Market potential of IGCC for domestic power production
International Nuclear Information System (INIS)
Gray, D.; Tomlinson, G.; Hawk, E.; Maskew, J.
1999-01-01
Mitretek Systems and CONSOL Inc. have completed the first phase of a market potential study for Integrated Coal Gasification Combined Cycle (IGCC) domestic power production. The U. S. Department of Energy (DOE) funded this study. The objective of this study is to provide DOE with data to estimate the future domestic market potential of IGCC for electricity generation. Major drivers in this study are the state of technology development, feedstock costs, environmental control costs, demand growth, and dispatchability. This study examines IGCC potential for baseload power production in the Northeast U. S., an important market area by virtue of existing coal infrastructure and proximity to coal producing regions. IGCC market potential was examined for two levels of technology development as a function of natural gas price and carbon tax. This paper discusses the results of this study, including the levels of performance and cost necessary to insure competitiveness with natural gas combined cycle plants
Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants
Energy Technology Data Exchange (ETDEWEB)
Elias Stefanakos; Burton Krakow; Jonathan Mbah
2007-07-31
IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.
Exergetic comparison of two KRW-based IGCC power plants
International Nuclear Information System (INIS)
Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.
1991-01-01
In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared in this paper, from the exergetic viewpoint. The exergetic comparison identifies the causes of performance differences between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using oxygen-blown versus air-blown KRW gasifiers, and hot gas versus cold gas cleanup processes is evaluated
Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant
Energy Technology Data Exchange (ETDEWEB)
Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.
2011-01-01
In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the
Heat Rate Enhancement of IGCC Power Plant Coupled with Solar thermal power plant
Kotdawala, Rasesh R; V., Jyothi; Kanaujia, Gaurav; Adapa, Bharath
2016-01-01
Integrated gasification combined cycle power plant (IGCC) has shown the potential of having higher operating thermal efficiency, than supercritical thermal power plants as it combines the advantages of coal gasification and combined cycle power plant. Solar thermal plant has shown great promise to augment the thermal efficiency of the fossil based power plants and reducing CO2 emissions. In this research paper, impact of integrating solar thermal power plant utilizing linear Fresnel collecto...
Comprehensive report to Congress, Clean Coal Technology program: Pinon Pine IGCC Power Project
International Nuclear Information System (INIS)
1992-06-01
The objective of the proposed project is to demonstrate an advanced IGCC system based upon the air-blown, fluidized-bed KRW gasifier with in-bed desulfurization using limestone sorbent and an external fixed- bed zinc ferrite sulfur removal system. Sierra Pacific Power Company (SPPC) requested financial assistance from DOE for the design, construction, and operation of a nominal 800 ton-per-day (86-Megawatt gross), air blown integrated gasification combined-cycle (IGCC) demonstration plant. The project, named the Pinon Pine IGCC Power Project, is to be located at SPPC's Tracy Station, a power generation facility located on a rural 400-acre plot about 17 miles east of Reno. The demonstration plant will produce electrical power for the utility grid. The project, including the demonstration phase, will last 96 months at a total cost of $269,993,100. DOE's share of the project cost will be 50 percent, or $134,996,550
Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system
CSIR Research Space (South Africa)
Madzivhandila, V
2010-10-01
Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...
Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier
Directory of Open Access Journals (Sweden)
Abaimov Nikolay A.
2017-01-01
Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.
Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier
Abaimov, Nikolay A.; Ryzhkov, Alexander F.
2017-10-01
Integrated gasification combined cycle (IGCC) technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI). The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD) method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE) and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C) steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.
Prospects for the use of SMR and IGCC technologies for power generation in Poland
Wyrwa, Artur; Suwała, Wojciech
2017-11-01
This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC) and small modular reactors (SMR). For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE). The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.
Prospects for the use of SMR and IGCC technologies for power generation in Poland
Directory of Open Access Journals (Sweden)
Wyrwa Artur
2017-01-01
Full Text Available This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC and small modular reactors (SMR. For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE. The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.
Energy Technology Data Exchange (ETDEWEB)
Li, Y. [National Engineering Laboratory for Coal-Burning Pollutant Emission Reduction, Shandong University, Jinan (China); Zhao, C.; Ren, Q. [School of Energy and Environment, Southeast University, Nanjing (China)
2011-06-15
A CO{sub 2} capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO{sub 2} capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO{sub 2} capture activity during long-term cycles. The sorbent flow ratios have significant effect on the CO{sub 2} capture efficiency and net efficiency of the CO{sub 2} capture system. The IGCC power plant, using the modified limestone, exhibits higher CO{sub 2} capture efficiency than that using the natural limestone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7% and 43.1%, respectively, at the CO{sub 2} capture efficiency of 90% without the effect of sulfation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)
1996-12-31
Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.
The role of IGCC technology in power generation using low-rank coal
Energy Technology Data Exchange (ETDEWEB)
Juangjandee, Pipat
2010-09-15
Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.
Puertollano IGCC Power Plant; Central de Gasificacion Integrada en Ciclo Combinado de Puertollano
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-07-01
The Puertollano IGCC Power Plant, rated 335 MW and located in Puertollano, Ciudad Real, in the central area of Spain, is a project led by ELCOGAS, a company incorporated by the European utilities ENDESA, ELECTRICITE DE FRANCE, IBERDROLA HIDROCANTABRICO ELECTRICIDADE DE PURTUGAL, ENEL and NATIONAL POWER and the technology and equipment suppliers SIEMENS, KRUPP UHDE and BABCOCK WILCOX ESPANOLA. IGCC technology is based in a process of coal gasification to obtain a clean combustion synthetic gas, integrated with a combined cycle, agas and steam, electricity-generating unit. The energy efficiency which is aimed to achieve at the Plant is 46% in ISO conditions. The Gasification unit uses the process of pressurised entrained flow for coal gasification. The gas is produced by the reaction of coal with oxygen at high temperatures, of up to 1600 degree centigree. This process is capable of gasifying a wide variety of types and qualities of coal for the production of a synthetic fuel gas. In the case of Puertollano, the raw fuel is a 50% mixture by weight of local coal and petroleum coke. The oxygen needed in the process and the nitrogen used for covering the fuel is generated in the Air Separation. The Gas Cleaning and Sulphur Recovery Unit clean the gases from contaminants and solid particles before to send them to the Gas Turbine. The clean gas is burnt in gas turbine of the Combined Cycle Plant, producing electricity. The exhaust gases feed a heat recovery steam generator, which produces steam used to generate additional electricity in a conventional steam turbine. The gas turbine is capable of operating both with synthetic gas and with natural gas, allowing operation flexibility. The net output of the plant up to December 1999 was 3.061 GWh, from them 344 GWh were produced with synthetic gas. This project has an important technological value, being the first power plant which uses coal gasification to feed a combined cycle in Spain and being also the biggest power plant
Thallam Thattai, A.; Oldenbroek, V.D.W.M.; Schoenmakers, L; Woudstra, T.; Purushothaman Vellayani, A.
2017-01-01
This article presents a detailed thermodynamic case study based on the Willem-Alexander Centrale (WAC) power plant in the Netherlands towards retrofitting SOFCs in existing IGCC power plants with a focus on near future implementation. Two systems with high percentage (up to 70%) biomass
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Joel [Ecole du Petrole et des Moteurs, Institut Franzais du Petrole, (France)
2004-06-15
In this work, are presented the technical and economic elements of the international experience for the installation of IGCC power plants in the petroleum refinement and the lessons for Mexico in the installation of this technology in PEMEX Refinacion are analyzed. The construction of IGCC power plants in the petroleum refinement has grown 14.3 % at worldwide level as of 1996, in which there was already an installed capacity of 160 MW. At the end of 2003 an installed capacity of 2,500 MW was reached. The growth in the installation of IGCC power plants fundamentally appears in Europe, being Italy and Spain leader countries in the construction of this technology in the petroleum refinement. However, countries like Holland, Japan, Singapore and the United States count on IGCC power plants for electricity and hydrogen generation, which take advantage of low value fuels such as vacuum tower residues, petroleum coke, asphalt, liquid fuels, among others. In Mexico, the installation IGCC power plants in the petroleum refinement is null, nevertheless Petroleos Mexicanos counts with the approval of the government for the installation of cogeneration power plants in its facilities. This approval would allow PEMEX to carry out projects for the installation IGCC power plants, specifically in PEMEX Refinacion, for the generation of electricity and hydrogen from the advantage of heavy residues of low economic value. The opportunity that the installation IGCC power plants in the petroleum refinement offers is directed towards the commercialization of the electricity and hydrogen, which would impel PEMEX Refinacion to enter the competition of the electrical market in Mexico. [Spanish] En este trabajo, se presentan los elementos tecnicos y economicos de la experiencia internacional para la instalacion de plantas IGCC en la refinacion de petroleo y se analizan las lecciones para Mexico en la instalacion de esta tecnologia en PEMEX Refinacion. La construccion de plantas IGCC en la
International Nuclear Information System (INIS)
Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.
2017-01-01
Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.
Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1
Energy Technology Data Exchange (ETDEWEB)
McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.
1994-06-01
The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.
Development of Advanced Heat Resistant Materials for IGCC And AUSC Power Plants
Chai, Guocai; Sand, Tommy; Hernblom, Johan; Forsberg, Urban; Peltola, Timo
Integrated gasification combined cycle (IGCC) power plants and advanced ultra-supercritical (AUSC) thermal power plants are believed to be used as future power plants for high efficient and clean energy production. Increase in the efficiency of these plants is mainly attributed to the increase in temperature and pressure, and the consequent environments become much tougher. This will give a great challenge to the materials used in these plants. The new materials with even higher creep strength combined with better corrosion resistance need to be developed. This paper will provide an overview on the newly developed advanced heat resistant materials for these applications. It will mainly focus the following two types of materials. One is a newly developed advanced heat resistant austenitic stainless steels for AUSC boilers. The material has been tested in several boilers in Europe. Another is one type of composite tube material for convective syngas cooler in the coal gasification process, reverse composite tubes for the fire-tube boiler. A 15 years' application experience of this type of composite tube material will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Koljonen, T.; Solantausta, Y. [VTT Energy, Espoo (Finland). New Energy Technologies; Salo, K.; Horvath, A. [Carbona Inc. (Finland)
1999-11-01
In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million
International Nuclear Information System (INIS)
Koljonen, T.; Solantausta, Y.
1999-01-01
In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million
Development of ITM oxygen technology for integration in IGCC and other advanced power generation
Energy Technology Data Exchange (ETDEWEB)
Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)
2015-03-31
Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state
Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes
International Nuclear Information System (INIS)
Franz, Johannes; Maas, Pascal; Scherer, Viktor
2014-01-01
Highlights: • Process simulations of IGCC with pre-combustion capture via membranes were done. • Most promising technology is the water–gas-shift-membrane-reactor (WGSMR). • Energetic evaluations showed minimum efficiency loss of 5.8%-points for WGSMR. • Economic evaluations identified boundary limits of membrane technology. • Cost of electricity for optimum WGSMR-case is 57 €/MW h under made assumptions. - Abstract: Pre-combustion-carbon-capture is one of the three main routes for the mitigation of CO 2 -emissions by fossil fueled power plants. Based on the data of a detailed technical evaluation of CO 2 -capture by porous ceramic membranes (CM) and ceramic membrane reactors (WGSMR) in an Integrated-Gasification-Combined-Cycle (IGCC) power plant this paper focuses on the economic effects of CO 2 -abatement. First the results of the process simulations are presented briefly. The analysis is based on a comparison with a reference IGCC without CO 2 -capture (dry syngas cooling, bituminous coal, efficiency of 47.4%). In addition, as a second reference, an IGCC process with CO 2 removal based on standard Selexol-scrubbing is taken into account. The most promising technology for CO 2 -capture by membranes in IGCC applications is the combination of a water gas shift reactor and a H 2 -selective membrane into one water gas shift membrane reactor. For the WGSRM-case efficiency losses can be limited to about 6%-points (including losses for CO 2 compression) for a CO 2 separation degree of 90%. This is a severe reduction of the efficiency loss compared to Selexol (10.3% points) or IGCC–CM (8.6% points). The economic evaluation is based on a detailed analysis of investment and operational costs. Parameters like membrane costs and lifetime, costs of CO 2 -certificates and annual operating hours are taken into account. The purpose of these evaluations is to identify the minimum cost of electricity for the different capture cases for the variation of the boundary
Advanced IGCC/Hydrogen Gas Turbine Development
Energy Technology Data Exchange (ETDEWEB)
York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)
2015-07-30
The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first
Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2
Energy Technology Data Exchange (ETDEWEB)
McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.
1994-06-01
The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.
International Nuclear Information System (INIS)
Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro
2015-01-01
Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable
Energy Technology Data Exchange (ETDEWEB)
Chevennement, E.; Lora Ronco, Th. [Electricite de France (EDF), 78 - Chatou (France). Dept. Machines et Systemes de Production
1999-10-01
Integrated Gasification Combined Cycle (IGCC) is a thermal power generation technology which allies partial oxidation of several types of feedstocks (coal, heavy oil residues, biomass) to gas turbines. It includes a wide range of processes and shows a high efficiency and very good environmental performance. IGCC has been held for several demonstration plants and EDF takes part in two of these projects: Puertollano (coal/peat-coke) and Varnamo (biomass). Now, one development path that must be considered is the heavy oil residues gasification, which can be used to produce power but also steam and hydrogen, on industrial sites. IGCC takes advantage of the gas turbines; nevertheless, its future is dependent on the decrease in the costs that remain relatively high, for coal at least, compared with competing technologies. (authors)
Efficiency-optimized CO2 separation in IGCC power plants by water-gas shift membrane reactors
International Nuclear Information System (INIS)
Schiebahn, Sebastian Thomas
2013-01-01
The conversion of solid fuels such as coal and biomass into syngas in the integrated gasification combined cycle (IGCC) process is carried out at elevated pressure. Since, from a thermodynamic point of view, this is a crucial prerequisite for an efficient CO 2 separation step, IGCC has great potential for incorporating CO 2 separation with a low energy consumption. However, studies predict efficiency penalties in the range of 6-11 %-points depending on the respective gasification process utilized, thus revealing that the thermodynamic potential is not fully exploited. In this thesis, a specially adapted IGCC power plant concept for the optimized implementation of gas separation membranes was developed and investigated in order to evaluate the extent to which the auxiliary boundary conditions can be advantageously designed. To create a standard of comparison, a reference IGCC power plant as well as a Selexol-based CO 2 scrubbing process were designed and simulated, resulting in an overall efficiency reduction from 48.0 % to 38.4 %. This corresponds to an increase of 25 % in coal consumption. The analysis of the simulation results revealed that, besides the auxiliary demand of Selexol scrubbing and CO 2 compression subsequent to the low pressure regeneration of the solvent, the main contributor to the loss is the water-gas shift reaction. To reduce this high efficiency penalty, an integration concept was developed to optimize the use of the gas permeation membrane, with parameters better adapted to its special characteristics and mode of operation. The design process resulted in the use of an H 2 -selective membrane, which was combined with the water-gas shift reaction to create the water-gas shift membrane reactor (WGS-MR), and which was swept with recirculated flue gas at elevated pressure in countercurrent 4-End mode. In addition, the ''membrane steam recuperator'' was introduced as a new process unit and integrated to enhance the steam utilization within the
Trapp, C.
2014-01-01
Pre-combustion CO2 capture applied to integrated gasification combined cycle (IGCC) power plants is a promising technical solution to reduce CO2 emissions due to fossil-fuelled electricity generation in order to meet environmental targets in a carbon-constrained future. The pre-combustion capture
International Nuclear Information System (INIS)
Mansouri Majoumerd, Mohammad; De, Sudipta; Assadi, Mohsen; Breuhaus, Peter
2012-01-01
Highlights: ► A baseline IGCC power plant with and without CO 2 capture is presented. ► Burning of undiluted hydrogen-rich syngas in the gas turbine is assumed. ► A significant efficiency penalty is associated with the CO 2 capture system. -- Abstract: In spite of the rapid development and introduction of renewable and alternative resources, coal still continues to be the most significant fuel to meet the global electricity demand. Emission from existing coal based power plants is, besides others, identified as one of the major sources of anthropogenic carbon dioxide, responsible for climate change. Advanced coal based power plants with acceptable efficiency and low carbon dioxide emission are therefore in sharp focus for current development. The integrated gasification combined cycle (IGCC) power plant with pre-combustion carbon capture is a prospective technology option for this purpose. However, such plants currently have limitations regarding fuel flexibility, performance, etc. In an EU initiative (H2-IGCC project), possible improvements of such plants are being explored. These involve using premix combustion of undiluted hydrogen-rich syngas and improved fuel flexibility without adversely affecting the availability and reliability of the plant and also making minor modifications to existing gas turbines for this purpose. In this paper, detailed thermodynamic models and assumptions of the preliminary configuration of such a plant are reported, with performance analysis based on available practical data and information. The overall efficiency of the IGCC power plant with carbon capture is estimated to 36.3% (LHV). The results confirm the fact that a significant penalty on efficiency is associated with the capture of CO 2 . This penalty is 21.6% relative to the IGCC without CO 2 capture, i.e. 10.0% points. Estimated significant performance indicators as well as comparisons with alternative schemes have been presented. Some possible future developments based
CSIR Research Space (South Africa)
Madzivhandila, VA
2011-03-01
Full Text Available (flue gas) stream of a heat-integrated gasification combined cycle (IGCC) design of the Elcogas plant adopted from previous studies. The underlying support for this idea was the direct relationship between efficiency of the IGCC and the boiler feedwater...
IGCC technology and demonstration
Energy Technology Data Exchange (ETDEWEB)
Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)
1996-12-31
Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fuerst, Denny
2012-06-12
Coal gasification and the subsequent production of electricity from syngas in combined-cycle powerplants allows plant efficiencies of up to 43% (LHV). Existing technologies allow up to 50% in the short term. Efficiencies beyond 50% however, require concepts and technologies that still need a certain amount of research and development. One such method to raise plant efficiencies would be a high temperature (at temperatures above the melting point of the ash) syngas cleaning. To effectively utilize the heat from the syngas and enable high turbine inlet temperatures, it is necessary to remove slag particles from the hot gas. The feasibility of such a hot syngas cleaning has been successfully demonstrated for the Pressurized Pulverized Coal Combustion (PPCC) by passing the hot gas through a bed of ceramic balls for slag removal. In order to apply this concept to IGCC powerplants the slag resistance of various ceramic materials had to be investigated under gasifying conditions. Therefore, lab-made ceramics and commercially available refractory materials where treated with liquid slag at 1600 C in a number of reducing atmospheres. At first, three synthetic slags with different basicity were used and after evaluating the results, selected materials were treated with a gasifier slag under continuous conditions. It was shown that both slag and ceramic have to be adjusted to ensure a sufficient corrosion resistance of the ceramic bed for slag removal. Furthermore, the impact of the porosity of the utilized ceramic on the corrosion resistance was shown. The composition of the reducing atmosphere (mainly the partial pressure of Oxygen) affected both physical and chemical properties of the slag via slag components that could easily be reduced or oxidized. The materials most suitable for use in slag separation were found to be dense chromium oxide and other ceramics containing a high amount of chromium oxide. [German] Mit Kohlevergasung und der anschliessenden Stromerzeugung in
IGCC demonstration project status combustion engineering IGCC repowering project
International Nuclear Information System (INIS)
Glamuzina, R.W.; Allen, R.J.; Peletz, L.J.
1993-01-01
This demonstration project was originally conceived as the repowering of an existing plant facility, the Lakeside Station in Springfield, Illinois. The Owner, City Water, Light and Power (CWL ampersand P), has removed five of the original boilers and three of the original turbines. The buildings have had asbestos insulation removed and the interiors have been prepared for the construction of a single Integrated Gasification Combined Cycle (IGCC) process train that will generate a net output of 60 megawatts. The plant consists of a combined cycle (gas turbine, heat recovery steam generator, steam turbine) power train located in the existing buildings and a coal gasification system in a new building. The gasification system contains ABB CE's air-blown, entrained flow, two stage gasifier, an advanced hot gas desulfurization system by General Electric Environmental Services, Inc. and the necessary auxiliary systems. The plant is designed to produce a nominal 60 MW net output with an ambient air temperature of 95 degrees F and a cooling water temperature of 89 degrees F on either Natural Gas or Illinois No. 5 coal
A simulation study of Solid Oxide fuel cell for IGCC power generation using Aspen Plus
DEFF Research Database (Denmark)
Rudra, Souman; Kim, Hyung Taek
2010-01-01
The solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur free syngas from the gas cleaning unit serves as a fuel for SOFC in IGFC (Integrated gasification Fuel cell) power plant. It converts the chemical energy of the fuel gas directly to electric energy and t...... with respect to a variety of SOFC inputs. SOFC stack operation on syn-gas is compared to operation on different coal properties and as expected there is a drop in performance, which is attributed to increased input fuel and air flow due to the lower quality of the fuel gas....... and therefore, very high efficiencies can be achieved. The high operating temperature of the SOFC also provides excellent possibilities for cogeneration application. The outputs from SOFC can be utilized by HRSG which helps to drive steam generator. Recent developments in modeling techniques has resulted...... in a more accurate fuel cell model giving an advantage over previous system studies based on simplified SOFC models. The objective of this work is to develop a simulation model of a SOFC for IGFC system, flexible enough for use in future development, capable of predicting system performance under various...
Dynamic power flow controllers
Energy Technology Data Exchange (ETDEWEB)
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Pinch analysis for efficient energy utilization in IGCC plants: Incorporation of contact economiser
CSIR Research Space (South Africa)
Madzivhandila, VA
2010-09-01
Full Text Available Pinch analysis was used in this work to exploit the amount of energy available within integrated gasification combined cycle (IGCC) power plants. This work focuses on the steam path (subsystem) of IGCC power plants only. A case study on the Elcogas...
Technical and economic assessments commercial success for IGCC technology in China
International Nuclear Information System (INIS)
Xiong, T.
1998-01-01
The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, and other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea
2018-03-01
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.
Structural power flow measurement
Energy Technology Data Exchange (ETDEWEB)
Falter, K.J.; Keltie, R.F.
1988-12-01
Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.
Air toxics emissions from an IGCC process
Energy Technology Data Exchange (ETDEWEB)
Mojtahedi, W.; Norrbacka, P. [Enviropower Inc., Espoo (Finland); Hinderson, A. [Vattenfall (Sweden); Rosenberg, R.; Zilliacus, R.; Kurkela, E.; Nieminen, M. [VTT Energy, Espoo (Finland); Hoffren, H. [IVO International Oy, Vantaa (Finland)
1996-12-01
The so-called simplified coal gasification combined cycle process, incorporating air gasification and hot gas cleanup, promises high power generation efficiency in an environmentally acceptable manner. Increasingly more stringent environmental regulations have focused attention on the emissions of not only SO{sub 2} and NO{sub x} but also on the so-called air toxics which include a number of toxic trace elements. As result of recent amendments to the United States Clean Air Act, IGCC emissions of eleven trace elements: antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium - as well as the radionuclides uranium and thorium may be regulated. Similarly, air missions standards in Europe include a limit of 0.05 mg Nm{sup 3} for mercury and cadmium and 1.0 3/Nm{sup 3} for other class I trace elements. A suitable sampling/measuring system has been developed in this project (in cooperation with Imatran Voima Oy, Electric Power Research Institute (EPRI) and Radian Cooperation) which will be used in the pressurized gasification tests. This will enable an accurate measurement of the volatilized trace element species, at high temperature and pressure, which may be found in the vapour phase. Models are being developed that can be used to determine not only the chemical equilibrium composition of gaseous, liquid and solid phases, but also possible interactions of the gaseous species with aerosol particles and surfaces, These should be used to more accurately assess the impact of the toxic trace metals emitted from the simplified IGCC system
Update on DOE Advanced IGCC/H2 Gas Turbine
Chupp, Ray
2009-01-01
Cooling Flow Reduction: a) Focus on improving turbine hot gas path part cooling efficiency. b) Applicable to current metallic turbine components and synergistic with advanced materials. c) Address challenges of IGCC/hydrogen fuel environment (for example, possible cooling hole plugging). Leakage Flow Reduction: a) Focus on decreasing turbine parasitic leakages, i.e. between static-to-static, static-to-rotating turbine parts. b) Develop improved seal designs in a variety of important areas. Purge Flow Reduction: a) Focus on decreasing required flows to keep rotor disk cavities within temperature limits. b) Develop improved sealing at the cavity rims and modified flow geometries to minimize hot gas ingestion and aerodynamic impact.
Kemper County IGCC (tm) Project Preliminary Public Design Report
Energy Technology Data Exchange (ETDEWEB)
Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon
2012-07-01
The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.
Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants
International Nuclear Information System (INIS)
Kunze, Christian; Spliethoff, Hartmut
2012-01-01
Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.
Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants
Energy Technology Data Exchange (ETDEWEB)
Kenneth A. Yackly
2005-12-01
turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.
Sulphur removal in IGCC projects
Energy Technology Data Exchange (ETDEWEB)
Cross, F. (Parsons (United Kingdom))
1998-01-01
The technology for recovering elemental sulphur from H[sub 2]S bearing gases is well established. The modified Claus Process is the principal work-horse in sulphur recovery and can customarily achieve conversion efficiencies of 95% or better. Nowadays, such a level of recovery is no longer sufficient in most instances and sulphur recovery facility must then include some form of enhanced recovery, usually by treating the Claus tail gas. A number of processes have been introduced to enable the overall recovery to be increased. Recoveries in excess of 99% are both feasible and economic. Use of oxygen in place has become very popular in cases where oxygen is available cheaply or where capacity increases are designed. Most IGCC projects needing an air separation plant would automatically benefit from extending the use of oxygen to the sulphur recovery plant. The most popular route to minimising sulphur emissions in the context of IGCC projects has involved an oxygen based Claus plant followed by tail gas hydrogenation, hydrogen sulphide recovery and its recycle to the Claus section. The recovery of H[sub 2]S from the Claus tail gas can be integrated with the main gas treating system in the gasification plant. The cost advantage of doing so is significant. Parsons has been involved with the technology since 1949 and has been responsible for developments such as the ammonia burning Claus and jointly with Unocal, the BSRP tail gas process and Selectox processes. Recent innovations in response changing environmental and production requirements have included catalytic and tail gas processes which reduce sulphur emissions. 6 figs., 2 tabs.
Sulphur removal in IGCC projects
Energy Technology Data Exchange (ETDEWEB)
Cross, F. [Parsons (United Kingdom)
1998-12-31
The technology for recovering elemental sulphur from H{sub 2}S bearing gases is well established. The modified Claus Process is the principal work-horse in sulphur recovery and can customarily achieve conversion efficiencies of 95% or better. Nowadays, such a level of recovery is no longer sufficient in most instances and sulphur recovery facility must then include some form of enhanced recovery, usually by treating the Claus tail gas. A number of processes have been introduced to enable the overall recovery to be increased. Recoveries in excess of 99% are both feasible and economic. Use of oxygen in place has become very popular in cases where oxygen is available cheaply or where capacity increases are designed. Most IGCC projects needing an air separation plant would automatically benefit from extending the use of oxygen to the sulphur recovery plant. The most popular route to minimising sulphur emissions in the context of IGCC projects has involved an oxygen based Claus plant followed by tail gas hydrogenation, hydrogen sulphide recovery and its recycle to the Claus section. The recovery of H{sub 2}S from the Claus tail gas can be integrated with the main gas treating system in the gasification plant. The cost advantage of doing so is significant. Parsons has been involved with the technology since 1949 and has been responsible for developments such as the ammonia burning Claus and jointly with Unocal, the BSRP tail gas process and Selectox processes. Recent innovations in response changing environmental and production requirements have included catalytic and tail gas processes which reduce sulphur emissions. 6 figs., 2 tabs.
Load flow optimization and optimal power flow
Das, J C
2017-01-01
This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.
Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988
Energy Technology Data Exchange (ETDEWEB)
None
1988-04-28
The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)
IGCC faces coal-antipathy in USA while Chinese projects progress
Energy Technology Data Exchange (ETDEWEB)
Higman, C. [Syngas Consultants Ltd. (United Kingdom)
2008-01-15
The paper reports from the 2007 Gasification Technologies conference, San Francisco. Although the decision was taken to terminate the construction of an IGCC plant at Stanton, Florida in favour of a natural-gas-fired combined cycle unit, gasification projects continue to do well in China. Nuon, TECO and Southern have all said they consider IGCC to be the path forward for coal-based power. the conference discussed projects in coal gasification, production of substitute natural gas, hydrogen production and carbon capture and storage. 2 figs.
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.
Commercial gasifier for IGCC applications study report
Energy Technology Data Exchange (ETDEWEB)
Notestein, J.E.
1990-06-01
This was a scoping-level study to identify and characterize the design features of fixed-bed gasifiers appearing most important for a gasifier that was to be (1) potentially commercially attractive, and (2) specifically intended for us in integrated coal gasification/combined-cycle (IGCC) applications. It also performed comparative analyses on the impact or value of these design features and on performance characteristics options of the whole IGCC system since cost, efficiency, environmental traits, and operability -- on a system basis -- are what is really important. The study also reviewed and evaluated existing gasifier designs, produced a conceptual-level gasifier design, and generated a moderately advanced system configuration that was utilized as the reference framework for the comparative analyses. In addition, technical issues and knowledge gaps were defined. 70 figs., 31 tabs.
ConocoPhillips Sweeny IGCC/CCS Project
Energy Technology Data Exchange (ETDEWEB)
Paul Talarico; Charles Sugg; Thomas Hren; Lauri Branch; Joseph Garcia; Alan Rezigh; Michelle Pittenger; Kathleen Bower; Jonathan Philley; Michael Culligan; Jeremy Maslen; Michele Woods; Kevin Elm
2010-06-16
Under its Industrial Carbon Capture and Sequestration (ICCS) Program, the United States (U.S.) Department of Energy (DOE) selected ConocoPhillips Company (ConocoPhillips) to receive funding through the American Recovery and Reinvestment Act (ARRA) of 2009 for the proposed Sweeny Integrated Gasification Combined Cycle (IGCC)/Carbon Capture and Storage (CCS) Project (Project) to be located in Brazoria County, Texas. Under the program, the DOE is partnering with industry to demonstrate the commercial viability and operational readiness of technologies that would capture carbon dioxide (CO{sub 2}) emissions from industrial sources and either sequester those emissions, or beneficially reuse them. The primary objective of the proposed Project was to demonstrate the efficacy of advanced technologies that capture CO{sub 2} from a large industrial source and store the CO{sub 2} in underground formations, while achieving a successful business venture for the entity (entities) involved. The Project would capture 85% of the CO{sub 2} produced from a petroleum coke (petcoke) fed, 703 MWnet (1,000 MWgross) IGCC power plant, using the ConocoPhillips (COP) proprietary and commercially proven E-Gas{trademark} gasification technology, at the existing 247,000 barrel per day COP Sweeny Refinery. In addition, a number of other commercially available technologies would be integrated into a conventional IGCC Plant in a unique, efficient, and reliable design that would capture CO{sub 2}. The primary destination for the CO{sub 2} would be a depleted natural gas field suitable for CO{sub 2} storage ('Storage Facility'). COP would also develop commercial options to sell a portion of the IGCC Plant's CO{sub 2} output to the growing Gulf Coast enhanced oil recovery (EOR) market. The IGCC Plant would produce electric power for sale in the Electric Reliability Council of Texas Houston Zone. The existing refinery effluent water would be treated and reused to fulfill all process
CO2 control technology effects on IGCC plant performance and cost
International Nuclear Information System (INIS)
Chen Chao; Rubin, Edward S.
2009-01-01
As part of the USDOE's Carbon Sequestration Program, an integrated modeling framework has been developed to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements. This paper uses the newly developed model of an integrated gasification combined cycle (IGCC) plant to analyze the effects of adding CCS to an IGCC system employing a GE quench gasifier with water gas shift reactors and a Selexol system for CO 2 capture. Parameters of interest include the effects on plant performance and cost of varying the CO 2 removal efficiency, the quality and cost of coal, and selected other factors affecting overall plant performance and cost. The stochastic simulation capability of the model is also used to illustrate the effect of uncertainties or variability in key process and cost parameters. The potential for advanced oxygen production and gas turbine technologies to reduce the cost and environmental impacts of IGCC with CCS is also analyzed
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
Integrated Gasification Combined Cycle (IGCC) plants provide potential performance, environmental, and fuel flexibility advantages over more conventional combustion technologies such as Supercritical Pulverized Coal (SCPC) plants. Projected pollutant emissions from IGCC plants are the lowest of all coal power generation technologies. Mercury and carbon dioxide emissions reductions can be achieved at a much lower cost for IGCC plants than for conventional pulverized coal-fired power plants. Future IGCC developments, such as improvements in process technologies and development of larger, more efficient combustion turbines, offer the potential to further increase the competitiveness and performance of IGCC. For these reasons, IGCC is likely to evolve as the future technology of choice for generation of electricity from coal. An overview is presented of the components of an IGCC plant, along with a discussion of integration options and commercial status. IGCC plant performance and economics are compared against SCPC power generation for Chinese coals. 1 fig., 4 tabs.
Air toxics emission from an IGCC process
Energy Technology Data Exchange (ETDEWEB)
Mojtahedi, W.; Hovath, A. [Carbona Inc, Helsinki (Finland); Hinderson, A. [Vattenfall Utveckling (Sweden); Nykaenen, J.; Hoffren, H. [Imatran Voima Oy, Vantaa (Finland); Nieminen, M.; Kurkela, E. [VTT, Espoo (Finland)
1997-10-01
The emissions of 12 toxic trace element from a coal-fired IGCC plant were calculated based on thermodynamic equilibrium in the gas phase and some of the results published. The theoretical calculations were extended to include some other fuels as well as mixture of some of these fuels. The combustion of the product gas in the gas turbine is also considered. These simulations correspond to gasification of the fuel at 850-1050 deg C (depending on the fuel) and 1823 bar pressure. The gas composition was taken from the measured data as far as possible. In the absence of experimental data, a computer code developed for the U-Gas gasifier was used to determine the fuel gas composition. The gas was then cooled to 550 deg C in the gas cooler and filtered at this same temperature and burned in the gas turbine with an air ratio of 3.2. The results of these simulations are compared with the measured data of an experimental program designed to measure the emissions of a few selected trace elements from a 15 MW,h pressurized fluidized bed gasification pilot plant. The pilot plant was equipped with an advanced hot gas cleanup train which includes a two fluidized-bed reactor system for high-temperature, high-pressure external sulfur removal and a filtration unit housing porous, rigid ceramic candle filters. The trace element concentrations in the fuel, bottom ash, and filter ash are determined and the results compared with EPA regulatory levels
Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine
Energy Technology Data Exchange (ETDEWEB)
Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro
2010-09-15
The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.
Energy Technology Data Exchange (ETDEWEB)
Kunze, Christian A.
2012-07-13
The thesis focuses on the assessment of efficiency potential of future IGCC plants with CO{sub 2} capture. Starting point is a comprehensive analysis (thermodynamic, economic and exergy) of a state of the art IGCC. Additionally, five future IGCC concepts are proposed and evaluated for their efficiency potential in the mid- and long-term. The concepts showed significantly higher efficiencies up to approximately 60% and enable an almost CO{sub 2}-free operation.
Advanced CO_{2} Capture Technology for Low Rank Coal IGCC System
Energy Technology Data Exchange (ETDEWEB)
Alptekin, Gokhan [Tda Research, Inc., Wheat Ridge, CO (United States)
2013-09-30
The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO_{2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO_{2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on Selexol^{TM} technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO_{2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO_{2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO_{2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on Selexol^{TM} technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO_{2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with Selexol^{TM} to capture CO_{2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent
Knoope, M.M.J.; Meerman, J.C.; Ramirez, C.A.; Faaij, A.P.C.
2013-01-01
This study aims to investigate the technological and economic prospects of integrated gasification facilities for power (IGCC) and Fischer–Tropsch (FT) liquid production with and without CCS over time. For this purpose, a component based experience curve was constructed and applied to identify the
Modelling of electrical power systems for power flow analysis
Energy Technology Data Exchange (ETDEWEB)
Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)
1994-12-31
The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.
Calculation of Wind Power Limit adjusting the Continuation Power Flow
International Nuclear Information System (INIS)
Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio
2012-01-01
The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)
More Energy-Efficient CO2 Capture from IGCC GE Flue Gases
Directory of Open Access Journals (Sweden)
Rakpong Peampermpool
2017-03-01
Full Text Available Carbon dioxide (CO2 emissions are one of the main reasons for the increase in greenhouse gasses in the earth’s atmosphere and carbon capture and sequestration (CCS is known as an effective method to reduce CO2 emissions on a larger scale, such as for fossil energy utilization systems. In this paper, the feasibility of capturing CO2 using cryogenic liquefaction and improving the capture rate by expansion will be discussed. The main aim was to design an energy-saving scheme for an IGCC (integrated gasification combined cycle power plant with CO2 cryogenic liquefaction capture. The experimental results provided by the authors, using the feed gas specification of a 740 MW IGCC General Electric (GE combustion power plant, demonstrated that using an orifice for further expanding the vent gas after cryogenic capture from 57 bar to 24 bar gave an experimentally observed capture rate up to 65%. The energy-saving scheme can improve the overall CO2 capture rate, and hence save energy. The capture process has also been simulated using Aspen HYSYS simulation software to evaluate its energy penalty. The results show that a 92% overall capture rate can be achieved by using an orifice.
Modular load flow for restructured power systems
Hariharan, M V; Gupta, Pragati P
2016-01-01
In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...
Transmission tariffs based on optimal power flow
International Nuclear Information System (INIS)
Wangensteen, Ivar; Gjelsvik, Anders
1998-01-01
This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs
Performance analysis of a gas turbine for power generation using syngas as a fuel
International Nuclear Information System (INIS)
Lee, Jong Jun; Cha Kyu Sang; Kim, Tong Seop; Sohn, Jeong Lak; Joo, Yong Jin
2008-01-01
Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increase the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition
Corner Flow of Power Law Fluids
DEFF Research Database (Denmark)
Henriksen, P.; Hassager, Ole
1989-01-01
A local analysis of the flow of power law fluids near corners is performed. The equation for the stream function is shown to allow separated solutions in plane polar coordinates. The radial behavior is shown to be algebraic and results are given for the exponent for different values of corner angle...
Utilizing MATPOWER in Optimal Power Flow
Directory of Open Access Journals (Sweden)
Tarjei Kristiansen
2003-01-01
Full Text Available This paper shows how MATPOWER, a MATLAB Power System Simulation Package can be used for optimal power flow (OPF simulations. MATPOWER is a package of MATLAB files for solving power flow and optimal power flow problems. It is a simulation tool for researchers and educators which is easy to use and modify. An OPF simulation gives the active/reactive power generated and purchased at each bus and the nodal prices. The nodal prices are of special interest because they reflect the marginal generation and load at each bus (node. These prices are also called locational prices and are found to be the optimal prices, maximizing social welfare and taking transmission constraints into account. They can provide the right incentives to market players and to society. When transmission congestion is present this creates market inefficiency, since cheap distant generation may be replaced with more expensive local generation. We are especially interested in OPF as utilized by a centralized dispatcher, and we also describe the features relevant for the Norwegian and Nordic markets. We optimize three cases and analyze the economic consequences of different network topologies and transmission congestion.
Flow-through shares for power development
International Nuclear Information System (INIS)
Howie, K.D.
1999-01-01
Financial advantages will occur to power producers in Ontario provided that they are innovative in raising capital needed to take advantage of opportunities offered by the Energy Competition Act of 1998. In the new electricity regime, the availability of long term non-recourse debt financing supported by long term power purchasing from Ontario Hydro will probably decrease. The issuance of flow-through shares is a form of financing that could by available to them for certain projects, and there is the probability that greater equity financing will be needed. These flow-through shares can give investors immediate tax savings, a potential favorable return on their equity investment, and a means of financing certain kinds of power projects
Numerical flow analysis of hydro power stations
Ostermann, Lars; Seidel, Christian
2017-07-01
For the hydraulic engineering and design of hydro power stations and their hydraulic optimisation, mainly experimental studies of the physical submodel or of the full model at the hydraulics laboratory are carried out. Partially, the flow analysis is done by means of computational fluid dynamics based on 2D and 3D methods and is a useful supplement to experimental studies. For the optimisation of hydro power stations, fast numerical methods would be appropriate to study the influence of a wide field of optimisation parameters and flow states. Among the 2D methods, especially the methods based on the shallow water equations are suitable for this field of application, since a lot of experience verified by in-situ measurements exists because of the widely used application of this method for the problems in hydraulic engineering. As necessary, a 3D model may supplement subsequently the optimisation of the hydro power station. The quality of the results of the 2D method for the optimisation of hydro power plants is investigated by means of the results of the optimisation of the hydraulic dividing pier compared to the results of the 3D flow analysis.
Power flow control of intertied ac microgrids
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede
2013-01-01
Microgrids are small reliable grids formed by clustering distributed sources and loads together. They can, in principle, operate at different voltages and frequencies like 50, 60, 400 Hz or even dc. Tying them together or to the mains grid for energy sharing would therefore require the insertion...... of interlinking power converters. Active and reactive power flows of these converters should preferably be managed autonomously without demanding for fast communication links. A scheme that can fulfill the objectives is now proposed, which upon realised, will result in more robustly integrated microgrids...
Wind farm power optimization including flow variability
DEFF Research Database (Denmark)
Herp, Jürgen; Poulsen, Uffe Vestergaard; Greiner, Martin
2015-01-01
A model-based optimisation approach is used to investigate the potential gain of wind-farm power with a cooperative control strategy between the wind turbines. Based on the Jensen wake model with the Katic wake superposition rule, the potential gain for the Nysted offshore wind farm is calculated...... to be 1.4–5.4% for standard choices 0.4 ≥ k ≥ 0.25 of the wake expansion parameter. Wake model fits based on short time intervals of length 15sec ≤ T ≤ 10 min within three months of data reveal a strong wake flow variability, resulting in rather broad distributions for the wake expansion parameter. When...... an optimized wind-farm control strategy, derived from a fixed wake parameter, is facing this flow variability, the potential gain reduces to 0.3–0.5%. An omnipotent control strategy, which has real-time knowledge of the actual wake flow, would be able to increase the gain in wind-farm power to 4.9%....
Power Flow and Structure-Borne Noise
DEFF Research Database (Denmark)
Wachulec, Marcin
The method of power flow analysis within a structure depends on the frequency considered. For the low frequencies the standard Finite Element Method (FEM) can be used efficiently. In the high frequencies the Statistical Energy Analysis (SEA) proved its usefulness. The distinction between low...... of their dynamic properties. The term medium frequency range is used to describe the range of frequencies where it is not possible to use a single method to describe the behaviour of the structure. The assembly of thin plates is a good example of built-up structure because of the differences between the properties...... in plane and out of plane of the plate....
Optimal Power Flow Using the Jaya Algorithm
Directory of Open Access Journals (Sweden)
Warid Warid
2016-08-01
Full Text Available This paper presents application of a new effective metaheuristic optimization method namely, the Jaya algorithm to deal with different optimum power flow (OPF problems. Unlike other population-based optimization methods, no algorithm-particular controlling parameters are required for this algorithm. In this work, three goal functions are considered for the OPF solution: generation cost minimization, real power loss reduction, and voltage stability improvement. In addition, the effect of distributed generation (DG is incorporated into the OPF problem using a modified formulation. For best allocation of DG unit(s, a sensitivity-based procedure is introduced. Simulations are carried out on the modified IEEE 30-bus and IEEE 118-bus networks to determine the effectiveness of the Jaya algorithm. The single objective optimization cases are performed both with and without DG. For all considered cases, results demonstrate that Jaya algorithm can produce an optimum solution with rapid convergence. Statistical analysis is also carried out to check the reliability of the Jaya algorithm. The optimal solution obtained by the Jaya algorithm is compared with different stochastic algorithms, and demonstrably outperforms them in terms of solution optimality and solution feasibility, proving its effectiveness and potential. Notably, optimal placement of DGs results in even better solutions.
Solution of optimal power flow using evolutionary-based algorithms
African Journals Online (AJOL)
Optimal power flow is a load flow analysis that uses optimization methods to adjust decision variables (control variables) to determine the best operating conditions of the power system. The control variables of OPF are the generator active power output, voltage of generating unit, tap-settings of the transformers, and shunt ...
International Nuclear Information System (INIS)
Wen, Huiqing; Su, Bin
2016-01-01
Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.
Tackling OpenFlow power hog in core networks with KeyFlow
DEFF Research Database (Denmark)
Saldaña Cercos, Silvia; Oliveira, R. E.; Vitoi, R.
2014-01-01
A comprehensive data plane power consumption analysis of an OpenFlow 1.0 switch broken down into its design modules is presented, and KeyFlow as an alternative solution is proposed, since it eliminates a flow table lookup by reducing 53.7% of the overall power consumption.......A comprehensive data plane power consumption analysis of an OpenFlow 1.0 switch broken down into its design modules is presented, and KeyFlow as an alternative solution is proposed, since it eliminates a flow table lookup by reducing 53.7% of the overall power consumption....
Statistical Analysis of the Impact of Wind Power on Market Quantities and Power Flows
DEFF Research Database (Denmark)
Pinson, Pierre; Jónsson, Tryggvi; Zugno, Marco
2012-01-01
In view of the increasing penetration of wind power in a number of power systems and markets worldwide, we discuss some of the impacts that wind energy may have on market quantities and cross-border power flows. These impacts are uncovered through statistical analyses of actual market and flow da...... of load and wind power forecasts on Danish and German electricity markets....
Power of Your Pancreas: Keep Your Digestive Juices Flowing
... Issues Subscribe February 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing ... your entire digestive system working properly. Related Stories Power to the Pelvis Battling a Bulging Hernia Keeping ...
Directory of Open Access Journals (Sweden)
Timo Blumberg
2015-12-01
Full Text Available The focus of this work is on the modeling and the thermodynamic evaluation of an integrated gasification combined cycle (IGCC for the co-production of electricity and substitute natural gas (SNG. At first, an IGCC with CO2 capture for electricity generation is analyzed. Coal-derived syngas is conditioned in a water gas shift unit (WGS, and cleaned in an acid gas removal system including carbon capture. Eventually, the conditioned syngas is fed to a combined cycle. A second case refers to a complete conversion of syngas to SNG in an integrated commercial methanation unit (TREMP™ process, Haldor Topsøe, Kgs. Lyngby, Denmark. Due to the exothermic reaction, a gas recycling and intercooling stages are necessary to avoid catalyst damage. Based on a state-of-the-art IGCC plant, an optimal integration of the synthetic process considering off-design behavior was determined. The raw syngas production remains constant in both cases, while one shift reactor in combination with a bypass is used to provide an adequate H2/CO-ratio for the methanation unit. Electricity has to be purchased from the grid in order to cover the internal consumption when producing SNG. The resulting heat and power distributions of both cases are discussed.
Directory of Open Access Journals (Sweden)
Aouss Gabash
2016-02-01
Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.
Power flow analysis for DC voltage droop controlled DC microgrids
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav
2014-01-01
This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification...
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
Flow (NIU and WAN, 2014).An answer of OPF problem can improve a particular target in working the power system by maximizing or minimizing concerning distinctive imperatives. Security constrained optimal power flow includes also outages of transmission lines and equipment.To get faster solutions, more effort should ...
AC power flow importance measures considering multi-element failures
International Nuclear Information System (INIS)
Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling
2017-01-01
Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.
Energy Technology Data Exchange (ETDEWEB)
Kenneth A. Yackly
2004-09-30
The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.
Energy Technology Data Exchange (ETDEWEB)
Schobeiri, Meinhard; Han, Je-Chin
2014-09-30
This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.
A power function method for estimating base flow.
Lott, Darline A; Stewart, Mark T
2013-01-01
Analytical base flow separation techniques are often used to determine the base flow contribution to total stream flow. Most analytical methods derive base flow from discharge records alone without using basin-specific variables other than basin area. This paper derives a power function for estimating base flow, the form being aQ(b) + cQ, an analytical method calibrated against an integrated basin variable, specific conductance, relating base flow to total discharge, and is consistent with observed mathematical behavior of dissolved solids in stream flow with varying discharge. Advantages of the method are being uncomplicated, reproducible, and applicable to hydrograph separation in basins with limited specific conductance data. The power function relationship between base flow and discharge holds over a wide range of basin areas. It better replicates base flow determined by mass balance methods than analytical methods such as filters or smoothing routines that are not calibrated to natural tracers or empirical basin and gauge-specific variables. Also, it can be used with discharge during periods without specific conductance values, including separating base flow from quick flow for single events. However, it may overestimate base flow during very high flow events. Application of geochemical mass balance and power function base flow separation methods to stream flow and specific conductance records from multiple gauges in the same basin suggests that analytical base flow separation methods must be calibrated at each gauge. Using average values of coefficients introduces a potentially significant and unknown error in base flow as compared with mass balance methods. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Kevin [General Electric Company, Houston, TX (United States); Anasti, William [General Electric Company, Houston, TX (United States); Fang, Yichuan [General Electric Company, Houston, TX (United States); Subramanyan, Karthik [General Electric Company, Houston, TX (United States); Leininger, Tom [General Electric Company, Houston, TX (United States); Zemsky, Christine [General Electric Company, Houston, TX (United States)
2015-03-30
The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.
Computing an operating parameter of a unified power flow controller
Wilson, David G.; Robinett, III, Rush D.
2017-12-26
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
DEFF Research Database (Denmark)
Kamel, Salah; Jurado, Francisco; Chen, Zhe
2016-01-01
This study proposes the generalised unified power flow controller (GUPFC) model in the hybrid current power mismatch Newton-Raphson formulation (HPCIM). In this model, active power, real and imaginary current components are injected at the terminals of series impedances of GUPFC. These injected...
Power flow control using distributed saturable reactors
Dimitrovski, Aleksandar D.
2016-02-13
A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.
Novel simplified hourly energy flow models for photovoltaic power systems
International Nuclear Information System (INIS)
Khatib, Tamer; Elmenreich, Wilfried
2014-01-01
Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems
Impact of flow inclination on downwind turbine loads and power
Kress, C.; Chokani, N.; Abhari, R. S.; Hashimoto, T.; Watanabe, M.; Sano, T.; Saeki, M.
2016-09-01
Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwind turbine, whereas the relative increase in rotor thrust is only 9%. Furthermore, it is also shown that the performance of downwind turbines is less sensitive to changes in the flow inclination, as the upstream nacelle on downwind turbines beneficially redirects and accelerates the flow around the nacelle into the rotor plane.
Application of the matrix converter to power flow control
Directory of Open Access Journals (Sweden)
Szcześniak P.
2014-09-01
Full Text Available Advanced power electronic converters can provide the means to control power flow and ensure proper and secure operation of the future power grid. The small electrical energy sources dispersed in electrical power systems referred to as distributed generation are one of the most significant parts of future grids - Smart Grids. The threephase, direct matrix converter is an alternative solution to the conventional AC-DC-AC converter for interfacing two AC systems in distributed power generation with different voltage and/or frequency parameters. This paper presents a control analysis of a threephase matrix converter employed as a power interface of future electrical grids. The proposed system has been successfully tested for bidirectional power flow operation with different grid operating conditions, such as, frequency and voltage variation
A Modified Power Law for Determining Flow Characteristics of Fluid ...
African Journals Online (AJOL)
A modified power law derived with “angle of deviation flow was used to determine the, rheological properties of corn syrup (CS), honey (H), emulsion salad dressing cream (SC) and mixture of SC and H: CS. The model proved useful in calculating the flow behaviour index (n) and estimating the, critical shear rate ( ). Results ...
Operational characteristics and power scaling of a transverse flow ...
Indian Academy of Sciences (India)
Abstract. Transverse flow transversely excited (TFTE) CO2 lasers are easily scalable to multi- kilowatt level. The laser power can be scaled up by increasing the volumetric gas flow and discharge volume. It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser ...
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
The Puertollano IGCC Plant, owned by ELCOGAS, uses a mixture (50/50% weight) of local coal with high content of ash (approximately 45%) and pet-coke to be fed into its pressurised entrained flow gasifier. Ash is removed from the bottom of the gasifier as vitrified slag although a fraction is converted into fly ash (2.5-3 t/h) and entrained by the syngas. In order to remove this fly ash, it is filtered in two candle filter vessels with more than 1,000 candles each, using nitrogen for on-line cleaning. The filtering system suffers some malfunctions resulting in blinding of the internal candle surface and increasing of the candle DP. The model of candle filter was changed and modifications were performed without the desired results. Therefore, the identification of suitable hot gas filtration technologies capable of overcoming current and future severe operational constraints experienced is of the utmost importance for IGCC units. In this sense, a pilot plant which allows the performance of alternative filtering elements tests, pulse cleaning strategies, on-line particulate monitoring and off-cleaning procedures has come into operation at the ESI-University of Seville facilities. The design has been conceived as a versatile pilot unit, in order to hold both bags and ceramic candles which are to be tested in a wide range of operating conditions. The pilot is processing air laden with real fly ash provided by ELCOGAS, and high pressure nitrogen for the cleaning operation. This paper describes the design and operation of the pilot as well as the testing plan currently being carried out. (orig.)
Power definitions and the physical mechanism of power flow
Emanuel, Alexander Eigeles
2010-01-01
Professor Emanuel uses clear presentation to compare and facilitate understanding of two seminal standards, The IEEE Std. 1459 and The DIN 40110-2:2002-11. Through critical analysis of the most important and recent theories and review of basic concepts, a highly accessible guide to the essence of the standards is presented. Key features: Explains the physical mechanism of energy flow under different conditions: single- and three-phase, sinusoidal and nonsinusoidal, balanced and unbalanced systems Starts at an elementary level and becomes more complex, with six core ch
Soft Photon Effects on Vacuum Power Flow.
1981-12-01
on Tnsulator, ev V i~ Enery atUnity Secondary Etission Rate, ev ~j Angle Between Insulator and~ Electric Field, Degrees uf 106 Farad Ky 10~ v ns 10...AFWLAqTW, Kirtland AFB, New Mexico 87117, (Jan 1981). 7. Reinovsky, Robert E. et al, "Soft X-Ray Fffects on Vacuum Power Transport," unpublished paper...Air Force Weapons Laboratory, Advanced Concepts Branch, Kirtland Air Force Base, New Mexico 87117, (Jan 1981). 8. Degnan, J. Laboratory Notebook and
ac power control in the Core Flow Test Loop
International Nuclear Information System (INIS)
McDonald, D.W.
1980-01-01
This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report
Interior Point Method Evaluation for Reactive Power Flow Optimization in the Power System
Directory of Open Access Journals (Sweden)
Zbigniew Lubośny
2013-03-01
Full Text Available The paper verifies the performance of an interior point method in reactive power flow optimization in the power system. The study was conducted on a 28 node CIGRE system, using the interior point method optimization procedures implemented in Power Factory software.
On load flow control in electric power systems
Energy Technology Data Exchange (ETDEWEB)
Herbig, Arnim
2000-01-01
This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers
Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller
Directory of Open Access Journals (Sweden)
Yogita Kumari
2015-09-01
Full Text Available The Unified Power Flow Controller (UPFC is the most versatile of the FACTS controllers envisaged so far. The main function of the UPFC is to control the flow of real and reactive power by injection of a voltage in series with the transmission line. Both the magnitude and the phase angle of the voltage can be varied independently. Real and Reactive power flow control can allow for power flow in prescribed routes, loading of transmission lines close to their thermal limits and can be utilized for improving transient and small signal stability of the power system. In this paper UPFC is incorporated in a SMIB (Single Machine Infinite Bus system and the response of SMIB system has been recorded with and without UPFC, thereafter the comparison of both the output has been done. When no UPFC is installed, real and reactive power through the transmission line cannot be controlled. This paper presents control and performance of UPFC intended for installation on that transmission line to control power flow. Installing the UPFC makes it possible to control amount of active power flowing through the line. Simulations are carried out using MATLAB software to validate the performance of the UPFC.
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran
2016-01-01
in the applications such as curtailment management and reactive power control. Nonconvex nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This paper investigates the geometry of the power flows and the convex-relaxed power flows when high...... penetration level of renewables is present in the distribution networks. The geometry study helps understand the fundamental nature of the OPF and its convex-relaxed problem, such as the second-order cone programming (SOCP) problem. A case study based on a three-node system is used to illustrate the geometry...
Power flow studies in HVAC and HVDC transmission lines
Energy Technology Data Exchange (ETDEWEB)
Oyedokun, D.T.; Folly, K.A. [Cape Town Univ. (South Africa). Dept. of Electrical Engineering
2008-07-01
Flexible AC transmission system (FACTS) devices, additional high voltage AC (HVAC) lines, and additional HVDC transmission lines can all be used to increase the capacity of transmission infrastructure. In this paper, 3 case studies were presented to evaluate the different technologies. Power flow analyses were conducted in order to determine the most feasible method of increasing capacity. A 35 per cent increase in load demand was considered in relation to changes in power flow, rotor angle, loading, and reactive power compensation. The study showed that DC limits were reduced at the rectifier substation, and more power was routed via the HVAC line while less power was routed via the HVDC line. A comparison of the case studies showed that using an HVAC transmission line in parallel with an additional HVAC line was the most suitable method of increasing transmission infrastructure. Transmission losses for the double circuit HVAC lines were approximately 60 MW. 13 refs., 6 tabs., 6 figs.
Directory of Open Access Journals (Sweden)
Leyzgold D.Yu.
2015-04-01
Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.
Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls
Energy Technology Data Exchange (ETDEWEB)
Yu, Juan; Yan, Wei; Wen, Lili [The Key Laboratory of High Voltage Engineering and Electrical New Technology, Ministry of Education, Electrical Engineering College of Chongqing University, Chongqing 400030 (China); Li, Wenyuan [British Columbia Transmission Corporation (BCTC), Suite 1100, Four Bentall Center, 1055 Dunsmuir Street, P.O. Box 49260, Vancouver, BC (Canada)
2008-03-15
Quadratic models of power flow (PF) and optimal reactive power flow (ORPF) for AC-DC power systems are proposed in the paper. Voltage magnitudes at the two sides of ideal converter transformers are used as additional state variables to build the quadratic models. Effects of converter controls on equality constraints are considered. The quadratic expression of unified power flow controller (UPFC) is also developed and incorporated into the proposed models. The proposed PF model retaining nonlinearity has a better convergence feature and requires less CPU time compared to traditional PF models. The Hessian matrices in the quadratic AC-DC ORPF model are constant and need to be calculated only once in the entire optimization process, which speeds up the calculation greatly. Results obtained from the four IEEE test systems and an actual utility system indicate that the proposed quadratic models achieve a superior performance than conventional models. (author)
Research on stochastic power-flow study methods. Final report
Energy Technology Data Exchange (ETDEWEB)
Heydt, G. T. [ed.
1981-01-01
A general algorithm to determine the effects of uncertainty in bus load and generation on the output of conventional power flow analysis is presented. The use of statistical moments is presented and developed as a means for representing the stochastic process. Statistical moments are used to describe the uncertainties, and facilitate the calculations of single and multivarlate probability density functions of input and output variables. The transformation of the uncertainty through the power flow equations is made by the expansion of the node equations in a multivariate Taylor series about an expected operating point. The series is truncated after the second order terms. Since the power flow equations are nonlinear, the expected values of output quantities is in general not the solution to the conventional load flow problem using expected values of input quantities. The second order transformation offers a correction vector and allows the consideration of larger uncertainties which have caused significant error in the current linear transformation algorithms. Voltage controlled busses are included with consideration of upper and lower limits. The finite reactive power available at generation sites, and fixed ranges of transformer tap movement may have a significant effect on voltage and line power flow statistics. A method is given which considers limitation constraints in the evaluation of all output quantities. The bus voltages, line power flows, transformer taps, and generator reactive power requirements are described by their statistical moments. Their values are expressed in terms of the probability that they are above or below specified limits, and their expected values given that they do fall outside the limits. Thus the algorithm supplies information about severity of overload as well as probability of occurrence. An example is given for an eleven bus system, evaluating each quantity separately. The results are compared with Monte Carlo simulation.
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
Energy Technology Data Exchange (ETDEWEB)
Gleeson, Brian [Univ. of Pittsburgh, PA (United States)
2014-09-30
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO_{2}, SO_{2}, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K_{2}SO_{4}, and FeS) and environmental oxidants (i.e., O_{2}, H_{2}O and CO_{2}) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.
Pumping power of nanofluids in a flowing system
International Nuclear Information System (INIS)
Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.
2011-01-01
Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Improving Advanced Inverter Control Convergence in Distribution Power Flow
Energy Technology Data Exchange (ETDEWEB)
Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali
2016-11-21
Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Optimal Power Flow in Microgrids with Energy Storage
DEFF Research Database (Denmark)
Levron, Yoash; Guerrero, Josep M.; Beck, Yuval
2013-01-01
Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However......, these works assume flat, highly simplified network models, which overlook the physical connectivity. This work proposes an optimal power flow solution that considers the entire system: the storage device limits, voltages limits, currents limits, and power limits. The power network may be arbitrarily complex...
Directory of Open Access Journals (Sweden)
M. SUSITHRA
2017-01-01
Full Text Available Competitive trend towards restructuring and unbundling of transmission services has resulted in the need to discover the impact of a particular generator to load. This paper initially presents the analysis of three different reactive power valuation methods namely, Modified Ybus , Virtual flow approach and modified power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best method to trace the reactive power contribution from various reactive power sources to loads, transmission line, etc. Also this proposed method breakdown the total reactive power loss in a transmission line into components to be allocated to individual loads. Secondly, based on this Method a novel allocation method for reactive power service for practical system is proposed. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking WSCC 9 and IEEE 30 bus system as test system.
Cash flow forecasting model for nuclear power projects
International Nuclear Information System (INIS)
Liu Wei; Guo Jilin
2002-01-01
Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective
Multi-objective optimal power flow with FACTS devices
International Nuclear Information System (INIS)
Basu, M.
2011-01-01
This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.
Multilevel flow modeling of Monju Nuclear Power Plant
DEFF Research Database (Denmark)
Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay
2011-01-01
functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained......Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...
2011-08-26
... Mississippi River, near the town of Luling, in St. Charles Parish, Louisiana. The sole purpose of a.... 14091-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...
2011-08-26
... Mississippi River, near the town of Killona, in St. Charles Parish, Louisiana. The sole purpose of a.... 14092-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...
An Optimal Power Flow (OPF) Method with Improved Power System Stability
DEFF Research Database (Denmark)
Su, Chi; Chen, Zhe
2010-01-01
This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which ...
Power and gas flow models for monoenergetic neutral beam injectors
International Nuclear Information System (INIS)
Fasolo, J.A.
1978-01-01
Large, ignition tokamak reactors (ITR, EPR, and beyond will require supplemental heating to achieve ignition. In the earlier machines, at least, this heating will probably be provided by monoenergetic neutral beams. These beams, with energies greater than or equal to 150 keV, will most likely be derived from D + or D - ions produced by direct extraction ion sources. A positive ion source will be followed by a bending magnet, a neutralizer, and a second bending magnet. The first magnet will remove molecular ions, and the second one atomic ions. Direct convertors will be used to recover energy from unused molecular and atomic ions. The first bending magnet may be omitted if D - ion sources are used. Models have been developed for power and gas flow in injectors which employ direct extraction D + or D - ion sources. The power flow model accounts explicitly for all beam losses in terms of line densities of gas along paths traversed by ions and neutrals and cross sections for dissociation and charge-changing collisions. The gas flow model uses the results of power flow calculations and known gas flows from sources and neutralizers to determine gas loads and pumping requirements in various parts of the injector
EFFECTS OF UNIFIED POWER FLOW CONTROLLER (UPFC) ON ...
African Journals Online (AJOL)
eobe
2015-10-04
Oct 4, 2015 ... EFFECTS OF UNIFIED POWER FLOW CONTROLLER (UPFC) ON DISTANCE. RELAY TRIPPING CHARACTERISTICS IN THE NORTH. RELAY TRIPPING CHARACTERISTICS IN THE NORTH-CENTRAL. NIGERIAN 330. NIGERIAN 330kV NETWORK. V NETWORK. L. Yusuf 1,* and M. N. Nwohu.
a modified power law for determinig flow characteristics of fluid
African Journals Online (AJOL)
user
1986-09-01
Sep 1, 1986 ... CHARACTERISTICS OF FLUID. BY. G. SODAH AYERNOR. Department of Food Science and Technology. University of Nigeria Nsukka. ABSTRACT. A modified power law derived with “angle of deviation flow was used to determine the, rheological properties of corn syrup (CS), honey (H), emulsion salad ...
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... This problem is represented as a two stage, security constrained OPF problem, in which the first stage optimizes the problem using a genetic algorithm for the purpose of comparison, ...
Sludge pipe flow pressure drop prediction using composite power ...
African Journals Online (AJOL)
... in 3 test pipe diameters, was established and used to rheologically characterise the sludges as Bingham plastic fluids. Five published definitions of the non-Newtonian Reynolds number were used to create composite power law correlations for the f-Re relationship covering all flow regimes. Pressure gradient predictions ...
Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement
Directory of Open Access Journals (Sweden)
J. Chakravorty
2018-02-01
Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.
Ahmad Memaripour; Sayed Mojtaba Shirvani Boroujeni; Reza Hemmati
2011-01-01
This study presents the application of Unified Power Flow Controller (UPFC) to improvement dynamic stability of a multi-machine electric power system installed with UPFC. Since UPFC is considered to mitigate Low Frequency Oscillations (LFO) and stability enhancement, therefore a supplementary stabilizer based on UPFC (like power system stabilizer) is designed to reach the defined purpose. Intelligence optimization methods such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) a...
International Nuclear Information System (INIS)
Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.
2014-01-01
Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem
Flow of power-law fluids in simplex atomizers
Energy Technology Data Exchange (ETDEWEB)
Mandal, A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States); Jog, M.A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)], E-mail: Milind.Jog@uc.edu; Xue, J.; Ibrahim, A.A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)
2008-10-15
This paper presents a computational analysis of flow of time-independent, purely-viscous, power-law fluids in simplex atomizers using the volume-of-fluid (VOF) method. Flow of shear-thinning (0.4 < n < 1), Newtonian (n = 1) and shear thickening fluids (1 < n < 1.2) has been considered. The effect of power-law index and atomizer geometry on the flow and atomizer performance has been investigated. Three geometry parameters have been considered, viz., the atomizer constant which is the ratio of inlet area to the product of swirl chamber diameter and the exit diameter, the ratio of swirl chamber diameter to exit orifice diameter, and the length-to-diameter ratio of the exit orifice. The dimensionless film thickness at exit, spray cone angle, and the discharge coefficient for different values power-law index as well as those with varying atomizer geometry are reported. The pressure drop across the atomizer has been kept constant in all simulations. A change in the power-law index significantly alters the flow field in the in the swirl chamber of the atomizer. The velocity magnitudes and liquid film thickness at the orifice exit change with the power-law index. With fixed atomizer geometry, the pseudoplastic fluids tend to produce thinner liquid sheet, larger spray cone angle, and have lower discharge coefficient compared to dilatant fluids. Changes in the atomizer geometry have a significant impact on the flow for all values of power-law index. The spray cone angle decreases and the discharge coefficient and the film thickness increase with increasing atomizer constant. With increasing D{sub s}/d{sub o}, the dimensionless film thickness at exit increases whereas the dimensional film thickness decreases monotonically. The discharge coefficient increases and the spray cone angle decreases with increasingD{sub s}/d{sub o}. The discharge coefficient, the spray cone angle, and the film thickness decrease with increasing l{sub o}/d{sub o}. A significant finding is that the
Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines
Directory of Open Access Journals (Sweden)
Nichelle Bruner
2008-04-01
Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.
Efficient relaxations for joint chance constrained AC optimal power flow
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Toomey, Bridget
2017-07-01
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.
Hydro-thermal power flow scheduling accounting for head variations
International Nuclear Information System (INIS)
El-Hawary, M.E.; Ravindranath, K.M.
1992-01-01
In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants
IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices
Energy Technology Data Exchange (ETDEWEB)
Pflughoeft-Hassett, D.F.
1997-09-01
The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.
Towards an Implantable, Low Flow Micropump That Uses No Power in the Blocked-Flow State
Directory of Open Access Journals (Sweden)
Dean G. Johnson
2016-06-01
Full Text Available Low flow rate micropumps play an increasingly important role in drug therapy research. Infusions to small biological structures and lab-on-a-chip applications require ultra-low flow rates and will benefit from the ability to expend no power in the blocked-flow state. Here we present a planar micropump based on gallium phase-change actuation that leverages expansion during solidification to occlude the flow channel in the off-power state. The presented four chamber peristaltic micropump was fabricated with a combination of Micro Electro Mechanical System (MEMS techniques and additive manufacturing direct write technologies. The device is 7 mm × 13 mm × 1 mm (<100 mm3 with the flow channel and exterior coated with biocompatible Parylene-C, critical for implantable applications. Controllable pump rates from 18 to 104 nL/min were demonstrated, with 11.1 ± 0.35 nL pumped per actuation at an efficiency of 11 mJ/nL. The normally-closed state of the gallium actuator prevents flow and diffusion between the pump and the biological system or lab-on-a-chip, without consuming power. This is especially important for implanted applications with periodic drug delivery regimens.
Optimal power flow management for distributed energy resources with batteries
International Nuclear Information System (INIS)
Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua
2015-01-01
Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives
Modelling and Simulation of TCPAR for Power System Flow Studies
Directory of Open Access Journals (Sweden)
Narimen Lahaçani AOUZELLAG
2012-12-01
Full Text Available In this paper, the modelling of Thyristor Controlled Phase Angle Regulator ‘TCPAR’ for power flow studies and the role of that modelling in the study of Flexible Alternating Current Transmission Systems ‘FACTS’ for power flow control are discussed. In order to investigate the impact of TCPAR on power systems effectively, it is essential to formulate a correct and appropriate model for it. The TCPAR, thus, makes it possible to increase or decrease the power forwarded in the line where it is inserted in a considerable way, which makes of it an ideal tool for this kind of use. Knowing that the TCPAR does not inject any active power, it offers a good solution with a less consumption. One of the adverse effects of the TCPAR is the voltage drop which it causes in the network although it is not significant. To solve this disadvantage, it is enough to introduce a Static VAR Compensator ‘SVC’ into the electrical network which will compensate the voltages fall and will bring them back to an acceptable level.
Vortexlike Power Flow at the Interfaces of Metamaterial Lens
Directory of Open Access Journals (Sweden)
K. Fang
2012-10-01
Full Text Available The metamaterial lens with DPS/DNS/DPS structure has been realized by using the two-dimensional (2D isotropic transmission line approach. We studied the vortexlike power flow at the interfaces of metamaterial lens and validated by the finite-difference time-domain (FDTD simulator. The computational results showing its different conditions near DPS/DNS and other kinds of interfaces are obtained by CST STUDIO SUITE at different frequencies, and demonstrate the intuitionistic power location at the metamaterial lens interfaces.
Predictive power of renormalisation group flows a comparison
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2001-01-01
We study a proper-time renormalisation group, which is based on an operator cut-off regularisation of the one-loop effective action. The predictive power of this approach is constrained because the flow is not an exact one. We compare it to the Exact Renormalisation Group, which is based on a momentum regulator in the Wilsonian sense. In contrast to the former, the latter provides an exact flow. To leading order in a derivative expansion, an explicit map from the exact to the proper-time renormalisation group is established. The opposite map does not exist in general. We discuss various implications of these findings, in particular in view of the predictive power of the proper-time renormalisation group. As an application, we compute critical exponents for O(N)-symmetric scalar theories at the Wilson-Fisher fixed point in 3d from both formalisms.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.
Single-phase power distribution system power flow and fault analysis
Halpin, S. M.; Grigsby, L. L.
1992-01-01
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.
Sound power flux measurements in strongly exited ducts with flow
Holland, Keith R.; Davies, Peter O. A. L.; van der Walt, Danie C.
2002-12-01
This contribution describes new robust procedures for the measurement of sound power flux at appropriate axial positions along a duct with flow, using pairs of flush wall mounted microphones, or pressure transducers. The technology includes the application of selective averaging, order tracking, and optimized sampling rate methods to identify the small fraction of the total fluctuating wave energy that is being propagated along the flow path in a reverberent, or highly reactive duct system. Such measurements can also be used to quantify the local acoustic characteristics that govern the generation, transfer, and propagation of wave energy in the system. Illustrative examples include the determination of the acoustic characteristics of individual silencing elements installed in IC engine intakes and exhausts both on the flow bench and during controlled acceleration or run down on a test bed, where the wave component spectral levels approached 170 dB.
Energy Technology Data Exchange (ETDEWEB)
L. Blum; E. Riensche; J. Nazarko; R. Menzer; D. Stolten [Forschungszentrum Juelich GmbH Institute of Energy Research - Fuel Cells (IEF-3), Juelich (Germany)
2009-07-01
A systematic classification of the capture concepts with conventional separation as well as membrane separation is discussed in a 2-dimensional matrix: The 4 capture principles (post-combustion, oxyfuel, pre-combustion-capture of CO{sub 2} and pre-combustion-capture of H{sub 2}), characterized by the 4 separation tasks CO{sub 2}/N{sub 2}, O{sub 2}/N{sub 2}, CO{sub 2}/H{sub 2} and H{sub 2}/CO{sub 2}, have to be applied to the 3 different coal power plant (PP) routes: SPP (steam PP), IGCC/standard and IGCC/CO-shift/H{sub 2}-turbine. In case of membrane separation a further dimension of PP concepts is created by the fact, that different measures exist for realization of positive driving forces for permeation. For example the O{sub 2}/N{sub 2} separating membranes in oxyfuel SPPs can be operated with feed gas compression, permeate vacuum, application of a sweep gas at the permeate side or combinations of these 3 measures. An overview is given on the actually developed membrane PP concepts (post-combustion and oxyfuel in SPPs, pre-combustion in IGCC). In all cases energy consuming turbo machinery is required for membrane operation or for CO{sub 2} or H{sub 2} recompression in case of pre-combustion (1st generation of membrane coal PPs). Calculated efficiency losses are not significantly below 10 %-points. An outlook is given to a new IGCC concept, where a suitable sweep gas (N{sub 2} with low O{sub 2} content) of sufficient high flow rate is produced (related to the permeated H{sub 2}). Now the swept H{sub 2}/CO{sub 2} membrane operates without turbo machinery (2nd generation of membrane coal PPs). Lower efficiency losses (between 5 and 10 %-points) seem to be possible now. 10 refs., 18 figs.
Directory of Open Access Journals (Sweden)
S. Ravindra
2017-03-01
Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.
Partial analysis of wind power limit in an electric micro system using continuation power flow
International Nuclear Information System (INIS)
Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel
2013-01-01
The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)
Exergy analysis of an IGCC design configuration for Plant Wansley
International Nuclear Information System (INIS)
Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.
1989-01-01
An integrated gasification-combined-cycle power plant design was developed for Georgia Power Company's Plant Wansley. This paper discusses the plant configuration and presents the most important results obtained from a detailed exergy analysis of the plant design. This analysis will be completed in a subsequent paper through an exergoeconomic analysis to identify design improvements for reducing the electricity cost
(facts) to improve the power flow control in the nigeria transmission n
African Journals Online (AJOL)
BARTH EKWUEME
reliability of power supply to consumers. KEYWORDS: FACTS, Transmission, Power Flow, Compensation, Power Loss, Voltage drop, UPFC. INTRODUCTION. The developing of interest in tools for power flow control in a power system has increased significantly during the last 10 years. Demand for research in this.
An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets
Bose, Subhonmesh
Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.
Energy Technology Data Exchange (ETDEWEB)
Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara
2010-01-01
Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.
Instantaneous power flow determination for single-phase UPFC
Energy Technology Data Exchange (ETDEWEB)
Dobrucky, B.; Drozdy, S.; Pokorny, M.; Pavlanin, R. [Zilina Univ., Zilina (Slovakia)
2007-07-01
The parallel shunt active filter in a unified power flow conditioner (UPFC) can filter and compensate the reactive power of basic and higher current harmonics. This paper reported on a study in which a new theory of orthogonal transform was used to control a single-phase UPFC system and transform it into a two-axes system. In addition to estimating the load current phase shifts, the study also determined the instantaneous active and reactive powers. The new theory is based on the premise that ordinary single-phase quantity can be complemented by a virtual fictitious phase so that both of them will create an orthogonal system, as is usual in three-phase systems. The theory uses efficient methods of analysis, such as time-sub-optimal determination of fundamental harmonics; average- and/or root-mean-square values; or instantaneous reactive power methods. The load current phase shift can be used to compensate for voltage drops. This paper outlined a practical application of the method in a case of active and reactive power determination for single-phase UPFC. It also presented some examples of the successful simulation experiments results focused on regulation output voltage of UPFC. 9 refs., 13 figs., 1 appendix.
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
DEFF Research Database (Denmark)
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
Solving the power flow equations: a monotone operator approach
Energy Technology Data Exchange (ETDEWEB)
Dvijotham, Krishnamurthy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Low, Steven [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-07-21
The AC power flow equations underlie all operational aspects of power systems. They are solved routinely in operational practice using the Newton-Raphson method and its variants. These methods work well given a good initial “guess” for the solution, which is always available in normal system operations. However, with the increase in levels of intermittent generation, the assumption of a good initial guess always being available is no longer valid. In this paper, we solve this problem using the theory of monotone operators. We show that it is possible to compute (using an offline optimization) a “monotonicity domain” in the space of voltage phasors. Given this domain, there is a simple efficient algorithm that will either find a solution in the domain, or provably certify that no solutions exist in it. We validate the approach on several IEEE test cases and demonstrate that the offline optimization can be performed tractably and the computed “monotonicity domain” includes all practically relevant power flow solutions.
Flow Control in Wells Turbines for Harnessing Maximum Wave Power.
Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-02-10
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.
Multilevel Flow Modeling for Nuclear Power Plant Diagnosis
DEFF Research Database (Denmark)
Gola, G; Lind, Morten; Thunem, Harald P-J
2012-01-01
As complexity and safety requirements of current and future nuclear power plants increase, innovative methods are being investigated to perform accurate and reliable system diagnoses. Detecting malfunctions, identifying their causes and possibly predicting their consequences are major challenges......-scale monitoring systems is hard to handle manually. In this paper, the use of an innovative function-oriented modeling approach, called Multilevel Flow Modeling, is proposed for performing an automatic analysis of the outcomes of the monitoring systems with the aim of identifying the root causes of the possibly...
Adjusted optimal power flow solutions via parameterized formulation
Energy Technology Data Exchange (ETDEWEB)
Moyano, C.F. [Queensland University of Technology, Engineering Systems, 2 George St., Garden Points, Brisbane, 4000 QLD (Australia); Salgado, R.S. [Universidade Federal de Santa Catarina, CTC/EEL/LABSPOT/Florianopolis (88040-900) SC (Brazil)
2010-09-15
This work proposes a parameterized formulation of the optimal power flow (OPF) problem, which is aimed at preventing the divergence of the OPF iterative process. A parameter, whose function is to adjust the power demand and/or operational limits in case of absence of feasible solutions, is added to the objective function of the original optimization problem. This modified problem is solved through the nonlinear version of the predictor-corrector interior point method. Besides indicating the potential reasons for non-convergence of the iterative process, the proposed methodology also provides the possible actions that could be taken to determine an operational solution. Numerical results obtained with test systems of different sizes illustrate the application of the proposed strategy. (author)
Curing critical links in oscillator networks as power flow models
International Nuclear Information System (INIS)
Rohden, Martin; Meyer-Ortmanns, Hildegard; Witthaut, Dirk; Timme, Marc
2017-01-01
Modern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations. (paper)
Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations
International Nuclear Information System (INIS)
Martelli, Emanuele; Kreutz, Thomas; Carbo, Michiel; Consonni, Stefano; Jansen, Daniel
2011-01-01
Highlights: → We aim at defining the preferred IGCC design for dry feed gasifiers with CO 2 capture. → Multiple options of syngas cooling, humidification, and WGS are considered. → Plants are designed, modeled, numerically optimized and costs are carefully assessed. → Partial water quench has poor efficiency but low capital cost, then good performance. → Gas quench with the ECN staged WGS design has the best thermo-economic performance. -- Abstract: The Shell coal integrated gasification combined cycle (IGCC) based on the gas quench system is one of the most fuel flexible and energy efficient gasification processes because is dry feed and employs high temperature syngas coolers capable of rising high pressure steam. Indeed the efficiency of a Shell IGCC with the best available technologies is calculated to be 47-48%. However the system looses many percentage points of efficiency (up to 10) when introducing carbon capture. To overcome this penalty, two approaches have been proposed. In the first, the expensive syngas coolers are replaced by a 'partial water quench' where the raw syngas stream is cooled and humidified via direct injection of hot water. This design is less costly, but also less efficient. The second approach retains syngas coolers but instead employs novel water-gas shift (WGS) configurations that requires substantially less steam to obtain the same degree of CO conversion to CO 2 , and thus increases the overall plant efficiency. We simulate and optimize these novel configurations, provide a detailed thermodynamic and economic analysis and investigate how these innovations alter the plant's efficiency, cost and complexity.
Parametric study of GT and ASU integration in case of IGCC with CO2 removal
International Nuclear Information System (INIS)
Liszka, Marcin; Tuka, Jakub
2012-01-01
One of the most promising technologies for coal-to-electricity conversion considering CO 2 removal is coal gasification process integrated with a combined cycle (IGCC). One of the ideas for IGCC efficiency increase is process integration including well-known ASU-GT coupling by compressed air and nitrogen streams. In this case, the integration idea is based on supplying of the compressed air from the GT compressor to ASU where it replaces air compressed in electrical-driven compressors. From the energy effectiveness point of view, the integration should reduce the electricity consumption in ASU and energy losses in auxiliary transformer. It should also be noted, that the polytropic efficiency of large compression stages like for GT compressor is usually higher than for smaller units as for ASU compressors. The main goal of the present paper is to check if the air-side ASU-GT integration has a positive impact on the IGCC efficiency, assuming that the GT unit is a syngas-dedicated machine and massive CO 2 removal is applied. The general conclusion is that in case of dedicated GT unit, where the compressor pressure ratio is relatively high, the ASU-GT integration is not recommended from the efficiency point of view. -- Highlights: ► For syngas-dedicated GT units the air-side ASU-GT integration is not an optimal solution from thermodynamic point of view. ► Overall integration benefits may come only from possible reduction of the equipment capital costs. ► The newer GT – the lower possible benefits from integration.
Hydroelectric power plant with variable flow on drinking water adduction
Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.
2018-01-01
The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.
Stand-alone excitation synchronous wind power generators with power flow management strategy
Directory of Open Access Journals (Sweden)
Tzuen-Lih Chern
2014-09-01
Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.
Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter
Felipe-Lucia, María R.; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A.
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the “cascade” framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders’ interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders’ ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services. PMID:26201000
Ecosystem Services Flows: Why Stakeholders' Power Relationships Matter.
Felipe-Lucia, María R; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the "cascade" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services.
Yuan, Yan; Shunjiang, Lin; Yuan, Lu
2017-05-01
Low-voltage distribution network is a three-phase unbalanced system due to the integration of single-phase loads and single-phase distributed PV arrays. In this paper, three-phase unbalanced interval power flow calculation model of three-phase four-wire low voltage distribution network with distributed PV power generation is established. In the model, intensity of illumination and battery temperature which influence the power output of distributed PV power generation is described as intervals. Then, through the affine interval algorithm, the interval power flow problem is transformed into a deterministic power flow problem and two linear optimization problems. By solving the above problems, the interval power flow solution can be obtained. Finally, the proposed algorithm is applied to an actual 22-bus low-voltage distribution network, and the solution of the affine interval algorithm is compared to the solution of the Monte Carlo sampling method, which verifies the correctness and effectiveness of the proposed algorithm.
International Nuclear Information System (INIS)
Rieger, Mathias
2014-01-01
The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal
Hu, Xu; Gao, Chao; Hao, Jiangnan
2018-01-01
In this paper, the excitation effect of single dielectric barrier discharge plasma actuator (SDBD) is compared by using AC power supply and AC-DC power supply. AC-DC power supply is based on the AC power supply, just adding DC component. The flow measurement is carried out by PIV technique. Results show that the excitation effect of AC power supply and AC-DC power supply increases by the increase of voltage, the range of speed field excited by AC power is greater than that of AC-DC power supply. For x direction maximum speed, excited by AC power supply is close to AC-DC, and for y direction maximum speed, AC power supply is greater than AC-DC power supply. So the excitation effect of AC power supply is better than that of AC-DC power supply for SDBD.
Flow accelerated corrosion in Indian nuclear power plants
International Nuclear Information System (INIS)
Roychowdhury, S.; Ahmedabadi, P.; Kain, V.; Barua, D.K.
2008-01-01
Flow accelerated corrosion (FAC) related failures have occurred in a large number of pipelines in the secondary as well as primary section of light water reactors worldwide. This is primarily a corrosion process enhanced by (electro) chemical dissolution and mass transfer, rather than a mechanical process. FAC is an extension of the generalized carbon steel corrosion process in stagnant water. The mechanism of FAC has been described in this paper. It has caused rupture of large, medium and small diameter pipelines carrying either single phase water or two phase (wet steam) flow. It is reported to be the only mechanism that has significant potential for large leaks in the secondary circuit. This paper describes the various FAC related incidents that have occurred in the secondary as well as primary side of Indian Pressurized Heavy Water Reactors. Failure analysis done on the 10% feed water line in KAPS, NRV in auxiliary feed water system of KAPS, and affected pipeline components from the secondary water system of KGS has been described in this paper. The surface features observed (the signature of FAC) on the ID of the pipelines affected by FAC in the primary and the secondary circuits of nuclear reactors have been described. Signatures of FAC, both single phase FAC and dual phase FAC related failures and the signature pattern formed on the surfaces in both the primary and the secondary circuit of the Indian nuclear power plants have been described in this paper. (author)
Inductive-energy power flow for X-ray sources
International Nuclear Information System (INIS)
Ware, K.D.; Filios, P.G.; Gullickson, R.L.; Hebert, M.P.; Rowley, J.E.; Schneider, R.F.; Summa, W.J.; Vitkovski, I.M.
1996-01-01
The Defense Nuclear Agency (DNA) has been developing inductive energy storage (IES) technology for generating intense x-rays from electron beam-target interactions and from plasma radiating sources (PRS). Because of the complex interaction between the commutation of the current from the plasma and the stable dissipation of the energy in the load, DNA has supported several variations of power flow technology. Major variations include: (1) current interruption using a plasma opening switch (POS); (2) continuous current commutation through current-plasma motion against neutral, ionized, or magnetized medium [i.e., dense plasma focus-like (DPF) and plasma flow switch (PFS) technologies]; and, in addition, possible benefits of (3) directly driven complex PRS loads are being investigated. DNA programs include experimental and theoretical modeling and analysis with investigations (1) on Hawk and a Decade module in conjunction with the development of the bremsstrahlung sources (BRS), and (2) on Hawk, ACE-4 and Shiva-Star, as well as cooperative research on GIT-4 and GIT-8, in conjunction with PRS. (author). 1 tab., 12 figs., 17 refs
Optimal power flow for distribution networks with distributed generation
Directory of Open Access Journals (Sweden)
Radosavljević Jordan
2015-01-01
Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046
Magnetic insulation, power flow, and pulse power results on RITS-3
International Nuclear Information System (INIS)
Johnson, David L.; Smith, Ian; Corcoran, Patrick; Bailey, Vernon; Maenchen, John; Rovang, Dean; Molina, Isidro; Hahn, Kelly; Lucero, Robert; Kincy, Mark; Kitterman, David; Oliver, Bryan; Welch, Dale; Rose, David; Goldsack, Timothy J.; Phillips, Martin A.; Sinclair, Mark A.; Thomas, Kenneth J.
2002-01-01
RITS (Radiographic Integrated Test Stand) is an induction voltage adder designed by Sandia and PSD to provide 16-MV, 150-kA electron beams and other capabilities. Previous publications have reported on tests of a single pulse forming line and adder cell, including initial results of the effects of various degrees of non-uniform injection of current into the adder bore on magnetic insulation and power flow in the downstream MITL. Now RITS-3 has been constructed, consisting of three pfls driven by a common intermediate store; three induction cells, one driven by each pfl; a three-stage, 4-MV, 150-kA vacuum voltage adder; and an output MITL and diode. Here we report on (1) simulations of the three-stage adder using the MRC 3-D particle-in-cell code LSP that address the effects of injected current non-uniformities on magnetic insulation and power-flow both upstream and downstream in a multi-cell adder; (2) experimental results compared with simulations; and (3) initial performance of the RITS-3 pulse power
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Yang, Yongheng
2017-01-01
It was usually considered in power systems that power flow equations had multiple solutions and all the eigenvalues of Jacobian ma-trix at the high-voltage operable solution should have negative real parts. Accordingly, type-1 low-voltage power flow solutions are defined in the case...... solution may be positive and also the type-1 low-voltage solutions could have more than one positive real-part eigen-values, being a major challenge. Therefore, in this paper, the recognition of the type-1 low-voltage power flow solutions is re-examined with the presence of negative reactance. Selected......-voltage operable solution as well as the number of positive real-part eigenvalues at the type-1 low-voltage power flow solutions....
Pollock, G.G.
1997-01-28
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.
Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.
MHD free convection flow of a non-Newtonian power-law fluid over ...
African Journals Online (AJOL)
... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law
Impact of Thyristors Controlled Series Capacitor Devices and Optimal Power Flow on Power Systems
Directory of Open Access Journals (Sweden)
Fatiha LAKDJA
2010-12-01
Full Text Available This paper presents an algorithm, for solving the Optimal Power Flow problem with flexible AC transmission systems (FACTS. The type of FACTS devices is used: thyristor-controlled series capacitor (TCSC. A method to determine the optimal location of thyristor controlled series compensators has been suggested. The proposed approaches have been implemented on an adapted IEEE 26 bus system. The simulation results are discussed to show the performance of the proposed algorithm and our FACTS programmer simulator technique, which are compared with TCSC and without TCSC.
A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Adel Sarofim; Bene Risio
2002-07-28
This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No.: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of the IGCC workbench. A series of parametric CFD simulations for single stage and two stage generic gasifier configurations have been performed. An advanced flowing slag model has been implemented into the CFD based gasifier model. A literature review has been performed on published gasification kinetics. Reactor models have been developed and implemented into the workbench for the majority of the heat exchangers, gas clean up system and power generation system for the Vision 21 reference configuration. Modifications to the software infrastructure of the workbench have been commenced to allow interfacing to the workbench reactor models that utilize the CAPE{_}Open software interface protocol.
Directory of Open Access Journals (Sweden)
Amin Safari
2013-12-01
Full Text Available A new control scheme to improve the stability of a system by optimal design of distributed power flow controller (DPFC based stabilizer is presented in this paper. The paper demonstrates the basic module, steady state operation, mathematical analysis, and current injection modeling of the DPFC. The purpose of the work reported in this paper is to design an oscillation damping controller for DPFC to damp low frequency electromechanical oscillations. The optimal design problem is formulated as an optimization problem, and particle swarm optimization (PSO is employed to search for the damping controller parameters. Results demonstrate that DPFC with the proposed model can more effectively improve the dynamic stability and enhance the transient stability of power system compared to the genetic algorithm based damping controllers. The r and λ are relative magnitude and phase angle of DPFC controller. Moreover, the results show that the λ based controller is superior to the r based controller.
Reliability Evaluation of Power System Considering Voltage Stability and Continuation Power Flow
Directory of Open Access Journals (Sweden)
R. K. Saket
2007-06-01
Full Text Available This article describes the methodology for evaluation of the reliability of an composite electrical power system considering voltage stability and continuation power flow, which takes into account the peak load and steady state stability limit. The voltage stability is obtained for the probable outage of transmission lines and removal of generators along with the combined state probabilities. The loss of load probabilities (LOLP index is evaluated by merging the capacity probability with load model. State space is truncated by assuming the limits on total numbers of outages of generators and transmission lines. A prediction correction technique has been used along with one dimensional search method to get optimized stability limit for each outage states. The algorithm has been implemented on a six-bus test system.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Directory of Open Access Journals (Sweden)
Dharmbir Prasad
2016-03-01
Full Text Available In this paper, symbiotic organisms search (SOS algorithm is proposed for the solution of optimal power flow (OPF problem of power system equipped with flexible ac transmission systems (FACTS devices. Inspired by interaction between organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. The performance of the proposed SOS algorithm is tested on the modified IEEE-30 bus and IEEE-57 bus test systems incorporating two types of FACTS devices, namely, thyristor controlled series capacitor and thyristor controlled phase shifter at fixed locations. The OPF problem of the present work is formulated with four different objective functions viz. (a fuel cost minimization, (b transmission active power loss minimization, (c emission reduction and (d minimization of combined economic and environmental cost. The simulation results exhibit the potential of the proposed SOS algorithm and demonstrate its effectiveness for solving the OPF problem of power system incorporating FACTS devices over the other evolutionary optimization techniques that surfaced in the recent state-of-the-art literature.
International Nuclear Information System (INIS)
Hanif, A.; Choudhry, M.A.
2013-01-01
This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)
Time series power flow analysis for distribution connected PV generation.
Energy Technology Data Exchange (ETDEWEB)
Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger
2013-01-01
Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating
Optimal power flow application issues in the Pool paradigm
International Nuclear Information System (INIS)
Gross, G.; Bompard, E.
2004-01-01
This paper focuses on the application of the Optimal Power Flow (OPF) to competitive markets. Since the OPF is a central decision-making tool its application to the more decentralized decision-making in the competitive electricity markets requires considerable care. There are some intrinsic challenges associated with the effective OPF application in the competitive environment due to the inherent characteristics of the OPF formulation. Two such characteristics are the flatness of the optimum surface and the consequent continuum associated with the optimum. In addition to these OPF structural characteristics, the level of authority vested in the central decision-making entity has major ramifications. These factors have wide ranging economic impacts, whose implications are very pronounced due to the fact that, unlike in the old vertically integrated utility environment, various market players are affected differently. The effects include price volatility, financial health of various players and the integrity of the market itself. We apply appropriate metrics to evaluate market efficiency and how the various players fare. We study the impacts of OPF applications in the Pool paradigm, with both supply and demand side explicitly modeled, and provide extensive numerical results on systems based on IEEE 30-bus and 118-bus networks. The results show the variability of nodal prices and the skew possible in different 'optimal' allocations among competing suppliers. Such variability in the results may lead to serious disputes among the players and the central decision-making authority. Directions for future research are discussed. (author)
Reproduction of the flow-power map of the Laguna Verde power plant
International Nuclear Information System (INIS)
Amador G, R.; Gonzalez M, V.M.
1993-01-01
The National Commission of Nuclear Safety and Safeguards (CNSNS) requires to have calculation tools which allows it to make analysis independent of the behavior of the reactor core of Laguna Verde nuclear power plant (CNLV) with the purpose to support the evaluation and discharge activities of the fuel recharges licensing. The software package Fms (Fuel Management System) allows to carry out an analysis of the core of the BWR type reactors along the operation cycle to detect possible anomalies and/or helping in the fuel management. In this work it is reproduced the flow-power for the CNLV using the Presto code of the Fms software package. The comparison of results with the map used by the operators of CNLV shows good agreement between them. Another exercise carried out was the changes study that the axial and radial power outlines undergo as well as the thermohydraulic parameters (LHGR, APLHGR, CPR) when moving a control rod. The obtained results show that is had the experience to effect analysis of the reactor behavior using the Presto-Fms code therefore the study of the rest of the software package for the obtention of nuclear parameters used in this code is recommended. (Author)
International Nuclear Information System (INIS)
Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang
2008-01-01
The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China
Flow Measurements in Low-Head Hydro Power Plants
Energy Technology Data Exchange (ETDEWEB)
Cervantes, Michel; Andree, Gunilla; Klason, Peter; Sundstroem, Joel
2012-11-15
Hydropower stands for a large part of the energy production portfolio in Sweden and provides about 50% of the electricity needs. Most of the turbines were built some decades ago and are in a need of refurbishment. An important refurbishment period started some years ago and will be continuous. Substantial production gains and adaptation to new market demands may be achieved with such refurbishments. Refurbishments are also stimulated by the government through the electricity certificate system. Efficiency step-ups are thus of importance but challenging due to the presence of mainly low head (H<50 m) machines in Sweden. During the last decades, the Winter-Kennedy method has been used to verify improvements of the efficiency by measuring before and after a refurbishment. The results have for a number of cases shown unpredictable results. There is a need of development to measure accurately the efficiency in order to evaluate the outcome of different refurbishment projects. The working group suggests several actions for the development of flow measurements in low head machines. They are divided in 2 categories; long term and short term. The long term actions are typical SVC projects for PhD or/and senior researcher while short term actions are projects for consultant or/and senior researcher. The following actions are suggested in a hierarchical order. Long term projects: 1. Development of the pressure-time method as an absolute and relative method. 2. Evaluation of scale-up formula and influence of the parameters differing between model and prototype such spiral inlet boundary conditions. Short term projects: 1. Procedure/road book for implementation, evaluation and reporting of the Winter-Kennedy method. Continue working on the common guideline drafted in SEK-TK4. 2. Systematic error analysis of the Winter-Kennedy method. 3. Testing of the volumetric method on a full-scale unit to investigate capabilities and evaluate necessary development for low head hydro power
Directory of Open Access Journals (Sweden)
Yu Tong
2016-02-01
Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We investigate the power-law viscosity exponent on the flow, the Darcy parameter on the temperature profiles and the results obtained are discussed. Keywords: Unsteady gravity flows; Porous media; Non – Newtonian power- law fluid and Asymptotic expansion. Journal of the Nigerian Association of Mathematical Physics, ...
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Axial annular flow of power-law fluids - applicability of the limiting cases
Czech Academy of Sciences Publication Activity Database
Filip, Petr; David, Jiří
2007-01-01
Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics
Application of neural networks to validation of feedwater flow rate in a nuclear power plant
International Nuclear Information System (INIS)
Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.
1993-01-01
Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant
Optimal power flow by particle swarm optimization with an aging ...
African Journals Online (AJOL)
In this paper, a particle swarm optimization (PSO) with an aging leader and challengers (ALC-PSO) is applied for the solution of OPF problem of power system. This study is implemented on modified IEEE 30-bus test power system with different objectives that reflect minimization of either fuel cost or active power loss or sum ...
Williams, P Stephen
2017-01-01
Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.
Water intake flow efficiency study for micro-hydro power plant
Pop, Radu; Vaida, Liviu; Bot, Adrian
2017-12-01
The water intake from the micro-hydro power plants captures water in two ways, namely, in summer through a surface grill and in winter by "winter intake", by water immersion below freezing level. The water flow captured for energy production is influenced by the river flow and fish ladder flow, respectively. The fish ladder flow should ensure a minimum servitude flow, downstream for fish migration. The paper presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. This optimization should be made by keeping a constant flow through the fish ladder. The increase on the efficiency as a function of the river flow is presented.
Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems
DEFF Research Database (Denmark)
Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng
2018-01-01
. Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...
Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments
Energy Technology Data Exchange (ETDEWEB)
Hutsel, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stoltzfus, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fowler, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LeChien, Keith R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mazarakis, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, James K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mulville, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Savage, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McKenney, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacRunnels, Diego J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Finis W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Porter, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.
Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
Zhao, Cunlu; Zholkovskij, Emilijk; Masliyah, Jacob H; Yang, Chun
2008-10-15
Electroosmotic flow of power-law fluids in a slit channel is analyzed. The governing equations including the linearized Poisson-Boltzmann equation, the Cauchy momentum equation, and the continuity equation are solved to seek analytical expressions for the shear stress, dynamic viscosity, and velocity distribution. Specifically, exact solutions of the velocity distributions are explicitly found for several special values of the flow behavior index. Furthermore, with the implementation of an approximate scheme for the hyperbolic cosine function, approximate solutions of the velocity distributions are obtained. In addition, a generalized Smoluchowski velocity is introduced by taking into account contributions due to the finite thickness of the electric double layer and the flow behavior index of power-law fluids. Calculations are performed to examine the effects of kappaH, flow behavior index, double layer thickness, and applied electric field on the shear stress, dynamic viscosity, velocity distribution, and average velocity/flow rate of the electroosmotic flow of power-law fluids.
Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo
2012-12-31
This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve
Impact of Wind Power Generation on European Cross-Border Power Flows
DEFF Research Database (Denmark)
Zugno, Marco; Pinson, Pierre; Madsen, Henrik
2013-01-01
A statistical analysis is performed in order to investigate the relationship between wind power production and cross-border power transmission in Europe. A dataset including physical hourly cross-border power exchanges between European countries as dependent variables is used. Principal component...... wind power production and spot price in Germany have substantial nonlinear effects on power transmission on a European scale....
Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa
2016-01-01
This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...
On-line validation of feedwater flow rate in nuclear power plants using neural networks
International Nuclear Information System (INIS)
Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.
1994-01-01
On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%
User-friendly Tool for Power Flow Analysis and Distributed ...
African Journals Online (AJOL)
Akorede
an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG) units on the distribution networks. However, to maximise benefits, it is highly crucial for a DISCO to ensure that these DG units are of optimal size and sited ...
Wind farm electrical power production model for load flow analysis
International Nuclear Information System (INIS)
Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel
2011-01-01
The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.
Directory of Open Access Journals (Sweden)
Yi Tang
2017-11-01
Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.
Collective Intelligence for Optimal Power Flow Solution Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Boumediène ALLAOUA
2008-12-01
Full Text Available This paper presents the performance ant collective intelligence efficiency for electrical network. Solutions for Optimal Power Flow (OPF problem of a power system deliberate via an ant colony optimization metaheuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. Simulation results on the IEEE 30-bus electrical network show that the ant colony optimization method converges quickly to the global optimum.
Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control
Directory of Open Access Journals (Sweden)
Ivković Sanja
2014-01-01
Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.
Analysis and distributed control of power flow in DC microgrids to improve system efficiency
DEFF Research Database (Denmark)
Chen, Fang; Burgos, Rolando; Boroyevich, Dushan
2016-01-01
, which includes constant power renewables generation, droop-controlled voltage source and different kinds of load. Then the dc power flow is solved for optimization. A voltage restoration method based on consensus communication is used to restore the voltage deviation from droop characteristic....... An enhanced current regulator is adopted to guarantee the accurate load sharing considering the impact from sensor error and line resistance. A tie line power flow control method is proposed to regulate the tie line power and increase the system efficiency at light load. All the considered methods only need...
Power flow modelling in electric networks with renewable energy sources in large areas
International Nuclear Information System (INIS)
Buhawa, Z. M.; Dvorsky, E.
2012-01-01
In many worlds regions there is a great potential for utilizing home grid connected renewable power generating systems, with capacities of MW thousands. The optimal utilization of these sources is connected with power flow possibilities trough the power network in which they have to be connected. There is necessary to respect the long distances among the electric power sources with great outputs and power consumption and non even distribution of the power sources as well. The article gives the solution possibilities for Libya region under utilization of wind renewable sources in north in shore regions. (Authors)
Technology and knowledge flow the power of networks
Trentin, Guglielmo
2011-01-01
This book outlines how network technology can support, foster and enhance the Knowledge Management, Sharing and Development (KMSD) processes in professional environments through the activation of both formal and informal knowledge flows. Understanding how ICT can be made available to such flows in the knowledge society is a factor that cannot be disregarded and is confirmed by the increasing interest of companies in new forms of software-mediated social interaction. The latter factor is in relation both to the possibility of accelerating internal communication and problem solving processes, an
Holomorphic Embedded Load Flow for autonomous spacecraft power systems, Phase I
National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...
Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters
Directory of Open Access Journals (Sweden)
Amir Ghorbani
2018-05-01
Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter
Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2012-01-01
Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.
Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos
2014-01-01
The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...... algorithm makes it a potential method for planning, dispatching and operation of droop controlled LV hybrid AC-DC....
Electrohydrodynamic stability of two stratified power law liquid in couette flow
International Nuclear Information System (INIS)
Eldabe, N.T.
1988-01-01
Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated
Sludge pipe flow pressure drop prediction using composite power ...
African Journals Online (AJOL)
2011-09-30
Sep 30, 2011 ... When predicting pressure gradients for the flow of sludges in pipes, the rheology of the fluid plays an important role, especially with increasing concentration of the suspended matter in the sludge. The f-Re relationship is often applied when designing pipelines, but it depends on the rheological parameters ...
Directory of Open Access Journals (Sweden)
Jun Yang
2015-08-01
Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.
Directory of Open Access Journals (Sweden)
Akanksha Mishra
2017-05-01
Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.
International Nuclear Information System (INIS)
Luo, Y Y; Xiao, Y X; Wang, Z W
2013-01-01
Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit
International Nuclear Information System (INIS)
Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine
2014-01-01
Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints
Simulation Results of Closed Loop Controlled Interline Power Flow Controller System
Directory of Open Access Journals (Sweden)
P. USHA RANI
2016-01-01
Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.
Recirculating flow-rate control system in an atomic power plant
International Nuclear Information System (INIS)
Shida, Toichi; Nakamura, Hideo; Hirose, Masao; Tohei, Kazushige.
1975-01-01
Object: To control recirculating flow-rate when feedwater temperature is lowered to minimize possibility of a fast-neutron flux scram, thereby maintaining soundness of fuel. Structure: An atomic power plant comprising a reactor, a recirculating flow-rate control means for controlling a power of said reactor, and a feedwater system for supplying water to said reactor, said plant further including a water temperature detector for detecting temperature of water in said feedwater system, first means for presuming the water temperature in the feedwater system corresponding to the power of the atomic power plant, and second means for obtaining a deviation between the output of said first means and the output of said water temperature detector to impact said output to the recirculating flow-rate control device, whereby preventing fluctuation in the power of the reactor due to fluctuation in water temperature. (Kamimura, M.)
EOIL power scaling in a 1-5 kW supersonic discharge-flow reactor
Davis, Steven J.; Lee, Seonkyung; Oakes, David B.; Haney, Julie; Magill, John C.; Paulsen, Dwane A.; Cataldi, Paul; Galbally-Kinney, Kristin L.; Vu, Danthu; Polex, Jan; Kessler, William J.; Rawlins, Wilson T.
2008-02-01
Scaling of EOIL systems to higher powers requires extension of electric discharge powers into the kW range and beyond with high efficiency and singlet oxygen yield. We have previously demonstrated a high-power microwave discharge approach capable of generating singlet oxygen yields of ~25% at ~50 torr pressure and 1 kW power. This paper describes the implementation of this method in a supersonic flow reactor designed for systematic investigations of the scaling of gain and lasing with power and flow conditions. The 2450 MHz microwave discharge, 1 to 5 kW, is confined near the flow axis by a swirl flow. The discharge effluent, containing active species including O II(a1Δ g, b1Σ g +), O( 3P), and O 3, passes through a 2-D flow duct equipped with a supersonic nozzle and cavity. I2 is injected upstream of the supersonic nozzle. The apparatus is water-cooled, and is modular to permit a variety of inlet, nozzle, and optical configurations. A comprehensive suite of optical emission and absorption diagnostics is used to monitor the absolute concentrations of O II(a), O II(b), O( 3P), O 3, I II, I(2P 3/2), I(2P 1/2), small-signal gain, and temperature in both the subsonic and supersonic flow streams. We discuss initial measurements of singlet oxygen and I* excitation kinetics at 1 kW power.
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection.
Arifuzzman, Akm; Haider, Mohammad Rafiqul; Allison, David B
2016-11-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R 2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications.
Energy Technology Data Exchange (ETDEWEB)
Wang,Ping; Massoudi, Mehrdad
2011-01-01
Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and
Operational characteristics and power scaling of a transverse flow ...
Indian Academy of Sciences (India)
a rooftop mirror for folding the beam and a plane ZnSe output coupler of 50% reflectivity. Laser was operated with three different electrode separations. The optic axis was in the downstream at a distance equal to about one-half of the electrode separation, where the laser power obtained was the maximum. Even though the ...
Operational characteristics and power scaling of a transverse flow ...
Indian Academy of Sciences (India)
It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser power was not increasing when the discharge volume and the gas volumetric ﬂow were increased by increasing the electrode separation keeping the gas ﬂow velocity constant. The discharge voltage too ...
Power and color Doppler ultrasound settings for inflammatory flow
DEFF Research Database (Denmark)
Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin
2015-01-01
OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were us...
A large deviation based splitting estimation of power flow reliability
W.S. Wadman (Wander); D.T. Crommelin (Daan); A.P. Zwart (Bert)
2016-01-01
htmlabstractGiven the continued integration of intermittent renewable generators in electrical power grids, connection overloads are of increasing concern for grid operators. The risk of an overload due to injection variability can be described mathematically as a barrier crossing probability of a
Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...
African Journals Online (AJOL)
We investigate the power-law viscosity index, the Darcy parameter on the temperature profiles and the results were discussed. Keywords: Unsteady gravity flows; Porous media; Non – Newtonian power- law fluid. Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 223 – 228 ...
Power and Flow Experience in Time-Intensive Business Simulation Game
Kiili, Kristian; Lainema, Timo
2010-01-01
Power is an influential component of social interaction and there are reasons for thinking that it may have important effects both on decision-making and psychological and interpersonal processes. The aim of this paper was to study the relations between the feeling of power, decision-making and flow experience in a collaborative business…
Deformation of a Capsule in a Power-Law Shear Flow.
Tian, Fang-Bao
2016-01-01
An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation
International Nuclear Information System (INIS)
Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel
2013-01-01
Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy
Effect of RF power and gas flow ratio on the growth and morphology ...
Indian Academy of Sciences (India)
(RF) power with mixed frequency condition and flow ratio of silane to methane were varied by keeping the temper- ature and pressure constant to investigate the influence of these parameters on the growth rate, surface roughness and morphology of SiC thin films. It was observed that both the RF power (with the mixed ...
Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks
Sereeter, B.; Vuik, C.; Witteveen, C.
2017-01-01
Two mismatch functions (power or current) and three coordinates (polar, Cartesian andcomplex form) result in six versions of the Newton–Raphson method for the solution of powerflow problems. In this paper, five new versions of the Newton power flow method developed forsingle-phase problems in our
Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi
2017-03-03
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.
On heat transfer of weakly compressible power-law flows
Directory of Open Access Journals (Sweden)
Li Botong
2017-01-01
Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.
An efficient geometric parameterization technique for the continuation power flow
Energy Technology Data Exchange (ETDEWEB)
Garbelini, Enio; Alves, Dilson A.; Neto, Alfredo B.; Righeto, Edson [Department of Electrical Engineering, Electrical Engineering Faculty, Paulista State University (CISA/UNESP), C.P. 31, CEP 15378-000 Ilha Solteira, SP (Brazil); da Silva, Luiz C.P.; Castro, Carlos A. [School of Electrical and Computer Engineering State University of Campinas, UNICAMP C.P. 6101, CEP 13081-970 Campinas, SP (Brazil)
2007-01-15
Continuation methods have been shown as efficient tools for solving ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Some parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a new geometric parameterization scheme that allows the complete tracing of the P-V curves without ill-conditioning problems. The proposed technique associates robustness to simplicity and, it is of easy understanding. The Jacobian matrix singularity is avoided by the addition of a line equation, which passes through a point in the plane determined by the total real power losses and loading factor. These two parameters have clear physical meaning. The application of this new technique to the IEEE systems (14, 30, 57, 118 and 300 buses) shows that the best characteristics of the conventional Newton's method are not only preserved but also improved. (author)
Advanced power flow technologies for high current ICF accelerators
International Nuclear Information System (INIS)
VanDevender, J.P.; McDaniel, D.H.
1978-01-01
Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored
Design and Implementation of Power Flow Control for a novel Dual Input DC-DC Converter
DEFF Research Database (Denmark)
Taeed, Fazel; Ouyang, Ziwei; Nymand, Morten
2014-01-01
is outlined; then the control method for adjusting power sharing is proposed. In the next step, the controller is implemented in an FPGA, and then a 350W dual input converter is built to verify operation of the proposed control strategy. The experimental results show the excellent ability of the controller...... to control the power flow in the converter. The implemented controller in FPGA is low cost and simple. The complete system can be practically used in power management for renewable energy sources....
A solution to the optimal power flow using multi-verse optimizer
Directory of Open Access Journals (Sweden)
Bachir Bentouati
2016-12-01
Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.
Zinc Bromide Flow Battery Installation for Islanding and Backup Power
2016-09-18
Figure 2-3, the EnergyPod was then expanded into a 40ft container and the updated rendering is shown Figure 2-4, an image of how the system was...Ethernet) Human Machine Interface (Client) Fiber Optic Modem ~ - ~ - Base Grid SCADA SCADA Hi/Low Analog A4 Modbus Gateway Raytheon Intelligent...Base Grid SCADA SCADA Hi/Low Analog A4 Modbus Gateway Raytheon Intelligent Power & Energy Management Command & Control and HMI MB1 CTRL
[Tampa Electric Company IGCC project]. Final public design report; Technical progress report
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-07-01
This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.
Convex Relaxations of Chance Constrained AC Optimal Power Flow
DEFF Research Database (Denmark)
Venzke, Andreas; Halilbasic, Lejla; Markovic, Uros
2017-01-01
High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power ﬂow (OPF).Current approaches follow either a linearized approach or an iterative approximation of non-linearities. This p......High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power ﬂow (OPF).Current approaches follow either a linearized approach or an iterative approximation of non......, reactive power, and voltage. We state a tractable formulation for two types of uncertainty sets. Using a scenario-based approach and making no prior assumptions about the probability distribution of the forecast errors, we obtain a robust formulation for a rectangular uncertainty set. Alternatively......, assuming a Gaussian distribution of the forecast errors, we propose an analytical reformulation of the chance constraints suitable for semideﬁnite programming. We demonstrate the performance of our approach on the IEEE 24 and 118 bus system using realistic day-ahead forecast data and obtain tight near...
Evaluation of power flow solutions with fixed speed wind turbine generating systems
International Nuclear Information System (INIS)
Haque, M.H.
2014-01-01
Highlights: • The model of a wind generator is modified and incorporated into a power flow program. • Unlike previous methods, modification to source codes of the program is not required. • The turbine power curve is mathematically expressed using manufacturer’s data. • The power flow of the IEEE 118-bus system is successfully solved with 12 wind farms for 1000 random cases of wind speeds. • For a simple system, the load flow results are also compared with the corresponding steady state values of dynamic responses. - Abstract: An increased penetration of wind turbine generating systems into power grid calls for proper modeling of the systems and incorporating the model into various computational tools used in power system operation and planning studies. This paper proposes a simple method of incorporating the exact equivalent circuit of a fixed speed wind generator into conventional power flow program. The method simply adds two internal buses of the generator to include all parameters of the equivalent circuit. For a given wind speed, the active power injection into one of the internal buses is determined through wind turbine power curve supplied by the manufacturers. The internal buses of the model can be treated as a traditional P–Q bus and thus can easily be incorporated into any standard power flow program by simply augmenting the input data files and without modifying source codes of the program. The effectiveness of the proposed method is then evaluated on a simple system as well as on the IEEE 30- and 118-bus systems. The results of the simple system are also compared with those found through Matlab/Simulink using dynamic model of wind generating system given in SimPowerSystems blockset
A decomposition method for network-constrained unit commitment with AC power flow constraints
International Nuclear Information System (INIS)
Bai, Yang; Zhong, Haiwang; Xia, Qing; Kang, Chongqing; Xie, Le
2015-01-01
To meet the increasingly high requirement of smart grid operations, considering AC power flow constraints in the NCUC (network-constrained unit commitment) is of great significance in terms of both security and economy. This paper proposes a decomposition method to solve NCUC with AC power flow constraints. With conic approximations of the AC power flow equations, the master problem is formulated as a MISOCP (mixed integer second-order cone programming) model. The key advantage of this model is that the active power and reactive power are co-optimised, and the transmission losses are considered. With the AC optimal power flow model, the AC feasibility of the UC result of the master problem is checked in subproblems. If infeasibility is detected, feedback constraints are generated based on the sensitivity of bus voltages to a change in the unit reactive power generation. They are then introduced into the master problem in the next iteration until all AC violations are eliminated. A 6-bus system, a modified IEEE 30-bus system and the IEEE 118-bus system are used to validate the performance of the proposed method, which provides a satisfactory solution with approximately 44-fold greater computational efficiency. - Highlights: • A decomposition method is proposed to solve the NCUC with AC power flow constraints • The master problem considers active power, reactive power and transmission losses. • OPF-based subproblems check the AC feasibility using parallel computing techniques. • An effective feedback constraint interacts between the master problem and subproblem. • Computational efficiency is significantly improved with satisfactory accuracy
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.
Role of viscous dissipation in the dynamics of lava flows with power-law rheology
Piombo, A.; Dragoni, M.
2011-09-01
We model a lava flow as a one-dimensional flow of a pseudoplastic fluid with viscous dissipation. The flow is horizontally unbounded and is driven downslope by the gravity force. We consider a power-law constitutive equation and we take into account the temperature dependence of the rheological parameters. Given an effusion rate and an initial temperature at the eruption vent, the flow is assumed to cool down by heat radiation. We calculate the heat produced by viscous dissipation as a function of lava temperature and effusion rate. The cooling rate is calculated as a function of the surface temperature and flow rate. Viscous dissipation reduces the cooling rate by an amount which is independent of flow rate. We evaluate the effect of viscous dissipation on the flow thickness and velocity. The effect of dissipation is to decrease the flow thickness and to increase the flow velocity. The effect on flow thickness is greater for smaller flow rates, while the effect on velocity is greater for larger effusion rates. In principle, the model provides a method for estimating the flow rate from in-field measurements of distances and temperatures.
MHD Flow Control and Power Generation in Low-Temperature Supersonic Flows
National Research Council Canada - National Science Library
Gogineni, Sivaram P; Adamovich, Igor V
2006-01-01
.... Comparison of experimental results with modeling calculations shows that the retarding Lorentz force increases the static-pressure rise produced by Joule heating of the flow, while the accelerating...
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
Wave scattering approach to power flow in frame structures and piping networks
Beale, Linda Sue
2000-08-01
A general matrix method is presented for the analysis of power flow in two- and three-dimensional frames using a wave scattering approach. Axial, torsional, and flexural wave modes are included. Since the method is intended to be used for mid and high frequency analysis, shear deformation and rotary inertia are included in the flexural wave modes. A general formulation is presented to determine wave scattering at structural junctions and boundaries. Although the finite element method can be used to calculate power flow, a large number of elements is required at mid and high frequencies to obtain accurate results. In the current method, exact wave mode expressions are used and therefore only one ``element'' is required for each structural member at any frequency. Power flow results using the wave scattering approach are compared to the conventional finite element method for two- and three-dimensional frames. The method is extended to analyze power flow in piping networks with steady fluid flow. Currently there is no accurate and efficient method for performing this type of analysis and the wave scattering method provides an effective approach. The effect of the fluid flow is introduced through the flexural equations of motion for a pipe. With the exception of the wave mode expressions themselves which are directly influenced by the fluid flow, the matrix formulation is essentially the same as for frames without fluid. The results from the wave scattering method with fluid flow are compared to those from an exact analysis of a simply supported beam for verification. Finally, a piping network was analyzed with and without fluid flow to observe the effects of the flow on the system.
Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue
Schaffers, William Clemens
Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, Mogens
2015-01-01
If there is no reactive power exchange between the Doubly-Fed Induction Generator (DFIG) and the grid, the various characteristics of the power converters in the DFIG wind turbine system cause the lifetime expectancy of the rotor-side converter significantly less than the grid-side converter. In ....... It is concluded that, among the different combined reactive power support strategies, the best scheme will trade-off the lifetime between the grid-side converter and the rotor-side converter....
Robinett III, Rush D
2011-01-01
Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between compe...
DEFF Research Database (Denmark)
Iov, Florin; Bifaretti, Steffano; Zanchetta, Pericle
2008-01-01
The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. The structure is based on three AC-DC converters each one connected to a different grid, (representing the main grid and/or various distributed generation...... systems) on the AC side, and linked together at DC side by suitable DC isolation modules. Each port of the UNIFLEX-PM system employs a conversion structure based on a three-phase 7-level AC-DC cascaded converter. Effective and accurate power flow control is demonstrated through simulation in Matlab...... and Simulink environment on a simplified model based on a two-port structure and using a Stationery Reference Frame based control solution. Control of different Power flow profiles has been successfully tested in numerous network conditions such as voltage unbalance, frequency excursions and harmonic...
Feasibility Study of Power Uprate Using Ultrasonic Flow Meters in NPPs
International Nuclear Information System (INIS)
Kim, Tae Mi; Heo, Gyun Young
2010-01-01
Feedwater flowrate is an important input parameter in establishing the plant's operating power level. In Korean nuclear power plants, venturi flow meters have been used for measuring the feedwater flow of the secondary side. However, as time goes on, the fouling in venture meters could cause measurement uncertainties to grow and that could lead to operation at less than about 2% of the licensed thermal power limit. In order to resolve the problem, nuclear power plants in other countries use Ultrasonic Flow Meters (UFMs) which have relatively lower measurement uncertainty (about 0.5%) instead of venturi flow meters and have reduced the errors from the fouling in venturi-type flow meters. USA amended 10 CFR 50 Appendix K so that US nuclear power plants can use real value of Core Operating Limit Supervisory System (COLSS) uncertainty, which is currently fixed as 2%, by adopting the UFM. Korea also has been amended the law in order to get benefits from the technology. In this study, we are going to present the fundamental principles of UFMs and the advantages and disadvantages of its installation. Also, we inquire into the conventional uses of UFMs in the overseas sites and then check what is needed to consider for its domestic application
Thermal energy storage for integrated gasification combined-cycle power plants
Energy Technology Data Exchange (ETDEWEB)
Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.
1990-07-01
There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.
Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis
Directory of Open Access Journals (Sweden)
Angeles-Camacho C.
2011-07-01
Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.
Directory of Open Access Journals (Sweden)
Yong-Cheol Kang
2013-10-01
Full Text Available This paper presents a novel probabilistic optimization algorithm for simultaneous active and reactive power dispatch in power systems with significant wind power integration. Two types of load and wind-speed uncertainties have been assumed that follow normal and Weibull distributions, respectively. A PV bus model for wind turbines and the wake effect for correlated wind speed are used to achieve accurate AC power flow analysis. The power dispatch algorithm for a wind-power integrated system is modeled as a probabilistic optimal power flow (P-OPF problem, which is operated through fixed power factor control to supply reactive power. The proposed P-OPF framework also considers emission information, which clearly reflects the impact of the energy source on the environment. The P-OPF was tested on a modified IEEE 118-bus system with two wind farms. The results show that the proposed technique provides better system operation performance evaluation, which is helpful in making decisions about power system optimal dispatch under conditions of uncertainty.
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant
DEFF Research Database (Denmark)
Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei
2017-01-01
, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based......In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......). This paper also shows the significance and impact of control parameters in OPF applications. An integrated hybrid power system network is adopted in this paper and OPF techniques are applied on it by considering the impact of different control parameters. In addition to the impact of the control variables...
Directory of Open Access Journals (Sweden)
Suresh Chintalapudi Venkata
2015-09-01
Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.
Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power
DEFF Research Database (Denmark)
Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei
2017-01-01
is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...... of the transmission system: the AC parts, the DC parts and the interfacing converters. Finally, this paper validates this algorithm through a detailed case study with a typical hybrid network...
Orhan, Kadir; Mayerle, Roberto
2017-04-01
Climate change is an urgent and potentially irreversible threat to human societies and the planet and thus requires an effective and appropriate response, with a view to accelerating the reduction of global greenhouse gas emissions. At this point, a worldwide shift to renewable energy is crucial. In this study, a methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteristics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verifications using tidal records show excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. Models with higher resolutions have been developed to assess the impacts of devices on flow conditions and to resolve near-field turbine wakes in greater detail. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines. An additional drag force resulting in dissipation of the pre-existing kinetic power from 10% to 60% within a flow cross-section is introduced to capture the impacts. k-ɛ model, which is a second order turbulence closure model is selected to involve the effects of the turbulent kinetic energy and turbulent
Energy Technology Data Exchange (ETDEWEB)
Drouilhet, S. M.
1999-07-29
This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.
State powers and responsibilities concerning the flow of waste
International Nuclear Information System (INIS)
Snyder, Patrick M.; Monaco, Cindy M.
1992-01-01
The primary source of federal jurisdiction over the transportation and management of waste is derived from the Commerce Clause of the U.S. Constitution. That authority is of two main types - active, which empowers federal supervision over matters affecting commerce, and passive, which restrains state activity regarding commerce-related issues. The passive, or dormant, powers prevent a state from undertaking economic protectionist actions, but they do not prevent legitimate regulation for public health and safety where there is not a less intrusive alternative. The Commerce Clause does not prohibit states from making market-based decisions as proprietors, and discriminatory activities may be undertaken in that capacity. A federally approved compact empowers states or groups of states to act in ways that would otherwise be precluded by the Commerce Clause. The public policy issues at work in the above situations are discussed. Several proposals to revise the Low-Level Radioactive Waste Policy Amendments Act to conform with these principles are described. (author)
Two-phase flow in porous media: power-law scaling of effective permeability
Energy Technology Data Exchange (ETDEWEB)
Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)
2011-09-15
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Directory of Open Access Journals (Sweden)
Wenlei Bai
2017-12-01
Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach
DEFF Research Database (Denmark)
Akhter, F.; Macpherson, D.E.; Harrison, G.P.
2015-01-01
of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....
Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power
Molle, F.; Mollinga, P.P.; Wester, P.
2009-01-01
Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the
An Novel Continuation Power Flow Method Based on Line Voltage Stability Index
Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan
2018-01-01
An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.
Flow of a power-law fluid with memory past an infinite plate ...
African Journals Online (AJOL)
We examined the flow of a power law fluid with a non-constant relaxation λtb past an infinite plate. When λ is zero the fluid is pseudoplastic and when the power law exponent is 1, the fluid is a Maxwell fluid. It is shown that the problem has a solution when 0 < n ≤ 1. Moreover, we show that momentum penetration ...
Deformation of a Capsule in a Power-Law Shear Flow
Directory of Open Access Journals (Sweden)
Fang-Bao Tian
2016-01-01
Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
Flow-driven triboelectric generator for directly powering a wireless sensor node.
Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin
2015-01-14
A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
AlRashidi, M.R. [Electrical Engineering Department, College of Technological Studies, Shuwaikh (Kuwait); El-Hawary, M.E. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3J 2X4 (Canada)
2009-04-15
Computational intelligence tools are attracting added attention in different research areas and research in power systems is not different. This paper provides an overview of major computational issues with regard to the optimal power flow (OPF). Then, it offers a brief summary of major computational intelligence tools. A detailed coverage of most OPF related research work that make use of modern computational intelligence techniques is presented next. (author)
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.
Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y
2016-08-12
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.
Directory of Open Access Journals (Sweden)
Joaquim Monteiro
2017-06-01
Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.
Directory of Open Access Journals (Sweden)
Jia Guo
2017-01-01
Full Text Available Conventional power systems are developing into cyber-physical power systems (CPPS with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced.
Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments
Energy Technology Data Exchange (ETDEWEB)
Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)
2015-01-15
Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium
Using Free Flow Energy Cumulation in Wind and Hydro Power Production
Directory of Open Access Journals (Sweden)
Lev Ktitorov
2016-09-01
Full Text Available When approaching a conventional wind turbine, the air flow is slowed down and widened. This results in a loss of turbine efficiency. In order to exploit wind or water flow power as effectively as possible, it was suggested that the turbine should be placed inside a shroud, which consists of 4 wing-shaped surfaces. Two internal airfoils improve the turbine performance by speeding up the flow acting on the turbine blades, two external wings create a field of low pressure behind the turbine, thus, helping to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The system accumulates kinetic energy of the flow in a small volume where the smaller (and, therefore, cheaper turbine can be installed. A smaller system can be installed inside the bigger one, which would help to accumulate even more kinetic energy on the turbine. We call this method the kinetic energy summation with local flow redistribution. Both experiments and CFD simulations demonstrate a significant increase in velocity and generated mechanical power in comparison of those for a bare turbine.
Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.
Experimental Study of the Power Profile Airfoil Equipped with Plasma Flow Control
Daniel, Libin; Jacob, Jamey
2013-11-01
This presentation discusses results from an experimental study of the power profile airfoil at low Reynolds number. The power profile airfoil was developed by AMO Smith and consists of a blunt trailing edge shape with two wall jets near the trailing edge. The replacement of streamlining with properly designed blowing is used to prevent flow separation and additionally offers potential applications as a powered high-lift system, propulsive system, or low inertia control device. The 2D wind-tunnel model consists of the 22.5% thick power profile airfoil equipped with a movable trailing edge plug to direct flow along the trailing edge streamline. Compressed air was passed into the model via a plenum with flow conditioning devices to create pressure backdrop to allow uniform blowing at the trailing edge. The effects of varying jet momentum coefficient and trailing edge positioning on the aerodynamic characteristics are observed with both wake surveys and PIV. The impact of plasma synthetic jet actuators (PSJA) placed along the trailing edge of the power profile airfoil is also discussed. PSJA operation is compared to the baseline power profile airfoil both alone and working with the blowing to provide additional control authority.
Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power
Directory of Open Access Journals (Sweden)
François Molle
2009-10-01
Full Text Available Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the 20th century. Whether out of a need to increase food production, raise rural incomes, or strengthen state building and the legitimacy of the state, governments – North and South, East and West – embraced the 'hydraulic mission' and entrusted it to powerful state water bureaucracies (hydrocracies. Engaged in the pursuit of iconic and symbolic projects, the massive damming of river systems, and the expansion of large-scale public irrigation these hydrocracies have long remained out of reach. While they have enormously contributed to actual welfare, including energy and food generation, flood protection and water supply to urban areas, infrastructural development has often become an end in itself, rather than a means to an end, fuelling rent-seeking and symbolising state power. In many places projects have been challenged on the basis of their economic, social or environmental impacts. Water bureaucracies have been challenged internally (within the state bureaucracies or through political changes and externally (by critiques from civil society and academia, or by reduced funding. They have endeavoured to respond to these challenges by reinventing themselves or deflecting reforms. This paper analyses these transformations, from the emergence of the hydraulic mission and associated water bureaucracies to their adjustment and responses to changing conditions.
Impact of Negative Reactance on Definiteness of B-Matrix and Feasibility of DC Power Flow
DEFF Research Database (Denmark)
Ding, Tao; Bo, Rui; Yang, Yongheng
2018-01-01
This paper reports an essential phenomenon on the existence of “negative reactance” in practical power system models. The negative reactance issue is important, as it could affect the definiteness of the B admittance matrix of power networks and the feasibility of DC power flow. With the graph...... theory, the B matrix can be treated as a Laplacian matrix. Several theorems and corollaries are given with proof to study the definiteness of the Laplacian matrix with negative weights. Based upon these theorems, the exploration in this paper demonstrates that the negative reactance may even result...
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology
2017-11-27
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...
Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach
Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
Second-order small-disturbance solutions for hypersonic flow over power-law bodies
Townsend, J. C.
1975-01-01
Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.
Effect of RF power and gas flow ratio on the growth and morphology ...
Indian Academy of Sciences (India)
It was observed that both the RF power (with the mixed frequency condition) and flow ratio of SiH4/CH4 can control the growth rate, surface roughness and morphology of the PECVD SiC thin films. Higher the carbon content in the thin films the surface became more smoother, whereas the surface became for rougher by ...
DEFF Research Database (Denmark)
Sorokin, Sergey; Holst-Jensen, Ole
2012-01-01
The paper addresses the power flow suppression in an elastic beam of the tubular cross section (a pipe) at relatively low excitation frequencies by deploying a small number of equally spaced inertial attachments. The methodology of boundary integral equations is used to obtain an exact solution o...
Power flow in the interior and exterior of cylindrical coated nanoparticles
DEFF Research Database (Denmark)
Arslanagic, Samel
2012-01-01
concentrically with a silver, gold, or copper nanoshell. Particular attention is devoted to both the direction and the magnitude of the power flow density inside and outside of such particles. The results for the active coated nanoparticles are related to those of the corresponding passive designs at optical...
Distributed AC power flow method for AC and AC-DC hybrid ...
African Journals Online (AJOL)
DR OKE
Keywords: Microgrid (MG), Distributed Energy Resources (DER), Particle Swarm Optimization (OPF), Time varying inertia weight (TVIW), Distributed power flow method (DPFM). DOI: http://dx.doi.org/10.4314/ijest.v7i3.8S. 1. Introduction. Small scale fossil fuel based generation systems, renewable energy based sources, ...
Application of a particle swarm optimization in an optimal power flow ...
African Journals Online (AJOL)
In this paper an efficient and Particle Swarm Optimization (PSO) has been presented for solving the economic dispatch problem. The objective is to minimize the total generation fuel and keep the power outputs of generators; bus voltages and transformer tap setting in their secure limits. The conventional load flow and ...
Distributed AC power flow method for AC and AC-DC hybrid ...
African Journals Online (AJOL)
... on voltage level and R/X ratio in the formulation itself. DPFM is applied on a 10 bus, low voltage, microgrid system giving a better voltage profile.. Keywords: Microgrid (MG), Distributed Energy Resources (DER), Particle Swarm Optimization (OPF), Time varying inertia weight (TVIW), Distributed power flow method (DPFM) ...
An Algorithm for the Design of an Axial Flow Compressor of a Power ...
African Journals Online (AJOL)
This paper focuses on the development of an algorithm for designing an axial flow compressor for a power generation gas turbine and attempts to bring to the public domain some parameters regarded as propriety data by plant manufacturers. The theory used in this work is based on simple thermodynamics and ...
Theoretical aspects of electrical power generation from two-phase flow streaming potentials
Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.
A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby
Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.
Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A
1999-08-01
To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of
MHD boundary layer flow of a power-law nanofluid with new mass flux condition
Directory of Open Access Journals (Sweden)
Masood Khan
2016-02-01
Full Text Available An analysis is carried out to study the magnetohydrodynamic MHD boundary layer flow of power-law nanofluid over a non-linear stretching sheet. In the presence of a transverse magnetic field, the flow is generated due to non-linear stretching sheet. By using similarity transformations, the governing boundary layer equations are reduced into a system of ordinary differential equations. A recently proposed boundary condition requiring zero nanoparticle mass flux is employed in the flow analysis of power-law fluid. The reduced coupled differential equations are then solved numerically by the shooting method. The variations of dimensionless temperature and nanoparticle concentration with various parameters are graphed and discussed in detail. Numerical values of physical quantities such as the skin-friction coefficient and the reduced local Nusselt number are computed in tabular form.
Hydrogen consumption and power density in a co-flow planar SOFC
Energy Technology Data Exchange (ETDEWEB)
Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)
2009-06-15
In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)
International Nuclear Information System (INIS)
Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun
1999-01-01
To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.
Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming
2017-05-01
To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.
Modeling of unified power quality conditioner (UPQC) in distribution systems load flow
International Nuclear Information System (INIS)
Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.
2009-01-01
This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.
Modeling of unified power quality conditioner (UPQC) in distribution systems load flow
Energy Technology Data Exchange (ETDEWEB)
Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)
2009-06-15
This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)
Dense granular Flows: a conceptual design of high-power neutron source
Directory of Open Access Journals (Sweden)
Yang Lei
2017-01-01
Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.
Dense granular Flows: a conceptual design of high-power neutron source
Yang, Lei; Zhang, Sheng; Lin, Ping; Yang, Guanghui; Tian, Yuan; Wan, Jiang-feng
2017-06-01
A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016). Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.
Consideration of Typical Nuclear Power Plant Site Characteristics for Groundwater Flow
International Nuclear Information System (INIS)
Kim, Chan Hoi; Yee, Eric
2014-01-01
This is complicated by the extreme measures the plant owners have taken by pumping water into the disabled plant in order to cool the corium, making it difficult for workers to inspect the facility and mitigate radiation hazards. One of most confusing aspects of the groundwater contamination issue at the Fukushima Daiichi nuclear power plant is the flow of groundwater, with conflicting reports saying there is very little water to significant amounts of water flowing towards the plant. Initially, different media outlets, reports, and figures show anywhere from uniform flow to nearly impossible flow situations, with a general improvement in groundwater flow feasibility over time as perhaps more knowledge of the subgrade or facilities is revealed. This situation highlights the importance of groundwater models, which traditionally use averaged and macro-scale adjusted subgrade properties. These are not necessarily bad practices, but some details may be lost in the process for more local scenarios. Therefore, this paper focuses on the site conditions of a typical nuclear power plant and its influences on local groundwater flow modelling. Site-specific data from the hydrologic system investigation must be prepared and utilized to evaluate the existing groundwater conditions and to identify pathway of groundwater flow toward subsurface and plant facilities before and after nuclear power plant construction by installing monitoring wells. These investigation data, evaluation and identification provide the basis for developing an overall conceptual model of groundwater. With this conceptual model, assumption of radioactive material release, for instance, the liquid radioactive waste from a ruptured tank in the compound building through cracks in the foundation wall enter the groundwater system, can be evaluated
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto
2018-01-12
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.
A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow
Directory of Open Access Journals (Sweden)
Paulo Maciel
2013-07-01
Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.
DEFF Research Database (Denmark)
Lemström, Bettina; Uski-Joutsenvuo, Sanna; Holttinen, Hannele
2008-01-01
-border transmission. Risø has written section 4.2 about the impact of prediction errors of wind power production. VTT has carried out the model evaluation described in Chapter 3. Furthermore VTT has analysed the wind speed data, studied the moving weather effects and the capacity factor method presented in section 2...... flow simulations with a grid and market model developed in TradeWind Work Package 3, led by Sintef Energy Research. VTT, Sintef Energy Research and Risø have carried out the simulations of the different scenarios, analysed the results and written Chapter 4 about the impact of wind power on cross.......1, Chapter 5 and section 6.1, respectively. dena has made the calculations with the probabilistic method and written section 6.2....
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
Bohna, Nathaniel Allan
Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints
Cassidy, Ian L.
control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.
The creation of hypersonic flows by a powerful impulse capillary discharge
Pashchina, A. S.; Karmatsky, R. E.; Klimov, A. I.
2017-11-01
The possibility of using a powerful pulsed capillary discharge to produce quasi-stationary highspeed plasma flows with characteristic Mach numbers M = 3-10 and temperatures T = 3000-6000 K has been experimentally substantiated. In a rarefied gas atmosphere ( p ∞ hypersonic flows. Strong temperature nonequilibrium has been found (with the ratio between the vibrational and rotational temperatures reaching T v/ T r = 3 and more) and anomalously low values of the effective adiabatic index, which indicates an intensive formation of polyatomic molecules and condensed particles in a carbon-containing plasma.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Clough, Geraldine; Chipperfield, Andrew; Byrne, Christopher; de Mul, Frits; Gush, Rodney
Objective: To compare the output from a novel high power, wide separation laser Doppler flow probe (DP1-V2-HP, 4 mm, with IRLD20) with that of a standard flow probe (DP1-V2, 0.5 mm, with DRT4) (Moor UK) and to explore its potential for use in the noninvasive measurement of blood flow in deeper
International Nuclear Information System (INIS)
Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias
2013-01-01
Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies
Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process
DEFF Research Database (Denmark)
Jabbari, Masoud; Hattel, Jesper Henri
2012-01-01
Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...
Blowdown mass flow measurements during the Power Burst Facility LOC-11C test
International Nuclear Information System (INIS)
Broughton, J.M.; MacDonald, P.E.
1979-01-01
An interpretation and evaluation of the two-phase coolant mass flow measurements obtained during Test LOC-11C performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL) are presented. Although a density gradient existed within the pipe between 1 and 6 s, the homogeneous flow model used to calculate the coolant mass flow from the measured mixture density, momentum flux, and volumetric flow was found to be generally satisfactory. A cross-sectional average density was determined by fitting a linear density gradient through the upper and lower chordal densities obtained from a three-beam gamma densitometer and then combining the result with the middle beam density. The integrated measured coolant mass flow was subsequently found to be within 5% if the initial mass inventory of the PBF loss-of-coolant accident (LOCA) system. The posttest calculations using the RELAP4/MOD6 computer code to determine coolant mass flow for Test LOC-11C also agreed well with the measured data
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes
Moradi, Afshin
2017-10-01
The energy theorem of electrodynamics is extended so as to apply to the plasmonic waves on single-walled carbon nanotubes which propagate parallel to the axial direction of the system and are periodic waves in the azimuthal direction. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. General expressions of energy and power flow associated with surface waves are obtained by solving Maxwell and hydrodynamic equations with appropriate boundary conditions. Numerical results for the transverse magnetic mode show that energy, power flow, and energy transport velocity of the plasmonic waves strongly depend on the nanotube radius in the long-wavelength region.
Characteristics of high gradient insulators for accelerator and high power flow applications
International Nuclear Information System (INIS)
Elizondo, J.M.; Krogh, M.L.; Smith, D.
1997-07-01
The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented
Improved coal grinding and fuel flow control in thermal power plants
DEFF Research Database (Denmark)
Niemczyk, Piotr; Bendtsen, Jan Dimon
2011-01-01
in the mill by employing a special variant of a Luenberger observer. The controller uses the rotating classifier to improve the dynamical performance of the overall system. The proposed controller is compared with a PID-type controller with available pulverized coal flow measurements under nominal conditions...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller.......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Directory of Open Access Journals (Sweden)
Walicka A.
2018-02-01
Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.; Lu, Ning; Samaan, Nader A.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the load node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.
Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
Energy Technology Data Exchange (ETDEWEB)
DallAnese, Emiliano; Baker, Kyri; Summers, Tyler
2017-09-01
This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.
Murugan, Bala; S., Manoharan
2016-01-01
This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...
Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors
Kim, Woohyun; Braun, James E.
2012-01-01
The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...
Energy Technology Data Exchange (ETDEWEB)
Sprung, J.L.; Steck, G.P.; Frazier, A.W.
1978-10-01
Because wind flow and population location are both likely to be influenced by topography, it has been suggested that wind distributions and population distributions ought to be correlated and that the neglect of these correlations in the calculations of the Reactor Safety Study could have resulted in significant underestimates of accident consequences. This paper presents the results of an investigation of correlations between wind roses and population locations at 67 of the 68 power plant sites included in the Reactor Safety Study.
Comparison of generalized Reynolds and Navier Stokes equations for flow of a power law fluid
Mullen, R. L.; Prekwas, A.; Braun, M. J.; Hendricks, R. C.
1987-01-01
This paper compares a finite element solution of a modified Reynolds equation with a finite difference solution of the Navier-Stokes equation for a power law fluid. Both the finite element and finite difference formulation are reviewed. Solutions to spiral flow in parallel and conical geometries are compared. Comparison with experimental results are also given. The effects of the assumptions used in the Reynolds equation are discussed.
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
Flow rate pulsations of water with flicker power spectrum in an industrial sodium steam generator
International Nuclear Information System (INIS)
Reshetnikov, A.V.; Koverda, V.P.; Skokov, V.N.; Karpenko, A.I.; Govorov, P.P.; Bel'tyukov, A.I.
2005-01-01
The study on the spectral characteristics of the water flow pulsations in the evaporating modulus of the steam generator with sodium power unit BN-600 at the nominal capacity is carried out. It is shown that the outflow pulsations capacity spectrum changes inversely with the frequency (flicker pulsations). Origination of the identified high-energy low-frequency pulsations of the water outflow is related to the critical mode of the heat exchange, realized in the evaporation modulus [ru
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John)
2009-01-01
are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...... integration of WT generation in correlation with EV demand/supply into the electricity grids are also introduced, resulting in the first benchmark. Novel conclusions for EV portfolio management are drawn....
SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES
Directory of Open Access Journals (Sweden)
A. Osman KURBAN
1997-01-01
Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.
Catalina Segura; Davide Lazzati; Arumugam Sankarasubramanian
2013-01-01
A recent study employed a broken power-law (BPL) distribution for understanding the scaling frequency of bankfull discharge in snowmelt-dominated basins. This study, grounded from those findings, investigated the ability of a BPL function to describe the distribution of daily flows above the mean annual flow in 1217 sites across the conterminous U.S. (CONUS). The...
Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep
2017-04-01
In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.
Radial basis function neural network for power system load-flow
International Nuclear Information System (INIS)
Karami, A.; Mohammadi, M.S.
2008-01-01
This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow
Directory of Open Access Journals (Sweden)
Zhien Liu
2017-01-01
Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.
International Nuclear Information System (INIS)
Tijerina S, F.
2008-01-01
The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)
Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site
International Nuclear Information System (INIS)
Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa
2015-01-01
Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)
International Nuclear Information System (INIS)
Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.
1979-01-01
A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined
Flow tests of a single fuel element coolant channel for a compact fast reactor for space power
Springborn, R. H.
1971-01-01
Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.
Power generation and blade flow measurements of a full scale wind turbine
Gaunt, Brian
Experimental research has been completed using a custom designed and built 4m wind turbine in a university operated wind facility. The primary goals of turbine testing were to determine the power production of the turbine and to apply the particle image velocimetry (PIV) technique to produce flow visualization images and velocity vector maps near the tip of a blade. These tests were completed over a wide range of wind speeds and turbine blade rotational speeds. This testing was also designed to be a preliminary study of the potential for future research using the turbine apparatus and to outline it's limitations. The goals and results of other large scale turbine tests are briefly discussed with a comparison outlining the unique aspects of the experiment outlined in this thesis. Power production tests were completed covering a range of mean wind speeds, 6.4 m/s to 11.1 m/s nominal, and rotational rates, 40 rpm to 220 rpm. This testing allowed the total power produced by the blades to be determined as a function of input wind speed, as traditionally found in power curves for commercial turbines. The coefficient of power, Cp, was determined as a function of the tip speed ratio which gave insight into the peak power production of the experimental turbine. It was found, as expected, that the largest power production occurred at the highest input wind speed, 11.1 m/s, and reached a mean value of 3080 W at a rotational rate of 220 rpm. Peak Cp was also found, as a function of the tip speed ratio, to approach 0.4 at the maximum measurable tip speed ratio of 8. Blade element momentum (BEM) theory was also implemented as an aerodynamic power and force prediction tool for the given turbine apparatus. Comparisons between the predictions and experimental results were made with a focus on the Cp power curve to verify the accuracy of the initial model. Although the initial predictions, based on lift and drag curves found in Abbot and Von Deonhoff 1, were similar to experimental
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Directory of Open Access Journals (Sweden)
Warid Warid
Full Text Available This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF formulation was converted into a crisp OPF in a successive linear programming (SLP framework and solved using an efficient interior point method (IPM. To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Game-theoretic control of PHEV charging with power flow analysis
Directory of Open Access Journals (Sweden)
Yuan Liu
2016-03-01
Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
2016-12-29
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
2016-12-01
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.
A multi-agent technique for contingency constrained optimal power flows
Energy Technology Data Exchange (ETDEWEB)
Talukdar, S.; Ramesh, V.C. (Carnegie Mellon Univ., Pittsburgh, PA (United States). Engineering Design Research Center)
1994-05-01
This paper does three things. First, it proposes that each critical contingency in a power system be represented by a correction time'' (the time required to eliminate the violations produced by the contingency), rather than by a set of hard constraints. Second, it adds these correction times to an optimal power flow and decomposes the resulting problem into a number of smaller optimization problems. Third, it proposes a multiagent technique for solving the smaller problems in parallel. The agents encapsulate traditional optimization algorithms as well as a new algorithm, called the voyager, that generates starting points for the traditional algorithms. All the agents communicate asynchronously, meaning that they can work in parallel without ever interrupting or delaying one another. The resulting scheme has potential for handling power system contingencies and other difficult global optimization problems.
Model-based Fuel Flow Control for Fossil-fired Power Plants
DEFF Research Database (Denmark)
Niemczyk, Piotr
2010-01-01
such sources may vary unpredictably meaning that the desired level of generation cannot always be achieved upon request. On-demand production from controllable units, such as thermal power plants, must change quickly in order to ensure balance between consumer demands and electricity generation. Coal......The European liberalized energy market promotes cheap and reliable electricity generation. At the same time, governmental policies aim to lower the environmental impact of such production, encouraging generation from renewable energy sources, such as wind turbines. Unfortunately the production from......-fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...
A Modified Load Flow Algorithm in Power Systems with Alternative Energy Sources
International Nuclear Information System (INIS)
Contreras, D.L.; Cañedo, J.M.
2017-01-01
In this paper an algorithm for calculating the steady state of electrical networks including wind and photovoltaic generation is presented. The wind generators considered are; asynchronous (squirrel cage and doubly fed) and synchronous generators using permanent magnets. The proposed algorithm is based on the formulation of nodal power injections that is solved with the modified Newton Raphson technique in its polar formulation using complex matrices notation. Each power injection of wind and photovoltaic generators is calculated independently in each iteration according to its particular mathematical model, which is generally non-linear. Results are presented with a 30-node test system. The computation time of the proposed algorithm is compared with the conventional methodology to include alternative energy sources in power flows studies. (author)
Directory of Open Access Journals (Sweden)
Ambarish Panda
2016-09-01
Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Yang, Yongheng
2017-01-01
The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...
Middle cerebral artery blood flow velocity in elite power athletes during maximal weight-lifting.
Dickerman, R D; McConathy, W J; Smith, G H; East, J W; Rudder, L
2000-06-01
Cerebral blood flow velocity (CBFV) has been shown to significantly increase during dynamic exercise (running) secondary to increases in cardiac output. Static exercise (weight-lifting) induces supraphysiological arterial pressures up to 450/380 mmHg, and thus may alter CBFV. Catastrophic brain injuries such as stroke, cerebral hemorrhage, subarachnoid hemorrhage, retinal hemorrhage and retinal detachment have been associated with weight-lifting. A recent study has shown that intra-ocular pressure (IOP), which is an indirect measure of intracranial pressure, elevates to pathophysiologic levels during weight-lifting. Recent CBFV studies instituting Valsalva have demonstrated decreases in CBFV from 21%-52%. To date, no studies have examined CBFV during maximal weight-lifting to elucidate the cerebrovascular responses to extreme pressure alterations. We recruited nine elite power athletes, including a multi-world record holder in powerlifting, for a transcranial Doppler study of middle cerebral artery blood flow velocity at rest and during maximal weight-lifting. All subjects' resting blood flow velocities were within normal ranges (mean 64.4 +/- 9.5 cm sec2). Blood flow velocities were significantly (p < 0.0001) decreased in all subjects during maximal lifting (mean 48.4 +/- 10.1 cm sec2). Linear regression analysis demonstrated a significant inverse linear relationship in the net change of blood velocities from rest to maximal lift for each subject (r = 0.8585, p < 0.001). This study demonstrates that blood flow velocities are significantly decreased during heavy resistance training. The drop in CBFV during weight-lifting was significantly less than previous Valsalva studies, which likely reveals the cardiovascular, baroreflex, and cerebrovascular system adaptations occurring in these elite power athletes.
International Nuclear Information System (INIS)
Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi; Yasushi, Takeda; Michitsugu, Mori
2001-01-01
Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)
International Nuclear Information System (INIS)
Chocron, Mauricio; Saucedo, Ramona E.; Sainz, Ricardo A.; Ovando, Luis E.
2006-01-01
The chemistry of a water-steam cycle is one of the main aspects of the Plant Life Management of a Nuclear Power Plant and it is important for the preservation, efficiency and availability of the whole system. In that sense this aspect has to be prioritized in any study whose aim is the life extension of the plant. In particular, the flow-assisted -corrosion or FAC is a problem that worldwide has been considered important due to the piping wall thinning that in some occasions has led to severe accidents. The FAC phenomena is not easy to be interpreted and addressed although nowadays there are some accepted models to understand and predict sensitive areas of the cycle. The objectives of the present paper have been: a) The construction of an integrated code that involves all the aspects that have influence on FAC, i.e., materials, composition, geometry, temperature and flow rate, quality, chemistry, etc.; b) Establish or adapting current models to the circuit of Embalse PHWR NPP; c) Identify new locations for inspection and wall thickness measurement in order to predict residual life; d) Compare different chemistries and e) handle large sets of inspection data. Among the results, new lines have been incorporated to the inspection schedule of the 2005' programmed outage. Also, the evaluation is part of the PLIM-PLEX programme at Embalse-N.A.S.A. in collaboration with C.N.E.A. is being carried out. (author)
Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant
International Nuclear Information System (INIS)
Abadie, Luis M.; Chamorro, Jose M.
2008-01-01
In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. Sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked
A fuzzy set approach to the flow computation in optimal power scheduling
International Nuclear Information System (INIS)
Wang, C.; Shahidehpour, S.M.
1992-01-01
The objective of multi-area power scheduling is to minimize the system operation cost while satisfying the system constraints, e.g., tie line capacity limits. This paper reports that there are two phases considered for the solution of this problem. One is the unit commitment which determines the operation states of generating units. The other is the economic dispatch which coordinates the generation among committed units. These two phases interact with each other as the area unit commitment may have to be rescheduled according to the economic dispatch results to m maintain a certain amount of area power generation and satisfy the operating constraints. In order to obtain an initial area unit commitment, previous algorithms assumed there would be no interchange transactions among areas(1-3). The principle idea for solving the multi-area generation scheduling problem was based on scheduling the unit commitment in each area and dispatching the total load economically among committed units such that the economical areas would generate excessive power and export the extra power to more expensive areas. However, tie flows reflect the power generation schedule in each area as the area unit commitment is adjusted to satisfy the security constraints. If the initial unit commitment in each area does not include any information regarding the interchange transactions, it will be computationally expensive to reach the optimal solution in large scale systems
Directory of Open Access Journals (Sweden)
M. F. Akorede
2017-06-01
Full Text Available The intent of power distribution companies (DISCOs is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG units on the distribution networks. However, to maximise benefits, it is highly crucial for a DISCO to ensure that these DG units are of optimal size and sited in the best locations on the network. This paper gives an overview of a software package developed in this study, called Power System Analysis and DG Optimisation Tool (PFADOT. The main purpose of the graphical user interface-based package is to guide a DISCO in finding the optimal size and location for DG placement in radial distribution networks. The package, which is also suitable for load flow analysis, employs the GUI feature of MATLAB. Three objective functions are formulated into a single optimisation problem and solved with fuzzy genetic algorithm to simultaneously obtain DG optimal size and location. The accuracy and reliability of the developed tool was validated using several radial test systems, and the results obtained are evaluated against the existing similar package cited in the literature, which are impressive and computationally efficient.
Directory of Open Access Journals (Sweden)
Ramasubramanian Jayashree
2008-01-01
Full Text Available This paper proposes a unified optimization model and algorithm for assessing Available Transfer Capability (ATC and carrying out Congestion Management (CM in a Deregulated power system handling both pool and bilateral transactions. It uses a power injection model for Unified Power Flow Controller (UPFC, DC load flow model for power network and repeated linear programming technique for optimization. The DC model enforces the line operating lines in MW. A computer package has been developed and the effectiveness of the proposed unified method has been verified by solving 4 bus and an IEEE 30 bus systems. The results demonstrate the effectiveness of UPFC control on ATC enhancement and Congestion Management.
UEDGE Simulations for Power and Particle Flow Analysis of FRC Rocket
Zheng, Fred; Evans, Eugene S.; McGreivy, Nick; Kaptanoglu, Alan; Izacard, Olivier; Cohen, Samuel A.
2017-10-01
The field-reversed configuration (FRC) is under consideration for use in a direct fusion drive (DFD) rocket propulsion system for future space missions. To achieve a rocket configuration, the FRC is embedded within an asymmetric magnetic mirror, in which one end is closed and contains a gas box, and the other end is open and incorporates a magnetic nozzle. Neutral deuterium is injected into the gas box, and flows through the scrape-off layer (SOL) around the core plasma and out the magnetic nozzle, both cooling the core and serving as propellant. Previous studies have examined a range of operating conditions for the SOL of a DFD using UEDGE, a 2D fluid code; discrepancies on the order of 5% were found during the analysis of overall power balance. This work extends the analysis of the previously-studied SOL geometry by updating boundary conditions and conducting a detailed study of power and particle flows within the simulation with the goals of modeling electrical power generation instead of thrust and achieving higher specific impulse. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.
International Nuclear Information System (INIS)
Khatibi, M.; Lister, D.H.; Feicht, A.; Liu, L.; Uchida, S.; Fujiwara, K.; Ohira, T.; Takiguchi, H.; Hisanume, K.
2009-01-01
Thermal power plants have reported excessive pipe degradation because of Flow-Accelerated Corrosion (FAC) since the 1960s. Common features have been the use of carbon steel in regions of high flow rate and high turbulence with a water chemistry of modest alkalinity and free of oxidizing agents. It can be concluded that the main parameters that affect FAC are flow dynamics, water chemistry and composition of the materials used in pipework and components. A clear indication of FAC is the rapid wall thinning, usually in the presence of distinct flow-related markings, or scallops, on the surface. On more than one occasion, FAC has been responsible for large pipe failures that have led to serious damage and in some cases fatalities. After such a failure at the Mihama-3 PWR in 2004, a collaborative research program between Canada and Japan was initiated to improve the understanding of FAC by studying both the individual and the synergistic effects of feed-water system parameters. In an experimental water loop, three test sections were installed in series. Test section 1 contained probes made of the carbon steel of interest to measure on-line the FAC rate and electrochemical corrosion potential (ECP). Test sections 2 and 3 contained surface analysis probes for examination after removal via optical, SEM and Raman, techniques. The effects of flow and other parameters on FAC were studied using probes of different bore size, different material and several flow rates. Experiments were performed under neutral and ammoniated chemistries in de-oxygenated and oxygenated water. Threshold concentrations of oxygen to stifle FAC were determined. The individual and combined effects of system variables have now been determined in some detail and are presented here. (author)
Nwosu, Cajethan M.; Oti, Stephen E.; Ogbuka, Cosmas U.
2017-01-01
This paper presents transient and steady state performance analysis of power flow control in a 5.0 kW Doubly-Fed Induction Generator (DFIG) Variable Speed Wind Turbine (VSWT) under sub synchronous speed, super synchronous speed and synchronous speed modes of operation. Stator flux orientation is used for the control of the rotor-side converter (RSC) and DFIG whereas the grid (or stator) voltage orientation is the preferred choice for the control of the grid-side converter (GSC). In each of the three speeds modes, power is always supplied to the grid through the stator of the DFIG. The magnitude of net power (stator power plus rotor power) is less than stator power during the sub synchronous speed mode; it is greater than stator power during the super synchronous speed mode while it is equal to the stator power during the synchronous speed mode. In synchronous speed mode, the rotor power is zero indicating that power is neither supplied to the grid from the rotor nor supplied to the rotor from the grid; here the magnitude of net power is equal to stator power. The simulation results thus obtained in a MATLAB/SIMULINK environment laid credence to the controllability of power flow reversal in a DFIG-VSWT through back-to-back power electronic converter.
Chaube, M K; Tripathi, D; Bég, O Anwar; Sharma, Shashi; Pandey, V S
2015-01-01
A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth.
3D NUMERICAL STUDY OF FLOW IN A SOLAR CHIMNEY POWER PLANT SYSTEM
Directory of Open Access Journals (Sweden)
TAHAR TAYEBI
2015-12-01
Full Text Available Heat transfer process and fluid flow in a Solar Chimney Power Plant System (SCPPS are investigated numerically. As simulation object we use the Spanish prototype plant. The calculative model and boundary conditions in calculation are introduced. Boussinesq model was chosen in the natural convection processus, Discrete Ordinate radiation model was employed for radiation. The principal factors that influence on the performance of the Solar Chimney have been analysed. The effects on the flow of the Solar Chimney which caused by solar radiation intensity have been simulated. The calculated results are compared and are approximately equivalent to the relative experimental data of the Manzanares prototype. It can be concluded that the temperature difference between the inlet and outlet of collector, as well as the air velocity in the collector of the system, is increase with the increase of solar radiation intensity and the pressure throughout system is negative value.
International Nuclear Information System (INIS)
Qader, M.R.
2015-01-01
The UPFC (unified power flow controller) is one of the modern power electronics devices that can be used for the control of real and reactive power in a transmission line. The UPFC uses VSC (voltage sourced converter) technology to inject a series voltage with the sending end ac source to achieve its control objective with high speed, making it suitable for maintaining the voltage and mechanical stability of a network. There are frequent disturbances in a power system due to its dynamic nature. These disturbances must be controlled so that they cannot lead the system to an unsteady condition. Recently developed FACTS (flexible alternating current transmission system) provide steadfast solutions to avert these issues in power quality. Due to the improvements in these solutions, some critical issues have been come to sight pertaining to power quality, dependability and permanence. The most effective and potential technologies among recently developed FACTS devices are STATCOM (static synchronous compensator) and UPFC (unified power flow controller) that can significantly enhance the operations of power systems and associated power quality problems. In order to control entire flow of load and voltage sags/flickers; while eliminating harmonics simultaneously, this paper presents an inventive systematic approach on the basis of optimal control and tracking with a PI (proportional integral) controller, the desired steady state behavior, and a linear quadratic tracker. Moreover, a MATLAB/Simulink model is also established in the paper for the UPFC in the environment of Simulink, once its principles are analyzed. After monitoring the simulation results, it was concluded that UPFC based controller systems can efficiently manage the load flow and voltage sags/flickers. Test results using different power system models are presented throughout the thesis to illustrate the effectiveness of Unified Power Flow Controller. - Highlights: • We describe power quality improvement
Han Xudong; Gao Shibin; Hu Haitao; Wang Bin
2013-01-01
The regenerative braking technology is widely applied in high-speed electric multiple units (EMUs). And the voltage rise problem at end of the traction network would be caused by regenerative braking attracts more and more attention. The arm of this paper is to analyze the power flow calculation for EMUs under regenerative braking condition. Power flow calculation was done for two different EMU operation conditions by using a “locomotive-traction network” coupling model. In this model, a cons...
Studying laminar flows of power-law fluids in the annular channel with eccentricity
Zhigarev, V. A.; Neverov, A. L.; Guzei, D. V.; Pryazhnikov, M. I.
2017-09-01
The paper deals with numerical and experimental investigation of non-Newtonian flow of modeling drilling fluids in the annular channel. The Reynolds number was ranged from 100 to 1500. The parameters of the power-law model of drilling fluids were varied within the following ranges: n = 0.43-0.49, K = 0.22-0.89. The eccentricity was changed from 0 to 1. We have measured pressure drop in the annular channel and compared calculations with experimental data, achieving good agreement between calculations and experiment.
Study on quantitative reliability analysis by multilevel flow models for nuclear power plants
International Nuclear Information System (INIS)
Yang Ming; Zhang Zhijian
2011-01-01
Multilevel Flow Models (MFM) is a goal-oriented system modeling method. MFM explicitly describes how a system performs the required functions under stated conditions for a stated period of time. This paper presents a novel system reliability analysis method based on MFM (MRA). The proposed method allows describing the system knowledge at different levels of abstraction which makes the reliability model easy for understanding, establishing, modifying and extending. The success probabilities of all main goals and sub-goals can be available by only one-time quantitative analysis. The proposed method is suitable for the system analysis and scheme comparison for complex industrial systems such as nuclear power plants. (authors)
International Nuclear Information System (INIS)
Chocron, Mauricio; La Gamma, Ana M.; Fernandez, Narciso; Moyano, Ricardo; Schiersmann, Christian; Ovando, Luis E.; Sainz, Ricardo A.; Keitelman, Alberto
2003-01-01
Flow accelerated corrosion is a matter of concern in secondary circuits of nuclear power plants as well as in fossil fired plants. It contributes to the piping wall thinning and to the corrosion products transport to the steam generators. Because it is a generalized corrosion phenomena, could address to extensive failures. In that sense the plants conduct extensive programs of surveillance of piping degradation. Because the problem involves many variables like alloys, water chemistry and hydrodynamics several models have been proposed in the literature. In the present paper the variables have been organized in a spreadsheet which allows the calculation of normalized risk factors. (author)
Optimal Power Flow in three-phase islanded microgrids with inverter interfaced units
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; Quang, Ninh Nguyen; Di Silvestre, Maria Luisa
2015-01-01
In this paper, the solution of the Optimal Power Flow (OPF) problem for three phase islanded microgrids is studied, the OPF being one of the core functions of the tertiary regulation level for an AC islanded microgrid with a hierarchical control architecture. The study also aims at evaluating...... the contextual adjustment of the droop parameters used for primary voltage and frequency regulation of inverter interfaced units. The work proposes a mathematical method for the OPF solution also considering the droop parameters as variables. The output of the OPF provides an iso-frequential operating point...
EFFECT OF POWER SUPPLY AND DUTY CONTROL IN CRANKCASE FLOW (CRANKCASE PRESSURE PORT OF ECV
Directory of Open Access Journals (Sweden)
MD. IQBAL MAHMUD
2016-06-01
Full Text Available The electromagnetic control valve (ECV operated by solenoid in the external variable compressor with the swash plate type is the rising phenomenon. ECV controls the air conditioning compressor for automobile on the basis of the input signal of the pulse width modulation (PWM that supplied from the external controller. PWM technique is used to encode the information for transmission; its main use is to allow the control of the power to be supplied to electrical devices, especially to inertial loads. The mechanism changes the swash plate angle inside the compressor by increasing or reducing the pressure of swash plate chamber by use of the functions of different pressure port within the ECV. Increasing and reducing the swash plate angle finally depends on the solenoid force acting on the rate of supply of current. This research paper investigates the effect of power supply and duty control during the crankcase flowing at Pc pressure port of ECV.
Modified differential evolution algorithm for optimal power flow with non-smooth cost functions
International Nuclear Information System (INIS)
Sayah, Samir; Zehar, Khaled
2008-01-01
Differential evolution (DE) is a simple but powerful evolutionary optimization algorithm with continually outperforming many of the already existing stochastic and direct search global optimization techniques. DE algorithm is a new optimization method that can handle non-differentiable, non-linear, and multimodal objective functions. This paper presents an efficient modified differential evolution (MDE) algorithm for solving optimal power flow (OPF) with non-smooth and non-convex generator fuel cost curves. Modifications in mutation rule are suggested to the original DE algorithm, that enhance its rate of convergence with a better solution quality. A six-bus and the IEEE 30 bus test systems with three different types of generator cost curves are used for testing and validation purposes. Simulation results demonstrate that MDE algorithm provides very remarkable results compared to those reported recently in the literature
Robust optimization-based DC optimal power flow for managing wind generation uncertainty
Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn
2012-11-01
Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.
Sensorless Control for the EVT-Based New Dual Power Flow Wind Energy Conversion System
Directory of Open Access Journals (Sweden)
Ying Zhu
2017-06-01
Full Text Available The dual power flow wind energy conversion system (DPF-WECS is a novel system which is based on the electrical variable transmission (EVT machine. The proposed sensorless control for the DPF-WECS is based on the model reference adaptive system (MRAS observer by combining the sliding mode (SM theory. The SM-MRAS observer is on account of the calculations without the requirement of the proportional-integral (PI loop which exists in the classical MRAS observer. Firstly, the sensorless algorithm is applied in the maximum power point tracking (MPPT control considering the torque loss for the outer rotor of the EVT. Secondly, the sensorless control is adopted for the inner rotor control of the EVT machine. The proposed sensorless control method based on the SM-MRAS for the DPF-WECS is verified by the simulation and experimental results.
Dynamic population artificial bee colony algorithm for multi-objective optimal power flow
Directory of Open Access Journals (Sweden)
Man Ding
2017-03-01
Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.
A Three-phase Unsymmetrical Distribution Power Flow Solution Based on Symmetrical Component Theory
Directory of Open Access Journals (Sweden)
Hongwei Li
2017-12-01
Full Text Available Aiming at the three-phase unsymmetrical distribution network, this paper proposed a threesequence components decoupled power flow method based on the node-branch incidence matrix. The three-sequence decoupled models were established based on symmetrical component theory by utilizing the weakly coupling feature of three-phase unsymmetrical distribution networks. The algorithm simplifies the complexity of the distribution network and reduces the dimensions of the matrix, so the calculation process is relatively simple. Moreover, a new approach deal with the PV nodes was developed based on the assumption that the positive-sequence voltage magnitude of PV node is sustained at a given fixed value. The formula to calculate the reactive power increment for each PV node was derived based on Thevenin equivalent circuit theory. The test results show that the proposed method and PV nodes processing approach have better convergence and faster calculating speed.
Structure- and fluid-borne acoustic power sources induced by turbulent flow in 90° piping elbows
Hambric, S. A.; Boger, D. A.; Fahnline, J. B.; Campbell, R. L.
2010-01-01
The structure- and fluid-borne vibro-acoustic power spectra induced by turbulent fluid flow over the walls of a continuous 90° piping elbow are computed. Although the actual power input to the piping by the wall pressure fluctuations is distributed throughout the elbow, equivalent total power inputs to various structural wavetypes (bending, torsion, axial) and fluid (plane-waves) at the inlet and discharge of the elbow are computed. The powers at the elbow “ports” are suitable inputs to wave- and statistically-based models of larger piping systems that include the elbow. Calculations for several flow and structural parameters, including pipe wall thickness, flow speed, and flow Reynolds number are shown. The power spectra are scaled on flow and structural-acoustic parameters so that levels for conditions other than those considered in the paper may be estimated, subject to geometric similarity constraints (elbow radius/pipe diameter). The approach for computing the powers (called CHAMP - combined hydroacoustic modeling programs), which links computational fluid dynamics, finite element and boundary element modeling, and efficient random analysis techniques, is general, and may be applied to other piping system components excited by turbulent fluid flow, such as U-bends and T-sections.
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian
2018-02-01
The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.
Feasibility of Self Powered Actuation for Flow, Separation and Vibration Control
Shyam, Vikram; Bak, Dillon; Izadnegahdar, Alain
2015-01-01
A gas turbine engine is anywhere from 40-50% efficient. A large amount of energy is wasted as heat. Some of this heat is recoverable through the use of energy harvesting and can be used for powering on-board systems or for storing energy in batteries to replace auxiliary power units (APUs). As hybrid electric aircraft become more common, the use of energy harvesting will see increasingly more benefit and become commonplace in gas turbine engines. For electric aircraft with motors, TEGs would be beneficial for reclaiming waste heat from electric motors. The primary focus of this work was to evaluate the feasibility of harvesting energy from the hot section of a gas turbine engine (for a single aisle Boeing 737 thrust class) using thermoelectric generators (TEGs). The resulting heat could be used to power on-board actuation mechanisms such as plasma actuators and piezoelectric actuators. The work is a result of a two year NASA Center Innovation Fund from 2009 to 2011. The trade-off between thermoelectric harvesting and blade surface temperature were studied to ensure that blade durability is not adversely impacted by embedding a low thermal conductivity TEG. Calculations show that.5-10 Watts can be harvested per blade depending on flow conditions and on the thermoelectric material chosen. BiTe and SiGe were used for this analysis and future thermoelectric generators or multiferroic alloys could considerably improve power output.
Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint
Energy Technology Data Exchange (ETDEWEB)
Yang, Rui; Zhang, Yingchen
2017-05-17
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture the phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.
Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price
Energy Technology Data Exchange (ETDEWEB)
Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-10-03
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture the phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.
Load flow analysis for determining the location of NPP power distribution in West Kalimantan
International Nuclear Information System (INIS)
Citra Candranurani; Rizki Finnansyah Setya Budi; Sahala M Lumbanraja
2015-01-01
Electricity crisis condition happened in West Kalimantan (Kalbar) as a result of power plant capacity almost equal to the peak load. The system will experience a shortfall if there are plants that not operating and do not have reserve. The policy of electricity planning until 2022 is replacing diesel power plant with steam power plant. For long-term planning is required the role of new and renewable energy in order to reduce dependency on fossil fuel consumption, such as NPP utilization. The purpose of this study was to determine the optimum location of the NPP power distribution in order to prepare electricity infrastructure. Load flow calculation in this study using ETAP 12.5 software. NPP is planned to supply base load, so the optimum capacity factor is above 80 %. The result show that there are three location where NPP can generate over 80 % of its capacity, namely: Mempawah Substation, Singkawang Substation, and Sambas Substation. The most optimum located in Mempawah Substation with capacity factor 83.5 %. The location of the three Substation are onshore and in line with one requirement for NPP construction, namely: the availability of cooling water. (author)
International Nuclear Information System (INIS)
Gardner, J.
1994-01-01
The information herein presents preliminary technical and cost data for an actual case study using Texaco Gasification Power Systems (TGPS) technology, incorporated as part of an overall refinery upgrade project. This study is based on gasification of asphalt and vacuum residue (see Table 1, feedstock properties) to produce hydrogen plus carbon monoxide (synthesis gas) for the ultimate production of high purity hydrogen and power at a major refinery in Eastern Europe. A hydrogen production of 101,000 Nm 3 /hr (9.1 tons/hr) at 99.9 (wt.%) purity plus 50 MW (net) power slated to be used by the refinery was considered for this study. Figure I shows a block diagram depicting the general refinery configuration upgrade as envisioned by the owner operator; included in the configuration as shown in the shaded area is the TGPS plant. Figure II shows a block flow diagram depicting the TGPS unit and its battery limits as defined for this project. The technology best suited to meet the demand for clean and efficient electric power generation and hydrogen production is the Texaco Gasification Power Systems (TGPS) process. This technology is based upon Texaco's proprietary gasification technology which is well proven with over 40 years of gasification experience. There are currently 37 operating units in the world today which have licensed the Texaco gasification process technology, with another 12 in design/construction. Total synthesis gas (hydrogen + carbon monoxide) production capacity is over 2,8 billion standard cubic feet per day. The TGPS, which is basically the Integrated Gasification Combined Cycle (IGCC) based upon the Texaco gasification technology, was developed by combining and integrating gasification with power generation facilities. (author). 3 figs., 9 tabs., 4 refs
Directory of Open Access Journals (Sweden)
Rizky Ramadyan Widiarto
2017-01-01
Full Text Available Optimal Power Flow (OPF atau aliran daya optimal merupakan kombinasi antara metode Economic Dispatch dan Power Flow. Metode ini digunakan untuk mendapatkan aliran daya optimal dari suatu sistem kelistrikan agar didapatkan biaya operasi sistem seminimal mungkin. Dewasa ini penggunaan sumber energi listrik terbarukan seperti PV dan Baterai dalam membantu kebutuhan energi listrik semakin marak digunakan. Hal ini terjadi karena diprediksikan energi fosil dalam waktu dekat akan habis. Paper ini melakukan proses optimalisasi aliran daya pada sistem dengan memasukan pemodelan PV dan Baterai pada sistem. Pemodelan digunakan untuk mempertimbangkan biaya pergantian baterai karena harga baterai yang cukup mahal dan usia pemakaian baterai yang relatif singkat. Untuk meyelesaikan masalah ini digunakanlah metode Bellman Algorithm. Dengan memberikan batasan tertentu pada baterai, metode ini mampu mengatur energi baterai dari waktu ke waktu dengan menghitung setiap kemungkinan yang ada yang akhirnya akan dipilih jalur termurah dari semua perhitungannya.Simulasi dibuat pada software MATLAB dengan memasukkan data profil beban, PV (Data Sheet, Radiasi, Suhu dan baterai untuk dihitung biayanya. Hasil simulasi didapatkan metode ini mampu memberikan aliran daya optimal dari sistem sehingga akhirnya didapatkan biaya pengeluaran yang minimal. Penggunaan baterai mampu memenuhi kebutuhan beban puncak yang pada titik tersebut tidak mampu dipenuhi oleh grid karena terbatas. Hasil simulasi menunjukkan baterai mampu melalui proses charge dan discharge dengan baik. Semakin kecil nilai δSOC maka usia baterai semakin lama.
Trigo, R. M.; Pozo-Vazquez, D.; Castro-Diez, Y.; Osborn, T.; Gámis-Fortis, S.; Esteban-Parra, M. J.
2003-04-01
the construction of major dams in the 1950s and 1960s. Similar results were obtained with potential hydro-electrical time series for Spain and Portugal. These results show that the large inter-annual variability of these three rivers flow is largely modulated by the NAO phenomena. Such modulation, associated with the recent positive trend of the NAO index, might implicate a significant decrease of the available flow. This reduction can represent an important hazard for the two Iberian economies due to its negative impact in agricultural yield and hydroelectric power production.
Directory of Open Access Journals (Sweden)
A. Kleidon
2013-01-01
Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.
Conversion of Aircraft Dual-flow Turbojet into Peak Power Plant
Directory of Open Access Journals (Sweden)
G. A. Shafikov
2017-01-01
Full Text Available The paper is aimed at considering the aircraft engine conversion into peak or short-used energy unit, which is relevant for the task of developing the northern regions of the Russian Federation. The three-shaft turbojet engine with a twelve-stage compressor and a four-stage turbine is adopted as an aircraft engine under consideration. The afterburner with a block of jet nozzles is removed from the gas generator module, and a heating chamber is set at the outlet of the by-pass duct to raise electric power of engine and not complicate the construction by the presence of a mixing chamber. In addition, the heating chamber serves to equalize the total pressure and flow temperature in the section before the free turbine and allows the use of a short adapter between the gas generator module and the free turbine, which reduces the loss of total pressure. Then a free turbine and a diffuser with an exhaust device are installed. The output shaft of the power turbine is connected by means of a coupling to an alternating current (a. c. generator or other special load.To find the parameters of the plant, a calculation was made in which the initial data were taken, namely a gas temperature in front of the turbine of 1530 K (the gas temperature in front of the turbine is reduced by 100 K in order to prolong the engine life; therefore, the gas temperature before the turbine was 1630 K; air flow of 364 kg/s; bypass ratio of 1.36 (the ratio of the air flow passing through the bypass duct to the air flow entering the core. As a result, it consumes 0.296 kg / (kWh (fuel-aviation kerosene and a power capacity of 78.5 MW. For the received value of capacity the ТЗФП-80-2У3 a. c. electric generator has been chosen as the load. As a result, the power plant, equipped with a converted engine and electric generator, has an electric power of 77.3 MW and an efficiency of 27.8%.To assess the effect of introduced preheating chamber on the parameters of the gas turbine
Energy Technology Data Exchange (ETDEWEB)
Ainsworth, Nathan G [ORNL; Grijalva, Prof. Santiago [Georgia Institute of Technology, Atlanta
2013-01-01
Recent works have shown that networks of voltagesource inverters implementing frequency droop control may be analyzed as consensus-like networks. Based on this understanding, we show that enforcement of network line power flows can be viewed as an edge-preservation problem in a -disk dynamic interaction graph. Inspired by other works solving similar problems in other domains, we propose a line weighted frequency droop controller such that a network of all active buses implementing this controller enforces the specified line power flow constraints without need for communication. We provide simulation results verifying that our proposed controller limits line power to enforce constraints, and otherwise acts as a traditional droop controller.
DEFF Research Database (Denmark)
Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa
2017-01-01
with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting. Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall...... assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production...
Directory of Open Access Journals (Sweden)
Ahmet Mete Vural
2017-09-01
Full Text Available Power flow study in a power network embedded with FACTS device requires effort in program coding. Moreover, Newton-Raphson method should be modified by embedding injected power components into the algorithm. In this study, we have proposed a method for modeling of one of the newest FACTS concepts in power flow study without program coding or modification of existing Newton-Raphson algorithm. Real and reactive power injections for each voltage source converter of Back-to-Back Static Synchronous Compensator (BtB-STATCOM are PI regulated to their desired steady-state values. With this respect, reactive power injection of each voltage source converter as well as real power transfer among them can be assigned as control constraint. Operating losses are also taken into account in the proposed modeling approach. Furthermore, proposed model can be easily modified for the modeling of conventional STATCOM having only one voltage source converter or two STATCOMs operating independently. The proposed modeling approach is verified in PSCAD through a number of simulation scenarios in BtB-STATCOM and STATCOM embedded power systems, namely 1-Machine 4-Bus system and 3-Machine 7-Bus system. PV curves of local buses compensated by BtB-STATCOM and STATCOM are presented and compared. Steady-state performance of BtB-STATCOM and STATCOM is also compared in power flow handling.
DEFF Research Database (Denmark)
Chen, Shuheng; Wang, Xiongfei; Su, Chi
2014-01-01
Based on an extended chain-table storage structure, an improved power flow method is presented, which can be applied to a distribution network with multi PV nodes. The extended chain-table storage structure is designed on the basis of address-pointer technology describing the radial topology...... and the corresponding case study has been done. The experimental data and the further analysis have proved that this method can calculate the power flow of a distribution network with multi PV nodes precisely and fast. © 2014 IEEE....... with a reduced memory size. The voltage error of each PV node is adjusted by a reactive power adjusting strategy. The adjusting strategy is based on a multi-variable linear function with an accelerating factor. Finally, this new improved power flow method is realized by the software system developed in VC...
DEFF Research Database (Denmark)
Chen, Shuheng; Hu, Weihao; Chen, Zhe
2014-01-01
Based on generalized chain-table storage structure (GCTSS), a novel power flow method is proposed, which can be used to solve the power flow of weakly meshed distribution networks with multiple distributed generators (DGs). GCTSS is designed based on chain-table technology and its target...... done on the modified version of the IEEE 69-bus distribution system. The results verify that the proposed method can keep a good efficiency level. Hence, it is promising to calculate the power flow of weakly meshed distribution networks with multiple DGs....... is to describe the topology of radial distribution networks with a clear logic and a small memory size. The strategies of compensating the equivalent currents of break-point branches and the reactive power outputs of PV-type DGs are presented on the basis of superposition theorem. Their formulations...
International Nuclear Information System (INIS)
Haeseldonckx, Dries; D'haeseleer, William
2010-01-01
In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. However, although contra-intuitive, the interaction between both 'systems' turns out to be almost negligible. Firstly, it is shown that it is more beneficial to use IGCC facilities to produce hydrogen with, rather than (excess) wind-generated electricity due to the necessary electrolyser investment costs. But even flexible IGCC facilities do not seem to contribute substantially to the early development of a hydrogen economy. Namely, in most scenarios - which are combinations of a wide range of fuel prices and carbon taxes - one primary-energy carrier (natural gas or coal) seems to be dominant, pushing the other, and the corresponding technologies such as reformers or IGCCs, out of the market. (author)
Directory of Open Access Journals (Sweden)
Michael Schimpe
2018-03-01
Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.
Directory of Open Access Journals (Sweden)
Catur Apriono
2015-08-01
Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.
Optimal Power Flow for radial and mesh grids using semidefinite programming
Directory of Open Access Journals (Sweden)
Oscar D. Montoya-Giraldo
2017-09-01
Full Text Available This paper presents a convex formulation for optimal power flow (OPF in both radial and meshed grids. A semidefinite programming (SDP approximation transforms the quadratic non-convex model into a relaxed convex quadratic model, which can be more efficiently solved. This model is implemented in MATLAB using the CVX package for convex optimization. The results obtained are compared to the non-linear model of the problem implemented in GAMS and MATPOWER by using four typical systems in specialized literature (two radial and two meshed. SDP approximation demonstrated to provide accurate solutions that are close to an optimal solution of the problem in shorter computational times. Such solutions are applicable to real-time operation and control problems.
Variable flow controls of closed system pumps for energy savings in maritime power systems
DEFF Research Database (Denmark)
Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu
2016-01-01
pumps on marine vessels. The existing problem of traditional control methods for closed system pumps is analyzed and a mathematical model for variable flow controls with the appropriate control settings is derived. The performance of the proposed method is demonstrated and verified through experimental...... and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve......Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption...
Antenna diagnostics for power flow in extreme near-field of a standard gain horn
DEFF Research Database (Denmark)
Popa, Paula Irina; Breinbjerg, Olav
2016-01-01
The plane wave spectrum of an aperture antenna can be calculated from a complex measurement of the radiated near- or far-field and it facilitates antenna diagnostics for the extreme near-field of the antenna. While antenna diagnostics often concerns the magnitude of the co-polar field, the plane...... wave spectrum actually allows for determination of both magnitude and phase of all three components of the electric as well as the magnetic field - and thus also the Poynting vector. In this work we focus on the Poynting vector and thus the power flow in the extreme near-field; as an example we employ...... that these oscillations are not merely a “Gibbs-like” phenomenon due to the availability of only the visible region of the plane wave spectrum and they are not caused by multiple reflections between the horn and the near-field probe - but resulted from the interference between the direct field and the edge...
International Nuclear Information System (INIS)
1980-05-01
Estimation of the design basis flood for Nuclear Power Plants can be carried out using either deterministic or stochastic techniques. Stochastic techniques, while widely used for the solution of a variety of hydrological and other problems, have not been used to date (1980) in connection with the estimation of design basis flood for NPP siting. This study compares the two techniques against one specific river site (Galt on the Grand River, Ontario). The study concludes that both techniques lead to comparable results , but that stochastic techniques have the advantage of extracting maximum information from available data and presenting the results (flood flow) as a continuous function of probability together with estimation of confidence limits. (author)
Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.
2017-10-01
This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.
The flow of power law fluids in elastic networks and porous media.
Sochi, Taha
2016-02-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.
INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION
Energy Technology Data Exchange (ETDEWEB)
Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson
2003-03-01
Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.
INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION
International Nuclear Information System (INIS)
Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren
2003-01-01
Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system
Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells.
Abreu, Caroline; Nedellec, Yannig; Gross, Andrew J; Ondel, Olivier; Buret, Francois; Goff, Alan Le; Holzinger, Michael; Cosnier, Serge
2017-07-19
Bioelectrocatalytic carbon nanotube based pellets comprising redox enzymes were directly integrated in a newly conceived flow-through fuel cell. Porous electrodes and a separating cellulose membrane were housed in a glucose/oxygen biofuel cell design with inlets and outlets allowing the flow of electrolyte through the entire fuel cell. Different flow setups were tested and the optimized single cell setup, exploiting only 5 mmol L -1 glucose, showed an open circuit voltage (OCV) of 0.663 V and provided 1.03 ± 0.05 mW at 0.34 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to optimize long-term stability leading to 3.6 J (1 mW h) of produced electrical energy after 48 h. Under continuous discharge at 6 kΩ, about 0.7 mW h could be produced after a 24 h period. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and their connection in parallel or in series. The configuration of two biofuel cells connected in series showed an OCV of 1.35 V and provided 1.82 ± 0.09 mW at 0.675 V, and when connected in parallel, showed an OCV of 0.669 V and provided 1.75 ± 0.09 mW at 0.381 V. The presented design is conceived to stack an unlimited amount of biofuel cells to reach the necessary voltage and power for portable electronic devices without the need for step-up converters or energy managing systems.
Linking turbidity current triggers to flow power, frequency and runout distances
Hizzett, J. L.; Hughes Clarke, J. E.; Cartigny, M.; Talling, P.; Sumner, E.; Clare, M. A.
2017-12-01
Submarine turbidity currents and terrestrial river systems are the two main processes for moving sediment across our planet, and it is important to understand how they are linked. Turbidity currents form thick deposits, burying large amounts of organic carbon, and posing a hazard to seabed pipelines and cables. It is essential to understand which initial trigger mechanisms produce the most frequent, powerful and longest runout turbidity currents, as these flows pose the greatest hazard for seafloor infrastructure (Cooper et al., 2013). Here were re-analyse the most detailed time-lapse mapping of a turbidity current system, which comprises 93 near-daily surveys collected by Hughes Clarke at Squamish Delta, British Columbia. It enables us to link different trigger mechanisms to flow properties such as runout distance. Turbidity currents at Squamish Delta are either triggered by submarine landslides or by sediment settling out from the river plume. Previously it was inferred that turbidity currents were most commonly triggered at river mouths by underwater landslides, or plunging (hyperpycnal) river discharge. However, here we show that turbidity currents are most commonly triggered by what we infer to be sediment settling from surface plumes (Hughes Clarke et al., 2014). We go on to show that turbidity currents initiated by settling from surface plumes can be as erosive and travel as far as landslide-triggered flows. We also find no relationship between submarine landslide volume and turbidity current runout. This is surprising because larger volume subaerial landslides tend to runout longer distances. We therefore show that the most hazardous turbidity currents at Squamish, which have the biggest impact on the seafloor, are initiated by sediment settling out from surface plumes, and not by large landslides as was previously expected.
Flow accelerated corrosion programme in Angra nuclear power plants Units 1 and 2
International Nuclear Information System (INIS)
Costa, Tomas D.S.
2009-01-01
Almirante Alvaro Alberto Nuclear Power Plant, referred herein as Angra NPP, comprises two generating units operated by ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR. Unit 1, a Westinghouse designed PWR, operates commercially since 1982 generating 657 MW, while unit 2, designed by Siemens, is a 1350 MW PWR in operation since 2000. Flow Accelerated Corrosion (FAC) programme integrate a set of ageing related programmes established to control ageing effects on equipment and piping in order to ensure their capability to perform their functions during the plant remaining life. The objective of this paper is to describe ELETRONUCLEAR experience in developing and implementing a programme related to Flow Accelerated Corrosion, with focus on piping of the secondary sides of Angra NPP, explaining in detail the current situation for important pipings, and presenting updated results of the FAC control. Accurate inspections are the basis for an effective FAC programme. Wall thickness measurements establish the extent of wear in a given piping, providing data to support FAC trends, and to refine the predictive model. A permanently and clearly identify grid is makes re-inspection possible, at any time, at the same points. Supported by the computational system Comsy, some of its features as FAC potentially susceptible lines identification, wall thinning rates determination, inspection data recording, wear rates analyses, lifetime prediction and inspection scheduling will be showed in detail. This programme has started in 2004, and since this time it was applied in a total of six outages in Angra 1 NPP and three outages in Angra 2 NPP, with a large number of piping elements inspected and analyzed. Some of these results will be showed and discussed in this paper, regarding the potential of Flow Accelerated Corrosion occurrence. (author)
Directory of Open Access Journals (Sweden)
Jawad Ahmed
Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions
Directory of Open Access Journals (Sweden)
Xuanhu He
2015-03-01
Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.
Second-order small disturbance theory for hypersonic flow over power-law bodies. Ph.D. Thesis
Townsend, J. C.
1974-01-01
A mathematical method for determining the flow field about power-law bodies in hypersonic flow conditions is developed. The second-order solutions, which reflect the effects of the second-order terms in the equations, are obtained by applying the method of small perturbations in terms of body slenderness parameter to the zeroth-order solutions. The method is applied by writing each flow variable as the sum of a zeroth-order and a perturbation function, each multiplied by the axial variable raised to a power. The similarity solutions are developed for infinite Mach number. All results obtained are for no flow through the body surface (as a boundary condition), but the derivation indicates that small amounts of blowing or suction through the wall can be accommodated.
Directory of Open Access Journals (Sweden)
Paolo Bruschi
2012-04-01
Full Text Available Flow sensors are the key elements in most systems for monitoring and controlling fluid flows. With the introduction of MEMS thermal flow sensors, unprecedented performances, such as ultra wide measurement ranges, low power consumptions and extreme miniaturization, have been achieved, although several critical issues have still to be solved. In this work, a systematic approach to the design of integrated thermal flow sensors, with specification of resolution, dynamic range, power consumption and pressure insertion loss is proposed. All the critical components of the sensors, namely thermal microstructure, package and read-out interface are examined, showing their impact on the sensor performance and indicating effective optimization strategies. The proposed design procedures are supported by experiments performed using a recently developed test chip,including several different sensing structures and a flexible electronic interface.
A system dynamics model for stock and flow of tritium in fusion power plant
Energy Technology Data Exchange (ETDEWEB)
Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)
2015-10-15
Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.
Yujun Shi; Jin Wei; Zhengxing Deng; Linni Jian
2017-01-01
In this paper, a novel electric vehicle powertrain system is proposed. In the system, a coaxial magnetic gear (CMG), an electromagnetic clutch, a lock, and two electric machines (EMs) are adopted to achieve the power-split by controlling the states of the clutch and the lock, which enables electric vehicles (EVs) to work in four operation modes. The configuration, power flow paths and operation modes are depicted in detail. A dynamic model is established to help determine the parameters and b...
Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era
Energy Technology Data Exchange (ETDEWEB)
Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal; Cong, Jason
2016-11-14
Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.
The effect of power-law body forces on a thermally driven flow between concentric rotating spheres
Macaraeg, M. G.
1986-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
The effect of power law body forces on a thermally-driven flow between concentric rotating spheres
Macaraeg, M. G.
1985-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid
Directory of Open Access Journals (Sweden)
Farhan Beg
2015-01-01
Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.
International Nuclear Information System (INIS)
Garcia F, A.
2010-01-01
The overall objective of the thesis project is to determine the flow profiles sub cadmic and epi cadmic in the central thimble to different powers and operation times of TRIGA Mark III Reactor, using activation foils as detectors. In the reactor operation, it is necessary to know the neutron flow profile for to realize other tasks as: the radioisotopes production, research in reactors physics and fuel burning. The distribution of the neutron flow, accurately reflects what is happening in the reactor core, plus the flows value in this distribution is directly related to the power generated. For this reason it is performed the sub cadmic flow measurement with energies between 0 and 0.4 eV (energy of the cadmium cut E cd ∼ 0.4 eV) and epi cadmic flow with energies greater than 0.4 eV, in the central thimble powers to the powers of 10, 100 W, 1, 10 100 Kw and 1 MW. The method used is known as flakes activation, which is to be arranged by placing flakes ( 3 mm of diameter and 0.0508 mm of thickness) of a given material (either Au, In, Cu, Mn, etc.) into an aluminum tube outside diameter equal to 6.35 mm, alternating flakes with lids covered and discovered of cadmium (3.4 mm of diameter and 0.508 mm of thickness) and separated by lucite pieces of 3 mm of diameter and 25.4 mm in length. After irradiating the flakes for some time, is measured the gamma activity of each of them, using a hyper pure germanium detector of high resolution. Already known gamma activity, proceed to calculate the epi cadmic and sub cadmic flows using a computer program in Fortran language, called Caflu. (Author)
Stanisavljevic, Nemanja; Brunner, Paul H
2014-08-01
The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management. © The Author(s) 2014.
Directory of Open Access Journals (Sweden)
Jurasz Jakub
2017-01-01
Full Text Available Hydroelectricity is generally perceived as a stable and predictable power source. However ROR power plant without reservoir energy output is mainly driven by changing flow rate. This study applies artificial neural networks to create flow rate forecasts with one hour lead time. Forecasting models were built for Nysa Kłodzka catchment which possesses significant potential for new hydropower plants development as well as leads to frequent floods. The best of the obtained model gives satisfactory results both in terms of root mean square error (0.6379 m3/s as well as Nash-Sutcliffe performance indicator (0.9978. Obtained results were compared with currently used forecasting models and were proven to be superior.
Model of physico-chemical effect on flow accelerated corrosion in power plant
International Nuclear Information System (INIS)
Fujiwara, Kazutoshi; Domae, Masafumi; Yoneda, Kimitoshi; Inada, Fumio
2011-01-01
Highlights: → Model of chemical effect on FAC was developed. → Equation to evaluate the dissolved oxygen concentration for FAC suppression was derived. → The model explains the qualitatively the effect of parameters on FAC rate. → Diffusion of soluble species well reproduces the unique FAC behavior. - Abstract: Flow accelerated corrosion (FAC) is caused by the accelerated dissolution of protective oxide film under the condition of high flow rate and has been one of the most important subjects in fossil and nuclear power plants. The dominant factors of FAC are water chemistry, material, and fluid dynamics. Understanding of the thinning mechanism is very important to estimate the quantitative effects of the dominant factors on FAC. In this study, a novel model of chemical effect on FAC under the steady-state condition was developed in consideration of the diffusion of soluble iron and chromium species, dissolved hydrogen, and dissolved oxygen. The formula to evaluate the critical concentration of dissolved oxygen for FAC suppression was derived. The present model reproduced qualitatively the effect of major environmental parameters on FAC rate. The model could explain the following facts. (1) The FAC rate shows a peak around 413 K. (2) The FAC rate decreases with an increase in Cr content. (3) The FAC rate decreases with an increase in pH. (4) The FAC rate decreases with an increase in dissolved oxygen concentration. (5) The maximum of critical dissolved oxygen concentration is observed around 353 K. (6) The critical dissolved oxygen concentration decreases with an increase in pH. We conclude that the diffusion of soluble species from the saturated layer under the steady-state condition well reproduces the unique FAC behavior with variation of water chemistry parameters.
Vocal power and pressure–flow relationships in excised tiger larynges
Titze, Ingo R.; Fitch, W. Tecumseh; Hunter, Eric J.; Alipour, Fariborz; Montequin, Douglas; Armstrong, Douglas L.; McGee, JoAnn; Walsh, Edward J.
2010-01-01
Despite the functional importance of loud, low-pitched vocalizations in big cats of the genus Panthera, little is known about the physics and physiology of the mechanisms producing such calls. We investigated laryngeal sound production in the laboratory using an excised-larynx setup combined with sound-level measurements and pressure–flow instrumentation. The larynges of five tigers (three Siberian or Amur, one generic non-pedigreed tiger with Bengal ancestry and one Sumatran), which had died of natural causes, were provided by Omaha's Henry Doorly Zoo over a five-year period. Anatomical investigation indicated the presence of both a rigid cartilaginous plate in the arytenoid portion of the glottis, and a vocal fold fused with a ventricular fold. Both of these features have been confusingly termed ‘vocal pads’ in the previous literature. We successfully induced phonation in all of these larynges. Our results showed that aerodynamic power in the glottis was of the order of 1.0 W for all specimens, acoustic power radiated (without a vocal tract) was of the order of 0.1 mW, and fundamental frequency ranged between 20 and 100 Hz when a lung pressure in the range of 0–2.0 kPa was applied. The mean glottal airflow increased to the order of 1.0 l s–1 per 1.0 kPa of pressure, which is predictable from scaling human and canine larynges by glottal length and vibrational amplitude. Phonation threshold pressure was remarkably low, on the order of 0.3 kPa, which is lower than for human and canine larynges phonated without a vocal tract. Our results indicate that a vocal fold length approximately three times greater than that of humans is predictive of the low fundamental frequency, and the extraordinarily flat and broad medial surface of the vocal folds is predictive of the low phonation threshold pressure. PMID:21037066
Vocal power and pressure-flow relationships in excised tiger larynges.
Titze, Ingo R; Fitch, W Tecumseh; Hunter, Eric J; Alipour, Fariborz; Montequin, Douglas; Armstrong, Douglas L; McGee, Joann; Walsh, Edward J
2010-11-15
Despite the functional importance of loud, low-pitched vocalizations in big cats of the genus Panthera, little is known about the physics and physiology of the mechanisms producing such calls. We investigated laryngeal sound production in the laboratory using an excised-larynx setup combined with sound-level measurements and pressure-flow instrumentation. The larynges of five tigers (three Siberian or Amur, one generic non-pedigreed tiger with Bengal ancestry and one Sumatran), which had died of natural causes, were provided by Omaha's Henry Doorly Zoo over a five-year period. Anatomical investigation indicated the presence of both a rigid cartilaginous plate in the arytenoid portion of the glottis, and a vocal fold fused with a ventricular fold. Both of these features have been confusingly termed 'vocal pads' in the previous literature. We successfully induced phonation in all of these larynges. Our results showed that aerodynamic power in the glottis was of the order of 1.0 W for all specimens, acoustic power radiated (without a vocal tract) was of the order of 0.1 mW, and fundamental frequency ranged between 20 and 100 Hz when a lung pressure in the range of 0-2.0 kPa was applied. The mean glottal airflow increased to the order of 1.0 l s(-1) per 1.0 kPa of pressure, which is predictable from scaling human and canine larynges by glottal length and vibrational amplitude. Phonation threshold pressure was remarkably low, on the order of 0.3 kPa, which is lower than for human and canine larynges phonated without a vocal tract. Our results indicate that a vocal fold length approximately three times greater than that of humans is predictive of the low fundamental frequency, and the extraordinarily flat and broad medial surface of the vocal folds is predictive of the low phonation threshold pressure.
Clough, Geraldine; Chipperfield, Andrew; Byrne, Christopher; de Mul, Frits; Gush, Rodney
2009-09-01
To compare the output from a novel high power, wide separation laser Doppler flow probe (DP1-V2-HP, 4 mm, with IRLD20) with that of a standard flow probe (DP1-V2, 0.5 mm, with DRT4) (Moor UK) and to explore its potential for use in the noninvasive measurement of blood flow in deeper tissues in humans. Monte Carlo modeling was used to predict depths of light scattering in skin with each probe, geometry. Experimentally, forearm blood flow was measured at rest and during local warming of the skin surface and post occlusion reactive hyperaemia (PORH). Laser Doppler blood flux (LDF) and the power spectral density of its component frequency intervals, were compared. Monte Carlo modeling indicated that while the majority of wide probe LD signal derives from deeper tissue, a significant portion is from superficial (dermal) tissue (and vice versa for standard probe). Perturbation of local blood flow differentially increased LDF and spectral power as measured by the two probes, with the standard skin probe showing a significantly greater response to local skin warming (p<0.01). These differences support our hypothesis that the wide probe is recording predominantly blood flux within the vasculature of sub-dermal tissue. This is in agreement with Monte Carlo simulation.
DEFF Research Database (Denmark)
Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold
2015-01-01
DC microgrids or nanogrids have attracted increasing research interest in recent years. Therefore, as a critical component, dc-dc converters with multiple inputs are required. In this paper, a dual-input interleaved buck/boost converter is proposed and its corresponding power flow control methods...
DEFF Research Database (Denmark)
Siano, P.; Chen, Peiyuan; Chen, Zhe
2012-01-01
a hybrid optimization method that aims of maximizing the Net Present Value related to the Investment made by Wind Turbines developers in an active distribution network. The proposed network combines a Genetic Algorithm with a multi-period optimal power flow. The method, integrating active management...
Aghanejad, Iman; Markley, Loïc
2017-11-01
We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide insights into their electromagnetic responses and further our understanding of backward power in periodic structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular or spherical equifrequency contours that resemble those of left-handed media, here we show through k -space diagrams that the distribution of power in the spatial frequency domain can vary considerably across these structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different metamaterials according to their spatial spectral source of backward power and identify the mechanism behind negative refraction at a given interface. Finally, we discuss how k -space maps of power flow can be used to explain the high or low transmittance of power into different metamaterial or photonic crystal structures.
International Nuclear Information System (INIS)
Kain, Vivekanand; Roychowdhury, S.; Mathew, Thomas; Bhandakkar, Atul
2008-01-01
A plain carbon steel feeder pipeline in the secondary circuit failed downstream of a flow measurement device (orifice meter) during operation at nuclear power plant. A detailed failure analysis done on the failed pipeline is described in this paper. The results established the fine surface pattern of 'Horseshoe pits' at the affected regions. X-ray diffraction analysis on the samples far from the failed regions showed presence of magnetite but on the sample from the failed region showed peaks due to base metal only, indicating dissolution of the oxide. Thickness profiling of the pipeline indicated reduction of thickness from the design 7.62 mm to a minimum of 0.4-1.4 mm at the location of the failure. These observations are characteristic of single phase flow accelerated corrosion. This paper details the extent of flow accelerated corrosion in various Indian power plants and the remedial measures for replacement and possible design and water chemistry changes to combat it
Robinson, Patrick J.
simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide
Special power supply and control system for the gas-cooled fast reactor-core flow test loop
International Nuclear Information System (INIS)
Hudson, T.L.
1981-09-01
The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA
DEFF Research Database (Denmark)
Wang, Li; Chen, Shiang-Shong; Lee, Wei-Jen
2009-01-01
be concluded from the simulated results that the proposed SMES unit combined with the designed damping controller is very effective to stabilize the studied combined WF and MCF under various wind speeds. The inherent fluctuations of the injected active power and reactive power of the WF and MCF to the power......This paper presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping enhancement of a novel hybrid wind and marine-current farm (MCF) connected to a large power grid. The performance of the studied wind farm (WF...... under different operating conditions. A frequency-domain approach based on a linearized system model using eigen techniques and a time-domain scheme based on a nonlinear system model subject to disturbance conditions are both employed to validate the effectiveness of the proposed control scheme. It can...
Modification of the PROTO-II accelerator power flow for multi-purpose use
International Nuclear Information System (INIS)
Wright, T.P.; McDaniel, D.H.; Stinnett, R.W.
1985-01-01
PROTO-II is a nominal 10 TW, 320 kJ accelerator which has been used to study imploding plasma physics for the last few years. The machine has been modified to make it useful as a bremsstrahlung radiation source and to lower the inductance for better energy coupling to gas puff loads. The triplate water transmission line has been converted to a 4-line horizontal 8-plate transformer section feeding a 4-layer insulator stack, using a multiple rod crossover network. Hinged plates allow a constant impedance transmission line for gas puff applications and make a 2:1 impedance transformer for bremsstrahlung applications. For Gas Puff operation, vertical MITLs connect the 4-layer stack to the load. For bremsstrahlung operation, conical MITL plates connect each of the four lines to feed one side of a 2-cathode ring electron beam diode. Circuit simulations of the power flow predict up to 270 kJ of energy at 1.0 MV into the Gas Puff diode and up to 230 kJ at 1.5 MV into the electron beam diode. Accelerator performance under the new configuration is discussed
Directory of Open Access Journals (Sweden)
Liling Sun
2015-01-01
Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.
Directory of Open Access Journals (Sweden)
Anulekha Saha
2017-12-01
Full Text Available A relatively new technique to solve the optimal power flow (OPF problem inspired by the evaporation (vaporization of small quantity water particles from dense surfaces is presented in this paper. IEEE 30 bus and IEEE 118 bus test systems are assessed for various objectives to determine water evaporation algorithm’s (WEA efficiency in handling the OPF problem after satisfying constraints. Comparative study with other established techniques demonstrate competitiveness of WEA in treating varied objectives. It achieved superior results for all the objectives considered. The algorithm is found to minimize its objective values by great margins even in case of large test system. Statistical analysis of all the cases using Wilcoxon’s signed rank test resulted in p-values much lower than the required value of 0.05, thereby establishing the robustness of the applied technique. Best performance of the algorithm are obtained for voltage deviation minimization and voltage stability index minimization objectives in case of IEEE 30 and IEEE 118 bus test systems respectively.
Kolb, Gregory J [Albuquerque, NM
2012-02-07
A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.
A modified teaching–learning based optimization for multi-objective optimal power flow problem
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher
2014-01-01
Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques
International Nuclear Information System (INIS)
Zehar, Khaled; Sayah, Samir
2008-01-01
Harmful ecological effects caused by the emission of gaseous pollutants like sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ), can be reduced by load adequate distribution between power plants. However, this leads to a noticeable increase in their operating cost. In order to eliminate this conflict, and to study the trade-off relation between fuel cost and emissions, an approach to solve this multiobjective environmental/economic load dispatch problem, based on an efficient successive linear programming technique is proposed. Simulation results on the Algerian 59-bus power system prove the efficiency of this method thus confirming its capacity to solve the environmental/economic power dispatch problem
Holomorphic Embedded Load Flow for Autonomous Spacecraft Power Systems, Phase II
National Aeronautics and Space Administration — The proposed innovation advances the ability to apply the Holomorphic Embedding Load Flow Technology (HELM) method to provide deterministic load flow modeling for...
User-friendly tool for power flow analysis and distributed generation ...
African Journals Online (AJOL)
The intent of power distribution companies (DISCOs) is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG) units on the distribution networks. However, to ...
Directory of Open Access Journals (Sweden)
Mehmet KURBAN
2007-03-01
Full Text Available In this paper, the economic dispatch and optimal power flow (OPF methods for the purpose of supplying the load demand with minimum cost is used for 22-bus 380-kV power system in Turkey which consists of 8 thermal plants operated by EUAS (Electricity Generation Co. Inc.and the results found are analyzed comparatively. The results of analysis are given in tables and figures. The analysis made is implemented by the software using MATLAB®. Furthermore, the software can be used for different power systems by using the graphical user interface (GUI. All data used in this study is taken from TEIAS (Transmission System Operator of Turkey and EUAS.
DEFF Research Database (Denmark)
Knoop, Hans Henrik
2006-01-01
FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...
Viscous dissipation of a power law fluid in an oscillatory pipe flow
Energy Technology Data Exchange (ETDEWEB)
Herrera Velarde, J. R. [Instituto Tecnologico de Zacatepec, Zacatepec, Mor. (Mexico); Zenit, R; Mena, B. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2001-08-01
The flow field in an oscillatory pipe is studied theoretically for a generalized Newtonian fluid model. The velocity and temperature fields are obtained for the case in which the mean velocity caused by the pressure gradient is of the same order as the oscillation velocity. The momentum and the energy conservation equations are solved and analytic expressions for the velocity and temperature fields are found. The nature of the velocity and temperature profiles is explored for a range of parameters. In general, it can be concluded that the temperature rise within the fluid increases with the speed of oscillation as the value of the power parameter increases. An effective heat transfer coefficient is calculated and plotted as a function of the normalized oscillation speed. The cases of a Newtonian, shear-thinning and shear-thickening fluid are analysed. [Spanish] Se presenta un estudio teorico de un flujo oscilatorio en una tuberia para un fluido tipo ley de potencia. Las ecuaciones de momentum y energia se resuelven y se encuentran soluciones analiticas para los campos de velocidad y temperatura. Se obtienen resultados pare el caso en que la velocidad media debido al gradiente de presion es de la misma magnitud que la velocidad de oscilacion. Se exploran la naturaleza de los campos de velocidad y temperatura como funcion de los parametros dominantes. En general, concluimos que el incremento de temperatura en el fluido aumenta como funcion de la rapidez de oscilacion y del parametro de potencia. Se calcula un coeficiente de transferencia efectivo y se grafica como funcion de la rapidez de oscilacion adimensional. Los liquidos newtoniano, pseudo plastico y dilatante son analizados.
Directory of Open Access Journals (Sweden)
Y.N. Vijay Kumar
2016-12-01
Full Text Available The utilization of electrical energy due to urbanization and industrialization is increasing day by day, and due to this, there is chance of increasing the uncertainties in a given power system and that affects the economy of the country. The conventional power system in the presence of flexible AC transmission system (FACTS controllers is an alternative to solve this problem and can increase the power system capability to handle rapid changes in operating conditions of the system. In general, multi-line FACTS controllers are effective than single line FACTS controllers. In this paper, a detailed mathematical modeling of IPFC is presented and the effect of an optimal location is also analyzed. A novel optimization algorithm i.e. modified BAT algorithm is proposed to solve optimal power flow problem in the presence of IPFC including system constraints and device limits. The proposed methodology has been tested on standard test systems.
Rogelio, Garcia Retegui; Gustavo, Uicich; Mario, Benedetti; Gilles, Le Godec; Konstantinos, Papastergiou
2015-01-01
In the framework of a Transfer line (TT2) Consolidation Programme, a number of studies on Energy cycling have been commissioned. Part of this work involves the study of dierent power electronic system topologies for magnet energy recovery. In this report, the use of a boost front-end converter supplying DC link of a 4-quadrant magnet supply is analysed. The key objective of the study is to find control strategies that result in the control of the peak power required from the power network as well as to recover the magnet energy into capacitor banks with controlled voltage fluctuation. The study comprises the modelling of the system by means of the method of state averaging and the development of regulation strategies to energy management. The proposed control strategies can be divided in two groups: in the first group, the magnet current is used to define the reference for the control system, while in the second group this current is unknown and some strategies are devised to limit the power drawn from the el...
International Nuclear Information System (INIS)
Rizki Firmansyah Setya Budi; Sarjiya; Sasongko Pramono Hadi
2016-01-01
The purpose of power system operation is to supply power with good quality and minimum generation cost. Quality requires cost hence to obtain such purpose, an optimization with objective functions that target on maximizing cost and, at the same time, minimizing cost needs to be carried out. The objective of the research is to obtain optimal power flow (OPF) condition in terms of generation cost and power quality on a system with nuclear option at peak load hours by incorporating two objective functions fuel cost and flat voltage profile. The fuel cost objective function is to minimize the system generation cost while flat voltage profile is to maximize power quality by minimizing voltage difference/variation. The study was conducted through literature study, determining objective functions, incorporating the objective functions, model simulation using case example and sensitivity analysis. The case example used is the IEEE 9 bus system that has been added fuel function of nuclear power plant (NPP), coal power plant (CPP), and gas turbine power plant (GTPP). ETAP12.6.0 software is used for the simulation. The sensitivity analysis was performed by changing the weighting value of each objective function. The results show that OPF will be reach 60 % weight on fuel costs and 40 % on flat voltage profile. The optimal generation cost is $ 7266/hour and the difference of maximum to minimum voltage is 2.85 %. CPP generates 33.2 MW + 22.1 MVar and GTPP 80.7 MW + 13.8 MVar. Meanwhile NPP generates 89.9 MW + 12.9 MVar and is economic when generating less than 90 MW. (author)
Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF
International Nuclear Information System (INIS)
Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol
2014-01-01
Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow
Sevda, Surajbhan; Abu-Reesh, Ibrahim M
2018-03-21
A novel two chamber up-flow microbial desalination cell (UMDC) was designed for evaluating desalination of real seawater with simultaneous wastewater treatment and energy generation. Two UMDCs were hydraulically connected in continuous flow mode (cascade mode) and operated at ten different hydraulic retention times (HRTs) [120 h to 12 h] and salt retention times (SRTs) [40 h to 4 h] for improved performance of chemical oxygen demand (COD) and salt removal. These UMDCs were operated at different combinations of high power (higher external resistance) and high current (low external resistance) mode to find the most suitable conditions for obtaining higher COD removal, salt removal, power production and current generation. The optimum HRT and SRT were 60 h and 40 h, respectively. The highest salt removal achieved was 72% at SRT of 40, while the highest COD removal was 83% at a HRT of 60 h. A maximum current density of 2.375 A/m 2 was obtained, while the maximum power density was 5.879 W/m 2 . The obtained results give an overlook for the scale up of UMDCs in the future. In the entire system, membrane fouling is still a major problem. As the operation time increases, this resulted in low power generation and low salt removal efficiency. The UMDCs can function as sustainable and alternative solution for real wastewater treatment and seawater desalination with resource recovery and power production.
International Nuclear Information System (INIS)
Jung, Yun Sik; Lee, Jae Young; Kim, Man Woong
2004-01-01
The moderator cooling system to the Calandria tank of CANDU nuclear power plant provides an alternative pass of heat sink during the hypothetical loss of coolant accident. Also, the neutron population in the CANDU plant can be affected by the moderator temperature change which strongly depends on the circulating flow pattern in the Calandria tank. It has been known that there are three distinguished flow patterns: the buoyancy dominated flow, the momentum dominated flow, and the mixed type flow. The Canadian Nuclear Safety Commission (CNSC) recommended that a series of experimental works should be performed to verify the three dimensional codes. Two existing facilities, SPEL (1982) and STERN (1990), have produced experimental data for these purposes. The present work is also motivated to build up a new scaled experimental facility named HGU for the same purposes. CANDU-6 was selected as the target plant to be scaled down. In the design for the scaled facility, the knowledge on the flow regime transitions in the circulating flow was imperative. In the present study, to pave the way for the scaling, the flow pattern maps of circulating flow were constructed based on the Reynolds number and Archimedes number. The CFX code was employed with real meshes to represent all calandria tubes in the tank. The flow pattern maps were constructed for SPEL, STERN, HGU, and CANDU6. As the key transition criterion useful for scaling law, a new Archimedes number considering the jet impingement of the feed water in the Calandria tank was found. The transition of flow patterns was made with the same Archimedes number for CANDU6, STERN and HGU. However, SPEL which has third of the modified Archimedes number showed different maps in the wider region of mixed flow pattern was observed. It was found that the Archimedes number considering the inlet nozzle velocity plays the key role in patterns classification. Also, it can be suggested that the moderator cooling system needs to be designed
DEFF Research Database (Denmark)
Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu
2017-01-01
This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...... forecast information is not fully utilized. While model predictive control (MPC) as a look ahead policy can integrate the updated forecast in the optimization process. The proposed hybrid optimization approach makes full use of the advantages of ADP and MPC to obtain a better solution by using the real...
DEFF Research Database (Denmark)
Wang, Li; Chen, Shiang-Shong; Lee, Wei-Jen
2009-01-01
This paper presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping enhancement of a novel hybrid wind and marine-current farm (MCF) connected to a large power grid. The performance of the studied wind farm (WF......) is simulated by an equivalent 80-MW induction generator (IG) while an equivalent 60-MW IG is employed to simulate the characteristics of theMCF. A damping controller for the SMES unit is designed by using modal control theory to contribute effective damping characteristics to the studied combined WF and MCF...
Knowledge as Inventory: Near-Optimizing Knowledge and Power Flows in Edge Organizations (Phase One)
National Research Council Canada - National Science Library
MacKinnon, Douglas J
2005-01-01
.... We hypothesize that analyzing the stocks and flows of perishable knowledge inventory" in organizations, analogous to analyzing those of perishable physical goods inventory in a supply chain, uncovers...
Papastergiou, Konstantinos; Maestri, Sebastian; Retegui, Rogelio Garcia; Uicich, Gustavo; Benedetti, Mario; Carrica, Daniel
2017-01-01
In the framework of a Transfer line (TT2) Consolidation Programme, a number of studies on Energy cycling have been commissioned. Part of this work involves the study of diﬀerent power electronic system topologies for magnet energy recovery. The key objective of the study is to ﬁnd topologies and control strategies that result in the control of the peak power required from the power network as well as to recover the magnet energy into capacitor banks with controlled voltage ﬂuctuation. In previous reports, the use of a boost front-end converter and two-quadrant (2Q) converter supplying DC link of a four-quadrant magnet supply were analyzed. From this analysis, diﬀerent features and ﬁgures of merit were considered in order to compare the structures, which allowed to deﬁne some considerations that a proper topology should have. Consequently, these considerations were used to deﬁne some novel topologies. The previous topologies are brieﬂy summarized, as a starting point to develop some novel struc...
Mahamood, Rasheedat M.
2018-01-01
Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.
Energy Technology Data Exchange (ETDEWEB)
Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)
DEFF Research Database (Denmark)
Kamel, S.; Jurado, F.; Chen, Zhe
2015-01-01
This paper presents an implicit modeling of Static Synchronous Series Compensator (SSSC) in Newton–Raphson load flow method. The algorithm of load flow is based on the revised current injection formulation. The developed model of SSSC is depended on the current injection approach. In this model...
Directory of Open Access Journals (Sweden)
M. M. Pedersen
2017-11-01
Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the
Directory of Open Access Journals (Sweden)
BHUVANESWARI, M. C.
2013-11-01
Full Text Available FPGAs are increasingly being used to implement data path intensive algorithms for signal processing and image processing applications. In High Level Synthesis of Data Flow Graphs targeted at FPGAs, the effect of interconnect resources such as multiplexers must be considered since they contribute significantly to the area and switching power. We propose a binding framework for behavioral synthesis of Data Flow Graphs (DFGs onto FPGA targets with power reduction as the main criterion. The technique uses a multi-objective GA, NSGA II for design space exploration to identify schedules that have the potential to yield low-power bindings from a population of non-dominated solutions. A greedy constructive binding technique reported in the literature is adapted for interconnect minimization. The binding is further subjected to a perturbation process by altering the register and multiplexer assignments. Results obtained on standard DFG benchmarks indicate that our technique yields better power aware bindings than the constructive binding approach with little or no area overhead.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.J.; Yang, X.T.; Jiang, S.Y. [Tsinghua Univ., Beijing, BJ (China). Inst. of Nuclear Energy Technology
2004-08-01
The experiments were performed on the test loop HRTL-5, which simulates the geometry and system design of the 5 MW nuclear heating reactor. In a wide range of inlet sub-cooling, various flow instabilities were observed at p = 0.1 MPa and p = 1.5 MPa. Because of the different geometry design and operating conditions between the heating reactors and the boiling water reactors, the flow behavior presents great difference. Analysis shows: (1) under heating reactor conditions, sub-cooled boiling, condensation and void flashing are the fundamental thermodynamic processes; (2) sub-cooled boiling, condensation, void flashing and the compressibility of the steam space play an important role in the flow instabilities of the natural circulation system; (3) sub-cooled boiling instability, flashing instability, and flow excursion are the special instabilities at nuclear heating reactor conditions. (orig.)
Ultra-Low-Power High-Frequency Micro-Vortex Generators for Transonic Flow Control Project
National Aeronautics and Space Administration — Active flow control to prevent or delay boundary layer separation dramatically improves the performance of air vehicles in critical regions of the flight envelope....
Knowledge as Inventory: Near-Optimizing Knowledge and Power Flows in Edge Organizations (Phase One)
National Research Council Canada - National Science Library
MacKinnon, Douglas J
2005-01-01
.... We begin by describing knowledge as a set of discrete yet perishable skills, and consider how these perishable skills flow through organizations in response to demand triggered by environmental changes...
Thermal-wave balancing flow sensor with low-drift power feedback
Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt
2014-01-01
A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the
Model predictive control for power flows in networks with limited capacity
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Bendtsen, Jan Dimon
2012-01-01
We consider an interconnected network of consumers powered through an electrical grid of limited capacity. A subset of the consumers are intelligent consumers and have the ability to store energy in a controllable fashion; they can be filled and emptied as desired under power and capacity...... ensuring high performance....
Thermal energy storage for coal-fired power generation
Energy Technology Data Exchange (ETDEWEB)
Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.
1990-11-01
This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.
Balancing power production and instream flow regime for small scale hydropower
Perona, P.; Gorla, L.; Characklis, G. W.
2013-12-01
Flow diversion from river and torrent main stems is a common practice to feed water uses such run-of-river and mini-hydropower, irrigation, etc. Considering the worldwide increasing water demand, it becomes mandatory to take the importance of riparian ecosystems and related biodiversity into account before starting such practices. In this paper, we use a simple hydro-economic model (Perona et al., 2013, Gorla and Perona, 2013) to show that redistribution policies at diversion nodes allow for a clear bio-economic interpretation of residual flows. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating natural-like flow releases while maximizing the aggregated economic benefits of both the riparian environment and the traditional use (e.g., hydropower). We show that both static and dynamic release polices such Minimal Flow, and Proportional/Non-proportional Repartitions, respectively, can all be represented in terms of PEMU, making explicit the value of the ecosystem health underlying each policy. The related ecological and economical performances are evaluated by means of hydrological/ecological indicators. We recommend taking this method into account as a helpful tool guiding political, economical and ecological decisions when replacing the inadequate concept of Minimum Flow Requirement (MFR) with dynamic ones. References Perona, P., D. Dürrenmatt and G. Characklis (2013) Obtaining natural-like flow releases in diverted river reaches from simple riparian benefit economic models. Journal of Environmental Management, 118: 161-169, http://dx.doi.org/10.1016/j.jenvman.2013.01.010 Gorla, L. and P. Perona (2013) On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 489: 98- 107, http://dx.doi.org/10.1016/j.jhydrol.2013.02.043
Hu, Bin; Kieweg, Sarah L
2012-07-15
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.
The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids
Hu, Bin; Kieweg, Sarah L.
2012-01-01
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391
Wind power planning: assessing long-term costs and benefits
International Nuclear Information System (INIS)
Kennedy, Scott
2005-01-01
In the following paper, a new and straightforward technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic load duration curves to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. The model is applied to potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO 2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on CO 2 charges, and capital costs for wind turbines and IGCC plant is also discussed. The methodology is intended for use by energy planners in assessing the social benefit of future investments in wind power
Prospects for advanced coal-fuelled fuel cell power plants
International Nuclear Information System (INIS)
Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.
1994-01-01
As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
Directory of Open Access Journals (Sweden)
Heba Ahmed Hassan
2017-01-01
Full Text Available This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO algorithm for Optimal Power Flow (OPF of two-terminal High Voltage Direct Current (HVDC electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm.
Power Flow Analysis of HVAC and HVDC Transmission Systems for Offshore WindParks
DEFF Research Database (Denmark)
da Silva, Filipe Miguel Faria; Castro, Rui
2009-01-01
As the onshore wind resource is running shorter, wind power promoters are paying attention to the offshore resources. As in most cases there is no load offshore, wind power must be transmitted to the main land. To do so, two options are available: HVAC and HVDC transmission systems. In this paper...... that HVAC solution is limited by the distance to shore and by the wind transmitted power. HVDC options do not show these limitations, but are more expensive and more delicate to deal with, because there is a lack of operational experience, so far....
Supervisory Control for Real Time Reactive Power Flow Optimization in Islanded Microgrids
DEFF Research Database (Denmark)
Milczarek, Adam; Vasquez, Juan Carlos; Malinowski, Mariusz
2013-01-01
A microgrid (MG) is a local energy system consisting of a number of energy sources, energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs include wind, solar or other renewable energy sources. MGs provide flexibility, reduce the main electricity grid...... is addressed to locally readjust converters operation to attain global efficiency. An algorithm is presented by formulating and solving the power sharing optimization problem in a two-level approach. The objective function is the sum of the apparent power transferred, whose minimization reduces total power...
Modelling turbulent fluid flows in nuclear and fossil-fired power plants
International Nuclear Information System (INIS)
Viollet, P.L.
1995-06-01
The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs
Energy Technology Data Exchange (ETDEWEB)
Wilson, David G.; Robinett, Rush D. III [Sandia National Laboratories, Albuquerque, NM (United States). Energy, Resources and Systems Analysis Center
2010-07-01
The swing equations for renewable generators connected to the grid are developed and a simple wind turbine with UPFC is used as an example. The swing equations for renewable generator are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and nonconservative systems to enable a two-step, serial analysis and design procedure. This paper presents the analysis and numerical simulation results for a nonlinear control design example that includes the One-Machine Infinite Bus (OMIB) system with a Unified Power Flow Control (UPEC) and applied to a simplified wind turbine generator. The needed power and energy storage/charging responses are also determined. (orig.)
Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
Vanhauteghem, D; Demeyere, K; Callaert, N; Boelaert, A; Haesaert, G; Audenaert, K; Meyer, E
2017-08-15
Fungal contamination of metalworking fluids (MWF) is a dual problem in automated processing plants because resulting fungal biofilms obstruct cutting, drilling, and polishing machines. Moreover, some fungal species of MWF comprise pathogens such as Fusarium solani Therefore, the development of an accurate analytical tool to evaluate conidial viability in MWF is important. We developed a flow cytometric method to measure fungal viability in MWF using F. solani as the model organism. To validate this method, viable and dead conidia were mixed in several proportions and flow was cytometrically analyzed. Subsequently, we assessed the fungicidal activity of two commercial MWF using flow cytometry (FCM) and compared it with microscopic analyses and plating experiments. We evaluated the fungal growth in both MWF after 7 days using quantitative PCR (qPCR) to assess the predictive value of FCM. Our results showed that FCM distinguishes live from dead conidia as early as 5 h after exposure to MWF, whereas the microscopic germination approach detected conidial viability much later and less accurately. At 24 h, microscopic analyses of germinating conidia and live/dead analyses by FCM correlated well, although the former consistently underestimated the proportion of viable conidia. In addition, the reproducibility and sensitivity of the flow cytometric method were high and allowed assessment of the fungicidal properties of two commercial MWF. Importantly, the obtained flow cytometric results on viability of F. solani conidia at both early time points (5 h and 24 h) correlated well with fungal biomass measurements assessed via a qPCR methodology 7 days after the start of the experiment. IMPORTANCE This result shows the predictive power of flow cytometry (FCM) in assessing the fungicidal capacity of MWF formulations. It also implies that FCM can be implemented as a rapid detection tool to estimate the viable fungal load in an industrial processing matrix (MWF). Copyright © 2017
Application of power addition as modelling technique for flow processes: Two case studies
CSIR Research Space (South Africa)
de Wet, P
2010-05-01
Full Text Available through diaphragm valve and the fluidisation of a packed bed, are analysed as case studies. Empirical results are investigated for possible asymptotic bounds where after power addition is applied to the functional dependencies. The outcome is compared...
International Nuclear Information System (INIS)
Azizipanah-Abarghooee, Rasoul; Niknam, Taher; Malekpour, Mostafa; Bavafa, Farhad; Kaji, Mahdi
2015-01-01
Highlights: • Formulate probabilistic OPF with VPE, multi-fuel options, POZs, FOR of CHP units. • Propose a new powerful optimization method based on enhanced black hole algorithm. • Coordinate of TUs, WPPs, PVs and CHP units together in the proposed problem. • Evaluate the impacts of inputs’ uncertainties and their correlations on the POPF. • Use the 2m + 1 point estimated method. - Abstract: This paper addresses a novel probabilistic optimisation framework for handling power system uncertainties in the optimal power flow (OPF) problem that considers all the essential factors of great impact in the OPF problem. The object is to study and model the correlation and fluctuation of load demands, photovoltaic (PV) and wind power plants (WPPs) which have an important influence on transmission lines and bus voltages. Moreover, as an important tool of saving waste heat energy in the thermoelectric power plant, the power networks share of combined heat and power (CHP) has increased dramatically in the past decade. So, the probabilistic OPF (POPF) problem considering valve point effects, multi-fuel options and prohibited zones of thermal units (TUs) is firstly formulated. The PV, WPP and CHP units are also modeled. Then, a new method utilizing enhanced binary black hole (EBBH) algorithm and 2m + 1 point estimated method is proposed to solve this problem and to handle the random nature of solar irradiance, wind speed and load of consumers. The correlation between input random variables is considered using a correlation matrix. Finally, numerical results are presented and considered regarding the IEEE 118-busses, including PV, WPP, CHP and TU at several busses. The simulation and comparison results obtained demonstrate the broad advantages and feasibility of the suggested framework in the presence of dependent non-Gaussian distribution of random variables
Computations of steam flow and heat transfer in nuclear power plant condensers
International Nuclear Information System (INIS)
Yuan, A.
1997-01-01
To improve performance of its PWR nuclear power plants, Electricite de France has developed a performance monitoring system that checks simultaneously the operation of the components of the secondary system. The performance monitoring system is based on a computational software CITER for steady state runs. A one-dimensional condenser model has been developed. Application of this code to a nuclear power plant condenser shows that predicted values in good agreement with the design values
Control strategies for 2-quadrant converter used in grid power flow control
Maestri, Sebastian; Uicich, Gustavo; Benedetti, Mario; Papastergiou, Konstantinos; Le Godec, Gilles
2015-01-01
This work presents the analysis of a two-quadrant regulator connected to the DC-link of a 4-quadrant magnet supply. The key objective is to present some regulation strategies for controlling the peak power required from the power network as well as to recover the magnet energy into capacitor banks. A comparative study that highlights the trade off between the size of reactive elements, and the peak current drawn from the electrical network is presented.
Energy Technology Data Exchange (ETDEWEB)
Amador G, R.; Gonzalez M, V.M. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 03000 Mexico D.F. (Mexico)
1993-07-01
The National Commission of Nuclear Safety and Safeguards (CNSNS) requires to have calculation tools which allows it to make analysis independent of the behavior of the reactor core of Laguna Verde nuclear power plant (CNLV) with the purpose to support the evaluation and discharge activities of the fuel recharges licensing. The software package Fms (Fuel Management System) allows to carry out an analysis of the core of the BWR type reactors along the operation cycle to detect possible anomalies and/or helping in the fuel management. In this work it is reproduced the flow-power for the CNLV using the Presto code of the Fms software package. The comparison of results with the map used by the operators of CNLV shows good agreement between them. Another exercise carried out was the changes study that the axial and radial power outlines undergo as well as the thermohydraulic parameters (LHGR, APLHGR, CPR) when moving a control rod. The obtained results show that is had the experience to effect analysis of the reactor behavior using the Presto-Fms code therefore the study of the rest of the software package for the obtention of nuclear parameters used in this code is recommended. (Author)
Directory of Open Access Journals (Sweden)
F. Azma
2015-06-01
Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.
Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.
2017-10-01
Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.
Automated system for load flow prediction in power substations using artificial neural networks
Directory of Open Access Journals (Sweden)
Arlys Michel Lastre Aleaga
2015-09-01
Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
Zagrebaev, A. M.; Trifonenkov, A. V.; Trifonenkov, V. P.
2017-12-01
The effectiveness and the security of RBMK reactor operation depends on the accuracy of the control over reactor's parameters and their limitations. The processing of operational parameters archive helps to adjust different mathematical models and significantly widen their field of use. Pressure differential between common pressure header and steam separator is the sum of calculated pressure differential and friction loss on flow control valve. There is known mathematical software, which allows to adapt such model for each fuel channel using the archive. In this research it is suggested not to replace the regular mechanism with such approach, but to use the adapted mathematical model to calculate corrected values of power and flow, which were measured by regular means. Mathematical expressions and procedures for such approach are given.
A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Mike Maguire; Adel Sarofim; Changguan Yang; Hong-Shig Shim
2004-01-28
This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.
International Nuclear Information System (INIS)
Bharti, Ram P.; Harvie, Dalton J.E.; Davidson, Malcolm R.
2009-01-01
Electroviscous effects in steady, fully developed, pressure-driven flow of power-law liquids through a uniform cylindrical microchannel have been investigated numerically by solving the Poisson-Boltzmann and the momentum equations using a finite difference method. The pipe wall is considered to have uniform surface charge density and the liquid is assumed to be a symmetric 1:1 electrolyte solution. Electroviscous resistance reduces the velocity adjacent to the wall, relative to the velocity on the axis. The effect is shown to be greater when the liquid is shear-thinning, and less when it is shear-thickening, than it is for Newtonian flow. For overlapping electrical double layers and elevated surface charge density, the electroviscous reduction in the near-wall velocity can form an almost stationary (zero shear) layer there when the liquid is shear-thinning. In that case, the liquid behaves approximately as if it is flowing through a channel of reduced diameter. The induced axial electrical field shows only a weak dependence on the power-law index with the dependence being greatest for shear-thinning liquids. This field exhibits a local maximum as surface charge density increases from zero, even though the corresponding electrokinetic resistance increases monotonically. The magnitude of the electroviscous effect on the apparent viscosity, as measured by the ratio of the apparent and physical consistency indices, decreases monotonically as the power-law index increases. Thus, overall, the electroviscous effect is stronger in shear-thinning, and weaker in shear-thickening liquids, than it is when the liquid is Newtonian.
Thermal flow-sensor drift reduction by thermopile voltage cancellation via power feedback control
Dijkstra, Marcel; Lammerink, Theodorus S.J.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt
The research question that is addressed in this paper relates to the performance limitations of thermal flow sensors due to miniaturization. Sensor elements in current microflow sensors are mostly made by metal thin films. The problem is that thin-films reproduce poorly and that practically all
Quasisimilarity of helical flow of power-law fluids in concentric annuli
Czech Academy of Sciences Publication Activity Database
Filip, Petr; David, Jiří
2004-01-01
Roč. 45, - (2004), s. 97-107 ISSN 0920-4105 R&D Projects: GA AV ČR IAA2060004 Keywords : boreholes * concentric annuli * helical flow Subject RIV: BK - Fluid Dynamics Impact factor: 0.713, year: 2004
DEFF Research Database (Denmark)
Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid
2015-01-01
-based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...
Energy Technology Data Exchange (ETDEWEB)
Joseph Rabovitser
2009-06-30
, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
International Nuclear Information System (INIS)
Bernard, J.P.; Haekkinen, J.; Sarkomaa, P.
1997-01-01
A number of numerical studies on three-dimensional flows in reactor vessels of nuclear power plants have been carried out recently. The main reason for this is the phenomenon of inherent boron dilution. These studies have been done for Loviisa nuclear power plant as well. This presentation focuses on the three dimensional modeling of Loviisa's lower plenum with the commercial CFX code. The investigations particularly deal with the modeling of the two perforated plates located at the bottom and just below the core of the vessel. The perforated plates can be modeled as porous media in the CFX code. The model has been validated against available experimental data. Velocity profiles around the plates, the pressure drop through the plates, and the simulation of mixing factors have been investigated specifically. (author)