recipients of adult deceased donor kidney transplants between 2000 and 2007 inclusive were analyzed. Donor factors potentially influencing transplant outcome were investigated using Cox regression, adjusting for significant recipient and transplant factors. A United Kingdom Kidney Donor Risk Index was derived from the model and validated. Donor age was the most significant factor predicting poor transplant outcome (hazard ratio for 18-39 and 60+ years relative to 40-59 years was 0.78 and 1.49, respectively, Pinformed consent.

  17. A Smart Soft Sensor Predicting Feedwater Flow Rate

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  18. Predicting changes in flow category in patients with severe aortic stenosis and preserved left ventricular ejection fraction on medical therapy.

    Ngiam, Jinghao Nicholas; Kuntjoro, Ivandito; Tan, Benjamin Y Q; Sim, Hui-Wen; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong

    2017-11-01

    Controversy surrounds the prognosis and management of patients with paradoxical low-flow severe aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF). It was not certain if patients in a particular flow category remained in the same category as disease progressed. We investigated whether there were switches in categories and if so, their predictors. Consecutive subjects (n = 203) with isolated severe AS and paired echocardiography (>180 days apart) were studied. They were divided into 4 groups, based on their flow categories and if they progressed on subsequent echocardiography to switch or remain in the same flow category. Univariate analyses of clinical and echocardiographic parameters identified predictors of these changes in flow category. One hundred eighteen were normal flow (SVI ≥ 35 mL/m 2 ), while 85 were low flow on index echocardiography. In the patients with normal flow, 33% switched to low flow. This was associated with higher valvuloarterial impedance (Zva, P 4.77 mm Hg/mL/m 2 , AUC = 0.81 [95% CI:0.75-0.87, P < .001]). In patients with low flow, 25% switched to normal flow, which was associated with lower Zva and higher SAC and the switch was predicted by a higher initial mean transaortic pressure gradient. A significant number of patients switched flow categories in severe AS with preserved LVEF on subsequent echocardiography. Changes in flow were reflected by respective changes in Zva and SAC. Identifying echocardiographic predictors of a switch in category may guide prognostication and management of such patients. © 2017, Wiley Periodicals, Inc.

  19. Prediction of pressure drop and CCFL breakdown in countercurrent two-phase flow

    Ostrogorsky, A.G.; Gay, R.R.; Lahey, R.T. Jr.

    1983-01-01

    A steady-state analytical has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow surface dependent and allow for the existence of either smooth or way liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly

  20. Interlaboratory assessment of mitotic index by flow cytometry confirms superior reproducibility relative to microscopic scoring.

    Roberts, D J; Spellman, R A; Sanok, K; Chen, H; Chan, M; Yurt, P; Thakur, A K; DeVito, G L; Murli, H; Stankowski, L F

    2012-05-01

    A flow cytometric procedure for determining mitotic index (MI) as part of the metaphase chromosome aberrations assay, developed and utilized routinely at Pfizer as part of their standard assay design, has been adopted successfully by Covance laboratories. This method, using antibodies against phosphorylated histone tails (H3PS10) and nucleic acid stain, has been evaluated by the two independent test sites and compared to manual scoring. Primary human lymphocytes were treated with cyclophosphamide, mitomycin C, benzo(a)pyrene, and etoposide at concentrations inducing dose-dependent cytotoxicity. Deming regression analysis indicates that the results generated via flow cytometry (FCM) were more consistent between sites than those generated via microscopy. Further analysis using the Bland-Altman modification of the Tukey mean difference method supports this finding, as the standard deviations (SDs) of differences in MI generated by FCM were less than half of those generated manually. Decreases in scoring variability owing to the objective nature of FCM, and the greater number of cells analyzed, make FCM a superior method for MI determination. In addition, the FCM method has proven to be transferable and easily integrated into standard genetic toxicology laboratory operations. Copyright © 2012 Wiley Periodicals, Inc.

  1. Predicting the Agglomeration of Cohesive Particles in a Gas-Solid Flow and its Effect on the Solids Flow

    Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine

    2017-11-01

    In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.

  2. Flow Field and Acoustic Predictions for Three-Stream Jets

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  3. Radiotracer transit measurements as an index of regional cerebral blood flow. Pt. 1. Methodological and clinical results in chronic alcoholics cortical blood flow

    Dobrzanski, T.

    1975-01-01

    The numerical mean values of the cerebral radiorheographic index in healthy control subjects and in patients with cerebrovascular disease were not significantly different from the values of regional cerebral blood flow reported, respectively, by other authors using a modification of the Xe-133 method. In the group of chronic alcoholics there was a significant correlation between the duration of alcoholism and certain numerical values of the cerebral radiorheographic index. (author)

  4. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.

    Nazar Zaki

    Full Text Available Transmembrane helix (TMH topology prediction is becoming a focal problem in bioinformatics because the structure of TM proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments. The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences. The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865, respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in favor of our proposed method.The datasets, software together with supplementary materials are available at: http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm.

  5. Pre-operative Tei Index does not predict left ventricular function immediately after mitral valve repair

    Chirojit Mukherjee

    2012-01-01

    Full Text Available Echocardiographic assessment of systolic left ventricular (LV function in patients with severe mitral regurgitation (MR undergoing mitral valve (MV repair can be challenging because the measurement of ejection fraction (EF or fractional area change (FAC in pathological states is of questionable value. The aim of our study was to evaluate the usefulness of the pre-operative Tei Index in predicting left ventricular EF or FAC immediately after MV repair. One hundred and thirty patients undergoing MV repair with sinus rhythm pre- and post-operatively were enrolled in this prospective study. Twenty-six patients were excluded due to absence of sinus rhythm post-operatively. Standard transesophageal examination(IE 33,Philips,Netherlands was performed before and after cardiopulmonary bypass according to the guidelines of the ASE/SCA. FAC was determined in the transgastric midpapillary short-axis view. LV EF was measured in the midesophageal four- and two-chamber view. For calculation of the Tei Index, the deep transgastric and the midesophageal four-chamber view were used. Statistical analysis was performed with SPSS 17.0. values are expressed as mean with standard deviation. LV FAC and EF decreased significantly after MV repair (FAC: 56±12% vs. 50±14%, P<0.001; EF: 58±11 vs. 50±12Έ P<0.001. The Tei Index decreased from 0.66±0.23 before MV repair to 0.41±0.19 afterwards (P<0.001. No relationship between pre-operative Tei Index and post-operative FAC or post-operative EF were found (FAC: r=−0.061, P=0.554; EF: r=−0.29, P=0.771. Conclusion: Pre-operative Tei Index is not a good predictor for post-operative FAC and EF in patients undergoing MV repair.

  6. The Predictive Value of the Foot Posture Index on Dynamic Function

    Mølgaard, Carsten Møller; Olesen Gammelgaard, Christian; Nielsen, R. G.

    2008-01-01

    Keenan et. al. identified the six-item version of the Foot Posture Index (FPI) as a valid, simple and clinically useful tool. The model combines measures of the standing foot posture in multiple planes and anatomical segments. It provides an alternative to existing static clinical measures when...... dynamic measures are not feasible. Redmond et. al. found the model able to predict 41% of the variation in the complex rotation of the ankle joint, representing inversion/eversion, during midstance of walking. To our knowledge no studies have been published on the relationship between FPI and the movement...

  7. Predictive model for the heat capacity of ionic liquids using the mass connectivity index

    Valderrama, Jose O.; Martinez, Gwendolyn; Rojas, Roberto E.

    2011-01-01

    A simple and accurate model to predict the heat capacity of ionic liquids is presented. The proposed model considers variables readily available for ionic liquids and that have important effect on heat capacity, according to the literature information. Additionally a recently defined structural parameter known as mass connectivity index is incorporated into the model. A set of 602 heat capacity data for 146 ionic liquids have been used in the study. The results were compared with experimental data and with values reported by other available estimation methods. Results show that the new simple correlation gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

  8. Advanced 2-dimensional quantitative coronary angiographic analysis for prediction of fractional flow reserve in intermediate coronary stenoses.

    Opolski, Maksymilian P; Pregowski, Jerzy; Kruk, Mariusz; Kepka, Cezary; Staruch, Adam D; Witkowski, Adam

    2014-07-01

    The widespread clinical application of coronary computed tomography angiography (CCTA) has resulted in increased referral patterns of patients with intermediate coronary stenoses to invasive coronary angiography. We evaluated the application of advanced quantitative coronary angiography (A-QCA) for predicting fractional flow reserve (FFR) in intermediate coronary lesions detected on CCTA. Fifty-six patients with 66 single intermediate coronary lesions (≥ 50% to 80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. A-QCA including calculation of the Poiseuille-based index defined as the ratio of lesion length to the fourth power of the minimal lumen diameter (MLD) was performed. Significant stenosis was defined as FFR ≤ 0.80. The mean FFR was 0.86 ± 0.09, and 18 lesions (27%) were functionally significant. FFR correlated with lesion length (R=-0.303, P=0.013), MLD (R=0.527, P44%, and >69%, respectively (maximum negative predictive value of 94% for MLA, maximum positive predictive value of 58% for diameter stenosis). The Poiseuille-based index was the most accurate (C statistic 0.86, sensitivity 100%, specificity 71%, positive predictive value 56%, and negative predictive value 100%) predictor of FFR ≤ 0.80, but showed the lowest interobserver agreement (intraclass correlation coefficient 0.37). A-QCA might be used to rule out significant ischemia in intermediate stenoses detected by CCTA. The diagnostic application of the Poiseuille-based angiographic index is precluded by its high interobserver variability.

  9. Prediction of flow induced inhomogeneities in self compacting concrete

    Skocek, Jan; Švec, Oldřich; Geiker, Mette Rica

    2011-01-01

    A model for simulation of flow of suspension of a non-Newtonian fluid and particles of arbitrary shape is briefly introduced and demonstrated on examples of flow of self compacting concrete. The model is based on the lattice Boltzmann method for flow, the immersed boundary method with direct...

  10. Idiopathic Pulmonary Fibrosis: Gender-Age-Physiology Index Stage for Predicting Future Lung Function Decline.

    Salisbury, Margaret L; Xia, Meng; Zhou, Yueren; Murray, Susan; Tayob, Nabihah; Brown, Kevin K; Wells, Athol U; Schmidt, Shelley L; Martinez, Fernando J; Flaherty, Kevin R

    2016-02-01

    Idiopathic pulmonary fibrosis is a progressive lung disease with variable course. The Gender-Age-Physiology (GAP) Index and staging system uses clinical variables to stage mortality risk. It is unknown whether clinical staging predicts future decline in pulmonary function. We assessed whether the GAP stage predicts future pulmonary function decline and whether interval pulmonary function change predicts mortality after accounting for stage. Patients with idiopathic pulmonary fibrosis (N = 657) were identified retrospectively at three tertiary referral centers, and baseline GAP stages were assessed. Mixed models were used to describe average trajectories of FVC and diffusing capacity of the lung for carbon monoxide (Dlco). Multivariable Cox proportional hazards models were used to assess whether declines in pulmonary function ≥ 10% in 6 months predict mortality after accounting for GAP stage. Over a 2-year period, GAP stage was not associated with differences in yearly lung function decline. After accounting for stage, a 10% decrease in FVC or Dlco over 6 months independently predicted death or transplantation (FVC hazard ratio, 1.37; Dlco hazard ratio, 1.30; both, P ≤ .03). Patients with GAP stage 2 with declining pulmonary function experienced a survival profile similar to patients with GAP stage 3, with 1-year event-free survival of 59.3% (95% CI, 49.4-67.8) vs 56.9% (95% CI, 42.2-69.1). Baseline GAP stage predicted death or lung transplantation but not the rate of future pulmonary function decline. After accounting for GAP stage, a decline of ≥ 10% over 6 months independently predicted death or lung transplantation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Prediction of two-phase choked-flow through safety valves

    Arnulfo, G; Bertani, C; De Salve, M

    2014-01-01

    Different models of two-phase choked flow through safety valves are applied in order to evaluate their capabilities of prediction in different thermal-hydraulic conditions. Experimental data available in the literature for two-phase fluid and subcooled liquid upstream the safety valve have been compared with the models predictions. Both flashing flows and non-flashing flows of liquid and incondensable gases have been considered. The present paper shows that for flashing flows good predictions are obtained by using the two-phase valve discharge coefficient defined by Lenzing and multiplying it by the critical flow rate in an ideal nozzle evaluated by either Omega Method or the Homogeneous Non-equilibrium Direct Integration. In case of non-flashing flows of water and air, Leung/Darby formulation of the two-phase valve discharge coefficient together with the Omega Method is more suitable to the prediction of flow rate.

  12. A study on effects of cash flow patterns and auditors’ opinions in predicting financial distress

    Fatemeh Namvar

    2013-07-01

    Full Text Available Bankruptcy has been one of the most important issues among investors in stock market and there are literally different techniques for predicting bankruptcy. In this paper, we study on effects of cash flow patterns and auditors’ opinions in predicting financial distress on some 80 selected firms traded on Tehran Stock Exchange over the period 2005-2011. In this study, the combination of cash flow patterns represent firm’s resource allocations and operational capabilities interacted with their strategy choices. In additions, predictions about each individual cash flow components, operational, investment, financial, are derived from economic theory, which forms a basis for the life proxy. We use cash flow patterns in the decline stage and compare the results with auditors’ opinions. The results indicate that cash flow patterns could predict financial distress companies in Iran. In addition, the effective cash flow patterns in predicting financial distress is more than auditors’ feedbacks.

  13. Development of a model to predict flow oscillations in low-flow sodium boiling

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed

  14. Development and validation of an ICD-10-based disability predictive index for patients admitted to hospitals with trauma.

    Wada, Tomoki; Yasunaga, Hideo; Yamana, Hayato; Matsui, Hiroki; Fushimi, Kiyohide; Morimura, Naoto

    2018-03-01

    There was no established disability predictive measurement for patients with trauma that could be used in administrative claims databases. The aim of the present study was to develop and validate a diagnosis-based disability predictive index for severe physical disability at discharge using the International Classification of Diseases, 10th revision (ICD-10) coding. This retrospective observational study used the Diagnosis Procedure Combination database in Japan. Patients who were admitted to hospitals with trauma and discharged alive from 01 April 2010 to 31 March 2015 were included. Pediatric patients under 15 years old were excluded. Data for patients admitted to hospitals from 01 April 2010 to 31 March 2013 was used for development of a disability predictive index (derivation cohort), while data for patients admitted to hospitals from 01 April 2013 to 31 March 2015 was used for the internal validation (validation cohort). The outcome of interest was severe physical disability defined as the Barthel Index score of predictive index for each patient was defined as the sum of the scores. The predictive performance of the index was validated using the receiver operating characteristic curve analysis in the validation cohort. The derivation cohort included 1,475,158 patients, while the validation cohort included 939,659 patients. Of the 939,659 patients, 235,382 (25.0%) were discharged with severe physical disability. The c-statistics of the disability predictive index was 0.795 (95% confidence interval [CI] 0.794-0.795), while that of a model using the disability predictive index and patient baseline characteristics was 0.856 (95% CI 0.855-0.857). Severe physical disability at discharge may be well predicted with patient age, sex, CCI score, and the diagnosis-based disability predictive index in patients admitted to hospitals with trauma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Prediction of postpercutaneous coronary intervention myocardial infarction: insights from intravascular imaging, coronary flow, and biomarker evaluation.

    Hoole, Stephen P; Hernández-Sánchez, Jules; Brown, Adam J; Giblett, Joel P; Bennett, Martin R; West, Nick E J

    2018-05-01

    Percutaneous coronary intervention-induced myocardial infarction (PMI) has prognostic significance. Identifying patients at high risk for PMI is desirable as it may alter strategy and facilitate early preventative therapy. We therefore sought to establish whether preprocedural demographic, interventional (plaque characteristics and coronary microcirculatory function), and inflammatory, endothelial damage, and platelet-derived biomarker data could predict the risk of PMI. We performed target vessel pressure wire to assess fractional flow reserve, index of microcirculatory resistance (IMR) and coronary flow reserve, plaque characterization by virtual histology intravascular ultrasound, and assayed peripheral biomarkers before uncomplicated PCI in 88 patients. We then analyzed post-PCI cardiac troponin level to adjudicate PMI based on the third universal definition of myocardial infarction. Overall incidence of PMI was 27%. Women [10/15 (66%) vs. 14/73 (19%), PPMI. Preprocedural coronary flow reserve was lower in individuals with a subsequent PMI (1.8±1.2 vs. 2.1±1.3. P=0.03), and patients with higher pre-PCI IMR were more likely to sustain PMI [IMR>22: 10/23 (44%) vs. ≤22: 14/65 (22%), P=0.04], although neither was predictive after multivariate analysis. Plaque characterization by virtual histology intravascular ultrasound did not discriminate those at risk of PMI. However, peripheral venous interleukin (IL)-18 and IL-8 levels were independently negatively and positively associated with PMI, respectively. Women and those with low BMI, particularly when associated with high IL-8 and low IL-18 levels, appear to be at increased risk of PMI.

  16. The predictive value of the baseline Oswestry Disability Index in lumbar disc arthroplasty.

    Deutsch, Harel

    2010-06-01

    The goal of the study was to determine patient factors predictive of good outcome after lumbar disc arthroplasty. Specifically, the paper examines the relationship of the preoperative Oswestry Disability Index (ODI) to patient outcome at 1 year. The study is a retrospective review of 20 patients undergoing a 1-level lumbar disc arthroplasty at the author's institution between 2004 and 2008. All data were collected prospectively. Data included the ODI, visual analog scale scores, and patient demographics. All patients underwent a 1-level disc arthroplasty at L4-5 or L5-S1. The patients were divided into 2 groups based on their baseline ODI. Patients with an ODI between 38 and 59 demonstrated better outcomes with lumbar disc arthroplasty. Only 1 (20%) of 5 patients with a baseline ODI higher than 60 reported a good outcome. In contrast, 13 (87%) of 15 patients with an ODI between 38 and 59 showed a good outcome (p = 0.03). The negative predictive value of using ODI > 60 is 60% in patients who are determined to be candidates for lumbar arthroplasty. Lumbar arthroplasty is very effective in some patients. Other patients do not improve after surgery. The baseline ODI results are predictive of outcome in patients selected for lumbar disc arthroplasty. A baseline ODI > 60 is predictive of poor outcome. A high ODI may be indicative of psychosocial overlay.

  17. Consciousness Indexing and Outcome Prediction with Resting-State EEG in Severe Disorders of Consciousness.

    Stefan, Sabina; Schorr, Barbara; Lopez-Rolon, Alex; Kolassa, Iris-Tatjana; Shock, Jonathan P; Rosenfelder, Martin; Heck, Suzette; Bender, Andreas

    2018-04-17

    We applied the following methods to resting-state EEG data from patients with disorders of consciousness (DOC) for consciousness indexing and outcome prediction: microstates, entropy (i.e. approximate, permutation), power in alpha and delta frequency bands, and connectivity (i.e. weighted symbolic mutual information, symbolic transfer entropy, complex network analysis). Patients with unresponsive wakefulness syndrome (UWS) and patients in a minimally conscious state (MCS) were classified into these two categories by fitting and testing a generalised linear model. We aimed subsequently to develop an automated system for outcome prediction in severe DOC by selecting an optimal subset of features using sequential floating forward selection (SFFS). The two outcome categories were defined as UWS or dead, and MCS or emerged from MCS. Percentage of time spent in microstate D in the alpha frequency band performed best at distinguishing MCS from UWS patients. The average clustering coefficient obtained from thresholding beta coherence performed best at predicting outcome. The optimal subset of features selected with SFFS consisted of the frequency of microstate A in the 2-20 Hz frequency band, path length obtained from thresholding alpha coherence, and average path length obtained from thresholding alpha coherence. Combining these features seemed to afford high prediction power. Python and MATLAB toolboxes for the above calculations are freely available under the GNU public license for non-commercial use ( https://qeeg.wordpress.com ).

  18. Prediction of immediate postoperative pain using the analgesia/nociception index: a prospective observational study.

    Boselli, E; Bouvet, L; Bégou, G; Dabouz, R; Davidson, J; Deloste, J-Y; Rahali, N; Zadam, A; Allaouchiche, B

    2014-04-01

    The analgesia/nociception index (ANI) is derived from heart rate variability, ranging from 0 (maximal nociception) to 100 (maximal analgesia), to reflect the analgesia/nociception balance during general anaesthesia. This should be correlated with immediate postoperative pain in the post-anaesthesia care unit (PACU). The aim of this study was to evaluate the performance of ANI measured at arousal from general anaesthesia to predict immediate postoperative pain on arrival in PACU. Two hundred patients undergoing ear, nose, and throat or lower limb orthopaedic surgery with general anaesthesia using an inhalational agent and remifentanil were included in this prospective observational study. The ANI was measured immediately before tracheal extubation and pain intensity was assessed within 10 min of arrival in PACU using a 0-10 numerical rating scale (NRS). The relationship between ANI and NRS was assessed using linear regression. A receiver-operating characteristic (ROC) curve was used to evaluate the performance of ANI to predict NRS>3. A negative linear relationship was observed between ANI immediately before extubation and NRS on arrival in PACU. Using a threshold of 3 were both 86% with 92% negative predictive value, corresponding to an area under the ROC curve of 0.89. The measurement of ANI immediately before extubation after inhalation-remifentanil anaesthesia was significantly associated with pain intensity on arrival in PACU. The performance of ANI for the prediction of immediate postoperative pain is good and may assist physicians in optimizing acute pain management. ClinicalTrials.gov NCT01796249.

  19. Evaluation of renal resistive index in cirrhotic patients for predicting the hepatirenal syndrome

    Baek, Seung Yon; Kim, Hyae young; Yi, Sun Young [Ewha WoMans Univ. Mokdong Hospital, Seoul (Korea, Republic of)

    1996-04-01

    To evaluate the usefulness of renal resistive index(RI) in patients with liver cirrhosis as an indicator for predicting hepatorenal syndrome. Renal RIs of thirty cirrhotic patients were analyzed using the gray-scale and Doppler ultrasonograms. As a control group, eight normal subjects were included. Renal RIs were measured at three sites of interlobar or arcuate arteries of both kidneys. The patients were divided into three groups (A, B, or C) according to the Child-Turcotte-Pugh classification and their serum BUN and creatinine levels were compared. We determined whether RIs of normal controls differed from those of cirrhotic patients or whether RIs of cirrhotic patients correlated with the Child-Turcotte-Pugh classification or BUN and creatinine levels. Mean RIs(0.63 {+-}0.33) of normal subjects were statistically different from those(0.67 {+-} 0.05) of cirrhotic patients(P=0.009). RIs of group A(n=6), B(n=9) and C(n=15) were 0.65 {+-} 0.03, 0.65 {+-} 0.04 and 0.70 {+-} 0.04, respectively. The ANOVA test revealed statistically significant differences between the three groups(F ratio=4.472, P=0.021). RIs did not correlate with BUN or creatinine levels. RI could be used as an index for predicting hepatorenal syndrome before the renal function becomes impaired.

  20. Evaluation of renal resistive index in cirrhotic patients for predicting the hepatirenal syndrome

    Baek, Seung Yon; Kim, Hyae young; Yi, Sun Young

    1996-01-01

    To evaluate the usefulness of renal resistive index(RI) in patients with liver cirrhosis as an indicator for predicting hepatorenal syndrome. Renal RIs of thirty cirrhotic patients were analyzed using the gray-scale and Doppler ultrasonograms. As a control group, eight normal subjects were included. Renal RIs were measured at three sites of interlobar or arcuate arteries of both kidneys. The patients were divided into three groups (A, B, or C) according to the Child-Turcotte-Pugh classification and their serum BUN and creatinine levels were compared. We determined whether RIs of normal controls differed from those of cirrhotic patients or whether RIs of cirrhotic patients correlated with the Child-Turcotte-Pugh classification or BUN and creatinine levels. Mean RIs(0.63 ±0.33) of normal subjects were statistically different from those(0.67 ± 0.05) of cirrhotic patients(P=0.009). RIs of group A(n=6), B(n=9) and C(n=15) were 0.65 ± 0.03, 0.65 ± 0.04 and 0.70 ± 0.04, respectively. The ANOVA test revealed statistically significant differences between the three groups(F ratio=4.472, P=0.021). RIs did not correlate with BUN or creatinine levels. RI could be used as an index for predicting hepatorenal syndrome before the renal function becomes impaired

  1. Development of the statistical ARIMA model: an application for predicting the upcoming of MJO index

    Hermawan, Eddy; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje; Gede Nyoman Mindra Jaya, I.; Berliana Sipayung, Sinta; Rustiana, Shailla

    2017-10-01

    This study is mainly concerned in development one of the most important equatorial atmospheric phenomena that we call as the Madden Julian Oscillation (MJO) which having strong impacts to the extreme rainfall anomalies over the Indonesian Maritime Continent (IMC). In this study, we focused to the big floods over Jakarta and surrounded area that suspecting caused by the impacts of MJO. We concentrated to develop the MJO index using the statistical model that we call as Box-Jenkis (ARIMA) ini 1996, 2002, and 2007, respectively. They are the RMM (Real Multivariate MJO) index as represented by RMM1 and RMM2, respectively. There are some steps to develop that model, starting from identification of data, estimated, determined model, before finally we applied that model for investigation some big floods that occurred at Jakarta in 1996, 2002, and 2007 respectively. We found the best of estimated model for the RMM1 and RMM2 prediction is ARIMA (2,1,2). Detailed steps how that model can be extracted and applying to predict the rainfall anomalies over Jakarta for 3 to 6 months later is discussed at this paper.

  2. Predictive validity of the Work Ability Index and its individual items in the general population.

    Lundin, Andreas; Leijon, Ola; Vaez, Marjan; Hallgren, Mats; Torgén, Margareta

    2017-06-01

    This study assesses the predictive ability of the full Work Ability Index (WAI) as well as its individual items in the general population. The Work, Health and Retirement Study (WHRS) is a stratified random national sample of 25-75-year-olds living in Sweden in 2000 that received a postal questionnaire ( n = 6637, response rate = 53%). Current and subsequent sickness absence was obtained from registers. The ability of the WAI to predict long-term sickness absence (LTSA; ⩾ 90 consecutive days) during a period of four years was analysed by logistic regression, from which the Area Under the Receiver Operating Characteristic curve (AUC) was computed. There were 313 incident LTSA cases among 1786 employed individuals. The full WAI had acceptable ability to predict LTSA during the 4-year follow-up (AUC = 0.79; 95% CI 0.76 to 0.82). Individual items were less stable in their predictive ability. However, three of the individual items: current work ability compared with lifetime best, estimated work impairment due to diseases, and number of diagnosed current diseases, exceeded AUC > 0.70. Excluding the WAI item on number of days on sickness absence did not result in an inferior predictive ability of the WAI. The full WAI has acceptable predictive validity, and is superior to its individual items. For public health surveys, three items may be suitable proxies of the full WAI; current work ability compared with lifetime best, estimated work impairment due to diseases, and number of current diseases diagnosed by a physician.

  3. Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe

    Joaquín Bedia

    2018-01-01

    Full Text Available Managers of wildfire-prone landscapes in the Euro-Mediterranean region would greatly benefit from fire weather predictions a few months in advance, and particularly from the reliable prediction of extreme fire seasons. However, in some cases model biases prevent from a direct application of these predictions in an operational context. Fire risk management requires precise knowledge of the likely consequences of climate on fire risk, and the interest for decision-makers is focused on multi-variable fire danger indices, calculated through the combination of different model output variables. In this paper we consider whether the skill in dynamical seasonal predictions of one of the most widely applied of such indices (the Canadian Fire Weather Index, FWI is sufficient to inform management decisions, and we examine various methodological aspects regarding the calibration of model outputs prior to its verification and operational applicability. We find that there is significant skill in predicting above average summer FWI in parts of SE Europe at 1 month lead time, but poor skill elsewhere. These results are largely linked to the predictability of relative humidity. Moreover, practical recommendations are given for the use of empirical quantile mapping in probabilistic seasonal FWI forecasts. Furthermore, we show how researchers, fire managers and other stakeholders can take advantage of a new open-source climate service in order to undertake all the necessary steps for data download, post-processing, analysis and verification in a straightforward and fully reproducible manner. Keywords: Climate impact indicators, Quantile mapping, Bias correction, System 4, Fire danger, Seasonal forecasting

  4. Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow

    DeMuth, S.F.; Watson, J.S.

    1985-01-01

    A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab

  5. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)

    Louis R. Iverson; Martin E. Dale; Charles T. Scott; Anantha Prasad; Anantha Prasad

    1997-01-01

    A geographic information system (GIS) approach was used in conjunction with forest-plot data to develop an integrated moisture index (IMI), which was then used to predict forest productivity (site index) and species composition for forests in Ohio. In this region, typical of eastern hardwoods across the Midwest and southern Appalachians, topographic aspect and position...

  6. Application of support vector regression (SVR) for stream flow prediction on the Amazon basin

    Du Toit, Melise

    2016-10-01

    Full Text Available regression technique is used in this study to analyse historical stream flow occurrences and predict stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of determination and root-mean-square error are used...

  7. On the prediction of condenser plate temperatures in a cross-flow condenser

    Ganzevles, F.L.A.; Geld, van der C.W.M.

    2002-01-01

    A prediction method is presented for the gas-sided plate temperatures at the inlet and at the outlet of a compact, cross-flow condenser. The method employs measured (or predicted) heat flow rates and temperatures of both coolant and gas, at inlet and outlet. The method is validated using infrared

  8. Prediction model for initial point of net vapor generation for low-flow boiling

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  9. A pilot study of the relationship between Doppler-estimated carotid and brachial artery flow and cardiac index.

    Weber, U; Glassford, N J; Eastwood, G M; Bellomo, R; Hilton, A K

    2015-10-01

    We measured carotid and brachial artery blood flow by Doppler ultrasound in 11 human volunteers, and related these to cardiac index and to each other. The median (IQR [range]) carotid arterial blood flow was 0.334 (0.223-0.381 [0.052-0.563]) l.min(-1) on the right and 0.315 (0.223-0.369 [0.061-0.690]) l.min(-1) on the left. The brachial arterial blood flow was 0.049 (0.033-0.062 [0.015-0.204]) l.min(-1) on the right and 0.039 (0.027-0.054 [0.011-0.116]) on the left. Cardiac index was 3.2 (2.8-3.5 [1.9-5.4]) l.min(-1) .m(-2) . There was a moderate to good correlation between right-and left-sided flows (brachial: ρ = 0.45; carotid: ρ = 0.567). Brachial and carotid flow had no or a negative correlation with cardiac index (right brachial: ρ = -0.145, left brachial: ρ = -0.349; right carotid: ρ = -0.376, left carotid: ρ = -0.285). In contrast to some previous studies, we found that Doppler-estimated peripheral arterial blood flows only show a weak correlation with cardiac index and cannot be used to provide non-invasive estimates of cardiac index in man. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  10. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    Guthrie, A.J.; Killeen, V.M.; Grosskopf, J.F.W.

    1991-01-01

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  11. Predicting the need for institutional care shortly after admission to rehabilitation: Rasch analysis and predictive validity of the BRASS Index.

    Panella, L; La Porta, F; Caselli, S; Marchisio, S; Tennant, A

    2012-09-01

    Effective discharge planning is increasingly recognised as a critical component of hospital-based Rehabilitation. The BRASS index is a risk screening tool for identification, shortly after hospital admission, of patients who are at risk of post-discharge problems. To evaluate the internal construct validity and reliability of the Blaylock Risk Assessment Screening Score (BRASS) within the rehabilitation setting. Observational prospective study. Rehabilitation ward of an Italian district hospital. One hundred and four consecutively admitted patients. Using classical psychometric methods and Rasch analysis (RA), the internal construct validity and reliability of the BRASS were examined. Also, external and predictive validity of the Rasch-modified BRASS (RMB) score were determined. Reliability of the original BRASS was low (Cronbach's alpha=0.595) and factor analyses showed that it was clearly multidimensional. A RA, based on a reduced 7-BRASS item set (RMB), satisfied model's expectations. Reliability was 0.777. The RMB scores strongly correlated with the original BRASS (rho=0.952; P28 days (RR=7.6, 95%CI=1.8-31.9). This study demonstrated that the original BRASS was multidimensional and unreliable. However, the RMB holds adequate internal construct validity and is sufficiently reliable as a predictor of discharge problems for group, but not individual use. The application of tools and methods (such as the BRASS Index) developed under the biomedical paradigm in a Physical and Rehabilitation Medicine setting may have limitations. Further research is needed to develop, within the rehabilitation setting, a valid measuring tool of risk of post-discharge problems at the individual level.

  12. Prediction of Lateral Ankle Sprains in Football Players Based on Clinical Tests and Body Mass Index.

    Gribble, Phillip A; Terada, Masafumi; Beard, Megan Q; Kosik, Kyle B; Lepley, Adam S; McCann, Ryan S; Pietrosimone, Brian G; Thomas, Abbey C

    2016-02-01

    The lateral ankle sprain (LAS) is the most common injury suffered in sports, especially in football. While suggested in some studies, a predictive role of clinical tests for LAS has not been established. To determine which clinical tests, focused on potentially modifiable factors of movement patterns and body mass index (BMI), could best demonstrate risk of LAS among high school and collegiate football players. Case-control study; Level of evidence, 3. A total of 539 high school and collegiate football players were evaluated during the preseason with the Star Excursion Balance Test (SEBT) and Functional Movement Screen as well as BMI. Results were compared between players who did and did not suffer an LAS during the season. Logistic regression analyses and calculated odds ratios were used to determine which measures predicted risk of LAS. The LAS group performed worse on the SEBT-anterior reaching direction (SEBT-ANT) and had higher BMI as compared with the noninjured group (P football players. BMI was also significantly higher in football players who sustained an LAS. Identifying clinical tools for successful LAS injury risk prediction will be a critical step toward the creation of effective prevention programs to reduce risk of sustaining an LAS during participation in football. © 2015 The Author(s).

  13. Role of Transition Zone Index in the Prediction of Clinical Benign Prostatic Hyperplasia

    Muhammet Güzelsoy

    2016-12-01

    Full Text Available Objective The objective of this study was to determine the role of the transition zone (TZ index (TZI in the prediction of clinical benign prostatic hyperplasia (BPH in patients who underwent transurethral prostatectomy (TUR-P and to analyze the correlation between the amount of resected tissue and TZ volume (TZV. Materials and Methods Twenty-six male clinical BPH patients with obstructive complaints and 17 male benign prostate enlargement (BPE patients without any complaints were included in the study. Both the groups were over the age of 50. Clinical BPH patients underwent complete TUR-P. Statistical analysis was done with SPSS. Sensitivity, specificity, positive and negative predictive values of TZI-as a method of assessing clinical BPH-were measured. Results There was a statistically significant difference in prostate volume, uroflowmetry patterns, prostate-specific antigen (PSA, International prostate symptom score (IPSS, TZV and TZI between the two groups. There was a correlation between TZV and the amount of resected tissue (r=0.97; p0.40 has a high level of sensitivity and specificity in the prediction of clinical BPH among patients who undergo TUR-P due to obstructive symptoms and reported as BPH. There is a strong correlation between the amount of resected tissue and TZV. TZI is a valuable tool in diagnosis, and TZV gives valuable information about the patient to the surgeon.

  14. MATHEMATICAL FRAMEWORK OF THE WELL PRODUCTIVITY INDEX FOR FAST FORCHHEIMER (NON-DARCY) FLOWS IN POROUS MEDIA

    AULISA, EUGENIO

    2009-08-01

    Motivated by the reservoir engineering concept of the well Productivity Index, we introduced and analyzed a functional, denoted as "diffusive capacity", for the solution of the initial-boundary value problem (IBVP) for a linear parabolic equation.21 This IBVP described laminar (linear) Darcy flow in porous media; the considered boundary conditions corresponded to different regimes of the well production. The diffusive capacities were then computed as steady state invariants of the solutions to the corresponding time-dependent boundary value problem. Here similar features for fast or turbulent nonlinear flows subjected to the Forchheimer equations are analyzed. It is shown that under some hydrodynamic and thermodynamic constraints, there exists a so-called pseudo steady state regime for the Forchheimer flows in porous media. In other words, under some assumptions there exists a steady state invariant over a certain class of solutions to the transient IBVP modeling the Forchheimer flow for slightly compressible fluid. This invariant is the diffusive capacity, which serves as the mathematical representation of the so-called well Productivity Index. The obtained results enable computation of the well Productivity Index by resolving a single steady state boundary value problem for a second-order quasilinear elliptic equation. Analytical and numerical studies highlight some new relations for the well Productivity Index in linear and nonlinear cases. The obtained analytical formulas can be potentially used for the numerical well block model as an analog of Piecemann. © 2009 World Scientific Publishing Company.

  15. Comparison between model-predicted tumor oxygenation dynamics and vascular-/flow-related Doppler indices.

    Belfatto, Antonella; Vidal Urbinati, Ailyn M; Ciardo, Delia; Franchi, Dorella; Cattani, Federica; Lazzari, Roberta; Jereczek-Fossa, Barbara A; Orecchia, Roberto; Baroni, Guido; Cerveri, Pietro

    2017-05-01

    two presented poor correlations. The latter patients were the ones featuring the smallest tumor reduction throughout the treatment, typical of hypoxic conditions. Moreover, the average oxygenation value predicted by the model was close to the average vascularization-flow index (average difference: 7%). The results suggest that the modeled relation between tumor evolution and oxygen dynamics was reasonable enough to provide realistic oxygenation curves in five cases (correlation greater than 50%) out of seven. In case of nonresponsive tumors, the model failed in predicting the oxygenation trend while succeeded in reproducing the average oxygenation value according to the mean vascularization-flow index. Despite the need for deeper investigations, the outcomes of the present work support the hypothesis that a simple macroscale model of tumor response to radiotherapy is able to predict the tumor oxygenation. The possibility of an objective and quantitative validation on imaging data discloses the possibility to translate them as decision support tools in clinical practice and to move a step forward in the treatment personalization. © 2017 American Association of Physicists in Medicine.

  16. Assessment of subchannel code ASSERT-PV for flow-distribution predictions

    Nava-Dominguez, A.; Rao, Y.F.; Waddington, G.M.

    2014-01-01

    Highlights: • Assessment of the subchannel code ASSERT-PV 3.2 for the prediction of flow distribution. • Open literature and in-house experimental data to quantify ASSERT-PV predictions. • Model changes assessed against vertical and horizontal flow experiments. • Improvement of flow-distribution predictions under CANDU-relevant conditions. - Abstract: This paper reports an assessment of the recently released subchannel code ASSERT-PV 3.2 for the prediction of flow-distribution in fuel bundles, including subchannel void fraction, quality and mass fluxes. Experimental data from open literature and from in-house tests are used to assess the flow-distribution models in ASSERT-PV 3.2. The prediction statistics using the recommended model set of ASSERT-PV 3.2 are compared to those from previous code versions. Separate-effects sensitivity studies are performed to quantify the contribution of each flow-distribution model change or enhancement to the improvement in flow-distribution prediction. The assessment demonstrates significant improvement in the prediction of flow-distribution in horizontal fuel channels containing CANDU bundles

  17. Assessment of subchannel code ASSERT-PV for flow-distribution predictions

    Nava-Dominguez, A., E-mail: navadoma@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca

    2014-08-15

    Highlights: • Assessment of the subchannel code ASSERT-PV 3.2 for the prediction of flow distribution. • Open literature and in-house experimental data to quantify ASSERT-PV predictions. • Model changes assessed against vertical and horizontal flow experiments. • Improvement of flow-distribution predictions under CANDU-relevant conditions. - Abstract: This paper reports an assessment of the recently released subchannel code ASSERT-PV 3.2 for the prediction of flow-distribution in fuel bundles, including subchannel void fraction, quality and mass fluxes. Experimental data from open literature and from in-house tests are used to assess the flow-distribution models in ASSERT-PV 3.2. The prediction statistics using the recommended model set of ASSERT-PV 3.2 are compared to those from previous code versions. Separate-effects sensitivity studies are performed to quantify the contribution of each flow-distribution model change or enhancement to the improvement in flow-distribution prediction. The assessment demonstrates significant improvement in the prediction of flow-distribution in horizontal fuel channels containing CANDU bundles.

  18. A New Approach for Accurate Prediction of Liquid Loading of Directional Gas Wells in Transition Flow or Turbulent Flow

    Ruiqing Ming

    2017-01-01

    Full Text Available Current common models for calculating continuous liquid-carrying critical gas velocity are established based on vertical wells and laminar flow without considering the influence of deviation angle and Reynolds number on liquid-carrying. With the increase of the directional well in transition flow or turbulent flow, the current common models cannot accurately predict the critical gas velocity of these wells. So we built a new model to predict continuous liquid-carrying critical gas velocity for directional well in transition flow or turbulent flow. It is shown from sensitivity analysis that the correction coefficient is mainly influenced by Reynolds number and deviation angle. With the increase of Reynolds number, the critical liquid-carrying gas velocity increases first and then decreases. And with the increase of deviation angle, the critical liquid-carrying gas velocity gradually decreases. It is indicated from the case calculation analysis that the calculation error of this new model is less than 10%, where accuracy is much higher than those of current common models. It is demonstrated that the continuous liquid-carrying critical gas velocity of directional well in transition flow or turbulent flow can be predicted accurately by using this new model.

  19. Compressible turbulent flows: aspects of prediction and analysis

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  20. Predictive value of European Scleroderma Group Activity Index in an early scleroderma cohort.

    Nevskaya, Tatiana; Baron, Murray; Pope, Janet E

    2017-07-01

    To estimate the effect of disease activity, as measured by the European Scleroderma Research Group Activity Index (EScSG-AI), on the risk of subsequent organ damage in a large systemic sclerosis (SSc) cohort. Of 421 SSc patients from the Canadian Scleroderma Research Group database with disease duration of ⩽ 3 years, 197 who had no evidence of end-stage organ damage initially and available 3 year follow-up were included. Disease activity was assessed by the EScSG-AI with two variability measures: the adjusted mean EScSG-AI (the area under the curve of the EScSG-AI over the observation period) and persistently active disease/flare. Outcomes were based on the Medsger severity scale and included accrual of a new severity score (Δ ⩾ 1) overall and within organ systems or reaching a significant level of deterioration in health status. After adjustment for covariates, the adjusted mean EScSG-AI was the most consistent predictor of risk across the study outcomes over 3 years in dcSSc: disease progression defined as Δ ⩾ 1 in any major internal organ, significant decline in forced vital capacity and diffusing capacity of carbon monoxide, severity of visceral disease and HAQ Disability Index worsening. In multivariate analysis, progression of lung disease was predicted solely by adjusted mean EScSG-AI, while the severity of lung disease was predicted the adjusted mean EScSG-AI, older age, modified Rodnan skin score (mRSS) and initial severity. The EScSG-AI was associated with patient- and physician-assessed measures of health status and overpowered the mRSS in predicting disease outcomes. Disease activity burden quantified with the adjusted mean EScSG-AI predicted the risk of deterioration in health status and severe organ involvement in dcSSc. The EScSG-AI is more responsive when done repeatedly and averaged. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email

  1. In vitro starch digestibility and predicted glycemic index of microwaved and conventionally baked pound cake.

    Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo

    2007-09-01

    The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.

  2. Age-adjusted Charlson Comorbidity Index predicts prognosis of laryngopharyngeal cancer treated with radiation therapy.

    Takemura, Kazuya; Takenaka, Yukinori; Ashida, Naoki; Shimizu, Kotaro; Oya, Ryohei; Kitamura, Takahiro; Yamamoto, Yoshifumi; Uno, Atsuhiko

    2017-12-01

    To examine the ability of comorbidity indices to predict the prognosis of laryngopharyngeal cancer and their association with treatment modalities. This retrospective study included 198 patients with laryngeal, hypopharyngeal, and oropharyngeal cancers. The effect of comorbidity indices on overall survival between surgery and (chemo)-radiation therapy ((C)RT) groups was analyzed. The cumulative incidence rates for cancer mortality and other mortalities according to the age-adjusted Charlson Comorbidity Index (ACCI) and Charlson Comorbidity Index (CCI) were compared. Univariate survival analyses showed a significant association between the ACCI and overall survival in the (C)RT group, but not in the surgery group. The association between the CCI and overall survival was not significant in either group. In multivariate analyses, a high ACCI score was an independent prognostic factor in the (C)RT group (HR 2.89, 95% confidence interval (CI) 1.28-6.49), but not in the surgery group (HR 1.39, 95%CI 0.27-5.43). The higher ACCI group had increased mortality from other causes compared with the lower ACCI group (5-year cumulative incidence, 8.5% and 17.8%, respectively, p = .003). The ACCI was a better prognostic factor than the CCI. Surgery may be more beneficial than radiation for patients with a high ACCI.

  3. Development of a Summarized Health Index (SHI for use in predicting survival in sea turtles.

    Tsung-Hsien Li

    Full Text Available Veterinary care plays an influential role in sea turtle rehabilitation, especially in endangered species. Physiological characteristics, hematological and plasma biochemistry profiles, are useful references for clinical management in animals, especially when animals are during the convalescence period. In this study, these factors associated with sea turtle surviving were analyzed. The blood samples were collected when sea turtles remained alive, and then animals were followed up for surviving status. The results indicated that significantly negative correlation was found between buoyancy disorders (BD and sea turtle surviving (p < 0.05. Furthermore, non-surviving sea turtles had significantly higher levels of aspartate aminotranspherase (AST, creatinine kinase (CK, creatinine and uric acid (UA than surviving sea turtles (all p < 0.05. After further analysis by multiple logistic regression model, only factors of BD, creatinine and UA were included in the equation for calculating summarized health index (SHI for each individual. Through evaluation by receiver operating characteristic (ROC curve, the result indicated that the area under curve was 0.920 ± 0.037, and a cut-off SHI value of 2.5244 showed 80.0% sensitivity and 86.7% specificity in predicting survival. Therefore, the developed SHI could be a useful index to evaluate health status of sea turtles and to improve veterinary care at rehabilitation facilities.

  4. Waist circumference as compared with body-mass index in predicting mortality from specific causes.

    Michael F Leitzmann

    2011-04-01

    Full Text Available Whether waist circumference provides clinically meaningful information not delivered by body-mass index regarding prediction of cause-specific death is uncertain.We prospectively examined waist circumference (WC and body-mass index (BMI in relation to cause-specific death in 225,712 U.S. women and men. Cox regression was used to estimate relative risks and 95% confidence intervals (CI. Statistical analyses were conducted using SAS version 9.1.During follow-up from 1996 through 2005, we documented 20,977 deaths. Increased WC consistently predicted risk of death due to any cause as well as major causes of death, including deaths from cancer, cardiovascular disease, and non-cancer/non-cardiovascular diseases, independent of BMI, age, sex, race/ethnicity, smoking status, and alcohol intake. When WC and BMI were mutually adjusted in a model, WC was related to 1.37 fold increased risk of death from any cancer and 1.82 fold increase risk of death from cardiovascular disease, comparing the highest versus lowest WC categories. Importantly, WC, but not BMI showed statistically significant positive associations with deaths from lung cancer and chronic respiratory disease. Participants in the highest versus lowest WC category had a relative risk of death from lung cancer of 1.77 (95% CI, 1.41 to 2.23 and of death from chronic respiratory disease of 2.77 (95% CI, 1.95 to 3.95. In contrast, subjects in the highest versus lowest BMI category had a relative risk of death from lung cancer of 0.94 (95% CI, 0.75 to 1.17 and of death from chronic respiratory disease of 1.18 (95% CI, 0.89 to 1.56.Increased abdominal fat measured by WC was related to a higher risk of deaths from major specific causes, including deaths from lung cancer and chronic respiratory disease, independent of BMI.

  5. Prediction of flow boiling curves based on artificial neural network

    Wu Junmei; Xi'an Jiaotong Univ., Xi'an; Su Guanghui

    2007-01-01

    The effects of the main system parameters on flow boiling curves were analyzed by using an artificial neural network (ANN) based on the database selected from the 1960s. The input parameters of the ANN are system pressure, mass flow rate, inlet subcooling, wall superheat and steady/transition boiling, and the output parameter is heat flux. The results obtained by the ANN show that the heat flux increases with increasing inlet sub cooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase of mass flow rate. The pressure plays a predominant role and improves heat transfer in whole boiling regions except film boiling. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate one. (authors)

  6. Predictive Flow Control to Minimize Convective Time Delays

    2013-08-19

    external flows around air vehicles or ground based systems such as bridges and buildings, internal flows in pipes and propulsion systems, acoustical...3437, 1977. [4] Bridges , D. H., "The Asymmetric Vortex Wake Problem - Asking the Right Question," A/AA Paper 2006-3553, 2006. [5) Deng, X. Y., Tian, W...Aircraft, Vol. 42, No. 2, 2003, pp. 42~23. [8] Darden, L. and Komerath, N., "Forebody Vortex Control at High Incidence using a Moveable Nose Stagnation

  7. The Doppler echocardiographic myocardial performance index predicts left-ventricular dilation and cardiac death after myocardial infarction

    Møller, J E; Søndergaard, E; Poulsen, S H

    2001-01-01

    To investigate the value of the Doppler-derived myocardial performance index to predict early left-ventricular (LV) dilation and cardiac death after a first acute myocardial infarction (AMI), Doppler echocardiography was performed within 24 h of hospital admission, on day 5, 1 and 3 months after...... AMI in 125 consecutive patients. The index measured on day 1 correlated well with the change in end-diastolic volume index observed from day 1 to 3 months following AMI (r = 0.66, p 0.0001). One-year survival in patients with Doppler index index > or = 0......, we conclude that the Doppler echocardiographic myocardial performance index is a predictor of LV dilation and cardiac death after a first AMI....

  8. Prediction about chaotic times series of natural circulation flow under rolling motion

    Yuan Can; Cai Qi; Guo Li; Yan Feng

    2014-01-01

    The paper have proposed a chaotic time series prediction model, which combined phase space reconstruction with support vector machines. The model has been used to predict the coolant volume flow, in which a synchronous parameter optimization method was brought up based on particle swarm optimization algorithm, since the numerical value selection of related parameter was a key factor for the prediction precision. The average relative error of prediction values and actual observation values was l,5% and relative precision was 0.9879. The result indicated that the model could apply for the natural circulation coolant volume flow prediction under rolling motion condition with high accuracy and robustness. (authors)

  9. Obesity Index That Better Predict Metabolic Syndrome: Body Mass Index, Waist Circumference, Waist Hip Ratio, or Waist Height Ratio

    Abdulbari Bener

    2013-01-01

    Full Text Available Aim. The aim was to compare body mass index (BMI, waist circumference (WC, waist hip ratio (WHR, and waist height ratio (WHtR to identify the best predictor of metabolic syndrome (MetS among Qatari adult population. Methods. A cross-sectional survey from April 2011 to December 2012. Data was collected from 1552 participants followed by blood sampling. MetS was defined according to Third Adult Treatment Panel (ATPIII and International Diabetes Federation (IDF. Receiver operating characteristics (ROC curve analysis was performed. Results. Among men, WC followed by WHR and WHtR yielded the highest area under the curve (AUC (0.78; 95% CI 0.74–0.82 and 0.75; 95% CI 0.71–0.79, resp.. Among women, WC followed by WHtR yielded the highest AUC (0.81; 95% CI 0.78–0.85 & 0.79; 95% CI 0.76–0.83, resp.. Among men, WC at a cut-off 99.5 cm resulted in the highest Youden index with sensitivity 81.6% and 63.9% specificity. Among women, WC at a cut-off 91 cm resulted in the highest Youden index with the corresponding sensitivity and specificity of 86.5% and 64.7%, respectively. BMI had the lowest sensitivity and specificity in both genders. Conclusion. WC at cut-off 99.5 cm in men and 91 cm in women was the best predictor of MetS in Qatar.

  10. Mean streamline analysis for performance prediction of cross-flow fans

    Kim, Jae Won; Oh, Hyoung Woo

    2004-01-01

    This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans

  11. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  12. Predictions of the Bypass Flows in the HTR-PM Reactor Core

    Sun Jun; Chen Zhipeng; Zheng Yanhua; Shi Lei; Li Fu

    2014-01-01

    In the HTR-PM reactor core, the basic structure materials are large amount of graphite reflectors and carbon bricks. Small gaps among those graphite and carbon bricks are widespread in the reactor core so that the cold helium flow may be bypassed and not completely heated. The bypass flows in relative lower temperature would change the flow and temperature distributions in the reactor core, therefore, the accurate prediction of bypass flows need to be carried out carefully to evaluate the influence to the reactor safety. Based on the characteristics of the bypass flow problem, hybrid method of the flow network and the CFD tools was employed to represent the connections and calculate flow distributions of all the main flow and bypass flow paths. In this paper, the hybrid method was described and applied to specific bypass flow problem in the HTR-PM. Various bypass flow paths in the HTR-PM were reviewed, figured out, and modeled by the flow network and the CFD methods, including the axial vertical gaps in the side reflectors, control rod channels, absorber sphere channels and radial gap flow through keys around the hot helium plenum. The bypass flow distributions and its flow rate ratio to the total flow rate in the primary loop were also calculated, discussed and evaluated. (author)

  13. PREDICTION OF OUTCOME USING THE MANNHEIM PERITONITIS INDEX IN CASES OF PERITONITIS

    Sanjeev

    2015-08-01

    Full Text Available BACKGROUND: Peritonitis still presents an extremely common & dreaded problem in emergency surgery. Despite aggressive surgical techniques, the prognosis of peritonitis and intra - abdominal sepsis is very poor, especially when multiple organ failure develops. Therefore early objective & reliable classification of the severity of peritonitis and intra - abdominal sepsis is needed not only to predict prognosis & to select patients for these aggressive surgical techniques but also to evaluate & compare the results of different treatment regimens. So, in this prospective st udy of 60 cases of peritonitis, the reliability of the Mannheim peritonitis index is assessed & its predictive power evaluated. MATERIALS & METHOD S : This prospective study was carried out in the department of surgery, GMCH, Udaipur from June 2014 to June 2 015 after taking the permission from institutional ethics committee. Patients from both sexes of various age groups having peritonitis of varied aetiology & who had undergone laparotomy were taken. A detailed history, thorough clinical examination & necess ary investigations were performed in e ach case according to planned p r o forma. After resuscitation laparotomy was done & operative findings were noted carefully and a proper note on the progress of each patient was maintained and any complications encounter ed were noted. So, early classification of patients presenting with peritonitis by means of objective scoring system was done to select patients for aggressive surgery & overall morbidity & mortality were analyzed. RESULTS: Total 60 patients of peritonitis were examined and common causes were peptic (61.6%, typhoid (21.6% and appendicular (8.3 %. Most common age group was found to be 21 to 50 years and male to female ratio was 4:1. Peritonitis was more common in patients involved in hard work and chronic Be di smokers (61.6%. About 46% of patients who presented for treatment within 48 hours of onset of illness

  14. Impact of Direct Soil Moisture and Revised Soil Moisture Index Methods on Hydrologic Predictions in an Arid Climate

    Milad Jajarmizadeh

    2014-01-01

    Full Text Available The soil and water assessment tool (SWAT is a physically based model that is used extensively to simulate hydrologic processes in a wide range of climates around the world. SWAT uses spatial hydrometeorological data to simulate runoff through the computation of a retention curve number. The objective of the present study was to compare the performance of two approaches used for the calculation of curve numbers in SWAT, that is, the Revised Soil Moisture Index (SMI, which is based on previous meteorological conditions, and the Soil Moisture Condition II (SMCII, which is based on soil features for the prediction of flow. The results showed that the sensitive parameters for the SMI method are land-use and land-cover features. However, for the SMCII method, the soil and the channel are the sensitive parameters. The performances of the SMI and SMCII methods were analyzed using various indices. We concluded that the fair performance of the SMI method in an arid region may be due to the inherent characteristics of the method since it relies mostly on previous meteorological conditions and does not account for the soil features of the catchment.

  15. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  16. [EVALUATION OF THE BODY ADIPOSITY INDEX IN PREDICTING PERCENTAGE BODY FAT AMONG COLOMBIAN ADULTS].

    González-Ruíz, Katherine; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson

    2015-07-01

    the body adiposity index (BAI) is a new simplistic method for predicting body fat percentage (BF%) via a simple equation of hip circumference to height. Up to now, few studies have evaluated the performance of BAI in determining excess fat in Colombians. The aim of this study was to evaluate the usefulness of BAI as a predictor of body fat in among Colombian adults. cross-sectional study carried out in a sample of 204 male belonging to the education sector from Bogotá, Colombia. BAI was calculated based on the equation reported in the Bergman et al. %BF determined by tetrapolar bioimpedance analysis (BIA) was used as the reference measure of adiposity. Bland-Altman analysis was used to assess the agreement between the two methods: BAI and BIA. Associations between anthropometric measures of adiposity were investigated by Pearson correlation analysis. in general pupulation, the BAI overestimates %BF (mean difference: 12.5 % [95%CI = -4.04 % to -21.02 %]), mainly at lower levels of adiposity (mean difference: 10.2 ± 3.3). Significant correlations were found between BAI and all measurements, being the strongest-moderate correlation with %BF (r = 0.777, p Colombian adults and has a tendency to provide overestimated values as BF% decreases. Therefore, this method can be a useful tool to predict %BF in Colombian adults, although it has some limitations. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Epileptic Seizure Prediction Using a New Similarity Index for Chaotic Signals

    Niknazar, Hamid; Nasrabadi, Ali Motie

    Epileptic seizures are generated by abnormal activity of neurons. The prediction of epileptic seizures is an important issue in the field of neurology, since it may improve the quality of life of patients suffering from drug resistant epilepsy. In this study a new similarity index based on symbolic dynamic techniques which can be used for extracting behavior of chaotic time series is presented. Using Freiburg EEG dataset, it is found that the method is able to detect the behavioral changes of the neural activity prior to epileptic seizures, so it can be used for prediction of epileptic seizure. A sensitivity of 63.75% with 0.33 false positive rate (FPR) in all 21 patients and sensitivity of 96.66% with 0.33 FPR in eight patients were achieved using the proposed method. Moreover, the method was evaluated by applying on Logistic and Tent map with different parameters to demonstrate its robustness and ability in determining similarity between two time series with the same chaotic characterization.

  18. Separation prediction in two dimensional boundary layer flows using artificial neural networks

    Sabetghadam, F.; Ghomi, H.A.

    2003-01-01

    In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)

  19. Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer.

    Loeb, Stacy; Shin, Sanghyuk S; Broyles, Dennis L; Wei, John T; Sanda, Martin; Klee, George; Partin, Alan W; Sokoll, Lori; Chan, Daniel W; Bangma, Chris H; van Schaik, Ron H N; Slawin, Kevin M; Marks, Leonard S; Catalona, William J

    2017-07-01

    To examine the use of the Prostate Health Index (PHI) as a continuous variable in multivariable risk assessment for aggressive prostate cancer in a large multicentre US study. The study population included 728 men, with prostate-specific antigen (PSA) levels of 2-10 ng/mL and a negative digital rectal examination, enrolled in a prospective, multi-site early detection trial. The primary endpoint was aggressive prostate cancer, defined as biopsy Gleason score ≥7. First, we evaluated whether the addition of PHI improves the performance of currently available risk calculators (the Prostate Cancer Prevention Trial [PCPT] and European Randomised Study of Screening for Prostate Cancer [ERSPC] risk calculators). We also designed and internally validated a new PHI-based multivariable predictive model, and created a nomogram. Of 728 men undergoing biopsy, 118 (16.2%) had aggressive prostate cancer. The PHI predicted the risk of aggressive prostate cancer across the spectrum of values. Adding PHI significantly improved the predictive accuracy of the PCPT and ERSPC risk calculators for aggressive disease. A new model was created using age, previous biopsy, prostate volume, PSA and PHI, with an area under the curve of 0.746. The bootstrap-corrected model showed good calibration with observed risk for aggressive prostate cancer and had net benefit on decision-curve analysis. Using PHI as part of multivariable risk assessment leads to a significant improvement in the detection of aggressive prostate cancer, potentially reducing harms from unnecessary prostate biopsy and overdiagnosis. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  20. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  1. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network

    Yakubu, A.; Oluremi, O. I. A.; Ekpo, E. I.

    2018-03-01

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2 = 0.961, adjusted R 2 = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2 = 0.966; adjusted R 2 = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  2. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  3. Finite element analysis of helical flows in human aortic arch: A novel index

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  4. Left Atrial Volume Index and Prediction of Events in Acute Coronary Syndrome: Solar Registry

    Jose Alves Secundo Junior

    2014-10-01

    Full Text Available Background: According to some international studies, patients with acute coronary syndrome (ACS and increased left atrial volume index (LAVI have worse long-term prognosis. However, national Brazilian studies confirming this prediction are still lacking. Objective: To evaluate LAVI as a predictor of major cardiovascular events (MCE in patients with ACS during a 365-day follow-up. Methods: Prospective cohort of 171 patients diagnosed with ACS whose LAVI was calculated within 48 hours after hospital admission. According to LAVI, two groups were categorized: normal LAVI (≤ 32 mL/m2 and increased LAVI (> 32 mL/m2. Both groups were compared regarding clinical and echocardiographic characteristics, in- and out-of-hospital outcomes, and occurrence of ECM in up to 365 days. Results: Increased LAVI was observed in 78 patients (45%, and was associated with older age, higher body mass index, hypertension, history of myocardial infarction and previous angioplasty, and lower creatinine clearance and ejection fraction. During hospitalization, acute pulmonary edema was more frequent in patients with increased LAVI (14.1% vs. 4.3%, p = 0.024. After discharge, the occurrence of combined outcome for MCE was higher (p = 0.001 in the group with increased LAVI (26% as compared to the normal LAVI group (7% [RR (95% CI = 3.46 (1.54-7.73 vs. 0.80 (0.69-0.92]. After Cox regression, increased LAVI increased the probability of MCE (HR = 3.08, 95% CI = 1.28-7.40, p = 0.012. Conclusion: Increased LAVI is an important predictor of MCE in a one-year follow-up.

  5. Low Transvalvular Flow Rate Predicts Mortality in Patients With Low-Gradient Aortic Stenosis Following Aortic Valve Intervention.

    Vamvakidou, Anastasia; Jin, Wenying; Danylenko, Oleksandr; Chahal, Navtej; Khattar, Rajdeep; Senior, Roxy

    2018-03-09

    This study aimed to assess the value of low transvalvular flow rate (FR) for the prediction of mortality compared with low stroke volume index (SVi) in patients with low-gradient (mean gradient: gradient AS who had undergone valve intervention. We retrospectively followed prospectively assessed consecutive patients with low-gradient, low aortic valve area AS who underwent aortic valve intervention between 2010 and 2014 for all-cause mortality. Of the 218 patients with mean age 75 ± 12 years, 102 (46.8%) had low stroke volume index (SVi) (gradient, low valve area aortic stenosis undergoing aortic valve intervention, low FR, not low SVi, was an independent predictor of medium-term mortality. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  7. A predictive model for pressure ulcer outcome: the Wound Healing Index.

    Horn, Susan D; Barrett, Ryan S; Fife, Caroline E; Thomson, Brett

    2015-12-01

    The purpose of this learning activity is to provide information regarding the creation of a risk-stratification system to predict the likelihood of the healing of body and heel pressure ulcers (PrUs). This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Explain the need for a PrU risk stratification tool.2. Describe the purpose and methodology of the study.3. Delineate the results of the study and development of the Wound Healing Index. : To create a validated system to predict the healing likelihood of patients with body and heel pressure ulcers (PrUs), incorporating only patient- and wound-specific variables. The US Wound Registry data were examined retrospectively and assigned a clear outcome (healed, amputated, and so on). Significant variables were identified with bivariate analyses. Multivariable logistic regression models were created based on significant factors (P wound clinics in 24 states : A total of 7973 body PrUs and 2350 heel PrUs were eligible for analysis. Not applicable : Healed PrU MAIN RESULTS:: Because of missing data elements, the logistic regression development model included 6640 body PrUs, of which 4300 healed (64.8%), and the 10% validation sample included 709 PrUs, of which 477 healed (67.3%). For heel PrUs, the logistic regression development model included 1909 heel PrUs, of which 1240 healed (65.0%), and the 10% validation sample included 203 PrUs, of which 133 healed (65.5%). Variables significantly predicting healing were PrU size, PrU age, number of concurrent wounds of any etiology, PrU Stage III or IV, evidence of bioburden/infection, patient age, being nonambulatory, having renal transplant, paralysis, malnutrition, and/or patient hospitalization for any reason. Body and heel PrU Wound Healing Indices are comprehensive, user-friendly, and validated predictive models for

  8. Traffic Flow Prediction with Rainfall Impact Using a Deep Learning Method

    Yuhan Jia

    2017-01-01

    Full Text Available Accurate traffic flow prediction is increasingly essential for successful traffic modeling, operation, and management. Traditional data driven traffic flow prediction approaches have largely assumed restrictive (shallow model architectures and do not leverage the large amount of environmental data available. Inspired by deep learning methods with more complex model architectures and effective data mining capabilities, this paper introduces the deep belief network (DBN and long short-term memory (LSTM to predict urban traffic flow considering the impact of rainfall. The rainfall-integrated DBN and LSTM can learn the features of traffic flow under various rainfall scenarios. Experimental results indicate that, with the consideration of additional rainfall factor, the deep learning predictors have better accuracy than existing predictors and also yield improvements over the original deep learning models without rainfall input. Furthermore, the LSTM can outperform the DBN to capture the time series characteristics of traffic flow data.

  9. Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study

    Lee, Da Young; Lee, Eun Seo; Kim, Ji Hyun; Park, Se Eun; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo; Rhee, Eun-Jung; Lee, Won-Young

    2016-01-01

    The Triglyceride Glucose Index (TyG index) is considered a surrogate marker of insulin resistance. The aim of this study is to investigate whether the TyG index has a predictive role in identifying individuals with a high risk of incident diabetes and to compare it with other indicators of metabolic health. A total 2900 non-diabetic adults who attended five consecutive annual health check-ups at Kangbuk Samsung Hospital was divided into four subgroups using three methods: (1) baseline TyG ind...

  10. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-01-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels

  11. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  12. Uncertainty in prediction and simulation of flow in sewer systems

    Breinholt, Anders

    the uncertainty in the state variables. Additionally the observation noise is accounted for by a separate observation noise term. This approach is also referred to as stochastic grey-box modelling. A state dependent diffusion term was developed using a Lamperti transformation of the states, and implemented...... performance beyond the one-step. The reliability was satisfied for the one-step prediction but were increasingly biased as the prediction horizon was expanded, particularly in rainy periods. GLUE was applied for estimating uncertainty in such a way that the selection of behavioral parameter sets continued....... Conversely the parameter estimates of the stochastic approach are physically meaningful. This thesis has contributed to developing simplified rainfall-runoff models that are suitable for model predictive control of urban drainage systems that takes uncertainty into account....

  13. Climate Prediction Center (CPC) East Atlantic/ Western Russia Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Atlantic/ Western Russia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  14. Climate Prediction Center (CPC) Monthly Pacific North American Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Pacific/ North American teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  15. Climate Prediction Center (CPC) East Pacific/ North Pacific Teleconnection Pattern Index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Pacific/ North Pacific teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  16. Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the North Atlantic Oscillation (NAO) teleconnection pattern. The data spans the period 1950 to present. The index is derived from a...

  17. On the predictive capabilities of multiphase Darcy flow models

    Icardi, Matteo; Prudhomme, Serge

    2016-01-01

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  18. On the predictive capabilities of multiphase Darcy flow models

    Icardi, Matteo

    2016-01-09

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  19. Predictive validity of the tobacco marketing receptivity index among non-smoking youth.

    Braun, Sandra; Abad-Vivero, Erika Nayeli; Mejía, Raúl; Barrientos, Inti; Sargent, James D; Thrasher, James F

    2018-05-01

    In a previous cross-sectional study of early adolescents, we developed a marketing receptivity index (MRI) that integrates point-of-sale (PoS) marketing exposures, brand recall, and ownership of branded merchandise. The MRI had independent, positive associations with smoking susceptibility among never smokers and with current smoking behavior. The current longitudinal study assessed the MRI's predictive validity among adolescents who have never smoked cigarettes METHODS: Data come from a longitudinal, school-based survey of 33 secondary schools in Argentina. Students who had never smoked at baseline were followed up approximately 17months later (n=1700). Questions assessed: PoS marketing exposure by querying frequency of going to stores where tobacco is commonly sold; cued recall of brand names for 3 cigarette packages from dominant brands but with the brand name removed; and ownership of branded merchandise. A four-level MRI was derived: 1.low PoS marketing exposure only; 2. high PoS exposure or recall of 1 brand; 3. recall of 2 or more brands; and 4. ownership of branded merchandise. Logistic regression models regressed smoking initiation by follow up survey on the MRI, each of its components, and students' willingness to try a brand, adjusting for sociodemographics, social network smoking, and sensation seeking. The MRI had an independent positive association with smoking initiation. When analyzed separately, each MRI component was associated with outcomes except branded merchandise ownership. The MRI and its components were associated with smoking initiation, except for branded merchandise ownership, which may better predict smoking progression than initiation. The MRI appears valid and useful for future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Prostate Health Index (PHI) Predicts High-stage Pathology in African American Men.

    Schwen, Zeyad R; Tosoian, Jeffrey J; Sokoll, Lori J; Mangold, Leslie; Humphreys, Elizabeth; Schaeffer, Edward M; Partin, Alan W; Ross, Ashley E

    2016-04-01

    To evaluate the association between the Prostate Health Index (PHI) and adverse pathology in a cohort of African American (AA) men undergoing radical prostatectomy. Eighty AA men with prostate-specific antigen (PSA) of 2-10 ng/mL underwent measurement of PSA, free PSA (fPSA), and p2PSA prior to radical prostatectomy. PHI was calculated as [(p2PSA/fPSA) × (PSA)(½)]. Biomarker association with pT3 disease was assessed using logistic regression, and covariates were added to a baseline multivariable model including digital rectal examination. Biomarker ability to predict pT3 disease was measured using the area under the receiver operator characteristic curve. Sixteen men (20%) demonstrated pT3 disease on final pathology. Mean age, PSA, and %fPSA were similar in men with and without pT3 disease (all P  >  .05), whereas PHI was significantly greater in men with pT3 disease (mean 57.2 vs 46.6, P  =  .04). Addition of PHI to the baseline multivariable model improved discriminative ability by 12.9% (P  =. .04) and yielded greater diagnostic accuracy than models, including other individual biomarkers. In AA men with PSA of 2-10 ng/mL, PHI was predictive of pT3 prostate cancer and may help to identify men at increased risk of adverse pathology. Additional studies are needed to substantiate these findings and identify appropriate thresholds for clinical use. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Body mass index for predicting hyperglycemia and serum lipid changes in Brazilian adolescents.

    Vieira, Ana Carolina R; Alvarez, Marlene M; Kanaan, Salim; Sichieri, Rosely; Veiga, Gloria V

    2009-02-01

    To determine the best cut-offs of body mass index for identifying alterations of blood lipids and glucose in adolescents. A probabilistic sample including 577 adolescent students aged 12-19 years in 2003 (210 males and 367 females) from state public schools in the city of Niterói, Southeastern Brazil, was studied. The Receiver Operating Characteristic curve was used to identify the best age-adjusted BMI cut-off for predicting high levels of serum total cholesterol (> or =150 mg/dL), LDL-C (> or =100 mg/dL), serum triglycerides (> or =100 mg/dL), plasma glucose (> 100 mg/dL) and low levels of HDL-C (international and two American. The most prevalent metabolic alterations (>50%) were: high total cholesterol and low HDL-C. BMI predicted high levels of triglycerides in males, high LDL-C in females, and high total cholesterol and the occurrence of three or more metabolic alterations in both males and females (areas under the curve range: 0.59 to 0.67), with low sensitivity (57%-66%) and low specificity (58%-66%). The best BMI cut-offs for this sample (20.3 kg/m(2) to 21.0 kg/m(2)) were lower than those proposed in the references studied. Although BMI values lower than the International cut-offs were better predictor of some metabolic abnormalities in Brazilian adolescents, overall BMI is not a good predictor of these abnormalities in this population.

  2. Prediction of higher cost of antiretroviral therapy (ART) according to clinical complexity. A validated clinical index.

    Velasco, Cesar; Pérez, Inaki; Podzamczer, Daniel; Llibre, Josep Maria; Domingo, Pere; González-García, Juan; Puig, Inma; Ayala, Pilar; Martín, Mayte; Trilla, Antoni; Lázaro, Pablo; Gatell, Josep Maria

    2016-03-01

    The financing of antiretroviral therapy (ART) is generally determined by the cost incurred in the previous year, the number of patients on treatment, and the evidence-based recommendations, but not the clinical characteristics of the population. To establish a score relating the cost of ART and patient clinical complexity in order to understand the costing differences between hospitals in the region that could be explained by the clinical complexity of their population. Retrospective analysis of patients receiving ART in a tertiary hospital between 2009 and 2011. Factors potentially associated with a higher cost of ART were assessed by bivariate and multivariate analysis. Two predictive models of "high-cost" were developed. The normalized estimated (adjusted for the complexity scores) costs were calculated and compared with the normalized real costs. In the Hospital Index, 631 (16.8%) of the 3758 patients receiving ART were responsible for a "high-cost" subgroup, defined as the highest 25% of spending on ART. Baseline variables that were significant predictors of high cost in the Clinic-B model in the multivariate analysis were: route of transmission of HIV, AIDS criteria, Spanish nationality, year of initiation of ART, CD4+ lymphocyte count nadir, and number of hospital admissions. The Clinic-B score ranged from 0 to 13, and the mean value (5.97) was lower than the overall mean value of the four hospitals (6.16). The clinical complexity of the HIV patient influences the cost of ART. The Clinic-B and Clinic-BF scores predicted patients with high cost of ART and could be used to compare and allocate costs corrected for the patient clinical complexity. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Fall Risk Index predicts functional decline regardless of fall experiences among community-dwelling elderly.

    Ishimoto, Yasuko; Wada, Taizo; Kasahara, Yoriko; Kimura, Yumi; Fukutomi, Eriko; Chen, Wenling; Hirosaki, Mayumi; Nakatsuka, Masahiro; Fujisawa, Michiko; Sakamoto, Ryota; Ishine, Masayuki; Okumiya, Kiyohito; Otsuka, Kuniaki; Matsubayashi, Kozo

    2012-10-01

    The 21-item Fall Risk Index (FRI-21) has been used to detect elderly persons at risk for falls. The aim of this longitudinal study was to evaluate the FRI-21 as a predictor of decline in basic activities of daily living (BADL) among Japanese community-dwelling elderly persons independent of fall risk. The study population consisted of 518 elderly participants aged 65 years and older who were BADL independent at baseline in Tosa, Japan. We examined risk factors for BADL decline from 2008 to 2009 by multiple logistic regression analysis on the FRI-21 and other functional status measures in all participants. We carried out the same analysis in selected participants who had no experience of falls to remove the effect of falls. A total of 45 of 518 participants showed decline in BADL within 1 year. Multivariate logistic regression analysis showed that age (odds ratio [OR] 1.13, 95% confidence interval [CI] 1.05-1.20), FRI-21 ≥ 10 (OR 3.81, 95% CI 1.49-9.27), intellectual activity dependence (OR 3.25, 95% CI 1.42-7.44) and history of osteoarthropathy (OR 3.17, 95% CI 1.40-7.21) were significant independent risk factors for BADL decline within 1 year. FRI-21 ≥ 10 and intellectual activity dependence (≤ 3) remained significant predictors, even in selected non-fallers. FRI-21 ≥ 10 and intellectual activity dependence were significant predictive factors of BADL decline, regardless of fall experience, after adjustment for confounding variables. The FRI-21 is a brief, useful tool not only for predicting falls, but also future decline in functional ability in community-dwelling elderly persons. © 2012 Japan Geriatrics Society.

  4. Prediction of flow in mix-proof valve by use of CFD - Validation by LDA

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    was done on a spherical shaped mix-proof valve (MPV). Flow were predicted by Computational Fluid Dynamics (CFD) and validated by data obtained from experiments using laser sheet visualization and laser Doppler anemometry. Correction of the measured velocities and probe location was required as refraction......-wall region is shown. Fully 3D flow patterns were identified and valuable information was obtained for further investigations concerning prediction of cleanability in the MPV based on knowledge of the hydrodynamics herein....

  5. Using Cash Flows to Predict Bankruptcy of Chemical Companies: Case Study Approach

    Siow, Hui Wen

    2009-01-01

    The intent of this study is to present an argument for the usefulness of cash flow information in bankruptcy prediction, and whether cash flow information provide a superior prediction of business failure over the conventional accrual accounting information. In addition, this dissertation also aim to analyze other important factors leading to bankruptcy, particularly contingent liabilities in which the obligations are not accrued and accounted for, nor are they considered in conventional bank...

  6. Application of Intelligent Dynamic Bayesian Network with Wavelet Analysis for Probabilistic Prediction of Storm Track Intensity Index

    Ming Li

    2018-06-01

    Full Text Available The effective prediction of storm track (ST is greatly beneficial for analyzing the development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity, and uncertainty of ST intensity index (STII, a new probabilistic prediction model was proposed based on dynamic Bayesian network (DBN and wavelet analysis (WA. We introduced probability theory and graph theory for the first time to quantitatively describe the nonlinear relationship and uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN was constructed through wavelet decomposition, structural learning, parameter learning, and probabilistic inference, which was used for expression of relation among predictors and probabilistic prediction of STII. The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model was able to give more comprehensive prediction information and higher prediction accuracy and had strong generalization ability and good stability.

  7. An index predictive of cognitive outcome in retired professional American Football players with a history of sports concussion.

    Wright, Mathew J; Woo, Ellen; Birath, J Brandon; Siders, Craig A; Kelly, Daniel F; Wang, Christina; Swerdloff, Ronald; Romero, Elizabeth; Kernan, Claudia; Cantu, Robert C; Guskiewicz, Kevin

    2016-01-01

    Various concussion characteristics and personal factors are associated with cognitive recovery in athletes. We developed an index based on concussion frequency, severity, and timeframe, as well as cognitive reserve (CR), and we assessed its predictive power regarding cognitive ability in retired professional football players. Data from 40 retired professional American football players were used in the current study. On average, participants had been retired from football for 20 years. Current neuropsychological performances, indicators of CR, concussion history, and play data were used to create an index for predicting cognitive outcome. The sample displayed a range of concussions, concussion severities, seasons played, CR, and cognitive ability. Many of the participants demonstrated cognitive deficits. The index strongly predicted global cognitive ability (R(2) = .31). The index also predicted the number of areas of neuropsychological deficit, which varied as a function of the deficit classification system used (Heaton: R(2) = .15; Wechsler: R(2) = .28). The current study demonstrated that a unique combination of CR, sports concussion, and game-related data can predict cognitive outcomes in participants who had been retired from professional American football for an average of 20 years. Such indices may prove to be useful for clinical decision making and research.

  8. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  9. Modelling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock

    Herbert, A.; Gale, J.; MacLeod, R.; Lanyon, G.

    1991-12-01

    We present our approach to predicting flow through a fractured rock site; the site characterization and validation region in the Stripa mine. Our approach is based on discrete fracture network modelling using the NAPSAC computer code. We describe the conceptual models and assumptions that we have used to interpret the geometry and flow properties of the fracture networks, from measurements at the site. These are used to investigate large scale properties of the network and we show that for flows on scales larger than about 10 m, porous medium approximation should be used. The porous medium groundwater flow code CFEST is used to predict the large scale flows through the mine and the SCV region. This, in turn, is used to provide boundary conditions for more detailed models, which predict the details of flow, using a discrete fracture network model, on scales of less than 10 m. We conclude that a fracture network approach is feasible and that it provides a better understanding of details of flow than conventional porous medium approaches and a quantification of the uncertainty associated with predictive flow modelling characterised from field measurement in fractured rock. (au)

  10. An evaluation of the usefulness of cash flow ratios to predict financial distress

    L. Jooste

    2007-12-01

    Full Text Available Purpose: With the introduction of the cash flow statement it became an integral part of financial reporting. A need arose to develop ratios for the effective evaluation of cash flow information. This article investigates cash flow ratios suggested by various researchers and suggests a list of ratios with the potential to predict financial failure. Design: The cash flow ratios suggested by researchers, from as early as 1966, are investigated and eight cash flow ratios selected for inclusion in an analysis to predict financial failure. Ten failed entities are selected for a cash flow evaluation by means of the selected ratios for five years prior to failure. For a comparison, non-failed entities in similar sectors are selected and also evaluated by means of the cash flow ratios. The mean values of each ratio, for each year prior to failure, were then calculated and the means of the failed entities were compared to the non-failed entities. Findings: The comparison revealed that cash flow ratios have predictive value with the cash flow to total debt identified as the best indicator of failure. It was also determined that, although failed entities have lower cash flows than non-failed entities, they also had smaller reserves of liquid assets. Furthermore, they have less capacity to meet debt obligations and they tend to incur more debt. The ratios of the failed entities were unstable and fluctuated from one year to the next. Finally, bankruptcy could be predicted three years prior to financial failure. Implications: Income statement and balance sheet ratios are not enough to measure liquidity. An entity can have positive liquidity ratios and increasing profits, yet have serious cash flow problems. Ratios developed from the cash flow statement should supplement traditional accrual-based ratios to provide additional information on the financial strengths and weaknesses of an entity .

  11. The Prognostic Nutritional Index Predicts Survival and Identifies Aggressiveness of Gastric Cancer.

    Eo, Wan Kyu; Chang, Hye Jung; Suh, Jungho; Ahn, Jin; Shin, Jeong; Hur, Joon-Young; Kim, Gou Young; Lee, Sookyung; Park, Sora; Lee, Sanghun

    2015-01-01

    Nutritional status has been associated with long-term outcomes in cancer patients. The prognostic nutritional index (PNI) is calculated by serum albumin concentration and absolute lymphocyte count, and it may be a surrogate biomarker for nutritional status and possibly predicts overall survival (OS) of gastric cancer. We evaluated the value of the PNI as a predictor for disease-free survival (DFS) in addition to OS in a cohort of 314 gastric cancer patients who underwent curative surgical resection. There were 77 patients in PNI-low group (PNI ≤ 47.3) and 237 patients in PNI-high group (PNI > 47.3). With a median follow-up of 36.5 mo, 5-yr DFS rates in PNI-low group and PNI-high group were 63.5% and 83.6% and 5-yr OS rates in PNI-low group and PNI-high group were 63.5% and 88.4%, respectively (DFS, P < 0.0001; OS, P < 0.0001). In the multivariate analysis, the only predictors for DFS were PNI, tumor-node-metastasis (TNM) stage, and perineural invasion, whereas the only predictors for OS were PNI, age, TNM stage, and perineural invasion. In addition, the PNI was independent of various inflammatory markers. In conclusion, the PNI is an independent prognostic factor for both DFS and OS, and provides additional prognostic information beyond pathologic parameters.

  12. Predicting dyslexia at age 11 from a risk index questionnaire at age 5.

    Helland, Turid; Plante, Elena; Hugdahl, Kenneth

    2011-08-01

    This study focused on predicting dyslexia in children ahead of formal literacy training. Because dyslexia is a constitutional impairment, risk factors should be seen in preschool. It was hypothesized that data gathered at age 5 using questions targeting the dyslexia endophenotype should be reliable and valid predictors of dyslexia at age 11. A questionnaire was given to caretakers of 120 5-year-old children, and a risk index score was calculated based on questions regarding health, laterality, motor skills, language, special needs education and heredity. An at-risk group (n = 25) and matched controls (n = 24) were followed until age 11, when a similar questionnaire and literacy tests were administered to the children who participated in the follow-up study (22 at risk and 20 control). Half of the at-risk children and two of the control children at age 5 were identified as having dyslexia at age 11 (8 girls and 5 boys). It is concluded that it is possible to identify children at the age of 5 who will have dyslexia at the age of 11 through a questionnaire approach. Copyright © 2011 John Wiley & Sons, Ltd.

  13. [Preoperative Prognostic Nutrition Index Is a Predictive Factor of Complications in Laparoscopic Colorectal Surgery].

    Yano, Yuki; Sagawa, Masano; Yokomizo, Hajime; Okayama, Sachiyo; Yamada, Yasufumi; Usui, Takebumi; Yamaguchi, Kentaro; Shiozawa, Shunichi; Yoshimatsu, Kazuhiko; Shimakawa, Takeshi; Katsube, Takao; Kato, Hiroyuki; Naritaka, Yoshihiko

    2017-10-01

    Paitients and methods: We retrospectively reviewed a database of 188 patients who underwent resection for colorectal cancer with laparoscopic surgery between July 2007 and March 2015. The prognostic nutrition index(PNI), modified Glas- gow prognostic score(mGPS), controlling nutritional status(CONUT), and neutrophil/lymphocyte ratio(N/L)were measured in these patients. We examined the association between postoperative complications and clinicopathological factors. The study included 110 men and 78 women. Median age was 68 years. The site of the primary lesion was colon in 118 and rectum in 70 patients. Postoperative complications higher than Grade II(Clavien-Dindo classification)were reported in 24(12.8%)patients: Surgical site infection(SSI)in 12, remote infection in 7, ileus in 5, and others in 2 patients. Clinicopathological factors related to complications were rectal surgery, large amount of intraoperative bleeding, and long operative time. The related immunologic and nutritional factors were mGPS 2, PNI below 40, and N/L above 3. CONUT was not associated with complications in ourcases. mGPS, PNI, and N/L are predictive factors for complications in laparoscopic colorectal surgery.

  14. Use of Radiographic Densitometry to Predict the Bone Healing Index in Distraction Osteogenesis

    A Saw

    2008-04-01

    Full Text Available Bone lengthening with distraction osteogenesis involves prolonged application of an external fixator frame. Qualitative and quantitative evaluation of callus has been described using various imaging modalities but there is no simple reliable and readily available method. This study aims to investigate the use of a densitometer to analyze plain radiographic images and correlate them with the rate of new bone formation as represented by the bone healing index. A total of 34 bone lengthening procedures in 29 patients were retrospectively reviewed. We used an X-Rite 301 densitometer to measure densities of new callus on plain radiographs taken at 4 and 8 weeks after surgery. Patients aged below 16y had significantly lower BHIs indicating faster bone healing and shorter duration of treatment. The ratio of radiographic densities between centre and edge of the new bone measured from plain radiographs taken at 8 weeks correlated positively with the eventual BHI of the patient. This method provides a simple and easy way to predict the rate of bone healing at an early stage of treatment and may also allow remedial action to be taken for those with poor progress in bone formation.

  15. Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach.

    Lee, Hyung-Chul; Ryu, Ho-Geol; Chung, Eun-Jin; Jung, Chul-Woo

    2018-03-01

    The discrepancy between predicted effect-site concentration and measured bispectral index is problematic during intravenous anesthesia with target-controlled infusion of propofol and remifentanil. We hypothesized that bispectral index during total intravenous anesthesia would be more accurately predicted by a deep learning approach. Long short-term memory and the feed-forward neural network were sequenced to simulate the pharmacokinetic and pharmacodynamic parts of an empirical model, respectively, to predict intraoperative bispectral index during combined use of propofol and remifentanil. Inputs of long short-term memory were infusion histories of propofol and remifentanil, which were retrieved from target-controlled infusion pumps for 1,800 s at 10-s intervals. Inputs of the feed-forward network were the outputs of long short-term memory and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the bispectral index. The performance of bispectral index prediction was compared between the deep learning model and previously reported response surface model. The model hyperparameters comprised 8 memory cells in the long short-term memory layer and 16 nodes in the hidden layer of the feed-forward network. The model training and testing were performed with separate data sets of 131 and 100 cases. The concordance correlation coefficient (95% CI) were 0.561 (0.560 to 0.562) in the deep learning model, which was significantly larger than that in the response surface model (0.265 [0.263 to 0.266], P deep learning model-predicted bispectral index during target-controlled infusion of propofol and remifentanil more accurately compared to the traditional model. The deep learning approach in anesthetic pharmacology seems promising because of its excellent performance and extensibility.

  16. Endometriosis fertility index predicts live births following surgical resection of moderate and severe endometriosis.

    Maheux-Lacroix, S; Nesbitt-Hawes, E; Deans, R; Won, H; Budden, A; Adamson, D; Abbott, J A

    2017-11-01

    Can live birth be accurately predicted following surgical resection of moderate-severe (Stage III-IV) endometriosis? Live births can accurately be predicted with the endometriosis fertility index (EFI), with adnexal function being the most important factor to predict non-assisted reproductive technology (non-ART) fertility or the requirement for ART (www.endometriosisefi.com). Fertility prognosis is important to many women with severe endometriosis. Controversy persists regarding optimal post-operative management to achieve pregnancy and the counselling of patients regarding duration of conventional treatments before undergoing ART. The EFI is reported to correlate with expectant management pregnancy rate, although external validation has been performed without specifically addressing fertility in women with moderate and severe endometriosis. Retrospective cohort study of 279 women from September 2001 to June 2016. We included women undergoing laparoscopic resection of Stage III-IV endometriosis who attempted pregnancy post-operatively. The EFI was calculated based on detailed operative reports and surgical images. Fertility outcomes were obtained by direct patient contact. Kaplan-Meier model, log rank test and Cox regression were used for analyses. The follow-up rate was 84% with a mean duration of 4.1 years. A total of 147 women (63%) had a live birth following surgery, 94 of them (64%) without ART. The EFI was highly associated with live births (P years was 0% and steadily increased up to 91% with an EFI of 9-10, while the proportion of women who attempted ART and had a live birth, steadily increased from 38 to 71% among the same EFI strata (P = 0.1). A low least function score was the most significant predictor of failure (P = 0.003), followed by having had a previous resection (P = 0.019) or incomplete resection (P = 0.028), being older than 40 compared to years of age (P = 0.027), and having leiomyomas (P = 0.037). The main limitation of this study is its

  17. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers

    Kibler, K. M.; Alipour, M.

    2016-12-01

    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  18. Frailty Index Predicts All-Cause Mortality for Middle-Aged and Older Taiwanese: Implications for Active-Aging Programs.

    Lin, Shu-Yu; Lee, Wei-Ju; Chou, Ming-Yueh; Peng, Li-Ning; Chiou, Shu-Ti; Chen, Liang-Kung

    2016-01-01

    Frailty Index, defined as an individual's accumulated proportion of listed health-related deficits, is a well-established metric used to assess the health status of old adults; however, it has not yet been developed in Taiwan, and its local related structure factors remain unclear. The objectives were to construct a Taiwan Frailty Index to predict mortality risk, and to explore the structure of its factors. Analytic data on 1,284 participants aged 53 and older were excerpted from the Social Environment and Biomarkers of Aging Study (2006), in Taiwan. A consensus workgroup of geriatricians selected 159 items according to the standard procedure for creating a Frailty Index. Cox proportional hazard modeling was used to explore the association between the Taiwan Frailty Index and mortality. Exploratory factor analysis was used to identify structure factors and produce a shorter version-the Taiwan Frailty Index Short-Form. During an average follow-up of 4.3 ± 0.8 years, 140 (11%) subjects died. Compared to those in the lowest Taiwan Frailty Index tertile ( 0.23) had significantly higher risk of death (Hazard ratio: 3.2; 95% CI 1.9-5.4). Thirty-five items of five structure factors identified by exploratory factor analysis, included: physical activities, life satisfaction and financial status, health status, cognitive function, and stresses. Area under the receiver operating characteristic curves (C-statistics) of the Taiwan Frailty Index and its Short-Form were 0.80 and 0.78, respectively, with no statistically significant difference between them. Although both the Taiwan Frailty Index and Short-Form were associated with mortality, the Short-Form, which had similar accuracy in predicting mortality as the full Taiwan Frailty Index, would be more expedient in clinical practice and community settings to target frailty screening and intervention.

  19. Prediction of incipient flow boiling from a uniformly heated surface

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  20. Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma

    Hompland, Tord; Lund, Kjersti V.; Ellingsen, Christine; Kristensen, Gunnar B.; Rofstad, Einar K.

    2014-01-01

    Background and purpose: High tumor interstitial fluid pressure (IFP) is associated with poor outcome in locally advanced carcinoma of the uterine cervix. We have recently developed a noninvasive assay of the IFP of tumors, and in this assay, the outward interstitial fluid flow velocity at the tumor surface (v 0 ) is measured by Gd-DTPA-based DCE-MRI and used as a parameter for IFP. Here, we investigated the independent prognostic significance of v 0 in cervical cancer patients given cisplatin-based concurrent chemoradiotherapy with curative intent. Patients: The study involved 62 evaluable patients from a cohort of 74 consecutive patients (Stage IB through IIIB) with a median follow-up of 5.5 years. Results: The actuarial disease-free survival (DFS) and overall survival (OS) at 5 years were 67% and 76%, respectively. Significant associations were found between v 0 dichotomized about the median value and DFS and OS, both in the total patient cohort and a subcohort of 40 Stage IIB patients. Multivariate analysis involving stage, tumor volume, lymph node status, and v 0 revealed that only v 0 provided independent prognostic information about DFS and OS. Conclusion: This investigation demonstrates a strong, independent prognostic impact of the pretreatment peritumoral fluid flow velocity in cervical cancer

  1. A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies

    Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier

    2010-10-01

    Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.

  2. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    BBP. This correlation, when further scaled by pipe diameter, effectively predicted bioluminescence intensity in fully developed turbulent flow in a 0.83-cm i.d. pipe. Determining similar correlations between other bathyphotometer flow agitators and flow fields will allow bioluminescence potential measurements to become a more powerful tool for the oceanographic community.

  3. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub

  4. Numerical Predictions of Enhanced Impingement Jet Cooling with Ribs and Pins in Co-Flow and Cross-Flow Configurations

    A. M. El-Jummah

    2017-02-01

    Full Text Available Numerical calculations relevant to gas turbine internal wall heat transfer cooling were conducted using conjugate heat transfer (CHT computational Fluid Dynamics (CFD commercial codes. The CHT CFD predictions were carried out for impingement heat transfer with different types of obstacle walls (fins on the target surfaces. A 10 × 10 row of impingement air jet holes (or hole density n of 4306 m-2 was used, which gives ten rows of holes in the cross-flow direction and only one heat transfer enhancement obstacle per impingement jet was investigated. Previously, four different shaped obstacles were investigated experimentally and were used to validate the present predictions. The obstacle walls, which were equally spaced on the centreline between each impingement jet are of the co-flow and cross-flow configurations. The impingement jet pitch X to diameter D, X/D and gap Z to diameter, Z/D ratios were kept constant at 4.66 and 3.06 for X, Z and D of 15.24, 10.00 and 3.27 mm, respectively. The obstacles investigated were ribs and rectangular pin-fins shapes, using two obstacles height H to diameter, H/D ratio of 1.38 and 2.45. Computations were carried out for three different mass flux G of 1.08, 1.48 and 1.94 kg/sm2. Relative pressure loss ∆P/P and surface average heat transfer coefficient (HTC h predictions for the range of G, showed good agreement with the experimental results. The prediction also reveals that obstacles not only increases the turbulent flows, but also takes away most of the cooling heat transfer that produces the regions with highest thermal gradients. It also reduces the impingement gap downstream cross-flow.

  5. Limited accuracy of the hyperbaric index, ambulatory blood pressure and sphygmomanometry measurements in predicting gestational hypertension and preeclampsia

    Vollebregt, Karlijn Corien; Gisolf, Janneke; Guelen, Ilja; Boer, Kees; van Montfrans, Gert; Wolf, Hans

    2010-01-01

    Objective The aim of this study was to validate the hyperbaric index (HBI) for first trimester prediction of preeclampsia and gestational hypertension. Methods Participants were low-risk and high-risk nulliparous women and high-risk multiparous women, and were recruited between April 2004 and June

  6. Generalizability of the Disease State Index Prediction Model for Identifying Patients Progressing from Mild Cognitive Impairment to Alzheimer's Disease

    Hall, A.; Munoz-Ruiz, M.; Mattila, J.; Koikkalainen, J.; Tsolaki, M.; Mecocci, P.; Kloszewska, I.; Vellas, B.; Lovestone, S.; Visser, P.J.; Lotjonen, J.; Soininen, H.

    2015-01-01

    Background: The Disease State Index (DSI) prediction model measures the similarity of patient data to diagnosed stable and progressive mild cognitive impairment (MCI) cases to identify patients who are progressing to Alzheimer's disease. Objectives: We evaluated how well the DSI generalizes across

  7. Fatty Liver Index and Lipid Accumulation Product Can Predict Metabolic Syndrome in Subjects without Fatty Liver Disease

    Yuan-Lung Cheng

    2017-01-01

    Full Text Available Background. Fatty liver index (FLI and lipid accumulation product (LAP are indexes originally designed to assess the risk of fatty liver and cardiovascular disease, respectively. Both indexes have been proven to be reliable markers of subsequent metabolic syndrome; however, their ability to predict metabolic syndrome in subjects without fatty liver disease has not been clarified. Methods. We enrolled consecutive subjects who received health check-up services at Taipei Veterans General Hospital from 2002 to 2009. Fatty liver disease was diagnosed by abdominal ultrasonography. The ability of the FLI and LAP to predict metabolic syndrome was assessed by analyzing the area under the receiver operating characteristic (AUROC curve. Results. Male sex was strongly associated with metabolic syndrome, and the LAP and FLI were better than other variables to predict metabolic syndrome among the 29,797 subjects. Both indexes were also better than other variables to detect metabolic syndrome in subjects without fatty liver disease (AUROC: 0.871 and 0.879, resp., and the predictive power was greater among women. Conclusion. Metabolic syndrome increases the cardiovascular disease risk. The FLI and LAP could be used to recognize the syndrome in both subjects with and without fatty liver disease who require lifestyle modifications and counseling.

  8. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  9. Theoretical predictions for glass flow into an evacuated canister

    Routt, K.R.; Crow, K.R.

    1983-01-01

    Radioactive waste currently stored at the Savannah River Plant in liquid form is to be immobilized by incorporating it into a borosilicate glass. The glass melter for this process will consist of a refractory lined, steel vessel operated at a glass temperature of 1150 0 C. At the end of a two-year projected melter lifetime, the glass inside the melter is to be drained prior to disposition of the melter vessel. One proposed technique for accomplishing this drainage is by sucking the glass into an evacuated canister. The theoretical bases for design of an evacuated canister for draining a glass melter have been developed and tested. The theoretical equations governing transient and steady-state flow were substantiated with both a silicone glass simulant and molten glass

  10. Performance assessment of turbulence models for the prediction of moderator thermal flow inside CANDU calandria

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong

    2012-01-01

    The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL). Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria

  11. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  12. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  13. Prediction of critical flow rates through power-operated relief valves

    Abdollahian, D.; Singh, A.

    1983-01-01

    Existing single-phase and two-phase critical flow models are used to predict the flow rates through the power-operated relief valves tested in the EPRI Safety and Relief Valve test program. For liquid upstream conditions, Homogeneous Equilibrium Model, Moody, Henry-Fauske and Burnell two-phase critical flow models are used for comparison with data. Under steam upstream conditions, the flow rates are predicted either by the single-phase isentropic equations or the Homogeneous Equilibrium Model, depending on the thermodynamic condition of the fluid at the choking plane. The results of the comparisons are used to specify discharge coefficients for different valves under steam and liquid upstream conditions and evaluate the existing approximate critical flow relations for a wide range of subcooled water and steam conditions

  14. Automated system for load flow prediction in power substations using artificial neural networks

    Arlys Michel Lastre Aleaga

    2015-09-01

    Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.

  15. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  16. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Ko, P; Kurosawa, S

    2014-01-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine

  17. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  18. Changes in the Oswestry Disability Index that predict improvement after lumbar fusion.

    Djurasovic, Mladen; Glassman, Steven D; Dimar, John R; Crawford, Charles H; Bratcher, Kelly R; Carreon, Leah Y

    2012-11-01

    Clinical studies use both disease-specific and generic health outcomes measures. Disease-specific measures focus on health domains most relevant to the clinical population, while generic measures assess overall health-related quality of life. There is little information about which domains of the Oswestry Disability Index (ODI) are most important in determining improvement in overall health-related quality of life, as measured by the 36-Item Short Form Health Survey (SF-36), after lumbar spinal fusion. The objective of the study is to determine which clinical elements assessed by the ODI most influence improvement of overall health-related quality of life. A single tertiary spine center database was used to identify patients undergoing lumbar fusion for standard degenerative indications. Patients with complete preoperative and 2-year outcomes measures were included. Pearson correlation was used to assess the relationship between improvement in each item of the ODI with improvement in the SF-36 physical component summary (PCS) score, as well as achievement of the SF-36 PCS minimum clinically important difference (MCID). Multivariate regression modeling was used to examine which items of the ODI best predicted achievement for the SF-36 PCS MCID. The effect size and standardized response mean were calculated for each of the items of the ODI. A total of 1104 patients met inclusion criteria (674 female and 430 male patients). The mean age at surgery was 57 years. All items of the ODI showed significant correlations with the change in SF-36 PCS score and achievement of MCID for the SF-36 PCS, but only pain intensity, walking, and social life had r values > 0.4 reflecting moderate correlation. These 3 variables were also the dimensions that were independent predictors of the SF-36 PCS, and they were the only dimensions that had effect sizes and standardized response means that were moderate to large. Of the health dimensions measured by the ODI, pain intensity, walking

  19. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.

    Moran, M

    2012-02-01

    BACKGROUND: Superior vena cava (SVC) flow assesses blood flow from the upper body, including the brain. Near infrared spectroscopy (NIRS) provides information on brain perfusion and oxygenation. AIM: To assess the relationship between cerebral tissue oxygenation index (cTOI) and cardiac output measures in the very low birth weight (VLBW) infant in the first day of life. METHODS: A prospective observational cohort study. Neonates with birth weight less than 1500 g (VLBW) were eligible for enrollment. Newborns with congenital heart disease, major congenital malformations and greater than Papile grade1 Intraventricular Haemorrhage on day 1 of life were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Low SVC flow states were defined as a flow less than 40 mL\\/kg\\/min. cTOI was measured using NIRO 200 Hamamatsu. RESULTS: Twenty-seven VLBW neonates had both echocardiography and NIRS performed. The median (range) gestation was 29\\/40 (25 + 3 to 31 + 5 weeks) and median birth weight was 1.2 kg (0.57-1.48 kg). The mean (SD) TOI was 68.1 (7.9)%. The mean (SD) SVC flow was 70.36(39.5) mLs\\/kg\\/min. The correlation coefficient of cerebral tissue oxygenation and SVC flow was r = 0.53, p-value 0.005. There was a poor correlation between right and left ventricular output and cTOI which is not surprising considering the influence of intra- and extracardiac shunts. CONCLUSION: There is a positive relationship between cerebral TOI values and SVC flow in the very low birth infant on day one of life.

  20. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  1. Evaluation of Different Score Index for Predicting Prognosis in Gamma Knife Radiosurgical Treatment for Brain Metastasis

    Franzin, Alberto; Snider, Silvia; Picozzi, Piero; Bolognesi, Angelo; Serra, Carlo; Vimercati, Alberto; Passarin, Olga; Mortini, Pietro

    2009-01-01

    Purpose: To assess the utility of the Radiation Therapy Oncology Group Recursive Partitioning Analysis (RPA) and Score Index for Radiosurgery (SIR) stratification systems in predicting survival in patients with brain metastasis treated with Gamma Knife radiosurgery (GKRS). Methods and Materials: A total of 185 patients were included in the study. Patients were stratified according to RPA and SIR classes. The RPA and SIR classes, age, Karnofsky Performance Status (KPS), and systemic disease were correlated with survival. Results: Five patients were lost to follow-up. Median survival in patients in RPA Class 1 (30 patients) was 17 months; in Class 2 (140 patients), 10 months; and in Class 3 (10 patients), 3 months. Median survival in patients in SIR Class 1 (30 patients) was 3 months; in Class 2 (135 patients), 8 months; and in Class 3 (15 patients), 20 months. In univariate testing, age younger than 65 years (p = 0.0004), KPS higher than 70 (p = 0.0001), RPA class (p = 0.0078), SIR class (p = 0.0002), and control of the primary tumor (p = 0.02) were significantly associated with improved outcome. In multivariate analysis, KPS (p < 0.0001), SIR class (p = 0.0008), and RPA class (p = 0.03) had statistical value. Conclusions: This study supports the use of GKRS as a single-treatment modality in this selected group of patients. Stratification systems are useful in the estimation of patient eligibility for GKRS. A second-line treatment was necessary in 30% of patients to achieve distal or local brain control. This strategy is useful to control brain metastasis in long-surviving patients.

  2. Predictive validity of a brief antiretroviral adherence index: Retrospective cohort analysis under conditions of repetitive administration

    Colwell Bradford

    2008-08-01

    Full Text Available Abstract Background Newer antiretroviral (ARV agents have improved pharmacokinetics, potency, and tolerability and have enabled the design of regimens with improved virologic outcomes. Successful antiretroviral therapy is dependent on patient adherence. In previous research, we validated a subset of items from the ACTG adherence battery as prognostic of virologic suppression at 6 months and correlated with adherence estimates from the Medication Event Monitoring System (MEMS. The objective of the current study was to validate the longitudinal use of the Owen Clinic adherence index in analyses of time to initial virologic suppression and maintenance of suppression. Results 278 patients (naïve n = 168, experienced n = 110 met inclusion criteria. Median [range] time on the first regimen during the study period was 286 (30 – 1221 days. 217 patients (78% achieved an undetectable plasma viral load (pVL at median 63 days. 8.3% (18/217 of patients experienced viral rebound (pVL > 400 after initial suppression. Adherence scores varied from 0 – 25 (mean 1.06, median 0. The lowest detectable adherence score cut point using this instrument was ≥ 5 for both initial suppression and maintenance of suppression. In the final Cox model of time to first undetectable pVL, controlling for prior treatment experience and baseline viral load, the adjusted hazard ratio for time updated adherence score was 0.36score ≥ 5 (95% CI: 0.19–0.69 [reference: score ≥ 5 (0.05–0.66 [reference: Conclusion A brief, longitudinally administered self report adherence instrument predicted both initial virologic suppression and maintenance of suppression in patients using contemporary ARV regimens. The survey can be used for identification of sub-optimal adherence with subsequent appropriate intervention.

  3. Racial Discrimination and Low Household Education Predict Higher Body Mass Index in African American Youth.

    Nelson, Devin S; Gerras, Julia M; McGlumphy, Kellye C; Shaver, Erika R; Gill, Amaanat K; Kanneganti, Kamala; Ajibewa, Tiwaloluwa A; Hasson, Rebecca E

    The purpose of this study was to examine the relationships between environmental factors, including household education, community violence exposure, racial discrimination, and cultural identity, and BMI in African American adolescents. A community-based sample of 198 African American youth (120 girls, 78 boys; ages 11-19 years) from Washtenaw County, Michigan, were included in this analysis. Violence exposure was assessed by using the Survey of Children's Exposure to Community Violence; racial discrimination by using the Adolescent Discrimination Distress Index; cultural identity by using the Acculturation, Habits, and Interests Multicultural Scale for Adolescents; and household education by using a seven-category variable. Measured height and body weight were used to calculate BMI. Racial discrimination was positively associated with BMI, whereas household education was inversely associated with BMI in African American adolescents (discrimination: β = 0.11 ± 0.04, p = 0.01; education: β = -1.13 ± 0.47, p = 0.02). These relationships were significant when accounting for the confounding effects of stress, activity, diet, and pubertal development. Significant gender interactions were observed with racial discrimination and low household education associated with BMI in girls only (discrimination: β = 0.16 ± 0.05, p = 0.003; education: β = -1.12 ± 0.55, p = 0.045). There were no significant relationships between culture, community violence exposure, and BMI (all p's > 0.05). Environmental factors, including racial discrimination and low household education, predicted higher BMI in African American adolescents, particularly among girls. Longitudinal studies are needed to better understand the mechanisms by which these environmental factors increase obesity risk in African American youth.

  4. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet.

    Bentley-Lewis, Rhonda; Adler, Gail K; Perlstein, Todd; Seely, Ellen W; Hopkins, Paul N; Williams, Gordon H; Garg, Rajesh

    2007-11-01

    The mechanisms underlying obesity-mediated cardiovascular disease are not fully understood. Aldosterone and insulin resistance both are associated with obesity and cardiovascular disease. The objectives of this study were to test the hypotheses that aldosterone production is elevated and associated with insulin resistance in overweight adults on a high-sodium diet. Healthy normotensive adults were categorized as lean body mass index (BMI) less than 25 kg/m(2) (n = 63) or overweight BMI 25 kg/m(2) or greater (n = 57). After 7 d of a high-sodium diet, participants fasted overnight and remained supine throughout hemodynamic and laboratory assessments and angiotensin II (AngII) stimulation. The overweight group, compared with the lean group, had higher 24-h urinary aldosterone (9.0 +/- 0.8 vs. 6.6 +/- 0.5 microg per 24 h; P = 0.003) and higher AngII-stimulated serum aldosterone (11.4 +/- 1.0 vs. 9.0 +/- 0.6 ng/dl; P = 0.04). There were no differences in 24-h urinary cortisol or sodium or supine measurements of plasma renin activity, serum aldosterone, or serum potassium. The homeostasis model assessment of insulin resistance was predicted by urinary aldosterone excretion (r = 0.32, P = 0.03) and serum aldosterone response to AngII stimulation (r = 0.28, P = 0.02) independent of age and BMI. Urinary aldosterone excretion and AngII-stimulated aldosterone are increased in overweight, compared with lean, normotensive adults. The correlation of these measures of aldosterone production with insulin resistance suggests a potential role for aldosterone in the pathophysiology of obesity-mediated insulin resistance.

  5. Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study.

    Lee, Da Young; Lee, Eun Seo; Kim, Ji Hyun; Park, Se Eun; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo; Rhee, Eun-Jung; Lee, Won-Young

    The Triglyceride Glucose Index (TyG index) is considered a surrogate marker of insulin resistance. The aim of this study is to investigate whether the TyG index has a predictive role in identifying individuals with a high risk of incident diabetes and to compare it with other indicators of metabolic health. A total 2900 non-diabetic adults who attended five consecutive annual health check-ups at Kangbuk Samsung Hospital was divided into four subgroups using three methods: (1) baseline TyG index; (2) obesity status (body mass index ≥25 kg/m2) and cutoff value of TyG index; (3) obesity status and metabolic health, defined as having fewer than two of the five components of high blood pressure, fasting blood glucose, triglyceride, low high-density lipoprotein cholesterol, and highest decile of homeostasis model assessment-insulin resistance. The development of diabetes was assessed annually using self-questionnaire, fasting glucose, and glycated hemoglobin. We compared the risk of incident diabetes using multivariate Cox analysis. During 11623 person-years there were 101 case of incident diabetes. Subjects with high TyG index had a high risk of diabetes. For TyG index quartiles, hazard ratios (HRs) of quartiles 3 and 4 were 4.06 (p = 0.033) and 5.65 (p = 0.006) respectively. When the subjects were divided by obesity status and cutoff value of TyG index of 8.8, the subgroups with TyG index ≥ 8.8 regardless of obesity had a significantly high risk for diabetes (HR 2.40 [p = 0.024] and 2.25 [p = 0.048]). For obesity status and metabolic health, the two metabolically unhealthy subgroups regardless of obesity had a significantly high risk for diabetes (HRs 2.54 [p = 0.024] and 2.73 [p = 0.021]). In conclusion, the TyG index measured at a single time point may be an indicator of the risk for incident diabetes. The predictive value of the TyG index was comparable to that of metabolic health.

  6. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  7. The ATLAS EventIndex: data flow and inclusion of other metadata

    AUTHOR|(INSPIRE)INSPIRE-00064378; Cardenas Zarate, Simon Ernesto; Favareto, Andrea; Fernandez Casani, Alvaro; Gallas, Elizabeth; Garcia Montoro, Carlos; Gonzalez de la Hoz, Santiago; Hrivnac, Julius; Malon, David; Prokoshin, Fedor; Salt, Jose; Sanchez, Javier; Toebbicke, Rainer; Yuan, Ruijun

    2016-01-01

    The ATLAS EventIndex is the catalogue of the event-related metadata for the information collected from the ATLAS detector. The basic unit of this information is the event record, containing the event identification parameters, pointers to the files containing this event as well as trigger decision information. The main use case for the EventIndex is event picking, as well as data consistency checks for large production campaigns. The EventIndex employs the Hadoop platform for data storage and handling, as well as a messaging system for the collection of information. The information for the EventIndex is collected both at Tier-0, when the data are first produced, and from the Grid, when various types of derived data are produced. The EventIndex uses various types of auxiliary information from other ATLAS sources for data collection and processing: trigger tables from the condition metadata database (COMA), dataset information from the data catalogue AMI and the Rucio data management system and information on p...

  8. The ATLAS EventIndex: data flow and inclusion of other metadata

    Prokoshin, Fedor; The ATLAS collaboration; Cardenas Zarate, Simon Ernesto; Favareto, Andrea; Fernandez Casani, Alvaro; Gallas, Elizabeth; Garcia Montoro, Carlos; Gonzalez de la Hoz, Santiago; Hrivnac, Julius; Malon, David; Salt, Jose; Sanchez, Javier; Toebbicke, Rainer; Yuan, Ruijun

    2016-01-01

    The ATLAS EventIndex is the catalogue of the event-related metadata for the information obtained from the ATLAS detector. The basic unit of this information is event record, containing the event identification parameters, pointers to the files containing this event as well as trigger decision information. The main use case for the EventIndex are the event picking, providing information for the Event Service and data consistency checks for large production campaigns. The EventIndex employs the Hadoop platform for data storage and handling, as well as a messaging system for the collection of information. The information for the EventIndex is collected both at Tier-0, when the data are first produced, and from the GRID, when various types of derived data are produced. The EventIndex uses various types of auxiliary information from other ATLAS sources for data collection and processing: trigger tables from the condition metadata database (COMA), dataset information from the data catalog AMI and the Rucio data man...

  9. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  10. Prediction of infarction and reperfusion in stroke by flow- and volume-weighted collateral signal in MR angiography.

    Ernst, M; Forkert, N D; Brehmer, L; Thomalla, G; Siemonsen, S; Fiehler, J; Kemmling, A

    2015-02-01

    In proximal anterior circulation occlusive strokes, collateral flow is essential for good outcome. Collateralized vessel intensity in TOF- and contrast-enhanced MRA is variable due to different acquisition methods. Our purpose was to quantify collateral supply by using flow-weighted signal in TOF-MRA and blood volume-weighted signal in contrast-enhanced MRA to determine each predictive contribution to tissue infarction and reperfusion. Consecutively (2009-2013), 44 stroke patients with acute proximal anterior circulation occlusion met the inclusion criteria with TOF- and contrast-enhanced MRA and penumbral imaging. Collateralized vessels in the ischemic hemisphere were assessed by TOF- and contrast-enhanced MRA using 2 methods: 1) visual 3-point collateral scoring, and 2) collateral signal quantification by an arterial atlas-based collateral index. Collateral measures were tested by receiver operating characteristic curve and logistic regression against 2 imaging end points of tissue-outcome: final infarct volume and percentage of penumbra saved. Visual collateral scores on contrast-enhanced MRA but not TOF were significantly higher in patients with good outcome. Visual collateral scoring on contrast-enhanced MRA was the best rater-based discriminator for final infarct volume 50% (area under the curve, 0.67; P = .04). Atlas-based collateral index of contrast-enhanced MRA was the overall best independent discriminator for final infarct volume of collateral index combining the signal of TOF- and contrast-enhanced MRA was the overall best discriminator for effective reperfusion (percentage of penumbra saved >50%; area under the curve, 0.89; P collateral assessment, TOF- and contrast-enhanced MRA both contain predictive signal information for penumbral reperfusion. This could improve risk stratification in further studies. © 2015 by American Journal of Neuroradiology.

  11. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  12. How long the singular value decomposed entropy predicts the stock market? - Evidence from the Dow Jones Industrial Average Index

    Gu, Rongbao; Shao, Yanmin

    2016-07-01

    In this paper, a new concept of multi-scales singular value decomposition entropy based on DCCA cross correlation analysis is proposed and its predictive power for the Dow Jones Industrial Average Index is studied. Using Granger causality analysis with different time scales, it is found that, the singular value decomposition entropy has predictive power for the Dow Jones Industrial Average Index for period less than one month, but not for more than one month. This shows how long the singular value decomposition entropy predicts the stock market that extends Caraiani's result obtained in Caraiani (2014). On the other hand, the result also shows an essential characteristic of stock market as a chaotic dynamic system.

  13. Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction

    Ham, Yoo-Geun [NASA/GSFC Code 610.1, Global Modeling and Assimilation Office, Greenbelt, MD (United States); Universities Space Research Association, Goddard Earth Sciences Technology and Research Studies and Investigations, Baltimore, MD (United States); Rienecker, Michele M. [NASA/GSFC Code 610.1, Global Modeling and Assimilation Office, Greenbelt, MD (United States)

    2012-10-15

    In this study, a new approach for extracting flow-dependent empirical singular vectors (FESVs) for seasonal prediction using ensemble perturbations obtained from an ensemble Kalman filter (EnKF) assimilation is presented. Due to the short interval between analyses, EnKF perturbations primarily contain instabilities related to fast weather variability. To isolate slower, coupled instabilities that would be more suitable for seasonal prediction, an empirical linear operator for seasonal time-scales (i.e. several months) is formulated using a causality hypothesis; then, the most unstable mode from the linear operator is extracted for seasonal time-scales. It is shown that the flow-dependent operator represents nonlinear integration results better than a conventional empirical linear operator static in time. Through 20 years of retrospective seasonal predictions, it is shown that the skill of forecasting equatorial SST anomalies using the FESV is systematically improved over that using Conventional ESV (CESV). For example, the correlation skill of the NINO3 SST index using FESV is higher, by about 0.1, than that of CESV at 8-month leads. In addition, the forecast skill improvement is significant over the locations where the correlation skill of conventional methods is relatively low, indicating that the FESV is effective where the initial uncertainty is large. (orig.)

  14. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes in Ungauged Locations

    Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.

    2017-12-01

    The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.

  15. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  16. Genomic prediction for Nordic Red Cattle using one-step and selection index blending

    Guosheng, Su; Madsen, Per; Nielsen, Ulrik Sander

    2012-01-01

    This study investigated the accuracy of direct genomic breeding values (DGV) using a genomic BLUP model, genomic enhanced breeding values (GEBV) using a one-step blending approach, and GEBV using a selection index blending approach for 15 traits of Nordic Red Cattle. The data comprised 6,631 bulls...... genotyped and nongenotyped bulls for one-step blending, and to scale DGV and its expected reliability in the selection index blending. Weighting (scaling) factors had a small influence on reliabilities of GEBV, but a large influence on the variation of GEBV. Based on the validation analyses, averaged over...... the 15 traits, the reliability of DGV for bulls without daughter records was 11.0 percentage points higher than the reliability of conventional pedigree index. Further gain of 0.9 percentage points was achieved by combining information from conventional pedigree index using the selection index blending...

  17. The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke.

    Kalinin, Mikhail N; Khasanova, Dina R; Ibatullin, Murat M

    2017-09-07

    We aimed to develop a tool, the hemorrhagic transformation (HT) index (HTI), to predict any HT within 14 days after middle cerebral artery (MCA) stroke onset regardless of the intravenous recombinant tissue plasminogen activator (IV rtPA) use. That is especially important in the light of missing evidence-based data concerning the timing of anticoagulant resumption after stroke in patients with atrial fibrillation (AF). We retrospectively analyzed 783 consecutive MCA stroke patients. Clinical and brain imaging data at admission were recorded. A follow-up period was 2 weeks after admission. The patients were divided into derivation (DC) and validation (VC) cohorts by generating Bernoulli variates with probability parameter 0.7. Univariate/multivariate logistic regression, and factor analysis were used to extract independent predictors. Validation was performed with internal consistency reliability and receiver operating characteristic (ROC) analysis. Bootstrapping was used to reduce bias. The HTI was composed of 4 items: Alberta Stroke Program Early CT score (ASPECTS), National Institutes of Health Stroke Scale (NIHSS), hyperdense MCA (HMCA) sign, and AF on electrocardiogram (ECG) at admission. According to the predicted probability (PP) range, scores were allocated to ASPECTS as follows: 10-7 = 0; 6-5 = 1; 4-3 = 2; 2-0 = 3; to NIHSS: 0-11 = 0; 12-17 = 1; 18-23 = 2; >23 = 3; to HMCA sign: yes = 1; to AF on ECG: yes = 1. The HTI score varied from 0 to 8. For each score, adjusted PP of any HT with 95% confidence intervals (CI) was as follows: 0 = 0.027 (0.011-0.042); 1 = 0.07 (0.043-0.098); 2 = 0.169 (0.125-0.213); 3 = 0.346 (0.275-0.417); 4 = 0.571 (0.474-0.668); 5 = 0.768 (0.676-0.861); 6 = 0.893 (0.829-0.957); 7 = 0.956 (0.92-0.992); 8 = 0.983 (0.965-1.0). The optimal cutpoint score to differentiate between HT-positive and negative groups was 2 (95% normal-based CI, 1-3) for the DC and VC alike. ROC area

  18. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  19. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  20. Numerical assessment of flow dynamics for various DI diesel engine designs considering swirl number and uniformity index

    Jafarmadar, S.; Taghavifar, Hadi; Taghavifar, Hamid; Navid, A.

    2016-01-01

    Highlights: • Swirl ratio and uniformity index was assessed for six different engine designs. • Lower bowl-depth and higher bowl radius create higher squish and swirl. • The best design for power boost and emission control strategies were identified. • The flow dynamics are considered based on TKE and also the flow field vectors. - Abstract: Geometrical features of combustion chamber are important factors in subsequent engine’s combustion and emissions. Location and configuration of bowl in diesel engine has been the dynamic field of research especially for optimization procedure. This study considers six different engine patterns with outlined parameters. It follows that different designs are characterized with different swirl motions and tumble flows within the combustion chamber. It was determined that maximum and minimum peak swirl number pertains to “Design5” and “Design1” with 1.59 and 1.1 values, respectively. By using “Design5” case instead of “Design1” (baseline case), uniformity index increased by 25.83% whereby peak soot concentration was reduced over 46.7%. The bigger bowl radius (R1) makes higher swirl ratio and this eventually leads to lower soot emission. Lower bowl depth (T), however, gives way to stronger squish pressure and engine-out power.

  1. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect

  2. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring

  3. Building and verifying a severity prediction model of acute pancreatitis (AP) based on BISAP, MEWS and routine test indexes.

    Ye, Jiang-Feng; Zhao, Yu-Xin; Ju, Jian; Wang, Wei

    2017-10-01

    To discuss the value of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Modified Early Warning Score (MEWS), serum Ca2+, similarly hereinafter, and red cell distribution width (RDW) for predicting the severity grade of acute pancreatitis and to develop and verify a more accurate scoring system to predict the severity of AP. In 302 patients with AP, we calculated BISAP and MEWS scores and conducted regression analyses on the relationships of BISAP scoring, RDW, MEWS, and serum Ca2+ with the severity of AP using single-factor logistics. The variables with statistical significance in the single-factor logistic regression were used in a multi-factor logistic regression model; forward stepwise regression was used to screen variables and build a multi-factor prediction model. A receiver operating characteristic curve (ROC curve) was constructed, and the significance of multi- and single-factor prediction models in predicting the severity of AP using the area under the ROC curve (AUC) was evaluated. The internal validity of the model was verified through bootstrapping. Among 302 patients with AP, 209 had mild acute pancreatitis (MAP) and 93 had severe acute pancreatitis (SAP). According to single-factor logistic regression analysis, we found that BISAP, MEWS and serum Ca2+ are prediction indexes of the severity of AP (P-value0.05). The multi-factor logistic regression analysis showed that BISAP and serum Ca2+ are independent prediction indexes of AP severity (P-value0.05); BISAP is negatively related to serum Ca2+ (r=-0.330, P-valuemodel is as follows: ln()=7.306+1.151*BISAP-4.516*serum Ca2+. The predictive ability of each model for SAP follows the order of the combined BISAP and serum Ca2+ prediction model>Ca2+>BISAP. There is no statistical significance for the predictive ability of BISAP and serum Ca2+ (P-value>0.05); however, there is remarkable statistical significance for the predictive ability using the newly built prediction model as well as BISAP

  4. Predicting Biological Information Flow in a Model Oxygen Minimum Zone

    Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.

    2016-02-01

    Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.

  5. Waist Circumference, Body Mass Index, and Other Measures of Adiposity in Predicting Cardiovascular Disease Risk Factors among Peruvian Adults

    Knowles, K. M.; Paiva, L. L.; Sanchez, S. E.; Revilla, L.; Lopez, T.; Yasuda, M. B.; Yanez, N. D.; Gelaye, B.; Williams, M. A.

    2011-01-01

    Objectives. To examine the extent to which measures of adiposity can be used to predict selected components of metabolic syndrome (MetS) and elevated C-reactive protein (CRP). Methods. A total of 1,518 Peruvian adults were included in this study. Waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), waist-height ratio (WHtR), and visceral adiposity index (VAI) were examined. The prevalence of each MetS component was determined according to tertiles of each anthropometric mea...

  6. Large Matched-Index-of-Refraction (MIR) Flow Systems for International Collaboration In Fluid Mechanics

    McEligot, Donald M.; Becker, Stefan; McIlroy, Hugh M. Jr.

    2010-01-01

    In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.

  7. Large Matched-Index-of-Refraction (MIR) Flow Systems for Thermal Engineering Education

    McIlroy, Hugh M. Jr.; McEligot, Donald M.; Becker, Stefan

    2011-01-01

    In recent international collaboration, Idaho National Laboratory (INL) and University of Erlangen-Nuremberg (UE) have developed large MIR flow systems which are ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This article will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and validation of computational thermal fluid dynamic codes.

  8. Large Matched-Index-of-Refraction (MIR) Flow Systems for International Collaboration In Fluid Mechanics

    Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.

    2010-07-01

    In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.

  9. A Behavioral Economic Reward Index Predicts Drinking Resolutions: Moderation Re-visited and Compared with Other Outcomes

    Tucker, Jalie A.; Roth, David L.; Vignolo, Mary J.; Westfall, Andrew O.

    2014-01-01

    Data were pooled from three studies of recently resolved community-dwelling problem drinkers to determine whether a behavioral economic index of the value of rewards available over different time horizons distinguished among moderation (n = 30), abstinent (n = 95), and unresolved (n = 77) outcomes. Moderation over 1-2 year prospective follow-up intervals was hypothesized to involve longer term behavior regulation processes compared to abstinence or relapse and to be predicted by more balanced pre-resolution monetary allocations between short- and longer-term objectives (i.e., drinking and saving for the future). Standardized odds ratios (OR) based on changes in standard deviation units from a multinomial logistic regression indicated that increases on this “Alcohol-Savings Discretionary Expenditure” index predicted higher rates of both abstinence (OR = 1.93, p = .004) and relapse (OR = 2.89, p moderation outcomes. The index had incremental utility in predicting moderation in complex models that included other established predictors. The study adds to evidence supporting a behavioral economic analysis of drinking resolutions and shows that a systematic analysis of pre-resolution spending patterns aids in predicting moderation. PMID:19309182

  10. Predictive performance of the visceral adiposity index for a visceral adiposity-related risk: Type 2 Diabetes

    Azizi Fereidoun

    2011-05-01

    Full Text Available Abstract Background Visceral adiposity index (VAI has recently been developed based on waist circumference, body mass index (BMI, triglycerides (TGs, and high-density lipoprotein cholesterol (HDL-C. We examined predictive performances for incident diabetes of the VAI per se and as compared to the metabolic syndrome (MetS and waist-to-height-ratio (WHtR. Methods Participants free of diabetes at baseline with at least one follow-up examination (5,964 were included for the current study. Weibull regression models were developed for interval-censored survival data. Absolute and relative integrated discriminatory improvement index (IDI and cut-point-based and cut-point-free net reclassification improvement index (NRI were used as measures of predictive ability for incident diabetes added by VAI, as compared to the MetS and WHtR. Results The annual incidence rate of diabetes was 0.85 per 1000 person. Mean VAI was 3.06 (95%CIs 2.99-3.13. Diabetes risk factors levels increased in stepwise fashion across VAI quintiles. Risk gradient between the highest and lowest quintile of VAI was 4.5 (95%CIs 3.0-6.9. VAI significantly improved predictive ability of the MetS. The relative IDI and cut-point free NRI for predictive ability added to MetS by VAI were 30.3% (95%CIs 18.8-41.8% and 30.7% (95%CIs 20.8-40.7%, respectively. WHtR, outperformed VAI with cut-point-free NRI of 24.6% (95%CIs 14.1-35.2%. Conclusions In conclusion, although VAI could be a prognostic tool for incident diabetes events, gathering information on its components (WC, BMI, TGs, and HDL-C is unlikely to improve the prediction ability beyond what could be achieved by the simply assessable and commonly available information on WHtR.

  11. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  12. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  13. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br

    2006-04-15

    An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.

  14. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.

    2006-01-01

    An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow

  15. Prediction for flow boiling heat transfer in small diameter tube using deep learning

    Enoki, Koji; Sei, Yuichi; Okawa, Tomio; Saito, Kiyoshi

    2017-01-01

    The applications of Artificial Intelligence ie AI show diversity in any fields. On the other hand, research of the predicting heat transfer regardless of single-phase or two-phase flow is still untouched. Therefore, we have confirmed usefulness using AI's deep learning function on horizontal flow boiling heat transfer in flowing mini-channel that is actively researched. The effect of the surface tension in the mini-channel is large compared with conventional large tubes, and then the heat transfer mechanism is very complicated. For this reason, the numerical correlations of many existing researchers the prediction result is not good. However, the mechanistic correlation based on the visualization experiment, which the authors' research group published several years ago has very high precision. Therefore, in this research paper, we confirmed the effectiveness of using deep learning for predicting of the boiling heat transfer in mini-channel while comparing our correlation. (author)

  16. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index.

    Abd Ellah, Mohamed; Kremser, Christian; Pallwein, Leo; Aigner, Friedrich; Schocke, Michael; Peschel, Reinhard; Pedross, Florian; Pinggera, Germar-Michael; Wolf, Christian; Alsharkawy, Mostafa A M; Jaschke, Werner; Frauscher, Ferdinand

    2010-10-01

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12h before and 12h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (pESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Predictive value of body mass index to metabolic syndrome risk factors in Syrian adolescents.

    Al-Bachir, Mahfouz; Bakir, Mohamad Adel

    2017-06-25

    Obesity has become a serious epidemic health problem in both developing and developed countries. There is much evidence that obesity among adolescents contributed significantly to the development of type 2 diabetes and coronary heart disease in adulthood. Very limited information exists on the prevalence of overweight, obesity, and associated metabolic risk factors among Syrian adolescents. Therefore, the purpose of this study was to determine the relationship between obesity determined by body mass index and the major metabolic risk factors among Syrian adolescents. A cross-sectional study of a randomly selected sample of 2064 apparently healthy Syrian adolescents aged 18 to 19 years from Damascus city, in Syria, was performed. Body mass index and blood pressure were measured. Serum concentrations of glucose, triglycerides, total cholesterol, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol were determined. Metabolic syndrome was defined using the national criteria for each determined metabolic risk factor. Individuals with a body mass index 25 to 29.9 were classified as overweight, whereas individuals with a body mass index ≥30 were classified as obese. A receiver operating characteristics curve was drawn to determine appropriate cut-off points of the body mass index for defining overweight and obesity, and to indicate the performance of body mass index as a predictor of risk factors. The obtained data showed that blood pressure and the overall mean concentrations of fasting blood sugar, triglycerides, cholesterol, low-density lipoprotein-cholesterol, and triglycerides/high-density lipoprotein-cholesterol were significantly higher in overweight and obese adolescent groups (p index and some metabolic risks, the data suggest the best body mass index cut-offs ranged between 23.25 and 24.35 kg/m 2 . A strong association between overweight and obesity as determined by body mass index and high concentrations of metabolic syndrome

  18. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments for the Conterminous United States: Base Flow Index

    U.S. Environmental Protection Agency — This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape...

  19. Getting into the musical zone: trait emotional intelligence and amount of practice predict flow in pianists

    Marin, Manuela M.; Bhattacharya, Joydeep

    2013-01-01

    Being “in flow” or “in the zone” is defined as an extremely focused state of consciousness which occurs during intense engagement in an activity. In general, flow has been linked to peak performances (high achievement) and feelings of intense pleasure and happiness. However, empirical research on flow in music performance is scarce, although it may offer novel insights into the question of why musicians engage in musical activities for extensive periods of time. Here, we focused on individual differences in a group of 76 piano performance students and assessed their flow experience in piano performance as well as their trait emotional intelligence. Multiple regression analysis revealed that flow was predicted by the amount of daily practice and trait emotional intelligence. Other background variables (gender, age, duration of piano training and age of first piano training) were not predictive. To predict high achievement in piano performance (i.e., winning a prize in a piano competition), a seven-predictor logistic regression model was fitted to the data, and we found that the odds of winning a prize in a piano competition were predicted by the amount of daily practice and the age at which piano training began. Interestingly, a positive relationship between flow and high achievement was not supported. Further, we explored the role of musical emotions and musical styles in the induction of flow by a self-developed questionnaire. Results suggest that besides individual differences among pianists, specific structural and compositional features of musical pieces and related emotional expressions may facilitate flow experiences. Altogether, these findings highlight the role of emotion in the experience of flow during music performance and call for further experiments addressing emotion in relation to the performer and the music alike. PMID:24319434

  20. Getting into the musical zone: Trait emotional intelligence and amount of practice predict flow in pianists

    Manuela Maria Marin

    2013-11-01

    Full Text Available Being ‘in flow’ or ‘in the zone’ is defined as an extremely focused state of consciousness which occurs during intense engagement in an activity. In general, flow has been linked to peak performances (high achievement and feelings of intense pleasure and happiness. However, empirical research on flow in music performance is scarce, although it may offer novel insights into the question of why musicians engage in musical activities for extensive periods of time. Here, we focused on individual differences in a group of 76 piano performance students and assessed their flow experience in piano performance as well as their trait emotional intelligence. Multiple regression analysis revealed that flow was predicted by the amount of daily practice and trait emotional intelligence. Other background variables (gender, age, duration of piano training and age of first piano training were not predictive. To predict high achievement in piano performance (i.e., winning a prize in a piano competition, a seven-predictor logistic regression model was fitted to the data, and we found that the odds of winning a prize in a piano competition were predicted by the amount of daily practice and the age at which piano training began. Interestingly, a positive relationship between flow and high achievement was not supported. Further, we explored the role of musical emotions and musical styles in the induction of flow by a self-developed questionnaire. Results suggest that besides individual differences among pianists, specific structural and compositional features of musical pieces and related emotional expressions may facilitate flow experiences. Altogether, these findings highlight the role of emotion in the experience of flow during music performance, and call for further experiments addressing emotion in relation to the performer and the music alike.

  1. The Optimisation of Processing Condition for Injected Mould Polypropylene-Nanoclay-Gigantochloa Scortechinii based on Melt Flow Index

    Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.

    2018-03-01

    The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.

  2. Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil

    Levy, L. L., Jr.

    1981-01-01

    Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.

  3. Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction

    Hua-pu Lu

    2015-01-01

    Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.

  4. Bayesian inference in mass flow simulations - from back calculation to prediction

    Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael

    2017-04-01

    Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.

  5. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  6. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  7. Ferritin and body mass index predict cardiac dysfunction in female adolescents with anorexia of the restrictive type.

    Docx, Martine K F; Weyler, Joost; Simons, Annik; Ramet, José; Mertens, Luc

    2015-08-01

    Decreased left ventricular mass index in anorexia nervosa is amply reported. The aim of this study is to identify non-burdensome predictors of reduced left yentricular mass/height (cLVM) in a cohort of adolescent restrictive anorexic girls. This is a retrospective study of all anorexic girls of the restrictive type referred to our tertiary eating disorder unit between September 2002 and December 2012, for somatic assessment of weig ht loss. All subjects fulfilled DMS-IV criteria, without a family history of cardiac or cardiovascular diseases. In all, 283 restrictive anorexic girls (age: 14.63 +/- 1.65 y; body mass index: 15.72 +/- 1.81 kg/m2) were included. Ferritin and body mass index were independent, statistically significant predictors of the corrected left ventricular mass (P anorexia nervosa of the restrictive type. Two factors predicted decreased cLVM in our population: ferritin and BMI.

  8. Models for the prediction of the cetane index of biofuels obtained from different vegetable oils using their fatty acid composition

    Sanchez Borroto, Yisel; Piloto Rodriguez, Ramon; Goyos Perez, Leonardo

    2011-01-01

    The objective of the present work is to obtain a physical-mathematical model that establishes a relationship between the cetane index of biofuels obtained from different vegetable oils and its composition of essential fatty acid. This model is based on experimental data obtained by the authors of the present work and an experimental data reported by different extracted authors of indexed databases. The adjustment of the coefficients of the model is based on the obtaining of residual minima in the capacity of prediction of the model. Starting from these results it is established a very useful tool for the determination of such an important parameter for the fuel diesel as it is the cetane index obtained from an analysis of chemical composition and not obtained from tests in engines banks, to save time and economic resources. (author)

  9. Can transient elastography, Fib-4, Forns Index, and Lok Score predict esophageal varices in HCV-related cirrhotic patients?

    Hassan, Eman M; Omran, Dalia A; El Beshlawey, Mohamad L; Abdo, Mahmoud; El Askary, Ahmad

    2014-02-01

    Gastroesophageal varices are present in approximately 50% of patients with liver cirrhosis. The aim of this study was to evaluate liver stiffness measurement (LSM), Fib-4, Forns Index and Lok Score as noninvasive predictors of esophageal varices (EV). This prospective study included 65 patients with HCV-related liver cirrhosis. All patients underwent routine laboratory tests, transient elastograhy (TE) and esophagogastroduodenoscopy. FIB-4, Forns Index and Lok Score were calculated. The diagnostic performances of these methods were assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy and receiver operating characteristic curves. All predictors (LSM, FIB-4, Forns Index and Lok Score) demonstrated statistically significant correlation with the presence and the grade of EV. TE could diagnose EV at a cutoff value of 18.2kPa. Fib-4, Forns Index, and Lok Score could diagnose EV at cutoff values of 2.8, 6.61 and 0.63, respectively. For prediction of large varices (grade 2, 3), LSM showed the highest accuracy (80%) with a cutoff of 22.4kPa and AUROC of 0.801. Its sensitivity was 84%, specificity 72%, PPV 84% and NPV 72%. The diagnostic accuracies of FIB-4, Forns Index and Lok Score were 70%, 70% and76%, respectively, at cutoffs of 3.3, 6.9 and 0.7, respectively. For diagnosis of large esophageal varices, adding TE to each of the other diagnostic indices (serum fibrosis scores) increased their sensitivities with little decrease in their specificities. Moreover, this combination decreased the LR- in all tests. Noninvasive predictors can restrict endoscopic screening. This is very important as non invasiveness is now a major goal in hepatology. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  10. Flow predictions for MHD channels with an approximation for three-dimensional effects

    Blottner, F.G.

    1978-01-01

    A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time

  11. Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index

    Sinding, Marianne Munk; Peters, David Alberg; Frøkjær, Jens Brøndum

    (MRI) variable T2* reflects the placental oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. Methods: The study population......CONTROL ID: 2516296 ABSTRACT FINAL ID: P22.05 TITLE: Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index AUTHORS (FIRST NAME, LAST NAME): Marianne Sinding1, David Peters2, Jens B. Frøkjær3, 4, Ole B. Christiansen1, 4, Astrid Petersen5...... had an EFW T2* was measured by MRI at 1.5T. A gradient recalled echo MRI sequence with readout at 16 echo times was used, and the placental T2* value was obtained by fitting the signal intensity as a function of the echo times...

  12. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  13. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  14. Investigations of internal turbulent flows in a low-head tubular pump and its performance predictions

    Tang, X L; Chen, X S; Wang, F J; Yang, W; Wu, Y L

    2012-01-01

    Based on the RANS equations, standard k−ε turbulence model and SIMPLE algorithm, the internal turbulent flows in a low-head tubular pump were simulated by using the FLUENT software. Based on the predicted flow fields, the external performance curves including the head-discharge, efficiency-discharge and power-discharge curves were further obtained. The calculated results indicate that the internal flow pattern is smooth at the best efficiency point (BEP). When it works under off-design operating cases, the flow pattern inside the diffuser and the discharge passage is disorder, and at the same time, the hydraulic losses mainly come from the secondary flows. At large flow rates, the minimum static pressure near the inlet of the blade pressure surfaces due to the negative attack angle. At small flow rates, the minimum value happens near the inlet of the suction surfaces. At the BEP, the lowest static pressure appears in the region behind the suction surfaces inlet. The newly-designed model is validated by the comparisons between its predicted external performance and the experimental data of the JGM-3 model. This research provides some important references for the optimization of a low-head tubular pump.

  15. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    Magdalena Ydreborg

    Full Text Available Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI in the paper, was based on the model: Log-odds (predicting cirrhosis = -12.17+ (age × 0.11 + (BMI (kg/m(2 × 0.23 + (D7-lathosterol (μg/100 mg cholesterol×(-0.013 + (Platelet count (x10(9/L × (-0.018 + (Prothrombin-INR × 3.69. The area under the ROC curve (AUROC for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96. The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98. In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  16. Systemic Immune-Inflammation Index and Circulating T-Cell Immune Index Predict Outcomes in High-Risk Acral Melanoma Patients Treated with High-Dose Interferon

    Jiayi Yu

    2017-10-01

    Full Text Available High-dose interferon alfa-2b (IFN-α-2b improves the survival of patients with high-risk melanoma. We aimed to identify baseline peripheral blood biomarkers to predict the outcome of acral melanoma patients treated with IFN-α-2b. Pretreatment baseline parameters and clinical data were assessed in 226 patients with acral melanoma. Relapse-free survival (RFS and overall survival (OS were assessed using the Kaplan-Meier method, and multivariate Cox regression analyses were applied after adjusting for stage, lactate dehydrogenase (LDH, and ulceration. Univariate analysis showed that neutrophil-to-lymphocyte ratio ≥2.35, platelet-to-lymphocyte ratio ≥129, systemic immune-inflammation index (SII ≥615 × 109/l, and elevated LDH were significantly associated with poor RFS and OS. The SII is calculated as follows: platelet count × neutrophil count/lymphocyte count. On multivariate analysis, the SII was associated with RFS [hazard ratio (HR=1.661, 95% confidence interval (CI: 1.066-2.586, P=.025] and OS (HR=2.071, 95% CI: 1.204-3.564, P=.009. Additionally, we developed a novel circulating T-cell immune index (CTII calculated as follows: cytotoxic T lymphocytes/(CD4+ regulatory T cells × CD8+ regulatory T cells. On univariate analysis, the CTII was associated with OS (HR=1.73, 95% CI: 1.01-2.94, P=.044. The SII and CTII might serve as prognostic indicators in acral melanoma patients treated with IFN-α-2b. The indexes are easily obtainable via routine tests in clinical practice.

  17. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  18. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-01-01

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  19. Flow Test to Predict Early Hypotony and Hypertensive Phase After Ahmed Glaucoma Valve (AGV) Surgical Implantation.

    Cheng, Jason; Beltran-Agullo, Laura; Buys, Yvonne M; Moss, Edward B; Gonzalez, Johanna; Trope, Graham E

    2016-06-01

    To assess the validity of a preimplantation flow test to predict early hypotony [intraocular pressure (IOP)≤5 mm Hg on 2 consecutive visits and hypertensive phase (HP) (IOP>21 mm Hg) after Ahmed Glaucoma Valve (AGV) implantation. Prospective interventional study on patients receiving an AGV. A preimplantation flow test using a gravity-driven reservoir and an open manometer was performed on all AGVs. Opening pressure (OP) and closing pressure (CP) were defined as the pressure at which fluid was seen to flow or stop flowing through the AGV, respectively. OP and CP were measured twice per AGV. Patients were followed for 12 weeks. In total, 20 eyes from 19 patients were enrolled. At 12 weeks the mean IOP decreased from 29.2±9.1 to 16.8±5.2 mm Hg (P<0.01). The mean AGV OP was 17.5±5.4 mm Hg and the mean CP was 6.7±2.3 mm Hg. Early (within 2 wk postoperative) HP occurred in 37% and hypotony in 16% of cases. An 18 mm Hg cutoff for the OP gave a sensitivity of 0.71, specificity of 0.83, positive predictive value of 0.71, and negative predictive value of 0.83 for predicting an early HP. A 7 mm Hg cutoff for the CP yielded a sensitivity of 1.0, specificity of 0.38, positive predictive value of 0.23, and negative predictive value of 1.0 for predicting hypotony. Preoperative OP and CP may predict early hypotony or HP and may be used as a guide as to which AGV valves to discard before implantation surgery.

  20. Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  1. Comparison of short-term rainfall forecasts for modelbased flow prediction in urban drainage systems

    Thorndahl, Søren; Ahm, Malte; Nielsen, Jesper Ellerbek

    2013-01-01

    Forecast-based flow prediction in drainage systems can be used to implement real-time control of drainage systems. This study compares two different types of rainfall forecast - a radar rainfall extrapolation-based nowcast model and a numerical weather prediction model. The models are applied...... performance of the system is found using the radar nowcast for the short lead times and the weather model for larger lead times....

  2. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling.

    Mathieu Bottier

    2017-07-01

    Full Text Available Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures.

  3. Coronary physiological assessment combining fractional flow reserve and index of microcirculatory resistance in patients undergoing elective percutaneous coronary intervention with grey zone fractional flow reserve.

    Niida, Takayuki; Murai, Tadashi; Yonetsu, Taishi; Kanaji, Yoshihisa; Usui, Eisuke; Matsuda, Junji; Hoshino, Masahiro; Araki, Makoto; Yamaguchi, Masao; Hada, Masahiro; Ichijyo, Sadamitsu; Hamaya, Rikuta; Kanno, Yoshinori; Isobe, Mitsuaki; Kakuta, Tsunekazu

    2018-03-08

    The aim of this study is to investigate the association between fractional flow reserve (FFR) values and change in coronary physiological indices after elective percutaneous coronary intervention (PCI). Decision making for revascularization when FFR is 0.75-0.80 is controversial. A retrospective analysis was performed of 296 patients with stable angina pectoris who underwent physiological examinations before and after PCI. To investigate the differences of coronary flow improvement between territories with low-FFR (zone FFR (0.75-0.80), serial changes in physiological indices including mean transit time (Tmn), coronary flow reserve (CFR), and index of microcirculatory resistance (IMR) were compared between these two groups. Compared to low-FFR territories, grey-zone FFR territories showed significantly lower prevalence of Tmn shortening, CFR improvement, and decrease in IMR (Tmn shorting, 63.9% vs. 87.0%, P 51.3% vs. 63.3%, P = .040) and lower extent of their absolute changes (Tmn shorting, 0.06 (-0.03 to 0.16) vs. 0.22 (0.07-0.45), P zone FFR. Physiological assessment combining FFR and IMR may help identify patients who may benefit by PCI, particularly those in the grey zone. © 2018 Wiley Periodicals, Inc.

  4. NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach

    Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)

    2016-02-15

    The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.

  5. NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach

    Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J.C.

    2016-01-01

    The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.

  6. Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe

    Joaquín Bedia; Nicola Golding; Ana Casanueva; Maialen Iturbide; Carlo Buontempo; Jose Manuel Gutiérrez

    2018-01-01

    Managers of wildfire-prone landscapes in the Euro-Mediterranean region would greatly benefit from fire weather predictions a few months in advance, and particularly from the reliable prediction of extreme fire seasons. However, in some cases model biases prevent from a direct application of these predictions in an operational context. Fire risk management requires precise knowledge of the likely consequences of climate on fire risk, and the interest for decision-makers is focused on multi-var...

  7. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    Chongji, Z; Yexiang, X; Wei, Z; Yangyang, Y; Lei, C; Zhengwei, W

    2014-01-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method

  8. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  9. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  10. Incorporation of Duffing Oscillator and Wigner-Ville Distribution in Traffic Flow Prediction

    Anamarija L. Mrgole

    2017-02-01

    Full Text Available The main purpose of this study was to investigate the use of various chaotic pattern recognition methods for traffic flow prediction. Traffic flow is a variable, dynamic and complex system, which is non-linear and unpredictable. The emergence of traffic flow congestion in road traffic is estimated when the traffic load on a specific section of the road in a specific time period is close to exceeding the capacity of the road infrastructure. Under certain conditions, it can be seen in concentrating chaotic traffic flow patterns. The literature review of traffic flow theory and its connection with chaotic features implies that this kind of method has great theoretical and practical value. Researched methods of identifying chaos in traffic flow have shown certain restrictions in their techniques but have suggested guidelines for improving the identification of chaotic parameters in traffic flow. The proposed new method of forecasting congestion in traffic flow uses Wigner-Ville frequency distribution. This method enables the display of a chaotic attractor without the use of reconstruction phase space.

  11. CFD predictions of wake-stabilised jet flames in a cross-flow

    Lawal, Mohammed S.; Fairweather, Michael; Gogolek, Peter; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed; Williams, Alan

    2013-01-01

    This study describes an investigation into predicting the major flow properties in wake-stabilised jet flames in a cross flow of air using first- and second-order turbulence models, applied within a RANS (Reynolds-averaged Navier–Stokes) modelling framework. Standard and RNG (re-normalisation group) versions of the k-ε turbulence model were employed at the first-order level and the results compared with a second-moment closure, or RSM (Reynolds stress model). The combustion process was modelled using the laminar flamelet approach together with a thermal radiation model using the discrete ordinate method. The ability of the various turbulence models to reproduce experimentally established flame appearance, profiles of velocity and turbulence intensity, as well as the combustion efficiency of such flames is reported. The results show that all the turbulence models predict similar velocity profiles over the majority of the flow domain considered, except in the wake region, where the predictions of the RSM and RNG k-ε models are in closer agreement with experimental data. In contrast, the standard k-ε model over-predicts the peak turbulence intensity. Also, it is found that the RSM provides superior predictions of the planar recirculation and flame zones attached to the release pipe in the wake region. - Highlights: ► We investigated the prediction of the major properties in wake-stabilised methane jet flames in a cross flow. ► The ability of the various turbulence models to reproduce experimentally established flame parameters is reported. ► All the turbulence models considered predict similar velocity profiles, except in the wake region

  12. The predictive value of the foot posture index on dynamic function

    Nielsen, Rasmus Gottschalk; Rathleff, Michael Skovdal; Kersting, U G

    2008-01-01

    Keenan et. al. identified the six-item version of the Foot Posture Index (FPI) as a valid, simple and clinically useful tool. The model combines measures of the standing foot posture in multiple planes and anatomical segments. It provides an alternative to existing static clinical measures when d...

  13. Index for Predicting Insurance Claims from Wind Storms with an Application in France.

    Mornet, Alexandre; Opitz, Thomas; Luzi, Michel; Loisel, Stéphane

    2015-11-01

    For insurance companies, wind storms represent a main source of volatility, leading to potentially huge aggregated claim amounts. In this article, we compare different constructions of a storm index allowing us to assess the economic impact of storms on an insurance portfolio by exploiting information from historical wind speed data. Contrary to historical insurance portfolio data, meteorological variables show fewer nonstationarities between years and are easily available with long observation records; hence, they represent a valuable source of additional information for insurers if the relation between observations of claims and wind speeds can be revealed. Since standard correlation measures between raw wind speeds and insurance claims are weak, a storm index focusing on high wind speeds can afford better information. A storm index approach has been applied to yearly aggregated claim amounts in Germany with promising results. Using historical meteorological and insurance data, we assess the consistency of the proposed index constructions with respect to various parameters and weights. Moreover, we are able to place the major insurance events since 1998 on a broader horizon beyond 40 years. Our approach provides a meteorological justification for calculating the return periods of extreme-storm-related insurance events whose magnitude has rarely been reached. © 2015 Society for Risk Analysis.

  14. Automated procedure for candidate compound selection in GCMS metabolomics based on prediction of Kovats retention index

    Mihaleva, V.V.; Verhoeven, H.A.; Vos, de C.H.; Hall, R.D.; Ham, van R.C.H.J.

    2009-01-01

    Motivation: Matching both the retention index (RI) and the mass spectrum of an unknown compound against a mass spectral reference library provides strong evidence for a correct identification of that compound. Data on retention indices are, however, available for only a small fraction of the

  15. A Behavioral Economic Reward Index Predicts Drinking Resolutions: Moderation Revisited and Compared with Other Outcomes

    Tucker, Jalie A.; Roth, David L.; Vignolo, Mary J.; Westfall, Andrew O.

    2009-01-01

    Data were pooled from 3 studies of recently resolved community-dwelling problem drinkers to determine whether a behavioral economic index of the value of rewards available over different time horizons distinguished among moderation (n = 30), abstinent (n = 95), and unresolved (n = 77) outcomes. Moderation over 1- to 2-year prospective follow-up…

  16. Relative codon adaptation: a generic codon bias index for prediction of gene expression.

    Fox, Jesse M; Erill, Ivan

    2010-06-01

    The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias.

  17. The Predictive Value of the Foot Posture Index on Dynamic Function

    Mølgaard, Carsten Møller; Olesen Gammelgaard, Christian; Nielsen, R. G.

    Keenan et. al. identified the six-item version of the Foot Posture Index (FPI) as a valid, simple and clinically useful tool. The model combines measures of the standing foot posture in multiple planes and anatomical segments. It provides an alternative to existing static clinical measures when...

  18. BMD PREDICTION OF DEATH IS ENCAPSULATED BY THE MORPHOLOGICAL ATHEROSCLEROSIS CALCIFICATION DISTRIBUTION (MACD) INDEX

    Ganz, Melanie; Nielsen, Mads; Karsdal, Morten

    2009-01-01

    .3±0.3 years and of which CVD, cancer, and all cause deaths were recorded. The spine BMD and aortic calcification markers, AC24 and the recently proposed Morphological Atherosclerosis Calcification Distribution (MACD) index, were quantified from DXA scans and lateral X-rays respectively. The MACD...

  19. Prediction of the impacts of climate changes on the stream flow of ...

    Abstract. Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed, Aguobu-Umumba, Ezeagu, Enugu State, Nigeria. The model was first used to simulate stream flow using observed data. After model run, parameterization, sensitivity analysis, the monthly ...

  20. Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps

    Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)

    2013-09-15

    Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.

  1. A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

    Triepels, Ron; Daniels, Hennie

    2016-01-01

    The analysis of payment data has become an important task for operators and overseers of financial market infrastructures. Payment data provide an accurate description of how banks manage their liquidity over time. In this paper we compare three models to predict future liquidity flows from payment

  2. A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

    R.J.M.A. Triepels (Ron); H.A.M. Daniels (Hennie)

    2016-01-01

    textabstractThe analysis of payment data has become an important task for operators and overseers of financial market infrastructures. Payment data provide an accurate description of how banks manage their liquidity over time. In this paper we compare three models to predict future liquidity flows

  3. Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering

    Fraanje, P.R.; Rice, J.; Verhaegen, M.; Doelman, N.J.

    2010-01-01

    Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate

  4. Predicting critical heat flux in slug flow regime of uniformly heated ...

    Numerical computation code (PWR-DNBP) has been developed to predict Critical Heat Flux (CHF) of forced convective flow of water in a vertical heated channel. The code was based on the liquid sub-layer model, with the assumption that CHF occurred when the liquid film thickness between the heated surface and vapour ...

  5. A novel method to create high density stratification with matching refractive index for optical flow investigations

    Krohn, Benedikt; Manera, Annalisa; Petrov, Victor

    2018-04-01

    Turbulent mixing in stratified environments represents a challenging task in experimental turbulence research, especially when large density gradients are desired. When optical measurement techniques like particle image velocimetry (PIV) are applied to stratified liquids, it is common practice to combine two aqueous solutions with different density but equal refractive index, to suppress particle image deflections. While refractive image matching (RIM) has been developed in the late 1970s, the achieved limit of 4% density ratio was not rivalled up to day. In the present work, we report a methodology, based on the behavior of excess properties and their change in a multicomponent system while mixing, that allows RIM for solutions with higher density differences. The methodology is then successfully demonstrated using a ternary combination of water, isopropanol and glycerol, for which RIM in presence of a density ratio of 8.6% has been achieved. Qualitative PIV results of a turbulent buoyant jet with 8.6% density ratio are shown.

  6. Prediction of adiabatic bubbly flows in TRACE using the interfacial area transport equation

    Talley, J.; Worosz, T.; Kim, S.; Mahaffy, J.; Bajorek, S.; Tien, K.

    2011-01-01

    The conventional thermal-hydraulic reactor system analysis codes utilize a two-field, two-fluid formulation to model two-phase flows. To close this model, static flow regime transition criteria and algebraic relations are utilized to estimate the interfacial area concentration (a i ). To better reflect the continuous evolution of two-phase flow, an experimental version of TRACE is being developed which implements the interfacial area transport equation (IATE) to replace the flow regime based approach. Dynamic estimation of a i is provided through the use of mechanistic models for bubble coalescence and disintegration. To account for the differences in bubble interactions and drag forces, two-group bubble transport is sought. As such, Group 1 accounts for the transport of spherical and distorted bubbles, while Group 2 accounts for the cap, slug, and churn-turbulent bubbles. Based on this categorization, a two-group IATE applicable to the range of dispersed two-phase flows has been previously developed. Recently, a one-group, one-dimensional, adiabatic IATE has been implemented into the TRACE code with mechanistic models accounting for: (1) bubble breakup due to turbulent impact of an eddy on a bubble, (2) bubble coalescence due to random collision driven by turbulent eddies, and (3) bubble coalescence due to the acceleration of a bubble in the wake region of a preceding bubble. To demonstrate the enhancement of the code's capability using the IATE, experimental data for a i , void fraction, and bubble velocity measured by a multi-sensor conductivity probe are compared to both the IATE and flow regime based predictions. In total, 50 air-water vertical co-current upward and downward bubbly flow conditions in pipes with diameters ranging from 2.54 to 20.32 cm are evaluated. It is found that TRACE, using the conventional flow regime relation, always underestimates a i . Moreover, the axial trend of the a i prediction is always quasi-linear because a i in the

  7. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  8. Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol

    Rilo, E.; Domínguez-Pérez, M.; Vila, J.; Segade, L.; García, M.; Varela, L.M.; Cabeza, O.

    2012-01-01

    Highlights: ► We measure refractive index, n, in seven systems formed by IL + water or ethanol. ► Independently, theoretical estimations of the refractive index values were performed. ► To do that we use Gladstone–Dale and Newton models, relating n and density. ► We calculate density of each system from the value of the pure components. ► The agreement between experimental and calculated n values is about 99.8%. - Abstract: In this paper, we demonstrate that it is possible to know the refractive index, n D , of every given mixture of 1-alkyl-3methyl imidazolium tetrafluoroborate with water and ethanol just from the knowledge of the refractive index and density of pure components. To do that, we measured n D for seven different mixtures in all range of existing concentrations and, independently, we deduce n D theoretically. Both sets of values differ less than a 0.2% on average. The theoretical deduction takes into account that these mixtures are quasi-ideal from the molar volume point of view, as recently published, and so density for any composition of the mixture can be obtained with a precision better than 0.5% from the pure compounds value. Now we simply apply Newton or Gladstone–Dale models, which relate the refractive index of a binary mixture with its density from the value of both pure components, without any fitting parameter. Both models are very similar in form and in the values they deduce (less than a 0.2% of difference), but while that of Newton performs slightly better for ethanol mixtures, the model of Gladstone–Dale gives some better results for aqueous mixtures. We think that these results can be extended to the majority of ionic liquid plus solvent systems.

  9. Method of critical power prediction based on film flow model coupled with subchannel analysis

    Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.

    1988-01-01

    A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)

  10. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks.

    León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis

    2016-12-01

    Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Onishi Tetsuari

    2011-04-01

    Full Text Available Abstract Background We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT. A newly developed three-dimensional (3-D speckle tracking system can quantify endocardial area change ratio (area strain, which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI can quantify dyssynchrony and predict response to CRT. Methods We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35% and QRS duration of 172 ± 30 ms (all≥120 ms who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT. Results ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC of 0.93 (p Conclusions ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.

  12. Numerical predictions of particle dispersed two-phase flows, using the LSD and SSF models

    Avila, R.; Cervantes de Gortari, J.; Universidad Nacional Autonoma de Mexico, Mexico City. Facultad de Ingenieria)

    1988-01-01

    A modified version of a numerical scheme which is suitable to predict parabolic dispersed two-phase flow, is presented. The original version of this scheme was used to predict the test cases discussed during the 3rd workshop on TPF predictions in Belgrade, 1986. In this paper, two particle dispersion models are included which use the Lagrangian approach predicting test case 1 and 3 of the 4th workshop. For the prediction of test case 1 the Lagrangian Stochastic Deterministic model (LSD) is used providing acceptable good results of mean and turbulent quantities for both solid and gas phases; however, the computed void fraction distribution is not in agreement with the measurements at locations away from the inlet, especially near the walls. Test case 3 is predicted using both the LSD and the Stochastic Separated Flow (SSF) models. It was found that the effects of turbulence modulation are large when the LSD model is used, whereas the particles have a negligible influence on the continuous phase if the SSF model is utilized for the computations. Predictions of gas phase properties based on both models agree well with measurements; however, the agreement between calculated and measured solid phase properties is less satisfactory. (orig.)

  13. Parameter estimation techniques and uncertainty in ground water flow model predictions

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  14. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  15. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    Andrew J Reagan

    Full Text Available A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  16. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as ''equivalent discontinuum'' models. Equivalent discontinuum models are derived starting from a specified lattice or 6 ''template''. An inverse analysis called ''Simulated Annealing'' is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1

  17. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease.

    Motamed, Nima; Sohrabi, Masoudreza; Ajdarkosh, Hossein; Hemmasi, Gholamreza; Maadi, Mansooreh; Sayeedian, Fatemeh Sima; Pirzad, Reza; Abedi, Khadijeh; Aghapour, Sivil; Fallahnezhad, Mojtaba; Zamani, Farhad

    2016-03-14

    To determine the discriminatory performance of fatty liver index (FLI) for non-alcoholic fatty liver disease (NAFLD). The data of 5052 subjects aged over 18 years were analyzed. FLI was calculated from body mass index, waist circumference (WC), triglyceride, and gamma glutamyl transferase data. Logistic regression analysis was conducted to determine the association between FLI and NAFLD. The discriminatory performance of FLI in the diagnosis of NAFLD was evaluated by receiver operating characteristic analysis. Area under the curves (AUCs) and related confidence intervals were estimated. Optimal cutoff points of FLI in the diagnosis of NAFLD were determined based on the maximum values of Youden's index. The mean age of men and women in the study population were 44.8 ± 16.8 and 43.78 ± 15.43, respectively (P = 0.0216). The prevalence of NAFLD was 40.1% in men and 44.2% in women (P < 0.0017). FLI was strongly associated with NAFLD, so that even a one unit increase in FLI increased the chance of developing NAFLD by 5.8% (OR = 1.058, 95%CI: 1.054-1.063, P < 0.0001). Although FLI showed good performance in the diagnosis of NAFLD (AUC = 0.8656 (95%CI: 0.8548-0.8764), there was no significant difference with regards to WC (AUC = 0.8533, 95%CI: 0.8419-0.8646). The performance of FLI was not significantly different between men (AUC = 0.8648, 95%CI: 0.8505-0.8791) and women (AUC = 0.8682, 95%CI: 0.8513-0.8851). The highest performance with regards to age was related to the 18-39 age group (AUC = 0.8930, 95%CI: 0.8766-0.9093). The optimal cutoff points of FLI were 46.9 in men (sensitivity = 0.8242, specificity = 0.7687, Youden's index = 0.5929) and 53.8 in women (sensitivity = 0.8233, specificity = 0.7655, Youden's index = 0.5888). Although FLI had acceptable discriminatory power in the diagnosis of NAFLD, WC was a simpler and more accessible index with a similar performance.

  18. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  19. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    V. R. Sanal Kumar

    2018-02-01

    Full Text Available A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  20. Analytical method for predicting plastic flow in notched fiber composite materials

    Flynn, P.L.; Ebert, L.J.

    1977-01-01

    An analytical system was developed for prediction of the onset and progress of plastic flow of oriented fiber composite materials in which both externally applied complex stress states and stress raisers were present. The predictive system was a unique combination of two numerical systems, the ''SAAS II'' finite element analysis system and a micromechanics finite element program. The SAAS II system was used to generate the three-dimensional stress distributions, which were used as the input into the finite element micromechanics program. Appropriate yielding criteria were then applied to this latter program. The accuracy of the analytical system was demonstrated by the agreement between the analytically predicted and the experimentally measured flow values of externally notched tungsten wire reinforced copper oriented fiber composites, in which the fiber fraction was 50 vol pct

  1. Supplementation of Flow Accelerated Corrosion Prediction Program Using Numerical Analysis Technique

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2010-01-01

    Flow-accelerated corrosion (FAC) leads to thinning of steel pipe walls that are exposed to flowing water or wet steam. From experience, it is seen that FAC damage to piping at fossil and nuclear plants can result in outages that require expensive repairs and can affect plant reliability and safety. CHECWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data so that piping failures caused by FAC can be prevented. However, CHECWORKS may be occasionally ignore local susceptible portions when predicting FAC damage in a group of pipelines after constructing a database for all the secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of CHECWORKS prediction results using numerical analysis. FAC susceptible locations determined using CHECWORKS for two pipeline groups of a nuclear plant was compared with determined using the numerical-analysis-based FLUENT

  2. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  3. CFD Prediction of Airfoil Drag in Viscous Flow Using the Entropy Generation Method

    Wei Wang

    2018-01-01

    Full Text Available A new aerodynamic force of drag prediction approach was developed to compute the airfoil drag via entropy generation rate in the flow field. According to the momentum balance, entropy generation and its relationship to drag were derived for viscous flow. Model equations for the calculation of the local entropy generation in turbulent flows were presented by extending the RANS procedure to the entropy balance equation. The accuracy of algorithm and programs was assessed by simulating the pressure coefficient distribution and dragging coefficient of different airfoils under different Reynolds number at different attack angle. Numerical data shows that the total entropy generation rate in the flow field and the drag coefficient of the airfoil can be related by linear equation, which indicates that the total drag could be resolved into entropy generation based on its physical mechanism of energy loss.

  4. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  5. Wetland habitat disturbance best predicts metrics of an amphibian index of biotic integrity

    Stapanian, Martin A.; Micacchion, Mick; Adams, Jean V.

    2015-01-01

    Regression and classification trees were used to identify the best predictors of the five component metrics of the Ohio Amphibian Index of Biotic Integrity (AmphIBI) in 54 wetlands in Ohio, USA. Of the 17 wetland- and surrounding landscape-scale variables considered, the best predictor for all AmphIBI metrics was habitat alteration and development within the wetland. The results were qualitatively similar to the best predictors for a wetland vegetation index of biotic integrity, suggesting that similar management practices (e.g., reducing or eliminating nutrient enrichment from agriculture, mowing, grazing, logging, and removing down woody debris) within the boundaries of the wetland can be applied to effectively increase the quality of wetland vegetation and amphibian communities.

  6. Prognostic nutritional index predicts postoperative complications and long-term outcomes of gastric cancer.

    Jiang, Nan; Deng, Jing-Yu; Ding, Xue-Wei; Ke, Bin; Liu, Ning; Zhang, Ru-Peng; Liang, Han

    2014-08-14

    To investigate the impact of prognostic nutritional index (PNI) on the postoperative complications and long-term outcomes in gastric cancer patients undergoing total gastrectomy. The data for 386 patients with gastric cancer were extracted and analyzed between January 2003 and December 2008 in our center. The patients were divided into two groups according to the cutoff value of the PNI: those with a PNI ≥ 46 and those with a PNI gastric cancer patients.

  7. Use of Radiographic Densitometry to Predict the Bone Healing Index in Distraction Osteogenesis

    A Saw; S Manimaran; S Faizal; AM Bulgiba

    2008-01-01

    Bone lengthening with distraction osteogenesis involves prolonged application of an external fixator frame. Qualitative and quantitative evaluation of callus has been described using various imaging modalities but there is no simple reliable and readily available method. This study aims to investigate the use of a densitometer to analyze plain radiographic images and correlate them with the rate of new bone formation as represented by the bone healing index. A total of 34 bone lengthening pro...

  8. The Predictive Value of Integrated Pulmonary Index after Off-Pump Coronary Artery Bypass Grafting: A Prospective Observational Study

    Evgenia V. Fot

    2017-08-01

    Full Text Available BackgroundThe early warning scores may increase the safety of perioperative period. The objective of this study was to assess the diagnostic and predictive role of Integrated Pulmonary Index (IPI after off-pump coronary artery bypass grafting (OPCAB.Materials and MethodsForty adult patients undergoing elective OPCAB were enrolled into a single-center prospective observational study. We assessed respiratory function using IPI that includes oxygen saturation, end-tidal CO2, respiratory rate, and pulse rate. In addition, we evaluated blood gas analyses and hemodynamics, including ECG, invasive arterial pressure, and cardiac index. The measurements were performed after transfer to the intensive care unit, after spontaneous breathing trial and at 2, 6, 12, and 18 h after extubation.Results and DiscussionThe value of IPI registered during respiratory support correlated weakly with cardiac index (rho = 0.4; p = 0.04 and ScvO2 (rho = 0.4, p = 0.02. After extubation, IPI values decreased significantly, achieving a minimum by 18 h. The IPI value ≤9 at 6 h after extubation was a predictor of complicated early postoperative period (AUC = 0.71; p = 0.04 observed in 13 patients.ConclusionIn off-pump coronary surgery, the IPI decreases significantly after tracheal extubation and may predict postoperative complications.

  9. Using body mass index to predict optimal thyroid dosing after thyroidectomy.

    Ojomo, Kristin A; Schneider, David F; Reiher, Alexandra E; Lai, Ngan; Schaefer, Sarah; Chen, Herbert; Sippel, Rebecca S

    2013-03-01

    Current postoperative thyroid replacement dosing is weight based, with adjustments made after thyroid-stimulating hormone values. This method can lead to considerable delays in achieving euthyroidism and often fails to accurately dose over- and underweight patients. Our aim was to develop an accurate dosing method that uses patient body mass index (BMI) data. A retrospective review of a prospectively collected thyroid database was performed. We selected adult patients undergoing thyroidectomy, with benign pathology, who achieved euthyroidism on thyroid hormone supplementation. Body mass index and euthyroid dose were plotted and regression was used to fit curves to the data. Statistical analysis was performed using STATA 10.1 software (Stata Corp). One hundred twenty-two patients met inclusion criteria. At initial follow-up, only 39 patients were euthyroid (32%). Fifty-three percent of patients with BMI >30 kg/m(2) were overdosed, and 46% of patients with BMI regression equation was derived for calculating initial levothyroxine dose (μg/kg/d = -0.018 × BMI + 2.13 [F statistic = 52.7, root mean square error of 0.24]). The current standard of weight-based thyroid replacement fails to appropriately dose underweight and overweight patients. Body mass index can be used to more accurately dose thyroid hormone using a simple formula. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Cine dyscontractility index: A novel marker of mechanical dyssynchrony that predicts response to cardiac resynchronization therapy.

    Werys, Konrad; Petryka-Mazurkiewicz, Joanna; Błaszczyk, Łukasz; Miśko, Jolanta; Śpiewak, Mateusz; Małek, Łukasz A; Mazurkiewicz, Łukasz; Miłosz-Wieczorek, Barbara; Marczak, Magdalena; Kubik, Agata; Dąbrowska, Agnieszka; Piątkowska-Janko, Ewa; Sawionek, Błażej; Wijesurendra, Rohan; Piechnik, Stefan K; Bogorodzki, Piotr

    2016-12-01

    To investigate whether magnetic resonance imaging (MRI) cine-derived dyssynchrony indices provide additional information compared to conventional tagged MRI (tMRI) acquisitions in heart failure patients undergoing cardiac resynchronization therapy (CRT). Patients scheduled for CRT (n = 52) underwent preprocedure MRI including cine and tMRI acquisitions. Segmental strain curves were calculated for both cine and tMRI to produce a range of standard indices for direct comparison between modalities. We also proposed and evaluated a novel index of "dyscontractility," which detects the presence of focal areas with paradoxically positive circumferential strain. Across conventional strain indices, there was only moderate-to-poor (R = 0.3-0.6) correlation between modalities; eight cine-derived indices showed statistically significant (P cine images (cine dyscontractility index, "CDI") was the single best predictor of clinical response to CRT (area under the curve AUC = 0.81, P Cine-derived strain indices offer potentially new information compared to tMRI. Specifically, the novel CDI is most strongly linked to response to cardiac resynchronization therapy in a contemporary patient cohort. It utilizes readily available MRI data, is relatively straightforward to process, and compares favorably with any conventional tagging index. J. Magn. Reson. Imaging 2016;44:1483-1492. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow

    B. Arheimer

    2014-09-01

    Full Text Available The most radical anthropogenic impact on water systems in Sweden originates from the years 1900–1970, when the electricity network was developed in the country and almost all rivers were regulated. The construction of dams and changes in water flow caused problems for ecosystems. Therefore, when implementing the EU Water Framework Directive (WFD hydro-morphological indicators and targets were developed for rivers and lakes to achieve good ecological potential. The hydrological regime is one such indicator. To understand the change in flow regime we quantified the hydropower impact on river flow across Sweden by using the S-HYPE model and observations. The results show that the average redistribution of water during a year due to regulation is 19 % for the total discharge from Sweden. A distinct impact was found in seasonal flow patterns and flow duration curves. Moreover, we quantified the model skills in predicting hydropower impact on flow. The median NSE for simulating change in flow regime was 0.71 for eight dams studied. Results from the spatially distributed model are available for 37 000 sub-basins across the country, and will be used by the Swedish water authorities for reporting hydro-morphological indicators to the EU and for guiding the allocation of river restoration measures.

  12. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  13. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  14. Short-term traffic flow prediction model using particle swarm optimization–based combined kernel function-least squares support vector machine combined with chaos theory

    Qiang Shang

    2016-08-01

    Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.

  15. PREDICTION OF WATER QUALITY INDEX USING BACK PROPAGATION NETWORK ALGORITHM. CASE STUDY: GOMBAK RIVER

    FARIS GORASHI

    2012-08-01

    Full Text Available The aim of this study is to enable prediction of water quality parameters with conjunction to land use attributes and to find a low-end alternative for water quality monitoring techniques, which are typically expensive and tedious. It also aims to ensure sustainable development, which is essentially has effects on water quality. The research approach followed in this study is via using artificial neural networks, and geographical information system to provide a reliable prediction model. Back propagation network algorithm was used for the purpose of this study. The proposed approach minimized most of anomalies associated with prediction methods and provided water quality prediction with precision. The study used 5 hidden nodes in this network. The network was optimized to complete 23145 cycles before it reaches the best error of 0.65. Stations 18 had shown the greatest fluctuation among the three stations as it reflects an area of on-going rapid development of Gombak river watershed. The results had shown a very close prediction with best error of 0.67 in a sensitivity test that was carried afterwards.

  16. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows

    Ranjan, R.; Menon, S.

    2018-04-01

    The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.

  17. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.

    Krause, Egon

    2003-01-01

    Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature.

  18. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  19. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction.

    Cuculi, Florim; De Maria, Giovanni Luigi; Meier, Pascal; Dall'Armellina, Erica; de Caterina, Alberto R; Channon, Keith M; Prendergast, Bernard D; Choudhury, Robin P; Choudhury, Robin C; Forfar, John C; Kharbanda, Rajesh K; Banning, Adrian P

    2014-11-04

    Invasive assessment of coronary physiology (IACP) offers important prognostic insights in ST-segment elevation myocardial infarction (STEMI) but the dynamics of coronary recovery are poorly understood. This study sought to examine the evolution of coronary flow reserve (CFR), index of microcirculatory resistance (IMR), ratio of distal coronary pressure (Pd) to mean aortic pressure (Pa), and fractional flow reserve (FFR) in patients undergoing primary percutaneous coronary intervention (PPCI). 82 patients with STEMI underwent IACP at PPCI. Repeat IACP was performed in 61 patients (74%) at day 1 and in 46 patients (56%) at 6 months. Contrast-enhanced cardiac magnetic resonance imaging (CMR) was performed in 45 patients (55%) at day 1 and in 41 patients (50%) at 6 months. Changes in IACP were compared between patients with and without microvascular obstruction (MVO) on CMR. MVO was present in 21 of 45 patients (47%). Patients with MVO had lower CFR at PPCI and day 1 (p < 0.05) and a trend toward higher IMR values (p = 0.07). At 6 months, CFR and IMR were not significantly different between the groups. Baseline flow and Pd/Pa remained stable over time but FFR reduced significantly between PPCI and 6 months (p = 0.008); this reduction was mainly observed in patients with MVO (p = 0.006) but not in those without MVO (p = 0.21). In PPCI-treated patients with STEMI, coronary microcirculation begins to recover within 24 h and recovery progresses further by 6 months. FFR significantly reduces from baseline to 6 months. The presence of MVO indicates a highly dysfunctional microcirculation. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Predictive validity of the GOSLON Yardstick index in patients with unilateral cleft lip and palate: A systematic review.

    Cindy Buj-Acosta

    Full Text Available Among the various indices developed for measuring the results of treatment in patients born with unilateral cleft lip and palate (UCLP, the GOSLON Yardstick index is the most widely used to assess the efficacy of treatment and treatment outcomes, which in UCLP cases are closely linked to jaw growth. The aim of this study was to conduct a systematic review to validate the predictability of growth using the GOSLON Yardstick in patients born with UCLP. A systematic literature review was conducted in four Internet databases: Medline, Cochrane Library, Scopus and Embase, complemented by a manual search and a further search in the databases of the leading journals that focus on this topic. An electronic search was also conducted among grey literature. The search identified a total of 131 articles. Duplicated articles were excluded and after reading titles and abstracts, any articles not related to the research objective were excluded, leaving a total of 21 texts. After reading the complete text, only three articles fulfilled the inclusion criteria. The results showed a predictive validity of between 42.2% and 64.7%, which points to a lack of evidence in the literature for the predictive validity of the GOSLON Yardstick index used in children born with UCLP.

  1. Role of bedside index for severity of acute pancreatitis (bisap score in predicting outcome in acute pancreatitis

    Shahnawaz Bashir Bhat

    2015-12-01

    Full Text Available Objective: To investigate the role of Bedside index for severity of acute pancreatitis (BISAP score in predicting the outcome of acute pancreatitis. Methods: This single hospital based prospective study included fifty patients of acute pancreatitis admitted within 48 hours of onset of symptoms, who were divided into two groups according to admission BISAP score. BISAP score 3 (severe acute pancreatitis. The ability of BISAP score to predict mortality, morbidity and hospital stay in acute pancreatitis patients was analyzed. Results: A BISAP score of >3 was associated with increased risk of development of transient organ failure, persistent organ failure and pancreatic necrosis (Statistically significant. Mortality in group with BISAP and #8805;3 was 23.5% (4 patients which was statistically higher than group with BISAP score and #706;3 (0 patients (p=0.019.The mean duration of hospital stay of patients in group with BISAP score < 3 was 7.58 +/- 4.04 days and in group with BISAP score and #8805;3 was 15.35 +/- 1.66.(p=0.02. Conclusion: Bedside index for severity in acute pancreatitis (BISAP score, at admission is an excellent score in predicting the mortality, morbidity and hospital stay and hence management protocol in patients admitted with acute pancreatitis. [J Contemp Med 2015; 5(4.000: 215-220

  2. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China.

    Zhihao Li

    2017-03-01

    Full Text Available Dengue fever (DF in Guangzhou, Guangdong province in China is an important public health issue. The problem was highlighted in 2014 by a large, unprecedented outbreak. In order to respond in a more timely manner and hence better control such potential outbreaks in the future, this study develops an early warning model that integrates internet-based query data into traditional surveillance data.A Dengue Baidu Search Index (DBSI was collected from the Baidu website for developing a predictive model of dengue fever in combination with meteorological and demographic factors. Generalized additive models (GAM with or without DBSI were established. The generalized cross validation (GCV score and deviance explained indexes, intraclass correlation coefficient (ICC and root mean squared error (RMSE, were respectively applied to measure the fitness and the prediction capability of the models. Our results show that the DBSI with one-week lag has a positive linear relationship with the local DF occurrence, and the model with DBSI (ICC:0.94 and RMSE:59.86 has a better prediction capability than the model without DBSI (ICC:0.72 and RMSE:203.29.Our study suggests that a DSBI combined with traditional disease surveillance and meteorological data can improve the dengue early warning system in Guangzhou.

  3. Modified GAP index for prediction of acute exacerbation of idiopathic pulmonary fibrosis in non-small cell lung cancer.

    Kobayashi, Haruki; Omori, Shota; Nakashima, Kazuhisa; Wakuda, Kazushige; Ono, Akira; Kenmotsu, Hirotsugu; Naito, Tateaki; Murakami, Haruyasu; Endo, Masahiro; Takahashi, Toshiaki

    2017-10-01

    Predicting the incidence rate of acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF) and its prognosis in patients with non-small cell lung cancer (NSCLC) and IPF is difficult. The aim was to study the incidence of IPF-AE during the clinical course of the disease and its prognosis in patients with both NSCLC and IPF. In this retrospective study, we compared the incidence rate of AE during the clinical course of the disease as well as the 1-year survival rate and overall survival (OS) of patients with NSCLC and IPF using a modified gender, age and physiology (mGAP) staging system based on gender, age and percent predicted forced vital capacity. Of 43 patients with NSCLC and IPF included in the final analysis, 17 patients (40%; 95% CI: 26-54%) experienced AE during the clinical course of the disease. One-year survival and median OS were 41.9% (95% CI: 28-57%) and 9.4 months, respectively. Further analysis showed that the incidence of IPF-AE gradually increased and that the 1-year survival rate and median OS gradually decreased with increasing mGAP index score and stage. Our study suggested that mGAP index score and cancer stage may predict IPF-AE and its prognosis in patients with NSCLC and IPF. © 2017 Asian Pacific Society of Respirology.

  4. Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study.

    Pekkala, Timo; Hall, Anette; Lötjönen, Jyrki; Mattila, Jussi; Soininen, Hilkka; Ngandu, Tiia; Laatikainen, Tiina; Kivipelto, Miia; Solomon, Alina

    2017-01-01

    This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study. The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n = 39). An extended population (n = 1009, incident dementia 151) included non-participants/non-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC). AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype. The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions.

  5. The property distance index PD predicts peptides that cross-react with IgE antibodies

    Ivanciuc, Ovidiu; Midoro-Horiuti, Terumi; Schein, Catherine H.; Xie, Liping; Hillman, Gilbert R.; Goldblum, Randall M.; Braun, Werner

    2009-01-01

    Similarities in the sequence and structure of allergens can explain clinically observed cross-reactivities. Distinguishing sequences that bind IgE in patient sera can be used to identify potentially allergenic protein sequences and aid in the design of hypo-allergenic proteins. The property distance index PD, incorporated in our Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/), may identify potentially cross-reactive segments of proteins, based on their similarity to known IgE epitopes. We sought to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to three linear IgE epitopes of Jun a 1, the dominant allergen from mountain cedar pollen. For each of the three epitopes, 60 peptides were designed with increasing PD values (decreasing physicochemical similarity) to the starting sequence. The peptides synthesized on a derivatized cellulose membrane were probed with sera from patients who were allergic to Jun a 1, and the experimental data were interpreted with a PD classification method. Peptides with low PD values relative to a given epitope were more likely to bind IgE from the sera than were those with PD values larger than 6. Control sequences, with PD values between 18 and 20 to all the three epitopes, did not bind patient IgE, thus validating our procedure for identifying negative control peptides. The PD index is a statistically validated method to detect discrete regions of proteins that have a high probability of cross-reacting with IgE from allergic patients. PMID:18950868

  6. A Risk Prediction Index for Advanced Colorectal Neoplasia at Screening Colonoscopy.

    Schroy, Paul C; Wong, John B; O'Brien, Michael J; Chen, Clara A; Griffith, John L

    2015-07-01

    Eliciting patient preferences within the context of shared decision making has been advocated for colorectal cancer screening. Risk stratification for advanced colorectal neoplasia (ACN) might facilitate more effective shared decision making when selecting an appropriate screening option. Our objective was to develop and validate a clinical index for estimating the probability of ACN at screening colonoscopy. We conducted a cross-sectional analysis of 3,543 asymptomatic, mostly average-risk patients 50-79 years of age undergoing screening colonoscopy at two urban safety net hospitals. Predictors of ACN were identified using multiple logistic regression. Model performance was internally validated using bootstrapping methods. The final index consisted of five independent predictors of risk (age, smoking, alcohol intake, height, and a combined sex/race/ethnicity variable). Smoking was the strongest predictor (net reclassification improvement (NRI), 8.4%) and height the weakest (NRI, 1.5%). Using a simplified weighted scoring system based on 0.5 increments of the adjusted odds ratio, the risk of ACN ranged from 3.2% (95% confidence interval (CI), 2.6-3.9) for the low-risk group (score ≤2) to 8.6% (95% CI, 7.4-9.7) for the intermediate/high-risk group (score 3-11). The model had moderate to good overall discrimination (C-statistic, 0.69; 95% CI, 0.66-0.72) and good calibration (P=0.73-0.93). A simple 5-item risk index based on readily available clinical data accurately stratifies average-risk patients into low- and intermediate/high-risk categories for ACN at screening colonoscopy. Uptake into clinical practice could facilitate more effective shared decision-making for CRC screening, particularly in situations where patient and provider test preferences differ.

  7. Predicting AEA dosage by Foam Index and adsorption on Fly Ash

    Jacobsen, Stefan; Ollendorff, Margrethe; Geiker, Mette Rica; Tunstall, Lori; Scherer, George W.

    2012-01-01

    Abstract: The unpredictable air entrainment in fly ash concrete caused by carbon in fly ash was studied by measuring adsorption of Air Entraining Agents (AEA) on the fly ash and by Foam Index (FI) testing. The FI test measures the mass ratio of AEA/binder required to obtain stable foam when shaking a mixture of water, binder powder and AEA, while increasing AEA-dosage stepwise. A review of concrete air entrainment and new studies combining adsorption (TGA, NMR) of AEA on fly ash with various ...

  8. Predicting Soil Strength in Terms of Cone Index and California Bearing Ratio for Trafficability

    2016-03-01

    in Equation 4 (Anderson 1983). One can see the variation to Equation 1 (McDaniel and Smith 1971). Collins and Molthan suggested the lower and upper...and the amount of drainage, as defined by a wetness index term ( Collins 1971; Molthan 1967). ERDC/GSL TN-16-1 March 2016 4 2 123 0 008 0 693 4...since its development in the 1940s. It was devised by Jim Porter ( 1 9 5 0 ) of the California Division of Highways. Porter developed curves showing the

  9. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    Brugiere, O; Balarac, G; Corre, C; Metais, O; Flores, E; Pleroy

    2012-01-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  10. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  11. Comparison between frailty index of deficit accumulation and fracture risk assessment tool (FRAX) in prediction of risk of fractures.

    Li, Guowei; Thabane, Lehana; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-08-01

    A frailty index (FI) of deficit accumulation could quantify and predict the risk of fractures based on the degree of frailty in the elderly. We aimed to compare the predictive powers between the FI and the fracture risk assessment tool (FRAX) in predicting risk of major osteoporotic fracture (hip, upper arm or shoulder, spine, or wrist) and hip fracture, using the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort. There were 3985 women included in the study, with the mean age of 69.4 years (standard deviation [SD] = 8.89). During the follow-up, there were 149 (3.98%) incident major osteoporotic fractures and 18 (0.48%) hip fractures reported. The FRAX and FI were significantly related to each other. Both FRAX and FI significantly predicted risk of major osteoporotic fracture, with a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 1.02-1.05) and 1.02 (95% CI: 1.01-1.04) for per-0.01 increment for the FRAX and FI respectively. The HRs were 1.37 (95% CI: 1.19-1.58) and 1.26 (95% CI: 1.12-1.42) for an increase of per-0.10 (approximately one SD) in the FRAX and FI respectively. Similar discriminative ability of the models was found: c-index = 0.62 for the FRAX and c-index = 0.61 for the FI. When cut-points were chosen to trichotomize participants into low-risk, medium-risk and high-risk groups, a significant increase in fracture risk was found in the high-risk group (HR = 2.04, 95% CI: 1.36-3.07) but not in the medium-risk group (HR = 1.23, 95% CI: 0.82-1.84) compared with the low-risk women for the FI, while for FRAX the medium-risk (HR = 2.00, 95% CI: 1.09-3.68) and high-risk groups (HR = 2.61, 95% CI: 1.48-4.58) predicted risk of major osteoporotic fracture significantly only when survival time exceeded 18months (550 days). Similar findings were observed for hip fracture and in sensitivity analyses. In conclusion, the FI is comparable with FRAX in the prediction of risk of future fractures, indicating that

  12. Contribution of spiral artery blood flow changes assessed by transvaginal color Doppler sonography for predicting endometrial pathologies

    Suna Kabil Kucur

    2013-01-01

    Full Text Available ive: To investigate the diagnostic value of blood flow measurements in spiral artery by transvaginal color Doppler sonography (CDS in predicting endometrial pathologies.Methods: Ninety-seven patients presenting with abnormal uterine bleeding and requiring endometrial assessment were included in this prospective observational study. Endometrial thickness, structure and echogenicity were recorded. Pulsatility index (PI and resistive index (RI of the spiral artery were measured by transvaginal CDS. Endometrial sampling was performed for all subjects. Sonographic and hystopathologic findings were compared.Results: The histopathological diagnoses were as follows; 39 cases (40.2% endometrial polyp, 9 cases (9.3% endometrial hyperplasia, 10 cases (10.3 submucous myoma, 7 cases (7.2% endometrium cancer, and 32 cases (33% nonspecific findings. The spiral artery PI in endometrium cancer group was highly significantly lower than other groups (p<0.01. The spiral artery RI was also significantly lower in the patients with malignant histology (p<0.05. Conclusion: Endometrial pathologies are associated significantly with endometrial spiral artery Doppler changes.Key words: Spiral artery, Doppler ultrasonography, endometrium

  13. Predictive utility of blood pressure, waist circumference and body mass index for metabolic syndrome in patients with schizophrenia in Singapore.

    Nurjono, Milawaty; Lee, Jimmy

    2013-05-01

    This study aims to examine and compare the predictive utility of blood pressure (BP), waist circumference (WC) and body mass index (BMI), and to determine optimal cut-off values in prediction of metabolic syndrome (MetS) in patients with chronic schizophrenia. About 100 patients with chronic schizophrenia were recruited. BMI and BP were measured and laboratory tests to evaluate patients' high-density lipoprotein cholesterol, triglycerides and glucose levels were performed. Presence of MetS was examined according to AHA/NHLBI guidelines. Predictive utility of BP, WC and BMI was examined using receiver operating curve and discriminant indices were determined accordingly. Forty-six (46%) patients were identified to have MetS. BMI of ≥23 kg m(-2) was most accurate (AUC = 0.83, P < 0.001), with sensitivity of 93.5%, specificity of 48.1%, positive predictive value of 60.6% and negative predictive value of 92.9% in identifying MetS. This finding has immediate and significant clinical implications in the local population with schizophrenia. © 2012 Wiley Publishing Asia Pty Ltd.

  14. The El Niño Southern Oscillation index and wildfire prediction in British Columbia

    Xu, Zhen; Kooten, van G.C.

    2014-01-01

    This study investigates the potential to predict monthly wildfires and area burned in British Columbia's interior using El Niño Southern Oscillation (ENSO). The zero-inflated negative binomial (ZINB) and the generalized Pareto (GP) distributions are used, respectively, to account for uncertainty in

  15. Bayesian Combinations of Stock Price Predictions with an Application to the Amsterdam Exchange Index

    M. Billio (Monica); R. Casarin (Roberto); F. Ravazzolo (Francesco); H.K. van Dijk (Herman)

    2011-01-01

    textabstractWe summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic autoregressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative

  16. Verification of the directivity index and other measures of directivity in predicting directional benefit

    Dittberner, Andrew; Bentler, Ruth

    2005-09-01

    The relationship between various directivity measures and subject performance with directional microphone hearing aids was determined. Test devices included first- and second-order directional microphones. Recordings of sentences and noise (Hearing in Noise Test, HINT) were made through each test device in simple, complex, and anisotropic background noise conditions. Twenty-six subjects, with normal hearing, were administered the HINT test recordings, and directional benefit was computed. These measures were correlated to theoretical, free-field, and KEMAR DI values, as well as front-to-back ratios, in situ SNRs, and a newly proposed Db-SNR, wherein a predictive value of the SNR improvement is calculated as a function of the noise source incidence. The different predictive scores showed high correlation to the measured directional benefit scores in the complex (diffuse-like) background noise condition (r=0.89-0.97, pThe Db-SNR approach and the in situ SNR measures provided excellent prediction of subject performance in all background noise conditions (0.85-0.97, pthe predictive measures could account for the effects of reverberation on the speech signal (r=0.35-0.40, p<0.05).

  17. VALIDITY OF GARBER MODEL IN PREDICTING PAVEMENT CONDITION INDEX OF FLEXIBLE PAVEMENT IN KERBALA CITY

    Hussein A. Ewadh

    2018-05-01

    Full Text Available Pavement Condition Index (PCI is one of the important basics in pavement maintenance management system (PMMS, and it is used to evaluate the current and future pavement condition. This importantance in decision making to limit the maintenance needs, types of treatment, and maintenance priority. The aim of this research is to estimate the PCI value for flexible pavement urban roads in the study area (kerbala city by using Garber et al. developed model. Based on previous researches, data are collected for variables that have a significant impact on pavement condition. Data for pavement age (AGE, average daily traffic (ADT, and structural number (SN were collected for 44 sections in the network roads. A field survey (destructive test (core test and laboratory test (Marshall Test were used to determine the capacity of structure layer of pavement (SN. The condition index (CI output from a developed model was compared with the PCI output of PAVER 6.5.7 by using statistical analysis test. The developed model overestimates value of CI rather than PCI estimated from PAVER 6.5.7 due to statistical test to a 95% degree of confidence, (R = 0.771 for 44 sections (arterial and collector.

  18. Mortality is predicted by Comorbidity Polypharmacy score but not Charlson Comorbidity Index in geriatric trauma patients.

    Nossaman, Vaughn E; Larsen, Brett E; DiGiacomo, Jody C; Manuelyan, Zara; Afram, Renee; Shukry, Sally; Kang, Amiee Luan; Munnangi, Swapna; Angus, L D George

    2017-09-19

    Increased life expectancy has resulted in more older patients at trauma centers. Traditional assessments of injuries alone may not be sufficient; age, comorbidities, and medications should be considered. 446 older trauma patients were analyzed in two groups, 45-65 years and <65, using Injury Severity Score (ISS), the Charlson Comorbidity Index (CCI), and Comorbidity-Polypharmacy Score (CPS). CCI and CPS were associated with HLOS in patients <65. In patients aged 45-65, only CPS was associated with HLOS. CPS was inversely associated with in-hospital mortality in patients <65, but not patients aged 45-65. CCI score was not associated with in-hospital mortality in either group. Increased CCI and CPS were associated with increased HLOS. In patients over 65, increased CPS was associated with decreased mortality. This could be due to return toward physiologic normalcy in treated patients not seen in their peers with undiagnosed or untreated comorbidities. TABLE OF CONTENTS SUMMARY: In an analysis of 446 older trauma patients, the Charlson Comorbidity Index (CCI) and Comorbidity-Polypharmacy Score (CPS) were associated with increased hospital length of stay. In patients ≥65, increased CPS had a lower mortality, possibly due to a greater return toward physiologic normalcy not present in their untreated peers. Published by Elsevier Inc.

  19. Experimental and predicted refractive index properties in ternary mixtures of associated liquids

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2011-01-01

    Highlights: → Measurements of refractive indices of 200 different aqueous ternary mixtures have been performed for two wave lengths. → Refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9. → Difference between experimental and calculated derivatives of refractive index with concentration is unsatisfactory large. - Abstract: Refractive indices of ternary mixtures formed by (water + ethanol + k-ethylene glycol) (when k is mono, di or tri) and (water + t-butanol + dimethyl sulfoxide) are presented over a wide range of mixture compositions. All measurements have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The performance of several mixing rules that are commonly used in modeling optical constants are examined. We demonstrate that the refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9% by using the thermodynamical properties of the pure components. The concentration derivatives of the refractive index are an important parameter, as they are required for different experimental techniques. These derivatives have been determined from the experimental data on refractive indices. However, applying mixing rules for calculation of the derivatives of the refractive indices with respect to concentrations does not provide satisfactory results in the case of ternary mixtures of associated liquids.

  20. Using Blood Indexes to Predict Overweight Statuses: An Extreme Learning Machine-Based Approach.

    Huiling Chen

    Full Text Available The number of the overweight people continues to rise across the world. Studies have shown that being overweight can increase health risks, such as high blood pressure, diabetes mellitus, coronary heart disease, and certain forms of cancer. Therefore, identifying the overweight status in people is critical to prevent and decrease health risks. This study explores a new technique that uses blood and biochemical measurements to recognize the overweight condition. A new machine learning technique, an extreme learning machine, was developed to accurately detect the overweight status from a pool of 225 overweight and 251 healthy subjects. The group included 179 males and 297 females. The detection method was rigorously evaluated against the real-life dataset for accuracy, sensitivity, specificity, and AUC (area under the receiver operating characteristic (ROC curve criterion. Additionally, the feature selection was investigated to identify correlating factors for the overweight status. The results demonstrate that there are significant differences in blood and biochemical indexes between healthy and overweight people (p-value < 0.01. According to the feature selection, the most important correlated indexes are creatinine, hemoglobin, hematokrit, uric Acid, red blood cells, high density lipoprotein, alanine transaminase, triglyceride, and γ-glutamyl transpeptidase. These are consistent with the results of Spearman test analysis. The proposed method holds promise as a new, accurate method for identifying the overweight status in subjects.

  1. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    Abd Ellah, Mohamed, E-mail: dr_m_hamdy2006@hotmail.co [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Kremser, Christian, E-mail: christian.kremser@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pallwein, Leo, E-mail: leo.pallwein-prettner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Aigner, Friedrich, E-mail: friedrich.Aigner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Schocke, Michael, E-mail: michael.schocke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Peschel, Reinhard, E-mail: reinhard.peschel@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pedross, Florian, E-mail: florian.pedross@i-med.ac.a [Innsbruck Medical University, Medical Statistics Dept., Anich St. 35, 6020 Innsbruck (Austria); Pinggera, Germar-Michael, E-mail: germar.pinggera@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Wolf, Christian, E-mail: christian.wolf@bkh-reutte.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Alsharkawy, Mostafa A.M., E-mail: drmostafamri@yahoo.co [Assiut University, Radiology Dept., Assiut (Egypt); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Frauscher, Ferdinand, E-mail: ferdinand.frauscher@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria)

    2010-10-15

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  2. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  3. Validation of MATRA-S Low Flow Predictions Using PNL 2x6 Mixed Convection Test

    Seo, Kyong-Won; Kwon, Hyuk; Kim, Seong-Jin; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The MATRA-S, a subchannel analysis code has been used to thermal-hydraulic design of SMART core. As the safety enhancement is getting important more and more, some features of the MATRA-S code are required to be validated in order to be applied to nonnominal operating conditions in addition to its applicability to reactor design under normal operating conditions. The MATRA-S code has two numerical schemes, SCHEME for implicit application and XSCHEM for explicit one. The implicit scheme had been developed under assumptions that the axial flow is larger enough than the crossflow. Under certain conditions, especially low flow and low pressure operating conditions, this implicit SCHEME oscillates or becomes unstable numerically and then MATRA-S fails to obtain good solution. These demerits were known as common in implicit schemes of many COBRA families. Efforts have been exerted to resolve these limitations in SCHEME of the MATRA-S such as a once through marching scheme against the multi-pass marching scheme and an adaptive multi-grid method. These remedies can reduce the numerically unstable range for SCHEME but some unstable regions still remain. The XSCHEM, an explicit scheme of MATRA-S was validated using the PNL 2x6 rod bundle flow transient test. The explicit scheme agreed with implicit scheme for steady state calculations. And it showed its capability to predict low flow conditions such as negative flow and recirculation flow.

  4. Prediction for the flow distribution and the pressure drop of a plate type fuel assembly

    Park, Jong Hark; Jo, Dea Sung; Chae, Hee Taek; Lee, Byung Chul

    2011-01-01

    A plate type fuel assembly widely used in many research reactors does not allow the coolant to mix with neighboring fuel channels due to the completely separated flow channels. If there is a serious inequality of coolant distribution among channels, it can reduce thermal-hydraulic safety margin, as well as it can cause a deformation of fuel plates by the pressure difference between neighboring channels, thus the flow uniformity in the fuel assembly should be confirmed. When designing a primary cooling system (PCS), the pressure drop through a reactor core is a dominant value to determine the PCS pump size. The major portion of reactor core pressure drop is caused by the fuel assemblies. However it is not easy to get a reasonable estimation of pressure drop due to the geometric complexity of the fuel assembly and the thin gaps between fuel assemblies. The flow rate through the gap is important part to determine the total flow rate of PCS, so it should be estimated as reasonable as possible. It requires complex and difficult jobs to get useful data. In this study CFD analysis to predict the flow distribution and the pressure drop were conducted on the plate type fuel assembly, which results would be used to be preliminary data to determine the PCS flow rate and to improve the design of a fuel assembly

  5. A new methodology for predicting flow induced vibration in industrial components

    Gay, N.

    1997-12-01

    Flow induced vibration damage is a major concern for designers and operators of industrial components. For example, nuclear power plant operators have currently to deal with such flow induced vibration problems, in steam generator tube bundles, control rods or nuclear fuel assemblies. Some methodologies have thus been recently proposed to obtain an accurate description of the flow induced vibration phenomena. These methodologies are based on unsteady semi-analytical models for fluid-dynamic forces, associated with non-dimensional fluid force coefficients generally obtained from experiments. The aim is to determine the forces induced by the flow on the structure, and then to take account of these forces to derive the dynamic behaviour of the component under flow excitation. The approach is based on a general model for fluid-dynamic forces, using several non-dimensional parameters that cannot be reached through computation. These parameters are then determined experimentally on simplified test sections, representative of the component, of the flow and of the fluid-elastic coupling phenomena. Predicting computations of the industrial component can then be performed for various operating configurations, by applying laws of similarity. The major physical mechanisms involved in complex fluid-structure interaction phenomena have been understood and modelled. (author)

  6. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2009-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  7. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales

    Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E; Zarfl, Christiane; MacDonald, Graham K; Reidy Liermann, Catherine

    2015-01-01

    The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930–2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium

  8. Evaluation of flow-induced vibration prediction techniques for in-reactor components

    Mulcahy, T.M.; Turula, P.

    1975-05-01

    Selected in-reactor components of a hydraulic and structural dynamic scale model of the U. S. Energy Research and Development Administration experimental Fast Test Reactor have been studied in an effort to develop and evaluate techniques for predicting vibration behavior of elastic structures exposed to a moving fluid. Existing analysis methods are used to compute the natural frequencies and modal shapes of submerged beam and shell type components. Component response is calculated, assuming as fluid forcing mechanisms both vortex shedding and random excitations characterized by the available hydraulic data. The free and force vibration response predictions are compared with extensive model flow and shaker test data. (U.S.)

  9. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Jošt, D; Škerlavaj, A; Lipej, A

    2012-01-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  10. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  11. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  12. Prediction of default probability in banking industry using CAMELS index: A case study of Iranian banks

    Mohammad Khodaei Valahzaghard

    2013-04-01

    Full Text Available This study examines the relationship between CAMELS index and default probability among 20 Iranian banks. The proposed study gathers the necessary information from their financial statements over the period 2005-2011. The study uses logistic regression along with Pearson correlation analysis to consider the relationship between default probability and six independent variables including capital adequacy, asset quality, management quality, earning quality, liquidity quality and sensitivity of market risk. The results indicate that there were no meaningful relationship between default probability and three independent variables including capital adequacy, asset quality and sensitivity of market risk. However, the results of our statistical tests support such relationship between default probability and three other variables including management quality, earning quality and liquidity quality.

  13. The Authoritative Parenting Index: predicting health risk behaviors among children and adolescents.

    Jackson, C; Henriksen, L; Foshee, V A

    1998-06-01

    Public health research demonstrates increasing interest in mobilizing parental influence to prevent health risk behaviors among children and adolescents. This research focuses on authoritative parenting, which previous studies suggest can prevent health risk behaviors among youth. To evaluate the reliability and validity of a new survey measure of authoritative parenting, data from studies of (1) substance use in a sample of 1,236 fourth- and sixth-grade students; (2) weapon carrying and interpersonal violence in a sample of 1,490 ninth- and tenth-grade students, and (3) anger, alienation, and conflict resolution in a sample of 224 seventh- and eighth-grade students were analyzed. The Authoritative Parenting Index had a factor structure consistent with a theoretical model of the construct; had acceptable reliability; showed grade, sex, and ethnic differences consistent with other studies; and identified parenting types that varied as hypothesized with multiple indicators of social competence and health risk behaviors among children and adolescents.

  14. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  15. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  16. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  17. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  18. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  19. CNT Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing (Postscript)

    2016-11-07

    SUPPLEMENTARY NOTES PA Case Number: 88ABW-2016-3588; Clearance Date: 22 July 2016. This document contains color . Journal article published in Advanced...ABSTRACT (Maximum 200 words) While numerous flow sensor architectures mimic the natural cilia of crickets, locusts, bats, and fish , the prediction...strain-based sensors can present additional difficulty in interpreting their response over long timescales or under varying conditions. Schemes may

  20. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  1. The effect of virtual mass on the prediction of critical flow

    Cheng, L.; Lahey, R.T.; Drew, D.A.

    1983-01-01

    By observing the results in Fig. 4 and Fig. 5 we can see that virtual mass effects are important in predicting critical flow. However, as seen in Fig. 7a, in which all three flows are predicted to be critical (Δ=0), it is difficult to distinguish one set of conditions from the other by just considering the pressure profile. Clearly more detailed data, such as the throat void fraction, is needed for discrimination between these calculations. Moreover, since the calculated critical flows have been found to be sensitive to initial mass flux, and void fraction, careful measurements of those parameters are needed before accurate virtual mass parameters can be determined from these data. It can be concluded that the existing Moby Dick data is inadequate to allow one to deduce accurate values of the virtual mass parameters C/sub VM/ and λ. Nevertheless, more careful experiments of this type are uniquely suited for the determination of these important parameters. It appears that the use of a nine equation model, such as that discussed herein, coupled with more detailed accurate critical flow data is an effective means of determining the parameters in interfacial momentum transfer models, such as virtual mass effects, which are only important during strong spatial accelerations. Indeed, there are few other methods available which can be used for such determinations

  2. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  3. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  4. Prediction of localized flow velocities and turbulence in a PWR steam generator: Final report

    Stuhmiller, J.H.

    1988-05-01

    The Steam Generator Project Office (SGPO) of the Steam Generator Owners Group and Electric Power Research Institute has developed a methodology for prediction of steam generator tube buffeting and associated material wear. Turbulent buffeting of steam generator tubes causes low amplitude vibratory response which results in fretting wear at support locations. Concerns raised at the Zion Nuclear Power Plant regarding the useful life of their steam generators prompted this study, in which the SGPO methodology is applied to analysis of the Westinghouse Model 51 steam generator. The specific intent of this project was to calculate turbulent buffeting forces within the tube bank of an operating Model 51 steam generator as a first step in the overall SGPO tube vibration and wear prediction strategy. Attention is focused on flow in the vicinity of anti-vibration bars (U-bend region) and on the flow that leaves the downcomer to impact against peripheral tubes. Other projects utilized the buffeting forces calculated here to determine tube vibratory response, tube-support plate impact statistics, and material wear rates. Besides successfully calculating hydraulic buffeting loads within the tube bank, the present project has enhanced the SGPO methodology and has identified hitherto unnoticed flow phenomena that occur in the steam generator. Experiments have also been carried out to validate numerical computations of the steam generator flow field

  5. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.

    Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-12-01

    The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.

  6. Effect of prediction on the self-organization of pedestrian counter flow

    Wang Ziyang; Zhao Hui; Ma Jian; Qin Yong; Jia Limin

    2012-01-01

    Pedestrians may predict the behavior of others and then adjust their movement accordingly to avoid potential conflicts in advance. Motivated by this fact, we propose a predictive control theory-based pedestrian counter flow model, which describes the predictive mechanism underlying pedestrian self-organization phenomena. In this model, a pedestrian will make in-advance-avoid behavior based on the estimation of future moving gain within a given predictive length to reduce potential conflicts. The future gain in the present model is affected by three factors, i.e. the predictive length, the smooth degree of entrance and the influential area of coming pedestrians. Simulation results of the model show that increasing predictive length has a remarkable effect on reducing conflicts, improving pedestrian velocity, smoothing pedestrian movement and stabilizing the self-organized lanes. When enlarging the influential area of coming pedestrians, pedestrians tend to aggregate to the formed self-organized lanes, which makes the lanes wider and the lane number reduced. Interestingly, moderate enlargement (of the influential area) will reduce conflicts significantly, while excessive enlargement will lead to an increase in conflicts. We also discuss the predictive effect toward the smooth degree of entrance. When there are some formed self-organized lanes in the system, the effect is significant, and it will make the lanes more regular and stable, while when the existing lanes are unstable, the effect has little impact on the system. (paper)

  7. Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent

    Yan Liu

    2016-01-01

    Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.

  8. An Obesity Dietary Quality Index Predicts Abdominal Obesity in Women: Potential Opportunity for New Prevention and Treatment Paradigms

    Dolores M. Wolongevicz

    2010-01-01

    Full Text Available Background. Links between dietary quality and abdominal obesity are poorly understood. Objective. To examine the association between an obesity-specific dietary quality index and abdominal obesity risk in women. Methods. Over 12 years, we followed 288 Framingham Offspring/Spouse Study women, aged 30–69 years, without metabolic syndrome risk factors, cardiovascular disease, cancer, or diabetes at baseline. An 11-nutrient obesity-specific dietary quality index was derived using mean ranks of nutrient intakes from 3-day dietary records. Abdominal obesity (waist circumference >88 cm was assessed during follow-up. Results. Using multiple logistic regression, women with poorer dietary quality were more likely to develop abdominal obesity compared to those with higher dietary quality (OR 1.87; 95% CI, 1.01, 3.47; P for trend =.048 independent of age, physical activity, smoking, and menopausal status. Conclusions. An obesity-specific dietary quality index predicted abdominal obesity in women, suggesting targets for dietary quality assessment, intervention, and treatment to address abdominal adiposity.

  9. Slow and stopped light in active gain composite materials of metal nanoparticles. Ultralarge group index-bandwidth product predicted

    Kim, Kwang-Hyon; Choe, Song-Hyok [Institute of Lasers, State Academy of Sciences, Unjong District, Pyongyang (Korea, Democratic People' s Republic of)

    2017-08-15

    Chip-compatible slow light devices with large group index-bandwidth products and low losses are of great interest in the community of modern photonics. In this work, active gain materials containing metal nanoparticles are proposed as the slow and stopped light materials. Gain-assisted high field enhancement in metal nanoparticles and the resultant strong dispersion lead to such phenomena. From the Maxwell-Garnett model, it is revealed that the metal nanocomposite exhibits the infinitely large group index when the gain of the host medium and the filling factor of metal nanoparticles satisfy a critical condition. For the gain of the host above the critical value, one can observe slowing down effect with amplification of light pulses. Significantly large group index-bandwidth products, which vary from a few to several thousand or even infinity depending on the gain value of the host medium, have been numerically predicted in active silica glasses containing spheroidal metal nanoparticles, as examples. The proposed scheme inherently provides the widely varying operating spectral range by changing the aspect ratio of metal nanoparticles and chip-compatibility with low cost. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Comparison of simplified models in the prediction of two phase flow in pipelines

    Jerez-Carrizales, M.; Jaramillo, J. E.; Fuentes, D.

    2014-06-01

    Prediction of two phase flow in pipelines is a common task in engineering. It is a complex phenomenon and many models have been developed to find an approximate solution to the problem. Some old models, such as the Hagedorn & Brown (HB) model, have been highlighted by many authors to give very good performance. Furthermore, many modifications have been applied to this method to improve its predictions. In this work two simplified models which are based on empiricism (HB and Mukherjee and Brill, MB) are considered. One mechanistic model which is based on the physics of the phenomenon (AN) and it still needs some correlations called closure relations is also used. Moreover, a drift flux model defined in steady state that is flow pattern dependent (HK model) is implemented. The implementation of these methods was tested using published data in the scientific literature for vertical upward flows. Furthermore, a comparison of the predictive performance of the four models is done against a well from Campo Escuela Colorado. Difference among four models is smaller than difference with experimental data from the well in Campo Escuela Colorado.

  11. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  12. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  13. Predicting ecological flow regime at ungaged sites: A comparison of methods

    Murphy, Jennifer C.; Knight, Rodney R.; Wolfe, William J.; Gain, W. Scott

    2012-01-01

    Nineteen ecologically relevant streamflow characteristics were estimated using published rainfall–runoff and regional regression models for six sites with observed daily streamflow records in Kentucky. The regional regression model produced median estimates closer to the observed median for all but two characteristics. The variability of predictions from both models was generally less than the observed variability. The variability of the predictions from the rainfall–runoff model was greater than that from the regional regression model for all but three characteristics. Eight characteristics predicted by the rainfall–runoff model display positive or negative bias across all six sites; biases are not as pronounced for the regional regression model. Results suggest that a rainfall–runoff model calibrated on a single characteristic is less likely to perform well as a predictor of a range of other characteristics (flow regime) when compared with a regional regression model calibrated individually on multiple characteristics used to represent the flow regime. Poor model performance may misrepresent hydrologic conditions, potentially distorting the perceived risk of ecological degradation. Without prior selection of streamflow characteristics, targeted calibration, and error quantification, the widespread application of general hydrologic models to ecological flow studies is problematic. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  14. The prostate health index PHI predicts oncological outcome and biochemical recurrence after radical prostatectomy - analysis in 437 patients.

    Maxeiner, Andreas; Kilic, Ergin; Matalon, Julia; Friedersdorff, Frank; Miller, Kurt; Jung, Klaus; Stephan, Carsten; Busch, Jonas

    2017-10-03

    The purpose of this study was to investigate the Prostate-Health-Index (PHI) for pathological outcome prediction following radical prostatectomy and also for biochemical recurrence prediction in comparison to established parameters such as Gleason-score, pathological tumor stage, resection status (R0/1) and prostate-specific antigen (PSA). Out of a cohort of 460 cases with preoperative PHI-measurements (World Health Organization calibration: Beckman Coulter Access-2-Immunoassay) between 2001 and 2014, 437 patients with complete follow up data were included. From these 437 patients, 87 (19.9%) developed a biochemical recurrence. Patient characteristics were compared by using chi-square test. Predictors were analyzed by multivariate adjusted logistic and Cox regression. The median follow up for a biochemical recurrence was 65 (range 3-161) months. PHI, PSA, [-2]proPSA, PHI- and PSA-density performed as significant variables (p PHI, PSA, %fPSA, [-2]proPSA, PHI- and PSA-density significantly discriminated between stages PHI. In biochemical recurrence prediction PHI, PSA, [-2]proPSA, PHI- and PSA-density were the strongest predictors. In conclusion, due to heterogeneity of time spans to biochemical recurrence, longer follow up periods are crucial. This study with a median follow up of more than 5 years, confirmed a clinical value for PHI as an independent biomarker essential for biochemical recurrence prediction.

  15. Waist Circumference, Body Mass Index, and Other Measures of Adiposity in Predicting Cardiovascular Disease Risk Factors among Peruvian Adults.

    Knowles, K M; Paiva, L L; Sanchez, S E; Revilla, L; Lopez, T; Yasuda, M B; Yanez, N D; Gelaye, B; Williams, M A

    2011-01-24

    Objectives. To examine the extent to which measures of adiposity can be used to predict selected components of metabolic syndrome (MetS) and elevated C-reactive protein (CRP). Methods. A total of 1,518 Peruvian adults were included in this study. Waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), waist-height ratio (WHtR), and visceral adiposity index (VAI) were examined. The prevalence of each MetS component was determined according to tertiles of each anthropometric measure. ROC curves were used to evaluate the extent to which measures of adiposity can predict cardiovascular risk. Results. All measures of adiposity had the strongest correlation with triglyceride concentrations (TG). For both genders, as adiposity increased, the prevalence of Mets components increased. Compared to individuals with low-BMI and low-WC, men and women with high-BMI and high- WC had higher odds of elevated fasting glucose, blood pressure, TG, and reduced HDL, while only men in this category had higher odds of elevated CRP. Overall, the ROCs showed VAI, WC, and WHtR to be the best predictors for individual MetS components. Conclusions. The results of our study showed that measures of adiposity are correlated with cardiovascular risk although no single adiposity measure was identified as the best predictor for MetS.

  16. Waist Circumference, Body Mass Index, and Other Measures of Adiposity in Predicting Cardiovascular Disease Risk Factors among Peruvian Adults

    K. M. Knowles

    2011-01-01

    Full Text Available Objectives. To examine the extent to which measures of adiposity can be used to predict selected components of metabolic syndrome (MetS and elevated C-reactive protein (CRP. Methods. A total of 1,518 Peruvian adults were included in this study. Waist circumference (WC, body mass index (BMI, waist-hip ratio (WHR, waist-height ratio (WHtR, and visceral adiposity index (VAI were examined. The prevalence of each MetS component was determined according to tertiles of each anthropometric measure. ROC curves were used to evaluate the extent to which measures of adiposity can predict cardiovascular risk. Results. All measures of adiposity had the strongest correlation with triglyceride concentrations (TG. For both genders, as adiposity increased, the prevalence of Mets components increased. Compared to individuals with low-BMI and low-WC, men and women with high-BMI and high- WC had higher odds of elevated fasting glucose, blood pressure, TG, and reduced HDL, while only men in this category had higher odds of elevated CRP. Overall, the ROCs showed VAI, WC, and WHtR to be the best predictors for individual MetS components. Conclusions. The results of our study showed that measures of adiposity are correlated with cardiovascular risk although no single adiposity measure was identified as the best predictor for MetS.

  17. APPLICATILITY OF THE VISCERAL ADIPOSITY INDEX (VAI) IN THE PREDICTION OF THE COMPONENTS OF THE METABOLIC SYNDROME IN ELDERLY.

    Goldani, Heloisa; Adami, Fernanda Scherer; Antunes, Maria Terezinha; Rosa, Luis Henrique; Fassina, Patrícia; Quevedo Grave, Magali Terezinha; Morelo Dal Bosco, Simone

    2015-10-01

    The nutritional assessment may detect a state of malnutrition, overweight and cardiometabolic risk in the elderly. Easy to apply instruments enable the identification of risk factors for cardiovascular diseases (CVD). to analyze the applicability of Visceral Adiposity Index (VAI) in the prediction of MS components in the elderly. cross-sectional study with 221 elderly at a mean age of 70.65 ± 7.34 years; 53.4% female and 46.4% male. Weight, height, waist circumference (WC), fasting glucose, triglycerides (TG), total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), and blood pressure (BP), data was obtained, as well as information about lifestyle. There were calculated the Body Mass Index (BMI), the Waist-Hip Ratio (WHR), and the VAI. The adiposity measures were compared with the components of MS, and for the VAI there was determined the capability of predicting the occurrence of MS components. by analyzing the association among the biochemical and pressoric variables and MS components with the anthropometric indicators of obesity, there was a direct and significant correlation of the BMI, the weight and the VAI with blood glucose, HDL and TG (p. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Efficacy of NETDC (New England Trophoblastic Disease Center prognostic index score to predict gestational trophoblastic tumor from hydatidiform mole

    Khrismawan Khrismawan

    2004-03-01

    Full Text Available A prospective longitudinal analytic study assessing the efficacy of NETDC (New England Trophoblastic Disease Center prognostic index score in predicting malignancy after hydatidiform mole had been performed. Of the parameter evaluated; age of patients, type of hydatidiform mole, uterine enlargement, serum hCG level, lutein cyst, and presence of complicating factors were significant risk factors for malignancy after hydatidiform mole were evacuated (p<0.032. The study were done on 50 women diagnosed with hydatidiform mole with 1 year observation (January 2001-December 2002 at the Department of Obstetrics and Gynecology, Mohammad Hoesin Hospital, Palembang. The results showed that the NETDC prognostic index score predicted malignancy in 50% of high risk group and 10% in low risk group (p<0.05. This showed a higher number than that found by the WHO (19%-30%. The risk for incidence of  malignancy after hydatidiform mole in the high risk group is 9.0 times higher compared to that of the low risk group (CI: 1.769-45.786. (Med J Indones 2004; 13: 40-6 Keywords: New England Trophoblastic Disease Center (NETDC, gestational trophoblastic tumor, hydatidiform mole, high and low risk

  19. Gluten-free snacks using plantain-chickpea and maize blend: chemical composition, starch digestibility, and predicted glycemic index.

    Flores-Silva, Pamela C; Rodriguez-Ambriz, Sandra L; Bello-Pérez, Luis A

    2015-05-01

    An increase in celiac consumers has caused an increasing interest to develop good quality gluten-free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep-frying of unripe plantain, chickpea, and maize flours blends produced gluten-free snacks with high dietary fiber contents (13.7-18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten-free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten-free snacks was similar to that chili-flavored commercial snack. It was possible to develop gluten-free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten-free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community. © 2015 Institute of Food Technologists®

  20. Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.