WorldWideScience

Sample records for flow heat exchangers

  1. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  2. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  3. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  4. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  5. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  6. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  7. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  8. Dynamics of the cross flow heat exchanger for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    A series of publications is available on the dynamic behaviour of heat exchangers (or heat transmitters, respectively), the subject of which is to deal with direct methods or with refined starting models for this general theme. The bridging between both these manners of advance remained as a problem. The author tried in his own investigation to solve the problem, and indeed by the selection of the correct starting model. He succeeded in this way, in that he removed conceptually a finned pipe from an arbitrary place of a heat exchanger and, furthermore, cut out from this particular pipe an arbitrary section. This section now does not stand alone for itself because the processes, which occur upstream of this section at the air-side and the water-side, are the input quantities of the section, which changes them due to its static and dynamic behaviour and emits them again as output quantities. The author, therefore, treats at first the dynamic behaviour of the section, which is represented in a signal flow diagram and which is used to derive approximate solutions from it. Furthermore, the author discusses the evident derivation of the total behaviour of heat exchangers.

  9. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  10. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  11. Investigation of the tube side flow distribution in heat exchangers

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Pyare, R.

    1977-01-01

    The tube side flow distribution in heat exchangers is being investigated through the solution of the governing equations of fluid mechanics with distributed resistances that simulate the presence of the tubes. The modeling scheme used in the analysis and the numerical methods of solving the governing equations are described. The analysis is applied to the CRBRP-Intermediate Heat Exchanger (IHX), where its tube side plenum is simulated by several models that approximate its spherical boundary. The flow field within the plenum and the distribution of the total flow rate among the tubes are determined by the analysis

  12. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  13. Geothermal heat exchanger with coaxial flow of fluids

    Directory of Open Access Journals (Sweden)

    Pejić Dragan M.

    2005-01-01

    Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.

  14. A novel compact heat exchanger using gap flow mechanism.

    Science.gov (United States)

    Liang, J S; Zhang, Y; Wang, D Z; Luo, T P; Ren, T Q

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  15. Flow analysis of an innovative compact heat exchanger channel geometry

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.

    2016-01-01

    Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.

  16. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    International Nuclear Information System (INIS)

    Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan

    2012-01-01

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  17. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  18. Flow induced vibration in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Soper, B.M.H.

    1981-01-01

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  19. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  20. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  1. A simplified method of calculating heat flow through a two-phase heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, Newtownabbey, Co Antrim, BT37 0QB Northern Ireland (United Kingdom)]. E-mail: yg.yohanis@ulster.ac.uk; Popel, O.S. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation); Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation)

    2005-10-01

    A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment.

  2. A simplified method of calculating heat flow through a two-phase heat exchanger

    International Nuclear Information System (INIS)

    Yohanis, Y.G.; Popel, O.S.; Frid, S.E.

    2005-01-01

    A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment

  3. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  4. Analysis of flow induced vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)

    1977-12-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  5. Analysis of flow induced vibration in heat exchangers

    International Nuclear Information System (INIS)

    Beek, A.W. van

    1977-01-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  6. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...

  7. Numerical simulation of two phase flows in heat exchangers

    International Nuclear Information System (INIS)

    Grandotto Biettoli, M.

    2006-04-01

    The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing

  8. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  9. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1997-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  10. Study on drop pressure and flow distribution of double-tube heat exchanger

    International Nuclear Information System (INIS)

    Liu Junqiang; Chen Minghui; Hu Yumin; Li Rizhu; Kong Dechun; Zhang Weijie

    2007-01-01

    The parallel connection channel pressure drop characters of the double-tube bundle heat exchange were experimentally investigated in this paper in order to find out how the flow of the heat exchanger is distributed and then to optimize the structure of heat exchanger according to the flow distribution. A double-tube bundle heat exchanger was built according to the similarity criteria. The experiment system was also built to test the optimization of the heat exchanger. The experiment results reveal that the calculating model is reliable and decreasing pipe space to optimize the heat exchanger is reasonable. (authors)

  11. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  12. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...

  13. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  14. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Chu, A.W.; Cho, S.M.

    1976-01-01

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  15. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  16. Heat transfer in a counterflow heat exchanger at low flow rates

    International Nuclear Information System (INIS)

    Hashimoto, A.; Hattori, N.; Naruke, K.

    1995-01-01

    A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)

  17. Numerical simulation of flow field in shellside of heat exchanger in nuclear power plant

    International Nuclear Information System (INIS)

    Wang Xinliang; Qiu Jinrong; Gong Zili

    2010-01-01

    Heat exchanger is the important equipment of nuclear power plant. Numerical simulation can give the detail information inside the heat exchange, and has been an effective research method. The geometric structure of shell-and-tube heat exchanger is very complex and it is difficult to simulate the whole flow field presently. According to the structure characteristics of the heat exchanger, a periodic whole-section calculation model was presented. The numerical simulation of flow field in shellside of heat exchange of a nuclear power plant was done by using this model. The results of simulation show that heat transfer in the periodic section of the heat exchange is uniform, the heat transfer is enhanced by using baffles in heat exchange, and frictional resistance is primary from the effect of segmental baffles. (authors)

  18. Flow vibrations and dynamic instability of heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Granger, S.; Langre, E. de

    1995-01-01

    This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs

  19. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  20. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  1. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  2. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  3. Analysis of Turbulence Models in a Cross Flow Pin Fin Micro-Heat Exchanger

    National Research Council Canada - National Science Library

    Lind, Eric

    2002-01-01

    ... of their physical significance to the complex flow environment of a pin fin, cross flow, micro-heat exchanger. Applications of this research include cooling of turbine blades and of closely spaced electronics.

  4. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2008-01-01

    A numerical study of flow and heat transfer characteristics is made in a double pipe heat exchanger with porous structures inserted in the annular gap in two configurations: on the inner cylinder (A) and on both the cylinders in a staggered fashion (B). The flow field in the porous regions is modelled by the Darcy-Brinkman-Forchheimer model and the finite volume method is used to solve the governing equations. The effects of several parameters such as Darcy number, porous structures thickness and spacing and thermal conductivity ratio are considered in order to look for the most appropriate properties of the porous structures that allow optimal heat transfer enhancement. It is found that the highest heat transfer rates are obtained when the porous structures are attached in configuration B especially at small spacing and high thicknesses

  5. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  6. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    International Nuclear Information System (INIS)

    Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru

    2009-01-01

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  7. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-06-21

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  8. The combined effects of wall longitudinal heat conduction and inlet fluid flow maldistribution in crossflow plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)

    2000-05-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)

  9. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  10. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  11. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  12. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2013-01-01

    Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating

  13. Heat exchanger designed as longitudinal counter flow equipment

    International Nuclear Information System (INIS)

    Ecker, H.

    1976-01-01

    An improvement for heat exchangers is described, which should make them suitable for use in a closed gas turbine cycle or in the primary loop of a gas-cooled high-temperature reactor with a helium turbine, as they have a small volume. It is proposed that the bundles of tubes should be divided into separate boxes, which are arranged in a hexagonal grid; the return pipes are arranged in a sheath in the centre of this grid and are welded to the cover of this. The subdivision into separate boxes makes maintenance easier. Constructional details are given, and there are 9 drawings. (UWI) [de

  14. A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chun Dong; Lee, Dong Hyun; Park, Byung-Sik; Choi, Jaejoon [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)

    2017-02-15

    In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST k-ω turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, S{sub f}, 0.3.

  15. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Mokamati, S.V.; Prasad, R.C.

    2003-01-01

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  16. Degradation of the performance of microchannel heat exchangers due to flow maldistribution

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Christensen, Dennis

    2012-01-01

    The effect of flow maldistribution on the performance of microchannel parallel plate heat exchangers is investigated using an established single blow numerical model and cyclic steady-state regenerator experiments. It is found that as the variation of the individual channel thickness...... in a particular stack (heat exchanger) increases the actual performance of the heat exchanger decreases significantly, deviating from the expected nominal performance. We show that this is due to both the varying fluid flow velocities in each individual channel and the thermal cross talk between the channels...

  17. An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger

    International Nuclear Information System (INIS)

    Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh

    2015-01-01

    This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger

  18. Development of gas-solid direct contact heat exchanger by use of axial flow cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akihiko; Yokomine, Takehiko [Kyushu University (Japan). Interdisciplinary Graduate School of Engineering Sciences; Nagafuchi, Tatsuro [Miura Co. Ltd., Matsuyamashi (Japan)

    2004-10-01

    A heat exchanger between particulate or granular materials and gas is developed. It makes use of a swirling gas flow similar to the usual cyclone separators but the difference from them is that the swirl making gas is issued into the cyclone chamber with downward axial velocity component. After it turns the flow direction near the bottom of the chamber, the low temperature gas receives heat from high temperature particles supplied from above at the chamber's center. Through this configuration, a direct contact and quasi counter-flow heat exchange pattern is realized so that the effective recovery of heat carried by particles is achieved. A model heat exchanger was manufactured via several numerical experiments and its performances of heat exchange as well as particle recovery were examined. Attaching a small particle diffuser below the particle-feeding nozzle brought about a drastic improvement of the heat exchange performance without deteriorating the particle recovery efficiency. The outlet gas temperature much higher than the particle outlet temperature was finally obtained, which is never realized in the parallel flow heat exchanger. (author)

  19. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.

    2013-01-01

    Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane

  20. Two models for the dynamics of a cross flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hopkinson, A [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-12-15

    Two models of a cross flow heat exchanger, a concentric tube counter flow model and a cross flow model, are studied theoretically. Differential equations describing the behaviour of the models are derived and from them equations for the steady state temperatures and the temperature transfer functions are obtained. (author)

  1. 3D CFD fluid flow and thermal analyses of a new design of plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-03-01

    Full Text Available The paper presents a Computational Fluid Dynamics (CFD numerical study for a new design of a plate heat exchanger with two different flow patterns. The impact of geometric characteristics of the two studied geometries of exchanger plates on the intensification process of heat transfer was considered. The velocity, temperature and pressure distributions along the heat exchanger were examined. The CFD results were validated against experimental data and a good agreement was achieved. The results revealed that geometrical arrangement of the plates strongly influence the fluid flow. An increase in the Reynolds number led to lowering the friction factor value and increasing the pressure drop. The configuration II of the plate heat exchanger resulted in lower outlet hot fluid temperature in comparison with the configuration I, which means improvement of heat transfer.

  2. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper

    2008-01-01

    -exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  3. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    Science.gov (United States)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  4. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  5. Heat exchanger

    International Nuclear Information System (INIS)

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  6. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  7. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  8. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  9. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  10. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  11. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  12. Acoustic scattering behavior of a 2D flame with heat exchanger in cross-flow

    NARCIS (Netherlands)

    Chen, L.S.; Polifke, W.; Hosseini, N.; Teerling, O. J.; Arteaga, I.L.; Kornilov, V.; De Goey, P.

    2016-01-01

    In practical heat production systems, premixed flames with cold heat exchanger in cross-flow is a widely used configuration. Self-excited thermoacoustic instabilities often occur in such systems. A practical way to predict the presence of the instabilities is the network model approach. In the

  13. Experimental study of heat transfer in a transverse flow around the heat exchanger tubes bank by lead

    International Nuclear Information System (INIS)

    Berezin, A.N.; Grabezhnaya, V.A.; Mikheev, A.S.; Parfenov, A.S.

    2014-01-01

    The results of the work to determine the heat transfer coefficient in crossflow by lead of pipes are presented. The study was conducted at supercritical pressure in the water circuit. There was a significant inequality in the distribution of the heat flow in different rows of the bundle of heat exchange tubes of corridor location at crossflow their lead. The experimentally determined heat transfer coefficients from the lead differ substantially from those generally accepted recommendations for the calculation of heat transfer at cross flow of rod bundle by liquid metal. The experimental results are close to those obtained earlier on the model with cross flow of heat exchanger tubes bundle by lead alloy with bismuth [ru

  14. Double tube heat exchanger with novel enhancement: Part I - flow development length and adiabatic friction factor

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)

    2012-04-15

    The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)

  15. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  16. Calculation of Heat Exchange and Changing Phase Ratio in Extended Flowing Heat Accumulators on Phase Transitions with Rectangular Inserts

    Directory of Open Access Journals (Sweden)

    I. G. Zorina

    2016-01-01

    Full Text Available To use the renewable power sources such as solar, wind, biogas, and others is complicated because of their sporadic supply. Thus and so, energy accumulation makes the user independent on the operating mode of the power source.Some of the heat accumulation methods can be realized with accumulators using phase transitions and based on the heat storage materials that change their state of aggregation during storage and rejection of thermal energy. In comparison with the gravel or liquid heat accumulators these devices are compact and provide high density of stored energy. To intensify heat exchange in such devices, are used highly heat-conductive metallic inсlusions of different shape, capsular laying or heat storage materials placed in the form of inserts, extended heat exchange surfaces, etc.Heat transfer of accumulator using phase transitions is calculated through solving a nonlinear Stefan problem. For calculation, are, usually, used various sufficiently time-consuming methods.The paper presents a heat transfer calculation when changing the aggregation state of substance. Its recommendation is to use the analytical dependences that allow calculation of heat exchange characteristics with charging phase transition accumulators of a capsular type in which a heat storage material is in cross-inserts.It is assumed that heat transfer in the coolant flow is one-dimensional, thermal and physical properties of heat storage material and coolant are constant, and heat transfer in the accumulator using phase transitions is quasi-stationary.

  17. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  18. Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger

    International Nuclear Information System (INIS)

    Park, Jang Min; Yoon, Seok Ho; Lee, Kong Hoon; Song Chan Ho

    2014-01-01

    This paper presents numerical study on flow and heat transfer characteristics in micro-gap plate heat exchanger. In particular, we investigate the effect of flow inertia on the flow distribution from single main channel to multiple parallel micro-gaps. The flow regime of the main channel is varied from laminar regime (Reynolds number of 100) to turbulent regime (Reynolds number of 10000) by changing the flow rate, and non-uniformity of the flow distribution and temperature field is evaluated quantitatively based on the standard deviation. The flow distribution is found to be significantly affected by not only the header design but also the flow rate of the main channel. It is also observed that the non-uniformity of the temperature field has its maximum at the intermediate flow regime

  19. Numerical simulation of two phase flows in heat exchangers

    International Nuclear Information System (INIS)

    Grandotto Biettoli, M.

    2006-04-01

    The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)

  20. Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow

    International Nuclear Information System (INIS)

    Kawamura, Koji

    1986-01-01

    The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)

  1. Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers

    Directory of Open Access Journals (Sweden)

    H. A. Navarro

    2007-12-01

    Full Text Available Due to the wide range of design possibilities, simple manufactured, low maintenance and low cost, cross-flow heat exchangers are extensively used in the petroleum, petrochemical, air conditioning, food storage, and others industries. In this paper a mathematical model for cross-flow heat exchangers with complex flow arrangements for determining epsilon -NTU relations is presented. The model is based on the tube element approach, according to which the heat exchanger outlet temperatures are obtained by discretizing the coil along the tube fluid path. In each cross section of the element, tube-side fluid temperature is assumed to be constant because the heat capacity rate ratio C*=Cmin/Cmax tends toward zero in the element. Thus temperature is controlled by effectiveness of a local element corresponding to an evaporator or a condenser-type element. The model is validated through comparison with theoretical algebraic relations for single-pass cross-flow arrangements with one or more rows. Very small relative errors are obtained showing the accuracy of the present model. epsilon -NTU curves for several complex circuit arrangements are presented. The model developed represents a useful research tool for theoretical and experimental studies on heat exchangers performance.

  2. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  3. Oscillating-flow loss test results in rectangular heat exchanger passages

    Science.gov (United States)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  4. The flow in an oil/water plate heat exchanger for the automotive industry

    OpenAIRE

    Lozano , A.; Barreras , F.; Fueyo , N.; Santodomingo , S.

    2008-01-01

    The flow in an oil/water plate heat exchanger for the automotive industry correspondence: Corresponding author. Tel.: +34976716463; fax: +34976716456. (Lozano, A.) (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - SPAIN (Lozano, A.) SPAIN (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - S...

  5. Numerical simulation of turbine cascade flow with blade-fluid heat exchange

    Czech Academy of Sciences Publication Activity Database

    Louda, Petr; Sváček, P.; Fořt, J.; Fürst, J.; Halama, J.; Kozel, Karel

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7206-7214 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : turbomachinery * heat exchange * turbulent flow * coupled problem Subject RIV: BA - General Mathematics Impact factor: 1.600, year: 2013

  6. Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2007-01-01

    In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency

  7. Theory and design of heat exchanger : Double pipe and heat exchanger in abnormal condition

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book introduces theory and design of heat exchanger, which includes HTRI program, multiple tube heat exchanger external heating, theory of heat transfer, basis of design of heat exchanger, two-phase flow, condensation, boiling, material of heat exchanger, double pipe heat exchanger like hand calculation, heat exchanger in abnormal condition such as Jackets Vessel, and Coiled Vessel, design and summary of steam tracing.

  8. Two-phase flow instability in a liquid nitrogen heat exchanger, 2

    International Nuclear Information System (INIS)

    Kondoh, Tetsuya; Fukuda, Kenji; Hasegawa, Shu; Yamada, Hidetomo; Ryu, Hiroyuki.

    1988-01-01

    Experimental and analytical investigations are conducted on flow instability in a vertically installed liquid nitrogen shell and tube type heat exchanger. The experiments are carried out by making use of water steam as a secondary fluid and it is observed that flow instability occurs in the range of small inlet flow rate. Mode analysis of the flow instability oscillation reveals that there exists a fundamental mode and its higher harmonics up to the fourth. As the period of the fundamental mode is nearly equal to the transit time for a fluid particle to travel through the heated tube, it is suggested that this flow instability is of the density wave type. It is shown that the amount of exchanged heat, as well as the pressure drop, decrease when unstable flow oscillation occurs. An analysis of the static heat transfer and pressure drop characteristics can simulate the experimental results in the stable region. Linear stability analysis is also carried out to yield the stability map as well as the period of flow oscillation, which proved to agree with the experimental data qualitatively. (author)

  9. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  10. Modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications

    International Nuclear Information System (INIS)

    Missirlis, D.; Yakinthos, K.; Storm, P.; Goulas, A.

    2007-01-01

    In the present work further numerical predictions for the flow field through a specific type of a heat exchanger, which is planned to be used in the exhaust nozzle of aircraft engines. In order to model the flow field through the heat exchanger, a porous medium model is used based on a simple quadratic relation, which connects the pressure drop with the inlet air velocity in the external part of the heat exchanger. The aim of this work is to check the applicability of the quadratic law in a variety of velocity inlet conditions configured by different angles of attack. The check is performed with CFD and the results are compared with new available experimental data for these inlet conditions. A detailed qualitative analysis shows that although the quadratic law has been derived for a zero angle of attack, it performs very well for alternative non-zero angles. These observations are very helpful since this simple pressure drop law can be used for advanced computations where the whole system of the exhaust nozzle together with the heat exchangers can be modeled within a holistic approach

  11. Study of two-phase flow redistribution between two passes of a heat exchanger

    International Nuclear Information System (INIS)

    Mendes de Moura, L.F.

    1989-04-01

    The object of the present thesis deals with the study of two-phase flow redistribution between two passes of a heat exchanger. Mass flow rate measurements of each component performed at each channel outlet of the second pass allowed us to determine the influence of mass flow, gas quality, flow direction (upward or downward) and common header geometry upon flow redistribution. Local void fraction inside common header was measured with an optical probe. A two-dimensional two-phase flow computational code was developed from a two-fluid model. Modelling of interfacial momentum transfer was used in order to take into account twp-phase flow patterns in common headers. Numerical simulation results show qualitative agreement with experimental results. Present theoretical model limitations are analysed and future improvements are proposed [fr

  12. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    Science.gov (United States)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  13. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    OpenAIRE

    Zhongchao Zhao; Kai Zhao; Dandan Jia; Pengpeng Jiang; Rendong Shen

    2017-01-01

    As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as working fluid. The thermal properties of supercritical LNG were tested by utilizing t...

  14. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  15. Behavior of cross flow heat exchangers during the cooling and dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    The task of cross flow heat exchangers in room air engineering consists on the one hand in heating up the air and, on the other hand, in the simultaneous cooling and dehumidification. The facilities used for this purpose generally are multi-row finned pipe heat exchangers which when used for cooling contain cold water or brine as the working fluid. The use of directly evaporating freezing mixtures may not be included in this consideration. The model establishment for the dynamic and the static behavior of multi-row cross flow heat exchangers during cooling and dehumidification of air has been derived in this contribution. The representation is performed for the dynamic case in the complex, display range of the Laplace transformation. A comparison with experimental results can be done very simply by means of measurements of the frequency-responce curves in the form of Bode diagrams. The description of the static behaviour may be applied as a basis for humidity controls with more favourable energy utilization.

  16. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  17. Experimental and Numerical Design and Optimization of a Counter-Flow Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Bahrami Salman

    2018-01-01

    Full Text Available A new inexpensive counter-flow heat exchanger has been designed and optimized for a vapor-compression cooling system in this research. The main aim is to experimentally and numerically evaluate the effect of an internal heat exchanger (IHX adaptation in an automotive air conditioning system. In this new design of IHX, the high-pressure liquid passes through the central channel and the low-pressure vapor flows in several parallel channels in the opposite direction. The experimental set-up has been made up of original components of the air conditioning system of a medium sedan car, specially designed and built to analyze vehicle A/C equipment under real operating conditions. The results show that this compact IHX may achieve up to 10% of the evaporator capacity while low pressure drop will be imposed on this refrigeration cycle. Also, they confirm considerable decrease of compressor power consumption (CPC, which is intensified at higher evaporator air flow. A significant improvement of the coefficient of performance (COP is achieved with the IHX employment too. The influence of operating conditions has been also discussed in this paper. Finally, numerical analyses have been briefly presented, which bring more details of the flow behavior and heat transfer phenomena, and help to determine the optimal arrangement of channels.

  18. Vibration of heat exchange components in liquid and two-phase cross-flow

    International Nuclear Information System (INIS)

    Pettigrew, M.J.

    1978-05-01

    Heat exchange components must be analysed at the design stage to avoid flow-induced vibration problems. This paper presents information required to formulate flow-induced vibration excitation mechanisms in liquid and two-phase cross-flow. Three basic excitation mechanisms are considered, namely: 1) fluidelastic instability, 2) periodic wake shedding, and 3) response to random flow turbulence. The vibration excitation information is deduced from vibration response data for various types of tube bundles. Sources of information are: 1) fundamental studies on tube bundles, 2) model testing, 3) field measurements, and 4) operating experiences. Fluidelastic instability is formulated in terms of dimensionless flow velocity and dimensionless damping; periodic wake shedding in terms of Strouhal number and lift coefficient; and random turbulence excitation in terms of statistical parameters of random forces. Guidelines are recommended for design purposes. (author)

  19. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    Science.gov (United States)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  20. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Directory of Open Access Journals (Sweden)

    Hussain Alamin

    2016-01-01

    Full Text Available Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  1. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Science.gov (United States)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  2. Investigation and application of reduced-order methods for flows study in heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Pomarede, M.

    2012-01-01

    The objective of this thesis is to study the ability of model reduction for investigations of flow-induced vibrations in heat exchangers tube bundle systems.These mechanisms are a cause of major concern because heat exchangers are key elements of nuclear power plants and on-board stoke-holds.In a first part, we give a recall on heat exchangers functioning and on vibratory problems to which they are prone. Then, complete calculations leaded with the CFD numerical code Code-Saturne are carried out, first for the flow around a single circular cylinder (fixed then elastically mounted) and then for the case of a tube bundle system submitted to cross-flow. Reduced-order method POD is applied to the flow resolution with fixed structures. The obtained results show the efficiency of this technique for such configurations, using stabilization methods for the dynamical system resolution in the tube-bundle case. Multiphase-POD, which is a method enabling the adaptation of POD to fluid-structure interactions, is applied. Large displacements of a single cylinder elastically mounted under cross-flow, corresponding to the lock-in phenomenon,are well reproduced with this reduction technique. In the same way, large displacements of a confined moving tube in a bundle are shown to be faithfully reconstructed.Finally, the use of model reduction is extended to parametric studies. First, we propose to use the method which consists in projecting Navier-Stokes equations for several values of the Reynolds number on to a unique POD basis. The results obtained confirm the fact that POD predictability is limited to a range of parameter values. Then, a basis interpolation method, constructed using Grassmann manifolds and allowing the construction of a POD basis from other pre-calculated basis, is applied to basic cases. (author)

  3. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  4. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  5. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  6. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Stambaugh, N.; Closser, W. Jr.; Mollerus, F.J.

    1991-12-01

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  7. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  8. Slug-flow dynamics with phase change heat transfer in compact heat exchangers with oblique wavy walls

    Science.gov (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji

    2017-11-01

    With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

  9. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  10. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  11. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  12. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  13. Experiments on vibration of heat exchanger tube arrays in cross flow

    International Nuclear Information System (INIS)

    Blevins, R.D.; Gibert, R.J.; Villard, B.

    1981-08-01

    A series of tests have been made at the Commissariat a l'Energie Atomique, in cooperation with General Atomic Company, SAN DIEGO (U.S.A.) on the flow-induced vibration of heat exchanger tube bundles in cross flow. These tests were made in air on tube bundles which simulated heat exchangers in the high temperature gas cooled reactors. The tests were of two types. In the first type, an instrumented tube was inserted at various locations into a tube bundle. Measurements were made of pressure at a number of points along the tube and about the circumference of the tube. These measurements were processed to obtain the spectra of turbulent pressure fluctuations on the tube, the spanwise correlation and the lift force. The second set of tests was made on tube bundles with flexible tubes. As the flow velocity was increased, these tests clearly show an instability. Nine tube configurations were tested with both plastic and metallic tubes and the effect of tube-to-tube difference in natural frequency was investigated

  14. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  15. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    International Nuclear Information System (INIS)

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-01-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO 2 ) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO 2 Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO 2 Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO 2 flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  16. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  17. Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry

    Science.gov (United States)

    Bartosik, A.

    2016-10-01

    The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.

  18. Geometric optimization of cross-flow heat exchanger based on dynamic controllability

    Directory of Open Access Journals (Sweden)

    Alotaibi Sorour

    2008-01-01

    Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.

  19. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  20. A study of flow patterns in a thermosyphon for compact heat exchanger applications

    NARCIS (Netherlands)

    Grooten, M.H.M.; Geld, van der C.W.M.; Deursen, van L.G.M.

    2008-01-01

    Recently, thermosyphons have attracted interest in the design of smaller, lighter and cheaper heat exchangers, because of their compactness, low thermal resistance, high heat recovery effectiveness, safety and reliability. In order to understand the effects of the angle of inclination on heat

  1. Microplate Heat Exchanger, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  2. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  3. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    International Nuclear Information System (INIS)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  4. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  5. An advanced straight tube heat exchanger in which a fluid flows at variable and elevated temperatures

    International Nuclear Information System (INIS)

    Mauget, C.; Benoit, G.; Stalport, G.

    1993-01-01

    Straight tube heat exchangers are used as steam generators in nuclear reactors such as in fast neutron nuclear power plants; elevated and highly variable temperatures induce very high thermal expansion constraints in these long straight tubes. In order to avoid the expansion problems, an expansion bellow is disposed between the heat exchanger and the collector tubular plate in such a way that the bundle differential expansions may be absorbed

  6. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  7. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    Science.gov (United States)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  8. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  9. An experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfire stop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. There is a separate appendix volume. 62 refs., 152 figs., 22 tabs.

  10. 1995 national heat transfer conference: Proceedings. Volume 12: Falling films; Fundamentals of subcooled flow boiling; Compact heat exchanger technology for the process industry; HTD-Volume 314

    International Nuclear Information System (INIS)

    Sernas, V.; Boyd, R.D.; Jensen, M.K.

    1995-01-01

    The papers in the first section cover falling films and heat transfer. Papers in the second section address issues associated with heat exchangers, such as: plate-and-frame heat exchanger technology; thermal design issues; condensation; and single-phase flows. The papers in the third section deal with studies related to: the turbulent velocity field in a vertical annulus; the effects of curvature and a dissolved noncondensable gas on nucleate boiling heat transfer; the effects of flow obstruction on the onset of a Ledinegg-type flow instability; pool boiling from a large-diameter tube; and two-dimensional wall temperature distributions and convection in a single-sided heated vertical tube. Separate abstracts were prepared for most papers in this volume

  11. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  12. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  13. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  14. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  15. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  16. Numerical analysis on interactions between fluid flow and structure deformation in plate-fin heat exchanger by Galerkin method

    Science.gov (United States)

    Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen

    2018-03-01

    The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.

  17. Exergy analysis for stationary flow systems with several heat exchange temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M J; Heikkinen, M A [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Energy Engineering

    1995-07-01

    A thermodynamic theory of exergy analysis for a stationary flow system having several heat inputs and outputs at different temperature levels is presented. As a new result a relevant reference temperature of the surroundings is derived for each case. Also a general formula which combines exergy analysis with a modified Carnot efficiency is derived. The results are illustrated by numerical examples for mechanical multi-circuit heat pump cycles, for a Brayton process and for an absorption heat pump. (Author)

  18. An investigation of flow and resistance characteristics of heat exchanger with the 2-D LDV system and visualization technique

    International Nuclear Information System (INIS)

    Wang Zongsen; Shen Xiong; Xu Yuanhui; Bi Shuxun

    1987-12-01

    An experimental study of the heat exchanger which would be used in a nuclear reactor for low temperature heat-supplying is presented. A 2-D Laser Doppler Velocimeter was used as a unique technique to measure the mean velocity and turbulence intensity distributions in different sections of the model. The relationship between the resistance coefficient and Reynolds number also obtained in terms of the total pressure rakes covered by the casings and the wall static pressure pick-up holes. The flow visualization has realized by using a piece of light source with an Argon-Ion laser. It is apparent that the polystyrene particles seeded in the flow can trace the mean flow. The results showed that the self-similar phenomenon exists in the tube bundle flow system. There are some secondary vortices in the cross sections between two passages of the model

  19. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  20. Identification of some cross flow heat exchanger dynamic responses by measurement with low level binary pseudo-random input signals

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.; Hopkinson, A.

    1964-02-01

    An experiment was performed to assess the usefulness of the binary cross-correlation method in the context of the identification problem. An auxiliary burner was excited with a discrete interval binary code and the response to the perturbation of the input heat was observed by recording the variations of the primary inlet, primary outlet and secondary outlet temperatures. The observations were analysed to yield cross-correlation functions and frequency responses were subsequently determined between primary inlet and primary outlet temperatures and also between primary inlet and secondary outlet temperatures. The analysis verified (1) that these dynamic responses of this cross flow heat exchanger may be predicted theoretically, (2) in so far as this heat exchanger is representative of the generality of plant, that the binary cross-correlation method provides adequate identification of plant dynamics for control purposes in environments where small input variations and low signal to noise ratio are obligatory. (author)

  1. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  2. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  3. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    Science.gov (United States)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as

  4. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto

    2013-01-01

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters

  5. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2013-11-15

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters.

  6. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    Directory of Open Access Journals (Sweden)

    Musiał Tomasz

    2017-01-01

    Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  7. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  8. Experimental investigation and CFD simulation of multi-pipe earth-to-air heat exchangers (EAHEs) flow performance

    Science.gov (United States)

    Amanowicz, Łukasz; Wojtkowiak, Janusz

    2017-11-01

    In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.

  9. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  10. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  11. Corrosion protected reversing heat exchanger

    International Nuclear Information System (INIS)

    Zawierucha, R.

    1984-01-01

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack

  12. Air-side performance of a parallel-flow parallel-fin (PF{sup 2}) heat exchanger in sequential frosting

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-09-15

    The thermal-hydraulic performance in periodic frosting conditions is experimentally studied for the parallel-flow parallel-fin heat exchanger, henceforth referred to as a PF{sup 2} heat exchanger, a new style of heat exchanger that uses louvered bent fins on flat tubes to enhance water drainage when the flat tubes are horizontal. Typically, it takes a few frosting/defrosting cycles to come to repeatable conditions. The criterion for the initiation of defrost and a sufficiently long defrost period are determined for the test PF{sup 2} heat exchanger and test condition. The effects of blower operation on the pressure drop, frost accumulation, water retention, and capacity in time are compared under the conditions of 15 sequential frosting cycles. Pressure drop across the heat exchanger and overall heat transfer coefficient are quantified under frost conditions as functions of the air humidity and air face velocity. The performances of two types of flat-tube heat exchangers, PF{sup 2} heat exchanger and conventional parallel-flow serpentine-fin (PFSF) heat exchanger, are compared and the results obtained are presented. (author)

  13. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  14. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  15. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2014-01-01

    An innovative micro-scale liquid desiccant dehumidification system is numerically investigated. The liquid desiccant dehumidification unit employs a counter-flow low-cost and efficient heat and mass exchange core, improving the thermal performance and eliminating desiccant carryover...... that the dehumidifier effectiveness is directly proportional to the intake air temperature, intake air relative humidity and liquid desiccant flow rate where the effectiveness is inversely proportional to the intake air velocity and the heat exchanger air channel height....

  16. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  17. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2017-11-01

    Full Text Available As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG as working fluid. The thermal properties of supercritical LNG were tested by utilizing the REFPROF software database. Numerical simulations were performed using FLUENT. The inlet temperature of supercritical LNG was 121 K, and its pressure was 10.5 MPa. The reference mass flow rate of LNG was set as 1.22 g/s for the vertical pitch Lv = 1.67 mm and the staggered pitch Ls = 0 mm, with the Reynolds number of about 3750. The SST k-ω model was selected and verified by comparing with the experimental data using supercritical liquid nitrogen as cold fluid. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing Ls and Lv. Moreover, Lv affected the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.

  18. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.

    Science.gov (United States)

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s(-1). The results demonstrated that at a higher FV, despite being more compact and consistent, the biofilm was thinner with a lower concentration of solids, and smoother, which favoured the heat transfer process within the equipment. However, higher velocities increase the initial cost of the refrigerating water-pumping equipment and its energy consumption cost to compensate for the greater pressure drops produced in the tube. The velocity of 1.6 m s(-1) represented the equilibrium between the advantages and disadvantages of the variables analysed for the test conditions in this study.

  19. Innovative heat exchangers

    CERN Document Server

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  20. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Riffat, S.B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Li, J.M. [Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    The paper presents numerical investigation of a novel counter-flow heat and mass exchanger used in the indirect evaporative dew point cooling systems, a potential alternative to the conventional mechanical compression air conditioning systems. Numeric simulation was carried out to optimise the geometrical sizes and operating conditions of the exchanger in order to enhance the cooling (dew point and wet bulb) effectiveness of the exchanger and maximise the energy efficiency of the dew point cooling system. The results of the simulations indicated that cooling (dew point and wet bulb) effectiveness and energy efficiency are largely dependent on the dimensions of the airflow passages, air velocity and working-to-intake-air ratio, and less dependent on the temperature of the feed water. It is recommended that exchanger intake air velocity should be controlled to a value below 0.3-0.5 m/s; height of air passage (channel) should be set to 6 mm or below and the length of the passage should be 200 time the height; the working-to-intake-air ratio should be around 0.4. Under the UK summer design condition, i.e., 28{sup o}C of dry bulb temperature, 20{sup o}C of wet bulb temperature and 16{sup o}C of dew point temperature, the exchanger can achieve wet-bulb effectiveness of up to 1.3 and dew-point effectiveness of up to 0.9. (author)

  1. Tubular heat exchanger

    International Nuclear Information System (INIS)

    Hayden, Owen; Willby, C.R.

    1976-01-01

    The invention concerns a heat exchanger of which the tubes, placed in a long casing, cross the casing cover in a sealed manner. These tubes are fixed to the tube plate forming this cover or to the branch tubes it comprises by means of compression joints. These joints make it possible to do away with welds that are sources of defects and to improve the operational safety of the apparatus. An advantageous form of the heat exchanger under the invention includes a manifold for each thermal exchange fluid, and one end of each tube is connected to this manifold by a pipe that is itself connected to the tube by a threaded connection. The latter provides for easy disconnection of the pipe in order to introduce a probe for inspecting the state of the tubes [fr

  2. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  3. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  4. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.

    1997-01-01

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es

  5. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  6. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  7. Detection of flow mixing processes using transmission methods in high-duty heat exchanging apparatus

    International Nuclear Information System (INIS)

    Seiffert, V.

    1981-01-01

    The COBRA-IIIC program modified by MIT has been further improved for verifying the experimental studies described in the thesis. This work has been accompanied by a review and modification of the relevant analytical equations. A mathematical relationship has been set up for the cross-mixing phenomenon of shearing flow in narrowest cross-section between two heating rods, the relationship being taken into account in the sub-channel analysis. Despite the very complex and superposing processes of the problem studied, the results obtained by the improved sub-channel analysis program using the nearly derived cross-mixing approach are quantitatively well confirmed by comparison with experimental data. Applying the improved sub-channel analysis program to describing the author's two-phase flow experiments (air-water and water-steam) with rod bundle geometries to be found in the literature, the cross-mixing approach presented in the thesis is shown to be reliable (orig./GL) [de

  8. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  9. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    Burton, J.E.; Tombs, R.W.T.

    1980-01-01

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  10. An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts

    Science.gov (United States)

    Venkitaraj, K. P.; Suresh, S.; Alwin Mathew, T.; Bibin, B. S.; Abraham, Jisa

    2018-03-01

    Nanofluids are advanced heat transfer fluids that exhibit thermal properties superior than that of the conventional fluids such as water, oil etc. This paper reports the experimental study on convective heat transfer characteristics of water based titanium dioxide nanofluids in fully developed flow through a uniformly heated pipe heat exchanger fitted with modified butterfly inserts. Nanofluids are prepared by dispersing TiO2 nanoparticles of average particle size 29 nm in deionized water. The heat transfer experiments are performed in laminar regime using nanofluids prepared with 0.1% and 0.3% volume fractions of TiO2 nanoparticles. The thermal performance characteristics of conventional butterfly inserts and modified butterfly inserts are also compared using TiO2 nanofluid. The inserts with different pitches 6 cm, 9 cm and 12 cm are tested to determine the effect of pitch distance of inserts in the heat transfer and friction. The experimental results showed that the modification made in the butterfly inserts were able to produce higher heat transfer than conventional butterfly inserts.

  11. Upright heat exchanger

    International Nuclear Information System (INIS)

    Martoch, J.; Kugler, V.; Krizek, V.; Strmiska, F.

    1988-01-01

    The claimed heat exchanger is characteristic by the condensate level being maintained directly in the exchanger while preserving the so-called ''dry'' tube plate. This makes it unnecessary to build another pressure vessel into the circuit. The design of the heat exchanger allows access to both tube plates, which facilitates any repair. Another advantage is the possibility of accelerating the indication of leakage from the space of the second operating medium which is given by opening the drainage pipes of the lower bundle into the collar space and from there through to the indication pipe. The exchanger is especially suitable for deployment in the circuits of nuclear power plants where the second operating medium will be hot water of considerably lower purity than is that of the condensate. A rapid display of leakage can prevent any long-term penetration of this water into the condensate, which would result in worsening water quality in the entire secondary circuit of the nuclear power plant. (J.B.). 1 fig

  12. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  13. Study of turbulent flows loaded with particles. Application to the particulate fouling of corrugated plate heat exchangers

    International Nuclear Information System (INIS)

    Kouidri, Frederic

    1997-01-01

    This work is a numerical and experimental study of the behaviour of a turbulent flow loaded with solid particles. It involves the particulate fouling of plate heat exchangers used in industrial field. Visual observation and LDA measurements inside a mock-up show the presence of large coherent vortices and confirm the tight link between particulate deposition and flow field. The vortices participate to the creation of preferential areas where the particles are in contact with the wall, and they shape the deposit according to a precise mechanism. Two processes of deposit removal have also been shown. Hydraulic phenomena and particles behaviours pointed out in the experiment are compared to different typical samples in a bibliographic survey. The use of the a software for computational fluid dynamics (TRIO developed at the Commissariat a l'Energie Atomique) completed the experimental results by predicting the particles behaviour into the turbulent flow. The approach is based on a connection between a pseudo-direct simulation of the turbulent flow and a Lagrangian model for particles paths. The results show good agreements, qualitatively speaking, between numerical predictions and experimental measurement. The arrangement of the deposit onto the corrugated surface is globally well described by numerical simulation. The influence of some parameters on deposition process such as the flow (corresponding to Re=5000 or Re=10000), the horizontal or vertical position of the channel or the particles diameter (d p =100 μm or d p =25 μm) has been studied. (author) [fr

  14. Local study of flow and low Reynolds thermal-hydraulic performance of a corrugated plane duct: application to plate heat exchangers

    International Nuclear Information System (INIS)

    Hugonnot, Patrick

    1989-01-01

    This research thesis addresses the local study of a flow in a corrugated plane duct by using experimental and numerical approaches on the one hand, and the experimental determination of thermal-hydraulic performance at low Reynolds number of different plate heat exchanger ducts on the other hand. Experimental visualisations of the local flow allowed regime transitions in 2D and 3D geometries to be determined. As far as the 2D duct is concerned, a wave profile optimisation is proposed, and the numerical study performed by using the TRIO software is in good agreement with experimental results. The optimised duct configuration can thus be envisaged for an industrial development. The determination of the friction coefficient and of the global heat exchange coefficient of different corrugated ducts allows plate exchangers to be sized on a wide range of Reynolds numbers. The respective influences of natural convection and of fluid thermal dependency on heat exchange have been studied [fr

  15. Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test

    Science.gov (United States)

    Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei

    2018-05-01

    To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.

  16. Heat exchanger. [Nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C; Brisseaux, A

    1976-01-19

    This invention concerns a heat exchanger between a fluid flowing through a tube and a gas. Such an exchanger can be used, inter alia, for removing calories that cannot be used for generating electricity in a thermal or nuclear power station. This exchanger can withstand any pressure surges in the system and even the use of a high vapour pressure coolant such as ammonia, since the fluid flows in a round tube with low pressure drops (both with respect to the fluid to be cooled and the cooling air). It is rigid enough to stand up to being moved and handled as well as to gusts of wind. It is formed of units that can be handled without difficulty and that are easily dismantable and interchangeable, even in service, and it is easily maintained. The exchange area is high for a minimum frontal area and this enables the size of the supporting frame to be reduced and makes it easy to hide it behind a screen of trees should this prove necessary. Finally, it is composed of a small number of standard units thus reducing the industrial production cost. These units are rectangular plates, each one being a flat tubular coil fitted between two flat parallel sheet metal plates having on their outer sides flat top raised bosses. These units are assembled together by the tops of the bosses so as to form an exchanger bank, each bank comprising two collectors to which the bank coils are tightly connected.

  17. Numerical Predictions of Early Stage Turbulence in Oscillatory Flow across Parallel-Plate Heat Exchangers of a Thermoacoustic System

    Directory of Open Access Journals (Sweden)

    Fatimah A. Z. Mohd Saat

    2017-06-01

    Full Text Available This work focuses on the predictions of turbulent transition in oscillatory flow subjected to temperature gradients, which often occurs within heat exchangers of thermoacoustic devices. A two-dimensional computational fluid dynamics (CFD model was developed in ANSYS FLUENT and validated using the earlier experimental data. Four drive ratios (defined as maximum pressure amplitude to mean pressure were investigated: 0.30%, 0.45%, 0.65% and 0.83%. It has been found that the introduction of the turbulence model at a drive ratio as low as 0.45% improves the predictions of flow structure compared to experiments, which indicates that turbulent transition may occur at much smaller flow amplitudes than previously thought. In the current investigation, the critical Reynolds number based on the thickness of Stokes’ layer falls in the range between 70 and 100. The models tested included four variants of the RANS (Reynolds-Averaged Navier–Stokes equations: k-ε, k-ω, shear-stress-transport (SST-k-ω and transition-SST, the laminar model being used as a reference. Discussions are based on velocity profiles, vorticity plots, viscous dissipation and the resulting heat transfer and their comparison with experimental results. The SST-k-ω turbulence model and, in some cases, transition-SST provide the best fit of the velocity profile between numerical and experimental data (the value of the introduced metric measuring the deviation of the CFD velocity profiles from experiment is up to 43% lower than for the laminar model and also give the best match in terms of calculated heat flux. The viscous dissipation also increases with an increase of the drive ratio. The results suggest that turbulence should be considered when designing thermoacoustic devices even in low-amplitude regimes in order to improve the performance predictions of thermoacoustic systems.

  18. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  19. Thermodynamic optimization of heat exchanger tanks by exergy ...

    African Journals Online (AJOL)

    The paper introduces heat exchanger tanks, detailing their dominant thermodynamic relations to obtain the exergy analysis relations of heat exchanger tanks. Heat exchanger tank is examined under various laboratory conditions, including the power of heat element inside the tank, mass flow rate of cooling water of tank ...

  20. A CFD Analysis of The Performance of Pin-Fin Laminar Flow Micro/Meso Scale Heat Exchangers

    National Research Council Canada - National Science Library

    Dimas, Sotirios

    2005-01-01

    A full three dimensional computational study was carried out using a finite-volume based solver for analyzing the performance of pin-fin based micro/meso scale heat exchangers with air as the working fluid...

  1. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    Science.gov (United States)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  2. Analytical framework for borehole heat exchanger (BHE) simulation influenced by horizontal groundwater flow and complex top boundary conditions

    Science.gov (United States)

    Rivera, Jaime; Blum, Philipp; Bayer, Peter

    2015-04-01

    Borehole heat exchangers (BHE) are the most widely used technologies for tapping low-enthalpy energy resources in the shallow subsurface. Analysis of these systems requires a proper simulation of the relevant processes controlling the transfer of heat between the BHE and the ground. Among the available simulation approaches, analytical methods are broadly accepted, especially when low computational costs and comprehensive analyses are demanded. Moreover, these methods constitute the benchmark solutions to evaluate the performance of more complex numerical models. Within the spectrum of existing (semi-)analytical models, those based on the superposition of problem-specific Green's functions are particularly appealing. Green's functions can be derived, for instance, for nodal or line sources with constant or transient strengths. In the same manner, functional forms can be obtained for scenarios with complex top boundary conditions whose temperature may vary in space and time. Other relevant processes, such as advective heat transport, mechanical dispersion and heat transfer through the unsaturated zone could be incorporated as well. A keystone of the methodology is that individual solutions can be added up invoking the superposition principle. This leads to a flexible and robust framework for studying the interaction of multiple processes on thermal plumes of BHEs. In this contribution, we present a new analytical framework and its verification via comparison with a numerical model. It simulates a BHE as a line source, and it integrates both horizontal groundwater flow and the effect of top boundary effects due to variable land use. All these effects may be implemented as spatially and temporally variable. For validation, the analytical framework is successfully applied to study cases where highly resolved temperature data is available.

  3. Study the Effect of the Flow on the Performance of a shell and Tube Type Heat Exchanger using Experimental Design Technique

    Directory of Open Access Journals (Sweden)

    Zuher Hassan Abdullah

    2016-10-01

    Full Text Available In the current research an experimental study was done to show the effect of pulse flow on the effectiveness of shell and tube type heat exchanger. the study was in the case of steady and pulse flows with a changing mass flow rate of hot water flowing inside the pipes of the heat exchanger for the range between (0.0273-0.0819 kg / s  at fix mass flow rate of cold water that flows through the shell and on the outer surface of the pipes when (0.0416 kg / s, to obtain pulsing a used was solenoid valve. The research aims to measure the percentage effect of independent factors which were presenting the mass flow rate of hot water, flow type and the surrounding environment conditions of the experimental side upon shell and tube type heat exchanger performance using experimental design technique at the significant level (0.05.The results derived from the experimental tests showed that pulse flow leads to increase internal heat transfer coefficient (hi comparing with its value in the steady flow and the highest increase was by (9.75% at a mass flow rate of hot water (0.0416 kg / s and increases the overall heat transfer coefficient (U, where the highest percentage was by 4.68% at a mass flow rate of hot water (0.0416kg/s. The results also showed increasing both the number of transmitted units (NTU and the effectiveness of the shell and tube type heat exchanger ( in the case of pulse flow of its value in the steady flow and the highest percentage of increase occurring was (4.75% and (1.85%, respectively, and at the mass flow rate of hot water (0.0416 kg / s. Percentage effect of mass flow rate of hot water was (97%, 97.42%, 95.5%, 99.48% and the percentage effect of each flow type and the errors were (2.8%, 2.25%, 2.44%, 0.4% and (0. 2, 0.33%, 2.06%, 0.12 respectively

  4. Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.

    1983-07-01

    A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method

  5. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Linning, D.L.

    1976-01-01

    A 'tube-in-shell' heat exchanger is described for effecting heat exchange between liquid metal and water. In conventional heat exchangers of this type a condition can arise wherein Na passing through the tube plate at the water inlet end of the heat exchanger may be above the saturation temperature of the water, and although resultant boiling of the water in the region of the tube plate would tend to counter stagnation there is a possibility that sub-cooled boiling associated with stagnation may occur in the central area of the tube plate, and this could be the source of corrosion. The design of heat exchanger described is directed towards a solution of this problem. The heat exchanger comprises an elongated shell having two spaced transverse tube plates sealed to the shell so as to provide end and intermediate chambers. A bundle of spaced parallel heat exchange tubes extends between the tube plates, interconnecting the end chambers with an inlet port for liquid metal flow to one of the end chambers and an outlet port for liquid metal flow from the other of the end chambers, and inlet and outlet ports for flow of water through the intermediate chamber, these ports being at opposite ends of the intermediate chamber. The intermediate chamber has a tube closed to liquid metal flow extending between the tube plates, this tube having an inlet port for water adjacent to the tube plate at the inlet region of the intermediate chamber and an outlet port at the outlet region. This tube has open ends and is laterally supported by neighbouring heat exchange tubes, or alternatively may have closed ends and be end supported by penetration of the tube plates, the inlet and outlet ports for flow of water being perforations in the wall of the tube. (U.K.)

  6. Development of heat exchangers for nuclear service

    International Nuclear Information System (INIS)

    Hodge, R.I.; Dalrymple, D.G.

    1976-01-01

    Unusual design constraints, due to tube vibration, are called for when tube-in-shell heat exchangers are incorporated into CANDU type reactor power plants. CRNL has programs studying tube excitation and response, flow conditions, and the fretting process in such exchangers, tube plugging techniques, and eddy current scanning systems for inside bores of full-length tubes. (E.C.B.)

  7. Appendix to the thesis an experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfirestop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. This is a separate appendix volume, including computer codes and simulated results. 316 figs., 11 tabs.

  8. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  9. An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2016-01-01

    on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia...

  10. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  11. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    Science.gov (United States)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  12. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  13. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  14. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  15. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  16. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  17. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1978-01-01

    According to the present invention there is provided a method of producing superheated steam by use of the heat in liquid sodium, in which liquid sodium is caused to flow through a space having boundaries of which no part is common with the boundaries of a space in which vapour is produced, a fluid that is inert to sodium is heated by heat exchange at the boundaries of the space through which the liquid sodium flows and serves as the heating medium for the production of vapour, and the vapour is subsequently heated to the final degree of superheat by heat exchange with liquid sodium in a space that has a common boundary with a space through which liquid sodium is passed. (U.K.)

  18. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  19. Heat exchanger design

    OpenAIRE

    Vítek, Tomáš

    2017-01-01

    Tato bakalářská práce řeší návrh výměníku tepla pro teplovodní kotel se zplyňovací komorou pro předehřev spalovacího vzduchu odpadním teplem spalin. Hodnoty pro výpočet byly experimentálně naměřeny. Práce obsahuje stručný popis trubkového výměníku tepla, stechiometrický vypočet spalování, návrh geometrických rozměrů výměníku, výpočet tlakových ztrát a výpočet výkonu. Její součástí je také výkresová dokumentace navrženého výměníku. This bachelor thesis solves design of a heat exchanger for ...

  20. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  1. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  2. Milk fouling in heat exchangers

    NARCIS (Netherlands)

    Jeurnink, T.J.M.

    1996-01-01


    The mechanisms of fouling of heat exchangers by milk were studied. Two major fouling mechanisms were indentified during the heat treatment of milk: (i) the formation and the subsequent deposition of activated serum protein molecules as a result of the heat denaturation; (ii) the

  3. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Street, Michael D.; Schafer, Bruce W.

    2000-01-01

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  4. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  5. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  6. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  7. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  8. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  9. A heat exchanger provided with plates

    International Nuclear Information System (INIS)

    Chaix, J.E.; Fajeau, Maurice; Chlique, Bernard.

    1976-01-01

    The invention relates to a heat exchanger of the plate type, in which two fluids exchange calories through parallel metal plates, delimiting spaces separated from each other in which two fluids respectively flow without direct contact between them. The invention particularly applies in the case where one of the two fluids is water under pressure or else a circulating liquid metal, specially sodium, used in the system of a pressurised water or fast neutron reactor, the second fluid being water to be vaporised in the exchanger by the calories supplied by the first fluid. The arrangement is designed to give minimum bulk, particularly enabling the exchanger to be housed in the area between the core of a nuclear reactor and a casing or outer vessel, or else in an external sealed containment, with a view to recovering with the best efficiency the heat acquired by a coolant flowing through the core [fr

  10. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  11. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  12. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    International Nuclear Information System (INIS)

    López, R; Lecuona, A; Ventas, R; Vereda, C

    2012-01-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  13. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  14. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  15. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion

    Science.gov (United States)

    Nazarian, Negin; Martilli, Alberto; Kleissl, Jan

    2018-03-01

    As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less

  16. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  17. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  18. Thermal hydraulic simulation of moderator heat exchanger

    International Nuclear Information System (INIS)

    Anil Lal, S.; Rajakumar, A.; Vaidyanathan, G.; Srinivasan, R.; Chetal, S.C.

    1993-01-01

    Pressurized heavy water reactors form the majority in the first stage of India's nuclear power programme. Heavy water is both moderator and primary coolant. The heat generated in the moderator due to neutron moderation and capture has to be removed in moderator heat exchangers. It has been desired to improve the performance characteristics of moderator heat exchangers, whereby moderator would enter the calandria vessel at a low temperature and would enable higher power of operation for the same limiting temperature of moderator in the calandria. Results of studies carried out using a three dimensional computer code for various operating options are given. Using these velocities the heat exchangers have been analysed for flow induced vibrations. 7 refs., 6 figs., 6 tabs

  19. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  20. Assessing heat exchanger performance data using temperature ...

    African Journals Online (AJOL)

    In addition, any calculated performance acceptance criteria must also consider uncertainty and error in the experimental measurements of temperature and flow. However, most statistical methods are complex and not easily applied to heat exchangers such as those that serve the power plant industry where data are difficult ...

  1. Practical design of a heat exchanger for dilution refrigeration. 1

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y; Fujii, G; Nagano, H [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1978-02-01

    A compact heat exchanger for a dilution refrigerator with a high thermal efficiency is presented. Discrete heat exchangers with by-pass channels were used to decrease the flow impedance. This heat exchanger was designed so that the thermal conductance of liquid along the stream was greatly reduced. The effective thickness of the sponge material in the heat exchanger and mixer is also discussed. The obtained minimum temperatures of 12 mK was very close to the designed value of 10.8 mK. Moreover a rapid response was obtained. This is attributed to the small liquid volume of the heat exchanger.

  2. Condensation and frost formation in heat exchangers

    International Nuclear Information System (INIS)

    Rostami, A.A.

    1982-01-01

    The occurence of condensation and of frost formation are considered for air to heat exchangers with emphasis on how such occurrences would affect the performance of such heat exchangers when they are used in ventilating applications. The formulations which predict performance are developed for parallel, counter flow and cross flow with either formation or condensation, and for condensation the consequences for evaporation of condensate and of the effect of longitudinal conduction in the walls of the exchanger are also considered. For the prediction of the exchanger performance with frost formation there must be specified the growth of the frost layer with time and existing theories for this growth are examined, a new method of calculation of the growth is presented and this is shown to give results for the growth that are in accord with available experimental evidence. This new theory for the growth of a frost layer is used to predict the performance of a parallel flow exchanger under conditions in which frost formation occurs, by successively applying the steady state performance calculation for time increments over which the frost layer build-up is calculated for these time increments. The calculation of counter flow exchanger performance by this method, while feasible, is so time consuming that only the general aspects of the calculation are considered

  3. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  4. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  5. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  6. A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow mal-distribution analysis in microchannel heat exchanger headers

    International Nuclear Information System (INIS)

    Huang, Long; Lee, Moon Soo; Saleh, Khaled; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Refrigerant flow mal-distribution is a practical challenge in most microchannel heat exchangers (MCHXs) applications. Geometry design, uneven heat transfer and pressure drop in the different microchannel tubes are three main reasons leading to the flow mal-distribution. To efficiently and accurately account for these three effects, a new MCHX co-simulation approach is proposed in this paper. The proposed approach combines a detailed header simulation based on computational fluid dynamics (CFD) and a robust effectiveness-based finite volume tube-side heat transfer and refrigerant flow modeling tool. The co-simulation concept is demonstrated on a ten-tube MCHX case study. Gravity effect and uneven airflow effect were numerically analyzed using both water and condensing R134a as the working fluids. The approach was validated against experimental data for an automotive R134a condenser. The inlet header was cut open after the experimental data had been collected. The detailed header geometry was reproduced using the proposed CFD header model. Good prediction accuracy was achieved compared to the experimental data. The presented co-simulation approach is capable of predicting detailed refrigerant flow behavior while accurately predicts the overall heat exchanger performance. - Highlights: •MCHX header flow distribution is analyzed by a co-simulation approach. •The proposed method is capable of simulating both single-phase and two-phase flow. •An actual header geometry is reproduced in the CFD header model. •The modeling work is experimentally validated with good accuracy. •Gravity effect and air side mal-distribution are accounted for

  7. Heat exchanger for coal gasification process

    Science.gov (United States)

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  8. Mechanical calculation of heat exchangers

    International Nuclear Information System (INIS)

    Osweiller, Francis.

    1977-01-01

    Many heat exchangers are still being dimensioned at the present time by means of the American TEMA code (Tubular Exchanger Manufacturers Association). The basic formula of this code often gives rise to significant tubular plate thicknesses which, apart from the cost of materials, involve significant machining. Some constructors have brought into use calculation methods that are more analytic so as to take into better consideration the mechanical phenomena which come into play in a heat exchanger. After a brief analysis of these methods it is shown, how the original TEMA formulations have changed to reach the present version and how this code has incorporated Gardner's results for treating exchangers with two fixed heads. A formal and numerical comparison is then made of the analytical and TEMA methods by attempting to highlight a code based on these methods or a computer calculation programme in relation to the TEMA code [fr

  9. Compact heat exchanger for power plants

    International Nuclear Information System (INIS)

    Kinnunen, L.

    2001-01-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators

  10. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  11. High Flux Heat Exchanger

    Science.gov (United States)

    1993-01-01

    maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar

  12. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  13. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  14. Heat exchangers and methods of construction thereof

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1988-01-01

    A heat exchanger is described comprising a shell having first inlet means and first outlet means for the flow of a first fluid therethrough, a plurality of tubes within the shell to provide a path for flow of a second fluid in heat exchange relation to the first fluid, second inlet means and second outlet means for flow of the second fluid to and from the tubes respectively, a tubular member concentric with at least a portion of the length of one of the tubes to define a space between the tube and the tubular member, at least one radially outwardly projecting portion on the tubular member, and a plurality of tube support means spaced apart and disposed generally perpendicular to the tube axes, wherein the tubular member is fixedly attached at one end to one of the tube support means and at the other end to an adjacent one of the tube support means, the space between the tube and the tubular member is closed to flow of both the first fluid and the second fluid, and the radially outwardly projecting portion on the tubular member extends longitudinally to allow flexing of the tubular member and expanding thereof radially outwardly during construction of the heat exchanger so as to allow insertion of the tube into the tubular member, the radially outwardly projecting portion defining a gap which contributes to the space between the tube and the tubular member. 6 figs

  15. Analysis of flow-induced vibration of heat exchanger and steam generator tube bundles using the AECL computer code PIPEAU-2

    International Nuclear Information System (INIS)

    Gorman, D.J.

    1983-12-01

    PIPEAU-2 is a computer code developed at the Chalk River Nuclear Laboratories for the flow-induced vibration analysis of heat exchanger and steam generator tube bundles. It can perform this analysis for straight and 'U' tubes. All the theoretical work underlying the code is analytical rather than numerical in nature. Highly accurate evaluation of the free vibration frequencies and mode shapes is therefore obtained. Using the latest experimentally determined parameters available, the free vibration analysis is followed by a forced vibration analysis. Tube response due to fluid turbulence and vortex shedding is determined, as well as critical fluid velocity associated with fluid-elastic instability

  16. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  17. Optimization of porous microchannel heat exchanger

    Science.gov (United States)

    Kozhukhov, N. N.; Konovalov, D. A.

    2017-11-01

    The technical progress in information and communication sphere leads to a sharp increase in the use of radio electronic devices. Functioning of radio electronics is accompanied by release of thermal energy, which must be diverted from the heat-stressed element. Moreover, using of electronics at negative temperatures, on the contrary, requires supply of a certain amount of heat to start the system. There arises the task of creating a system that allows both to supply and to divert the necessary amount of thermal energy. The development of complex thermostabilization systems for radio electronic equipment is due to increasing the efficiency of each of its elements separately. For more efficient operation of a heat exchanger, which directly affects the temperature of the heat-stressed element, it is necessary to calculate the mode characteristics and to take into account the effect of its design parameters. The results of optimizing the microchannel heat exchanger are presented in the article. The target optimization functions are the mass, pressure drop and temperature. The parameters of optimization are the layout of porous fins, their geometric dimensions and coolant flow. For the given conditions, the optimum variant of porous microchannel heat exchanger is selected.

  18. Complex Heat Exchangers for Improved Performance

    Science.gov (United States)

    Bran, Gabriela Alejandra

    After a detailed literature review, it was determined that there was a need for a more comprehensive study on the transient behavior of heat exchangers. Computational power was not readily available when most of the work on transient heat exchangers was done (1956 - 1986), so most of these solutions have restrictions, or very specific assumptions. More recently, authors have obtained numerical solutions for more general problems (2003 - 2013), but they have investigated very specific conditions, and cases. For a more complex heat exchanger (i.e. with heat generation), the transient solutions from literature are no longer valid. There was a need to develop a numerical model that relaxes the restrictions of current solutions to explore conditions that have not been explored. A one dimensional transient heat exchanger model was developed. There are no restrictions on the fluids and wall conditions. The model is able to obtain a numerical solution for a wide range of fluid properties and mass flow rates. Another innovative characteristic of the numerical model is that the boundary and initial conditions are not limited to constant values. The boundary conditions can be a function of time (i.e. sinusoidal signal), and the initial conditions can be a function of position. Four different cases were explored in this work. In the first case, the start-up of a system was investigated where the whole system is assumed to be at the same temperature. In the second case, the new steady state in case one gets disrupted by a smaller inlet temperature step change. In the third case, the new steady state in case one gets disrupted by a step change in one of the mass flow rates. The response of these three cases show that there are different transient behaviors, and they depend on the conditions imposed on the system. The fourth case is a system that has a sinusoidal time varying inlet temperature for one of the flows. The results show that the sinusoidal behavior at the inlet

  19. Heat exchanges in coarsening systems

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico [Dipartimento di Fisica ' E R Caianiello' , Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Università di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy)

    2011-10-15

    This paper is a contribution to the understanding of the thermal properties of ageing systems where statistically independent degrees of freedom with greatly separated time scales are expected to coexist. Focusing on the prototypical case of quenched ferromagnets, where fast and slow modes can be respectively associated with fluctuations in the bulk of the coarsening domains and in their interfaces, we perform a set of numerical experiments specifically designed to compute the heat exchanges between different degrees of freedom. Our studies promote a scenario with fast modes acting as an equilibrium reservoir to which interfaces may release heat through a mechanism that allows fast and slow degrees to maintain their statistical properties independently.

  20. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  1. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  2. Evaluation of the flow at the contraction of a heat exchanger. Pt. 2. Effect of thermal-hydraulic factors on scale deposition at the contraction

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Yasuo, Akira; Inada, Fumio; Furuya, Masahiro

    2001-01-01

    In heat exchangers used in power plants, scale may deposit on the tube support plates of heat transfer tubes, especially at the leading edge where the flow passes a sudden contraction. This phenomenon can lead to flow path blockage, which in turn can affect plant performance. As a result, the mechanism of scale deposition and growth needs to be clarified. This phenomenon is assumed to be caused by a complex of thermal-hydraulic and electrochemical factors. In this study, flashing induced by pressure drop and turbulence at the leading edge of a contraction were assumed to be the main factors from the thermal-hydraulic point of view. And these factors in two different type of contractions were evaluated with a High Pressure / High Temperature steam-water two-phase flow experiment and 3D numerical analysis. Considerable differences in amount of steam caused by flashing and turbulence magnitude were observed between the two contractions which have same flow path area but different hydraulic diameter. It was also found that the size of bubbles passing the leading edge of contraction were smaller than 1 mm, while the bubbles in the upstream part were more than 10 times larger than those of the leading edge. (author)

  3. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  4. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  5. Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings

    International Nuclear Information System (INIS)

    Zhan, Changhong; Duan, Zhiyin; Zhao, Xudong; Smith, Stefan; Jin, Hong; Riffat, Saffa

    2011-01-01

    This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research

  6. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  7. Hydraulic Validation of the LHC Cold Mass Heat Exchanger Tube

    CERN Document Server

    Provenaz, P

    1998-01-01

    The knowledge of the helium mass flow vs. the fraction of the tube wetted by the liquid helium II in the heat exchanger is a crucial input parameter for the heat exchange since the heat flux is direct ly proportional to the wetted surface. In the range of liquid and gas velocities inside the heat exchanger, the liquid flow behaves like in an open channel. Looking at the flow equations for such a s ituation, the velocity depends on the fluid properties only by the friction factor which is a function of the Reynolds number. Thus it was decided to build an experiment with water in order to check t he open channel equations in the heat exchanger geometry. This paper shows the results for water and gives the extrapolation for helium.

  8. Thermodynamic criterions for heat exchanger networks design

    Energy Technology Data Exchange (ETDEWEB)

    Guiglion, C.; Farhat, S.; Pibouleau, L.; Domenech, S. (Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France))

    1994-03-01

    This problem under consideration consists in selecting a heat exchanger network able to carry out a given request in heatings and coolings, in steady-state behaviour with constant pressure, by using if necessary cold and hot utilities, and under the constraint [Delta] T [>=] e in order to restrict investment costs. The exchanged energy and the produced entropy are compared in terms of operating costs. According to the request to be satisfied and the constraints of utility consumption, it is shown that the goal to minimize the produced entropy more or less agrees with the goal to minimize the exchanged energy. In the last part, the case where the cost of utility use is assumed to be proportional to the flow rate, with a proportionality constant only depending on the input thermodynamic state, is studied thoroughly. Under this assumption, the minimization of operating costs is compatible with the minimization of exchanged energy, and can be obtained via the maximization of the difficulty of the request part, made without using utilities. This point is based on the notion of a request easier than another, which explicits the quite vague idea that a request is all the more easier because it involves less heatings at high temperatures and less coolings at low temperatures. (author). 5 refs., 1 fig.

  9. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    Science.gov (United States)

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  10. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  11. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  12. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  13. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM......). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  14. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  15. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  16. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  17. Compact heat exchanger for fluids

    International Nuclear Information System (INIS)

    Marchal, P.A.H.

    1975-01-01

    The invention concerns a welded heat exchanger with two or more fluids which can be used counter current. The principle of the apparatus allows the use of rolled welded concentric metal strips as well as spiral rolled metal strips. The ring sheets are kept apart either by their rigidity due to the cylindrical shape or by deformations in the sheets themselves or yet again by spacers or chequered and/or perforated sheets forming for instance corrugated spacers, the end sheet being thick enough to take the pressure strain [fr

  18. Heat flow method

    International Nuclear Information System (INIS)

    Chen Yunmei

    1994-01-01

    In this paper we study the heat flow of harmonic maps between two compact Riemannian manifolds. The global existence of the regular solution and the weak solution, as well as the blow up of the weak solution are discussed. (author). 14 refs

  19. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    Science.gov (United States)

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A heat exchanger between forced flow helium gas at 14 to 18 K and liquid hydrogen at 20 K circulated by natural convection

    International Nuclear Information System (INIS)

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-01-01

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall

  1. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti).

    Science.gov (United States)

    Ekdale, Eric G; Kienle, Sarah S

    2015-04-01

    Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described. © 2015 Wiley Periodicals, Inc.

  2. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  3. Design of a liquid metals heat exchanger

    International Nuclear Information System (INIS)

    Roffiel C, L.

    1976-01-01

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  4. Numerical simulation of two phase flows in heat exchangers; Simulation numerique des ecoulements diphasiques dans les echangeurs

    Energy Technology Data Exchange (ETDEWEB)

    Grandotto Biettoli, M

    2006-04-15

    The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)

  5. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  6. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  7. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung-Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  8. Supervision of the thermal performance of heat exchanger trains

    Energy Technology Data Exchange (ETDEWEB)

    Negrao, C.O.R.; Tonin, P.C.; Madi, M. [Federal University of Technology Parana UTFPR, Post-graduate Program in Mechanical and Materials Engineering PPGEM, Thermal Science Laboratory LACIT, Av. Sete de Setembro, 3165, CEP 80230-901, Curitiba, Parana (Brazil)

    2007-02-15

    In oil refining, heat exchanger networks are employed to recover heat and therefore save energy of the plant. However, many heat exchangers in crude oil pre-heat trains are under high risk of fouling. Under fouling conditions, the thermal performance of heat exchangers is continuously reduced and its supervision becomes an important task. The large number of heat exchangers in pre-heat trains and the change of operation conditions and feedstock charges make the daily supervision a difficult task. This work applies an approach to follow the performance of heat exchangers [M.A.S. Jeronimo, L.F. Melo, A.S. Braga, P.J.B.F. Ferreira, C. Martins, Monitoring the thermal efficiency of fouled heat exchangers - A simplified method, Experimental Thermal and Fluid Science 14 (1997) 455-463] and extends it to monitor the whole train. The approach is based on the comparison of measured and predicted heat exchanger effectiveness. The measured value is computed from the four inlet and outlet temperatures of a heat exchanger unit. The predicted clean and dirty values of effectiveness are calculated from classical literature relations as a function of NTU and of heat capacity ratio (R). NTU and R are continuously adjusted according to mass flow rate changes. An index of fouling is defined for the whole network and the results show the performance degradation of the network with time. The work also suggests that Jeronimo's index of fouling can be used to estimate the fouling thermal resistance of heat exchangers. (author)

  9. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected...... as the working fluids. The heat transfer coefficients and pressure drops of the three working fluids were measured with varying saturation temperatures, mass fluxes, heat fluxes and outlet vapour qualities, which range from 60°C to 80°C, 86 kg/m2 s to 137 kg/m2 s, 9.8 kW/m2 to 36.8 kW/m2 and 0.5 to 1...... developed that are more suitable for evaporation in organic Rankine cycles. The experimental results indicate that heat transfer coefficients are strongly dependent upon the heat flux and saturation temperature. Moreover, the results suggest better thermal-hydraulic performance for R1234yf than the other...

  10. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    Yang Yahui; Brandner, Juergen J; Morini, Gian Luca

    2012-01-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  11. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  12. Experimental investigation of a manifold heat-pipe heat exchanger

    International Nuclear Information System (INIS)

    Konev, S.V.; Wang Tszin' Lyan'; D'yakov, I.I.

    1995-01-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered

  13. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  14. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  15. Essential Specification Elements for Heat Exchanger Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  16. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  17. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  18. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  19. Developing mixed convection in a coiled heat exchanger

    NARCIS (Netherlands)

    Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.

    1998-01-01

    In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and d = 1/14 is studied. The influence of buoyancy forces (Gr = ¢O (105)) on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are solved using a

  20. Developing mixed convection in a coiled heat exchanger

    NARCIS (Netherlands)

    Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.

    1998-01-01

    In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and
    δ =114
    is studied. The influence of buoyancy forces ¢
    (Gr = ¢O (105))
    on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are

  1. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  2. RIBBED DOUBLE PIPE HEAT EXCHANGER: ANALYTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    HUSSAIN H. AL-KAYIEM

    2011-02-01

    Full Text Available This paper presents the findings obtained by modeling a Double Pipe Heat Exchanger (DPHE equipped with repeated ribs from the inside for artificial roughing. An analytical procedure was developed to analyze the thermal and hydraulic performance of the DPHE with and without ribbing. The procedure was verified by comparing with experimental reported results and they are in good agreement. Several parameters were investigated in this study including the effect of ribs pitch to height ratios, P/e= 5, 10, 15, and 20, and ribs to hydraulic diameter ratios, e/Dh= 0.0595, 0.0765, and 0.107. These parameters were studied at various operating Reynolds number ranging from 2500 to 150000. Different installation configurations were investigated, too. An enhan-cement of 4 times in the heat transfer in terms of Stanton number was achieved at the expense of 38 times increase of pressure drop across the flow in terms of friction facto values.

  3. Microbial fouling control in heat exchangers

    International Nuclear Information System (INIS)

    McCoy, W.F.

    1991-01-01

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  4. Design of heat exchangers by numerical methods

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1981-01-01

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author) [pt

  5. Bank of heat exchangers intended for liquid cooling or heating

    International Nuclear Information System (INIS)

    Veizman, Marcel; Swetchine, Denise.

    1975-01-01

    The invention concerns the heat exchangers cooling a significant volume of water, by straight natural air draught, such as the towers or the draught ducts of dry type air coolers. In a compact form, they enable water cooling problems to be solved in certain industrial installations such as isotope separation plants. The design of this bank of exchangers is also such that its cost is considerably diminished in relation to that of conventional banks. To this effect, this bank is composed of one or several rows of thin flexible plastic pockets forming as many water or other liquid sheets, connected to intake and discharge collectors and arranged one after the other and separated by air flow gaps. These pockets are suspended from one of their ends to hangers fixed to the assembly frame whilst restrictors prevent the pockets from swelling so avoiding any contact between them in order to maintain the air circulation gaps between them [fr

  6. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  7. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  8. Derivation of effectiveness-NTU method for heat exchangers with heat leak; TOPICAL

    International Nuclear Information System (INIS)

    William M. Soyars

    2001-01-01

    A powerful and useful method for heat exchanger analysis is the effectiveness-NTU method. The equations for this technique presented in textbooks, however, are limited to the case where all of the heat transfer occurs between the two fluid streams. In an application of interest to us, cryogenic heat exchangers, we wish to consider a heat leak term. Thus, we have derived equations for the(var e psilon)-NTU method with heat leak involved. The cases to be studied include evaporators, condensers, and counter-flow, with heat leak both in and out

  9. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  10. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-01-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts' characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and

  11. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  12. Graphite Foam Heat Exchangers for Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S

  13. Optimization of parameters of heat exchangers vehicles

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  14. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas; Nellis, Gregory F.

    2017-01-01

    In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....

  15. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  16. Heat exchanger versus regenerator: A fundamental comparison

    NARCIS (Netherlands)

    Will, M.E.; Waele, de A.T.A.M.

    2005-01-01

    Irreversible processes in regenerators and heat exchangers limit the performance of cryocoolers. In this paper we compare the performance of cryocoolers, operating with regenerators and heat exchangers from a fundamental point of view. The losses in the two systems are calculated from the entropy

  17. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  18. Heat transfer analysis of short helical borehole heat exchangers

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele

    2013-01-01

    Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.

  19. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  20. Heat transfer characteristics of a direct contact heat exchanger

    International Nuclear Information System (INIS)

    Kinoshita, I.; Nishi, Y.

    1993-01-01

    As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)

  1. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  2. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  3. Heat transfer and fluid flow in minichannels and microchannels

    CERN Document Server

    Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R

    2014-01-01

    Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan

  4. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  5. Design Guideline for Primary Heat Exchanger in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate.

  6. Design Guideline for Primary Heat Exchanger in a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol

    2016-01-01

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate

  7. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad

    2009-01-01

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  8. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  9. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  10. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1989-01-01

    This patent describes a heat exchanger and pump assembly for transferring thermal energy from a heated, first electrically conductive fluid to a pumped, second electrically conductive fluid and for transferring internal energy from the pumped, second electrically conductive fluid to the first electrically conductive fluid, the assembly adapted to be disposed within a pool of the first electrically conductive fluid and comprising: a heat exchanger comprising means for defining a first annularly shaped cavity for receiving a flow of the second electrically conductive fluid and a plurality of tubes disposed within the cavity, whereby the second electrically conductive fluid in the cavity is heated, each of the tubes having an input and an output end. The input ends being disposed at the top of the heat exchanger for receiving from the pool a flow of the first electrically conductive fluid therein. The output ends being disposed at the bottom of and free of the cavity defining means for discharging the first electrically conductive fluid directly into the pool; a pump disposed beneath the heat exchanger and comprised of a plurality of flow couplers disposed in a circular array, each flow coupler comprised of a pump duct for receiving the first electrically conductive fluid and a generator duct for receiving the second electrically conductive fluid

  11. Experimental studies of rotating exchange flow

    Science.gov (United States)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows

  12. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    Roumailhac, J.; Desir, D.

    1975-01-01

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  13. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  14. Viscose liquid heat treatment using plate scraper heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work analyzes the use of different types of heat exchangers, depending on the technology of production. It is taken the detail analysis of the ways of applicability of various types of heat exchangers, depending on the viscosity of the processed product. It is posed the problem of the analytical determination of the required area of heat exchange with the use of differential equations of heat transfer in a moving liquid media, written in cylindrical coordinates, for symmetrical temperature distribution, without taking in account the energy dissipation.

  15. Development and application of out-of-focus imaging in order to characterize heat and mass exchanges in two-phase flows

    International Nuclear Information System (INIS)

    Lemaitre, P.; Porcheron, E.; Marchand, D.; Nuboer, A.; Bouilloux, L.; Vendel, J.

    2007-01-01

    The aim of this paper is to present the capacity of the out-of-focus imaging in order to measure droplets size in presence of heat and mass exchanges. It is supported with optical simulations first based on geometrical optics, and then with the Lorenz-Mie theory. Finally, this technique is applied in presence of heat and mass transfers in the TOSQAN experiment. (authors)

  16. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  17. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  18. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  19. Heat exchanger, head and shell acceptance criteria

    International Nuclear Information System (INIS)

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  20. Heat Exchanger Support Bracket Design Calculations

    International Nuclear Information System (INIS)

    Rucinski, Russ

    1995-01-01

    This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.

  1. Continuous cleaning of heat exchanger with recirculating fluidized bed

    International Nuclear Information System (INIS)

    St Kollbach, J.; Dahm, W.; Rautenbach, R.

    1987-01-01

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ν < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  2. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Tsou, J.L.

    1995-01-01

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  3. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  4. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    Science.gov (United States)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  5. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  6. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  7. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  8. Integration of Heat Exchangers with Thermoelectric Modules

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza

    2017-01-01

    processes wherein the critical system components such as the TEG module and the heat exchangers are thermally coupled. The optimization techniques of the TEG systems coupled with the heat transfer through the system using a maximum efficiency-power map for waste heat recovery applications offer maximum...... thermally interdependent in the system designs. This chapter studies the effect of the heat exchangers design on system performance, and discusses the challenges through accurate analyses techniques while introducing proper cooling technologies. Proper design of a TEG system involves design optimization...

  9. Experimental simulation study on hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Jiang Shengyao; Zhang Youjie; Jia Haijun; Bo Jinhai; Hong Liuming; Bo Hanliang; Liu Zhiyong

    1997-07-01

    The hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor is studied through a 1:2.33 test model. The design and other feature of the test model is described. The experimental results show that the flow resistance coefficient of the heat exchanger becomes self-simulation when Reynolds number is greater than 5000. The value of flow resistance coefficient at self-simulation condition and the distribution of pressure drop in the heat exchanger are given through experiment. The option design to reduce flow resistance is proposed. The designed and experimental value for the flow resistance coefficient are in good agreement. The variation of system parameters during flow excursion was described. The experimental results are of great significant for the final design of the main heat exchanger of Daqing 200 MW nuclear heating reactor. (2 refs., 5 figs., 1 tab.)

  10. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    Arteconi, A; Giuliani, G; Tartuferi, M; Polonara, F

    2014-01-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  11. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Uvan Catton; Dhir, Vijay K.; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-01-01

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers

  12. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  13. A heat exchanger analogy of automotive paint ovens

    International Nuclear Information System (INIS)

    Rao, Preetham P.

    2013-01-01

    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  14. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  15. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  16. Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA

    OpenAIRE

    A.K. Gupta; P. Kumar; R.K. Sahoo; A.K. Sahu; S.K. Sarangi

    2017-01-01

    An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic Algorithm (GA) utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the performance of plate-fin compact heat exchanger and to provide full exp...

  17. Heat exchanger tube inspection using ultrasonic arrays

    International Nuclear Information System (INIS)

    Meyer, P.A.; Carodiskey, T.J.

    1986-01-01

    Tubing used in industrial heat exchangers is often subject to failure caused by corrosion and cracking. Technical conferences are used as a forum in the steam generator industry to ensure that the failure mechanisms are well understood and that the quality of the heat exchanger is maintained. The quality of a heat exchanger can be thought of as its ability to operate to design specifications over its intended life. This is the motivation to inspect and evaluate these devices periodically. Inspection, however, normally requires shutdown of the heat exchanger which is costly but is much more acceptable than an unscheduled shutdown due to failure of a tube. Therefore, the degree of inspection is established by balancing the cost of inspection with the risk of a tube failure. Any method of reducing the cost of inspection will permit a higher degree of inspection and, therefore, improve heat exchanger quality. This paper reviews the design and performance of an improved method of ultrasonic inspection of heat exchanger tubing with emphasis on applications in the nuclear industry

  18. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  19. Program Computes Flows Of Fluids And Heat

    Science.gov (United States)

    Cullimore, Brent; Ring, Steven; Welch, Mark

    1993-01-01

    SINDA'85/FLUINT incorporates lumped-parameter-network and one-dimensional-flow mathematical models. System enables analysis of mutual influences of thermal and flow phenomena. Offers two finite-difference numerical solution techniques: forward-difference explicit approximation and Crank-Nicholson approximation. Enables simulation of nonuniform heating and facilitates mathematical modeling of thin-walled heat exchangers. Ability to model nonequilibrium behavior within two-phase volumes included. Recent changes in program improve modeling of real evaporator pumps and other capillary-assist evaporators. Written in FORTRAN 77.

  20. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  1. Heat exchanger for three substances, one preferably being hot ashes

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B P; Borisov, N L; Semenov, M K; Ponomarev, I K; Tyryshkina, G B; Gorbatenko, I V

    1985-10-28

    The tubes of the heat exchanger are arranged as a lattice in a stand enclosed in a structure where the space is divided into collecting and distributing chambers, which in their turn are connected to corresponding tubes to forming special flow routes for the substance.

  2. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  3. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  4. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Graham, L.W.; Sturge, D.W.J.; Ridealgh, F.

    1978-01-01

    A heat exchanger is described that is suitable for use with high temperature gas cooled reactors in which the heat is used as process heat. The construction which is of necessity of large size, is of much lighter weight than current constructions and is better able to withstand the high operating temperature (up to about 1000 0 C). Carbon fibre reinforced carbon materials are employed as constructional materials. A method of fabrication is described. The heat exchanger comprises a tube or bundle of tubes associated with a header plate, and the tube can be of helical form. The carbon materials may be formed by carbonisation of a thermosetting plastic such as a phenolic resin. The exchanger is rendered substantially impermeable to gas by an infiltration treatment of the carbon material using a cracked hydrocarbon gas. (U.K.)

  5. Improvements in or relating to heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Graham, L W; Sturge, D W.J.; Ridealgh, F

    1978-04-05

    A heat exchanger is described that is suitable for use with high temperature gas cooled reactors in which the heat is used as process heat. The construction which is of necessity of large size, is of much lighter weight than current constructions and is better able to withstand the high operating temperature (up to about 1000/sup 0/C). Carbon fibre reinforced carbon materials are employed as constructional materials. A method of fabrication is described. The heat exchanger comprises a tube or bundle of tubes associated with a header plate, and the tube can be of helical form. The carbon materials may be formed by carbonisation of a thermosetting plastic such as a phenolic resin. The exchanger is rendered substantially impermeable to gas by an infiltration treatment of the carbon material using a cracked hydrocarbon gas.

  6. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  7. Enhanced two phase flow in heat transfer systems

    Science.gov (United States)

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  8. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  9. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  10. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Carlucci, L.N.

    1984-01-01

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  11. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  12. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood or... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger. 870.4240...

  13. Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2015-01-01

    Full Text Available This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations. The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop. A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%. The percentage errors for the pressure drop in the shell and in the concentric tubes were (17.2% and (- 39% respectively. For cold water outlet temperature, the percentage error was (- 3.3%, while it was (18% considering the pressure drop in the annulus formed. The percentage error for the total power consumed was (-10.8% A theoretical comparison was made between the new design and the conventional heat exchanger from the point of view of, length, mass, pressure drop and total power consumed.

  14. Comparison between conventional heat exchanger performance and an heat pipes exchanger

    International Nuclear Information System (INIS)

    Souza, J.R.G. de; Rocha, N.R.

    1989-01-01

    The thermal performance of conventional compact heat exchanger and of exchanger with heat pipes are simulated using a digital computer, for equal volumes and the same process conditions. The comparative analysis is depicted in graphs that indicate which of the situations each equipment is more efficient. (author)

  15. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    Crambes, M.

    1980-01-01

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  16. Inquiry of selected topics on heat exchanger design

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1977-01-01

    Three specific topics of heat exchanger design are discussed. First is an examination of the effect of maldistribution on the performance of an exchanger. Three different patterns of maldistribution are investigated and for each type when the overall coefficient is independent of the maldistribution (constant) and when the maldistributed fluid is the controlling resistance and, hence, is a function of the maldistribution. It is the purpose of this investigation to determine how serious the maldistribution problem can be and hopefully, develop guidelines for the designer. Second, the simple laminar flow in tube heat transfer problem was examined with the further complications of appreciable external resistance and for countercurrent flow with appreciable temperature changes in the secondary fluid. This is a complex problem theoretically and it is shown how this would be simplified by means of several simple plots. Based on an old analog solution, the possible error if one used the conventional methods of applying overall coefficients in the design of laminar flow exchangers is discussed. Third, laminar flow heat transfer in tube banks was reviewed. The fundamental problem here is how does one handle the effect of the number of tube rows in baffled exchangers. Another form of correlation is suggested but basically it was found that insufficient experimental data were available to determine the best form of correlation. Further experimental data are needed

  17. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  18. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  19. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  20. Compact heat exchanger technologies for the HTRs recuperator application

    International Nuclear Information System (INIS)

    Thonon, B.; Breuil, E.

    2001-01-01

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  1. Diffusion bonding in compact heat exchangers

    International Nuclear Information System (INIS)

    Southall, David

    2009-01-01

    Heatric's diffusion bonding process is a solid-state joining technology that produces strong, compact, all-metal heat exchanger cores. Diffusion bonding allows for a large quantity of joints to be made in geometries that would normally be inaccessible for conventional welding techniques. Since Heatric's diffusion bonding process uses no interlayer or braze alloy, the resulting heat exchanger core has consistent chemistry throughout and, under carefully controlled conditions, a return to parent metal strength can be reached. This paper will provide an overview of the diffusion bonding process and its origins, and also its application to compact heat exchanger construction. The paper will then discuss recent work that has been done to compare mechanical properties of Heatric's diffusion bonded material with material that has been conventionally welded, as well as with material tested in the as-received condition. (author)

  2. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  3. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  4. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle

  5. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  6. Numerical Study of Condensation Heat Exchanger Design in a Subcooled Pool: Correlation Investigation

    International Nuclear Information System (INIS)

    Lee, Hee Joon; Ju, Yun Jae; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2012-01-01

    Generally the condensation heat exchanger has higher heat transfer coefficient compared to the single phase heat exchanger, so has been widely applied to the cooling systems of energy plant. Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. Lee and Lee investigated the existing condensation correlation to the experiment for heat exchanger in saturated pool. They concluded Traviss' correlation showed most satisfactory results for the heat transfer coefficient and mass flow rate in a saturated water pool. In this study, a thermal sizing program of vertical condensation heat exchanger to design, TSCON(Thermal Sizing of CONdenser) was validated with the existing experimental data of condensation heat exchanger in a subcooled pool for pure steam condensation

  7. Heat exchanger design for desalination plants

    International Nuclear Information System (INIS)

    1979-03-01

    The Office of Saline Water (OSW) accomplished a very large amount of significant work related to the design and performance of large heat exchanger bundles and enhanced heat transfer surfaces. This work was undertaken to provide basic technical and economic data for the design of distillation plants for the desalination of seawater, and should be of value to other industrial applications as well. The OSW work covers almost every aspect of heat exchanger design, and ranges academic research to data gathering on commercial desalting plants. Exchanger design configurations include multistage flash plant condensers, vertical tube falling film and upflow evaporators, and horizontal tube spray film evaporators. Unfortunately, the data is scattered through a large number of reports of which many are concerned primarily with factors other than heat transfer, and the quality of reporting and the quality of the data are far from consistent. This report catalogues and organizes the heat exchanger data developed by the OSW. Some analysis as to the validity of the data is made and ranges of performance that can be expected are given. Emphasis is placed on the vertical tube, falling film evaporators. A thorough analysis of the large literature file that was surveyed was not possible. No analysis was made of the quality of original data, but apparent data discrepancies are pointed out where such discrepancies happen to be found

  8. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  9. Open heat exchanger for improved heat efficiency in geothermal spas

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabady, S.J.; Palsson, H.; Saevarsdottir, G.A.

    2008-09-15

    Hot spas and Jacuzzis are popular in Iceland due to the abundance of reasonably prized geothermal heat available. However the water from the district heating system is too warm to be admitted directly into the spa. For safety reasons the water is mixed with cold water, in order to reduce temperature from about 80 deg C down to 45 deg C, which leads to wasting a large quantity of heat. Therefore a design is suggested here that enables the feeding of geothermal water directly into the spa, omitting the step of mixing it with cold water. The idea is to employ an open heat exchanger that transfers heat from the geothermal water to the bulk water in the spa, before letting it mix with the spa water. A case study was done for one particular spa. Heat load was calculated and measured when the spa was in use, and when it was unused. A design is suggested employing a circular double-plate which is to be placed at the bottom of the spa. This unit will function as an open heat exchanger feeding district heating water into the spa. Free convection takes place at the upper side of the upper plate and forced convection below the upper plate. Heat transfer coefficient for both was calculated. Using results from calculations, temperature distribution at critical parts of spa and plate was modeled. Results are reasonable and promising for a good design that may considerably reduce the energy expenses for a continuously heated geothermal spa

  10. Heat exchanges in a quenched ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico; Zannetti, Marco [Dipartimento di Fisica ' E.R. Caianiello' , and CNISM, Unita di Salerno, Universita di Salerno, via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Universita di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126 Bari (Italy)

    2013-02-01

    The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold Q{sub C} < 0, below which a macroscopic fraction of heat is released by the k = 0 Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k{sub M}. Two internal temperatures, associated with the k = 0 and k = k{sub M} modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs. (fast track communication)

  11. Studies on direct liquid-liquid heat exchange in the context of seawater desalination

    International Nuclear Information System (INIS)

    Frederking, R.

    1974-01-01

    In order to lower the operational costs of a sea water desalination plant working by the evaporation principle, an economical heat flow must be provided for amongst other measures. This may be done by utilizing the heat content of newly condensed fresh water for preheating sea water. The easiest way would be a heat exchange between the sea water and the desalinated condensate, e.g. in a counter-flow tube bundle heat exchanger, and to compensate the heat loss by means of an additional heating unit. However, operational experience with this type of heat exchanger has shown that the metal walls on the sea water side get encrusted with hardly soluble salts even after only a short period of operation. Consequently, the heat-transmission resistance increases, so that expensive cleaning of the heat exchangers is necessary after only a few hours of operation already. (orig./TK) [de

  12. A numerical analysis on the heat transfer and pressure drop characteristics of welding type plate heat exchangers

    International Nuclear Information System (INIS)

    Jeong, Jong Yun; Kang, Yong Tae; Nam, Sang Chul

    2008-01-01

    Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is H 2 O/LiBr solution with the LiBr concentration of 50∼60% in mass. The numerical simulation show reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems

  13. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  14. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  15. Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study

    Science.gov (United States)

    Herbinger, Florent; Bhouri, Maha; Groulx, Dominic

    2017-07-01

    In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  16. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  17. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  18. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Feng, Hongcui; Zhong, Wei; Wu, Yanling; Tong, Shuiguang

    2014-01-01

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  19. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    International Nuclear Information System (INIS)

    Brignoli, Riccardo; Cecchinato, Luca; Zilio, Claudio

    2013-01-01

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the −6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ► A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ► In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ► Different inlet distributor/outlet tubes configurations were tested to

  20. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  1. Eddy current testing of heat exchangers tubes

    International Nuclear Information System (INIS)

    Gouez, J.F.; Rieusset, A.; Groix, F.

    An automatic system for Eddy Current testing of heat exchangers tubes of warships was developed. The advantages are an exposure of the controller limited at the time required to put in place the system and a reduced time of control [fr

  2. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  3. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  4. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  5. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  6. Experimental study of particulate fouling onto heat exchanger elements

    International Nuclear Information System (INIS)

    Chandrasa

    1994-01-01

    An experimental study of particulate fouling onto tubular heat exchanger surfaces was carried out using sodium sulfate particles. An experimental apparatus equipped with an aerosol generator has been used to examine the deposition of small particles under controlled conditions. Two sets of experiments were performed. Firstly, the deposition against time of solid particles onto single heat exchanger tube in cross-flow was studied. The effects of a number variables such as particle size, gas velocity and temperature on the deposition was analysed. Secondly, the deposition for the aerosol particles as they passed through a bank of finned tubes was examined. The deposition patterns on various tubes depended on local conditions (velocity and temperature) within the bank. It was found that the fouling resistance increases as aerosol flow rate decreases. The smaller particles showed higher fouling resistance. (author) [fr

  7. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    Razak, Abdu

    1986-01-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  8. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Razak, Abdu [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia)

    1986-07-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  9. Improved spacers for high temperature gas-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, L A [Swiss Federal Institute for Reactor Research, Wuerenlingen (Switzerland)

    1984-07-01

    Experimental and analytical investigations in the field of heat exchanger thermohydraulics have been performed at EIR for many years, Basic studies have been carried out on heat transfer and pressure loss for tube bundles of different geometries and tube surfaces. As a part of this overall R+D programme for heat exchangers, investigations have been carried out on spacer pressure loss in bundles with longitudinal flow. An analytical spacer pressure loss model was developed which could handle different types of subchannel within the bundle. The model has been evaluated against experiments, using about 25 spacers of widely differing geometries. In a gas-cooled reactor it is important to keep the pressure loss over the primary circuit heat exchangers to a minimum. In exchangers with grid spacers these contribute a significant proportion of the overall bundle losses. For example, in the HHT Recuperator, with a shell-side pressure loss of 3.5 % of the inlet pressure, the spacers cause about one half of this loss. Reducing the loss to, say, 2.5 % results in an overall increase in plant efficiency by more than 1 % - a significant improvement Preliminary analysis identified 5 geometries in particular which were chosen for experimental evaluation as part of a joint project with the SULZER Company, to develop a low pressure-loss spacer for HHT heat exchangers (longitudinal counter-flow He/He and He/H{sub 2}O designs). The aim of the tests was to verify the low pressure-loss characteristics of these spacer grid types, as well as the quality of the results calculated by the computer code analytical model. The experimental and analytical results are compared in this report.

  10. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Halle, H.; Wambsganss, M.W.

    1980-03-01

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  11. Using a Potassium Acetate Solution for Cooling High Pressure Hydrogen in a Prototype Heat Exchanger

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Abel, M.; Rokni, Masoud

    2011-01-01

    is to be delivered at high pressure a heat exchanger was designed and constructed. The paper presents a detailed study of construction of the heat exchanger which has been tested and compared to theory to predict and verify its performance. The method presented by Nellis and Klein for laminar flow in annulus tubes...

  12. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  13. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  14. Heat flow of standard depth

    International Nuclear Information System (INIS)

    Cull, J.P.

    1981-01-01

    Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)

  15. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  16. Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Sun

    2018-04-01

    Full Text Available It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turbulent eddy diffusivity, etc. The numerical results indicate that when the fluid is static, the nanoparticle accumulation appears to be near the bottom borehole after many hours of sedimentation. The accumulated particles can be removed by the fluid flow at a relatively high velocity. These observations indicate good suspension stability of the nanofluids, ensuring the operational reliability of the heat exchanger. The numerical results also indicate that a pulsed flow and optimized geometry of the bottom borehole can potentially improve the suspension stability of the nanofluids further.

  17. Heat-exchanger concepts for neutral-beam calorimeters

    International Nuclear Information System (INIS)

    Thompson, C.C.; Polk, D.H.; McFarlin, D.J.; Stone, R.

    1981-01-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included (1) smooth tube/straight flow, (2) smooth tube with swirl flow created by tangential injection of the coolant, and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO 2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout (as evidenced by a coolant leak) occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/cm 2 was obtained for the molybdenum tube swirl flow configuration

  18. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    Science.gov (United States)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  19. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  20. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  1. Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition

    International Nuclear Information System (INIS)

    Satapathy, Ashok K.

    2009-01-01

    In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.

  2. Experimental and numerical investigation of dimplelike protrusions employed in recent heat exchangers

    International Nuclear Information System (INIS)

    Preibisch, S; Dietzel, D; Buschmann, M H; Friebe, C

    2011-01-01

    This study is motivated by the observation that recent investigations of dimpled surfaces employed for enhancing heat transfer rarely go beyond general parameters like pressure losses and heat transfer performance. Here, we explore a real world dimpled cross-flow heat exchanger. In particular, we are interested in the global parameters, but also in the local flow situation around a single dimplelike protrusion. Detailed PIV-experiments and simulations of the local flow around single protrusions and groups of them reveal the flow structures essential for heat transfer. These local results are brought in conjunction with the general performance of the heat exchanger. Based on local results, simulations of the complete heat exchanger are carried out which are found to be in reasonable agreement with the global parameters found experimentally.

  3. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  4. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  5. Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory

    International Nuclear Information System (INIS)

    Chen, Lingen; Feng, Huijun; Xie, Zhihui; Sun, Fengrui

    2015-01-01

    Constructal optimizations of H- and X-shaped heat exchangers are carried out by taking the maximum thermal efficiency (the ratio of the dimensionless heat transfer rate to the dimensionless total pumping power) as optimization objective. The constraints of total tube volumes and spaces occupied by heat exchangers are considered in the optimizations. For the H-shaped heat exchanger, the thermal efficiency decreases when the dimensionless mass flow rate increases. For the higher order of the X-shaped heat exchanger, when the order number is 3, the thermal efficiency of the heat exchanger with Murry law is increased by 68.54% than that with equal flow velocity in the tubes, and by 435.46% than that with equal cross section area of the tubes. - Highlights: • Constructal optimizations of H- and X-shaped heat exchangers are carried out. • Maximum thermal efficiency is taken as optimization objective. • Thermal efficiency is defined as ratio of heat transfer rate to total pumping power. • Optimal constructs of H- and X-shaped heat exchangers are obtained. • Thermal efficiency of X-shaped heat exchanger is larger than that of H-shaped.

  6. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Teyssedou, A.; Dipama, J.; Sorin, M.

    2004-01-01

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

  7. Model Based Controller Design for a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Nithya

    2007-10-01

    Full Text Available In all the process industries the process variables like flow, pressure, level and temperature are the main parameters that need to be controlled in both set point and load changes. The transfer of heat is one of the main important operation in the heat exchanger .The transfer of heat may be fluid to fluid, gas to gas i.e. in the same phase or the phase change can occur on either side of the heat exchanger. The control of heat exchanger is complex due to its nonlinear dynamics. For this nonlinear process of a heat exchanger the model is identified to be First Order plus Dead Time (FOPDT.The Internal Model Control (IMC is one of the model predictive control methods based on the predictive output of the process model. The conventional controller tuning is compared with IMC techniques and it found to be suitable for heat exchanger than the conventional PI tuning.

  8. Verification on reliability of heat exchanger for primary cooling system

    International Nuclear Information System (INIS)

    Koike, Sumio; Gorai, Shigeru; Onoue, Ryuji; Ohtsuka, Kaoru

    2010-07-01

    Prior to the JMTR refurbishment, verification on reliability of the heat exchangers for primary cooling system was carried out to investigate an integrity of continuously use component. From a result of the significant corrosion, decrease of tube thickness, crack were not observed on the heat exchangers, and integrity of heat exchangers were confirmed. In the long terms usage of the heat exchangers, the maintenance based on periodical inspection and a long-term maintenance plan is scheduled. (author)

  9. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  10. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  11. Heat flow from Io /JI/

    Science.gov (United States)

    Matson, D. L.; Ransford, G. A.; Johnson, T. V.

    1981-01-01

    The existing ground-based measurements of Io's thermal emission at infrared wavelengths of 8.4, 10.6, and 21 microns have been reexamined. Present in these data is the signature of hot spots, presumably similar to the hot spots seen by the IRIS experiment on Voyager. It is possible to extract from these data the total amount of power radiated. Since the hot spots are believed to be a result of deep-seated activity in Io and since the remainder of Io's surface is an extraordinarily poor thermal conductor, the power radiated by the hot spots is essentially the total heat flow. The analysis yields a heat flow of 2 + or - 1 W/sq m. This value is tremendously large in comparison to the average heat flow of the earth (0.06 W/sq m) and the moon (0.02 W/sq m), but is characteristic of active geothermal areas on the earth. A heat flow this large requires that the interior of Io be at least partially molten on a global scale.

  12. Corrosion of materials for heat exchangers and the countermeasures

    International Nuclear Information System (INIS)

    Kawamoto, Teruaki

    1978-01-01

    When the materials for heat exchangers are selected, the heat transfer performance, mechanical strength, workability, cost, corrosion resistance and so on are taken in consideration. Most of the failure of heat exchangers is due to corrosion, and the corrosion failure on cooling water side occurs frequently, to which attention is not paid much usually. The rate of occurrence of corrosion failure is overwhelmingly high in heating tubes, and the failure owing to cooling water exceeds that owing to process fluid. The material of heating tubes is mostly aluminum brass, and local failure such as pitting corrosion or stress corrosion cracking holds a majority. The cause of corrosion failure due to cooling water is mostly the poor water quality. The mechanism of corrosion of metals can be explained by the electrochemical reaction between the metals and solutions. As for the factors affecting corrosion, dissolved oxygen, pH, Cl - ions, temperature, flow velocity, and foreign matters are enumerated. Copper alloys are sensitive to the effect of polluted sea water. Erosion corrosion is caused by eddies and bubbles owing to high flow velocity, and impingement attack is caused by scratching foreign matters. The quality of fresh water affects corrosion more than sea water in case of copper alloys. The preliminary examination of water quality is essential. (Kako, I.)

  13. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  14. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  15. Heat exchanger support apparatus in a fluidized bed

    Science.gov (United States)

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  16. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  17. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  18. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  19. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  20. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  1. Triangularly arranged heat exchanger bundles to restrain wind effects on natural draft dry cooling system

    International Nuclear Information System (INIS)

    Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P.

    2016-01-01

    Highlights: • Triangularly arranged heat exchanger around the dry-cooling tower is proposed. • By coupling condenser with dry cooling system, TACHE performance is obtained. • At low wind speeds, cooling performance with TACHE is inferior to that with CACHE. • Better performance can be achieved for cooling system with TACHE at high wind speeds. • TACHE can be applied to the region with the strong prevailing wind all year around. - Abstract: It has been commonly recognized that the crosswind may deteriorate the cooling performance of the natural draft dry cooling system with vertically arranged heat exchanger bundles around the circumference of dry-cooling tower. With the purpose for restraining the adverse effects of ambient winds, a novel triangular configuration of heat exchanger bundles is proposed in this work. The air-side flow and heat transfer models coupled with the circulating water heat transfer process are developed for two kinds of natural draft dry cooling systems with the conventional circularly arranged and novel triangularly arranged heat exchanger bundles, by which the flow and temperature fields, mass flow rate of cooling air, outlet water temperature of heat exchanger and turbine back pressure are obtained. Three wind directions of 0°, 90°, and 180° are investigated at various wind speeds for the natural draft dry cooling system with triangularly arranged heat exchanger bundles, which are compared with the conventional system with circularly arranged heat exchanger bundles. The results show that the thermo-flow performances of the natural draft dry cooling system with triangularly arranged heat exchanger get improved significantly at high wind speeds and in the wind direction of 180°, thus a low turbine back pressure can be achieved, which is of benefit to the energy efficiency of the power generating unit. The natural draft dry cooling system with triangularly arranged heat exchanger is recommended to apply to the regions with

  2. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  3. Role of heat exchangers in helium liquefaction cycles: Simulation studies using Collins cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Rijo Jacob, E-mail: rijojthomas@gmail.com [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India); Ghosh, Parthasarathi; Chowdhury, Kanchan [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Role of heat exchangers in basic helium liquefier analyzed to design large-scale ones. Black-Right-Pointing-Pointer Heat exchangers that determine inlet temperature to expanders are more significant. Black-Right-Pointing-Pointer Limiting values of nondimensional UA for each heat exchanger have been determined. Black-Right-Pointing-Pointer Extra area distributed such that effectiveness of all heat exchangers increase uniformly. Black-Right-Pointing-Pointer Heat exchanger performance variation have little influence on the optimum expander flow. - Abstract: Energy efficiency of large-scale helium liquefiers generally employed in fusion reactors and accelerators is determined by the performance of their constituting components. Simulation with Aspen HYSYS{sup Registered-Sign} V7.0, a commercial process simulator, helps to understand the effects of heat exchanger parameters on the performance of a helium liquefier. Effective UA (product of overall heat transfer coefficient U, heat transfer surface area A and deterioration factor F) has been taken as an independent parameter, which takes into account all thermal irreversibilities and configuration effects. Nondimensionalization of parameters makes the results applicable to plants of any capacity. Rate of liquefaction is found to increase linearly with the effectiveness of heat exchangers. Performance of those heat exchangers that determine the inlet temperatures to expanders have more influence on the liquid production. Variation of sizes of heat exchangers does not affect the optimum rate of flow through expanders. Increasing UA improves the rate of liquid production; however, the improvement saturates at limiting UA. Maximum benefit in liquefaction is obtained when the available heat transfer surface area is distributed in such a way that the effectiveness remains equal for all heat exchangers. Conclusions from this study may be utilized in analyzing and designing large helium

  4. Role of heat exchangers in helium liquefaction cycles: Simulation studies using Collins cycle

    International Nuclear Information System (INIS)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2012-01-01

    Highlights: ► Role of heat exchangers in basic helium liquefier analyzed to design large-scale ones. ► Heat exchangers that determine inlet temperature to expanders are more significant. ► Limiting values of nondimensional UA for each heat exchanger have been determined. ► Extra area distributed such that effectiveness of all heat exchangers increase uniformly. ► Heat exchanger performance variation have little influence on the optimum expander flow. - Abstract: Energy efficiency of large-scale helium liquefiers generally employed in fusion reactors and accelerators is determined by the performance of their constituting components. Simulation with Aspen HYSYS ® V7.0, a commercial process simulator, helps to understand the effects of heat exchanger parameters on the performance of a helium liquefier. Effective UA (product of overall heat transfer coefficient U, heat transfer surface area A and deterioration factor F) has been taken as an independent parameter, which takes into account all thermal irreversibilities and configuration effects. Nondimensionalization of parameters makes the results applicable to plants of any capacity. Rate of liquefaction is found to increase linearly with the effectiveness of heat exchangers. Performance of those heat exchangers that determine the inlet temperatures to expanders have more influence on the liquid production. Variation of sizes of heat exchangers does not affect the optimum rate of flow through expanders. Increasing UA improves the rate of liquid production; however, the improvement saturates at limiting UA. Maximum benefit in liquefaction is obtained when the available heat transfer surface area is distributed in such a way that the effectiveness remains equal for all heat exchangers. Conclusions from this study may be utilized in analyzing and designing large helium plants.

  5. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Walraven, Daniël; Laenen, Ben; D’haeseleer, William

    2014-01-01

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  6. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  7. Heat transfer in a sodium-to-sodium heat exchanger under conditions of combined force and free convection

    International Nuclear Information System (INIS)

    Jackson, J.D.; Axcell, B.P.; Johnston, S.E.

    1987-01-01

    A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)

  8. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  9. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  10. The influence of river water temperature annual variation to the moderator heat exchangers heat flux

    International Nuclear Information System (INIS)

    Nita, I. P.

    2015-01-01

    The Main Moderator heat exchangers are the most important consumers supplied by Recirculated Cooling Water (RCW) System. In order to determine an appropriate operating configuration of the RCW system it is needed to determine the flowrate required by the Main Moderator consumers, in real time. From operating experience, the required RCW flowrate necessary to be supplied to the main moderator heat exchangers is much lower than design flowrate. In installation, there are no flow elements that could measure especially that flow. However, there are two control valves which regulate the flow to the main moderator heaters; they control the outlet temperature of the moderator to 69"oC. That leads to the requirement of calculating the flowrate function of the outside temperature for all possible temperatures during a calendar year. One considered all possible temperatures during an operating year, and more, going beyond design point, up to 36"oC, temperature that can occur during quick transients after forth RCW pump starting. The calculation was made to verify the capacity of heat exchanger to remove the designed 100 MW(t) in the new condition of reducing moderator temperature outlet from 77 to 69°C. The obtained model was validated using field temperatures and flow measurements and the conclusion was the model can accurately predict how the RCW system operates in all year operation conditions. (authors)

  11. Heating patterns during cancer heat therapy as a function of blood flow

    International Nuclear Information System (INIS)

    Mendecki, J.; Friedenthal, E.; Botstein, C.; Sterzer, F.; Paglione, R.W.

    1984-01-01

    Heating patterns as a function of regional blood flow were evaluated in healthy tissues with different vascular characteristics as well as in a variety of tumors submitted to microwave and RF-induced hyperthermia. Generally, faster heating and slower cooling was demonstrated for tumors. Definite correlation was found between the power needed to heat given tissue volume to a specific temperature and the ability of this tissue to dissipate heat via vascular flow. The measurements show that during the early phase of heating of tumors temperature rises slowly up to about 40 0 C. indicating good heat exchanges but that at this level rapid increase of temperature occurs for relatively small increments of power input. It is suggested that blood flow in malignant tissue remains competent and responsive to low grade heating, but that at higher temperature levels, in contrast to normal tissue, tumor blood flow rapidly decreases indicating compromised vascular system. Implication for treatment protocols are discussed

  12. Enhancement of plate heat exchanger performance using electric fields

    International Nuclear Information System (INIS)

    Down, E.M.

    2000-12-01

    The falling film plate evaporator is often used in the food processing industry to remove large amounts of water from liquids, pulps and slurries. Although a compact efficient device with high heat transfer rates, there is a requirement for even greater performance, particularly when fuelled by the low grade energy from many renewable sources. Electrohydrodynamics (EHD) has been shown to give large heat transfer enhancements under many conditions, but most of this previous research has been with working fluids having much lower electrical conductivities than the water-based fluids that are the main concern of this study. The liquid flow in falling film plate evaporators is in the form of a very thin (less than a millimetre) film falling down a heated plate under the effect of gravity. The film surface exhibits waviness over much of the operating range of industrial heat exchangers, and the degree of waviness has previously been shown to have a large effect on the rate of heat transfer. A theoretical model was developed which suggested that significant increases in waviness, and therefore heat transfer, could be stimulated using high voltage electrodes, and these were subsequently observed on the surface of a pool of water during bench-top experiments. An experimental falling film rig was designed to study this EHD effect but the 2.5 kV maximum voltage attainable was thought to be too low to stimulate wave enlargement and no heat transfer enhancement was seen. Significant heat transfer enhancement was observed in the falling film rig when utilising corona discharge electrodes. This was thought to be due to a thinning of the film in the vicinity of the electrode via the corona wind and increased fluid mixing downstream of the electrode. Both point and wire electrodes improved heat transfer rates but wire electrodes were thought to have more potential for integration into existing industrial heat exchanger designs, so were studied more closely. Heat transfer rates

  13. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  14. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  15. Post-accident heat removal ''information exchange''

    International Nuclear Information System (INIS)

    Plein, H.G.; Carlson, G.A.

    1975-01-01

    The in-core molten pool experiments are designed to produce a pool of fission heated temperature and flow patterns of such pools, and evaluate the barrier melt-through potential of the molten UO 2 . The first experiments, to be conducted this fiscal year in the Annular Core Pulse Reactor, will be uncomplicated and multiply-contained to prove containment design and to provide initial information on fission heated molten pool characteristics. Concurrent with the in-core experiments, high temperature ultrasonic techniques are being developed to measure UO 2 temperatures up to and above the melting point for use in later more definitive experiments scheduled for FY77

  16. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  17. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  18. An improved method for analysis of time dependent one-dimensional heat exchange between a river flow and atmosphere; Usovrsena metoda za prognoziranje na vremenski zavisna izmena na toplina pomegu voden tek i atmosferata

    Energy Technology Data Exchange (ETDEWEB)

    Bosevski, T [elektrotehnicki fakultet, Skopje (Yugoslavia); Kusakatov, V [Matematicki fakultet, Skopje (Yugoslavia)

    1978-07-01

    In this work an improvement of the methodology for analysis of time dependent one-dimensional heat exchange between a river flow and atmosphere at additional discharge of condenser heated water from thermal power plant, published at the XXI Yugoslav Conference of ETAN, is performed. In comparison with the already published methodology this work comprises the following improvements: The dispersive member along the river flow is taken into account, so that the basic second order partial differential equation is to be solved. With this improvement the mentioned methodology becomes applicable for analysis of rivers with high and low velocities. The assumption for stationarity is dropped out for at least three consequent days, in a manner that the conditions for equality of temperature and derivative at the beginning and at the end of the day is replaced with assumption that the river flow reaches minimal and maximal ambient temperature at sunrise and sunset. It is possible to conclude that the main characteristics of the developed methodology is the minimal number of hydro meteorological data are needed, that is only two temperature measurements of the water and two measurements of the wind velocity for the whole day - night time period. This conclusion is especially important when statistical analyses of data for longer past period of time are made, i.e. when it is not possible to obtain additional information. (author)

  19. LMFBR intermediate-heat-exchanger experience

    International Nuclear Information System (INIS)

    Cho, S.M.; Beaver, T.R.

    1983-01-01

    This paper presents developmental and operating experience of large Intermediate Heat Exchangers (IHX's) in US from the Fast Flux Test Facility (FFTF) to the Clinch River Breeder Reactor Plant (CRBRP) to the Large Development Plant (LDP). Design commonalities and deviations among these IHX's are synopsized. Various developmental tests that were conducted in the areas of hydraulic, structural and mechanical design are also presented. The FFTF is currently operating. Performance data of the FFTF IHXs are reviewed, and comparisons between actual and predicted performances are made. The results are used to assess the adequacy of IHX designs

  20. Heat exchanges between droplets and atmosphere

    International Nuclear Information System (INIS)

    Yadigaroglu, Georges.

    1975-01-01

    Data necessary for calculating the droplet cooling in wet cooling systems are surveyed. This cooling obeys the laws of simultaneous heat and mass transfer. Exchanges with a solid sphere moving inside a surrounding fluid medium are first examined. The corrections needed for taking into account various secondary effects (circulation in the droplet, lack of sphericity, oscillations, etc...) are then dealt with. Some data necessary for calculating the trajectories of the droplets and their behavior in a cooling system are included (diameter distribution, limit velocities, decay thresholds, etc...). Finally, calculation methods applying to spray systems, as well as wet towers broadly outlined [fr

  1. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  2. The overall heat transfer characteristics of a double pipe heat exchanger: comparison of experimental data with predictions of standard correlations

    International Nuclear Information System (INIS)

    Mehrabian, M. A.; Mansouri, S. H.; Sheikhzadeh, G. A.

    2002-01-01

    The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are also measured using calibrated ratemeters. Heat is supplied to the inner tube stream by an immersion heater. The overall heat transfer coefficients are inferred from the measured data. The heat transfer coefficient of the inner tube flow (circular cross section) is calculated using the standard correlations. The heat transfer coefficient of the outer tube flow (annular cross section) is then deduced.Higher heat transfer coefficients are reported in the laminar flow regime in comparison to the predictions of standard correlations for straight and smooth tubes. The reasons for this discrepancy are identified and discussed. Experimental errors in measuring temperatures and mass flow rates are studied and their effects on the heat transfer coefficients are estimated. Experimental results for the range of operating conditions used in this work show that the outer tube side heat transfer coefficients are smaller than the inner side heat transfer coefficients by a factor of almost 1.5 and 3.4 in counter flow and parallel flow arrangements, respectively. The agreement with predictions is very good for the counter flow arrangement, but not very good for the parallel flow arrangement

  3. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  4. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  5. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  6. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  7. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  8. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-06-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  9. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-04-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  10. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  11. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  12. Alfa-Laval plate heat exchangers for the power industries

    International Nuclear Information System (INIS)

    Kitae, Junnosuke; Mtsuura, Kazuyuki

    1979-01-01

    Within power-generating plants, the transfer and conversion of heat energy of very large quantity are carried out in the process of energy conversion, accordingly the importance of heat exchangers is very high. Heretofore, multi-tube heat exchangers have been used mostly, but Alfa-Laval group developed the heat exchanger with very high efficiency to incorporate it effectively into a power-generating plant. In this plate type heat exchanger, the heat transfer efficiency is very high, and the quantity of stagnation is small as it is compact, consequently it is suitable to the secondary cooling for power-generating plant or the heat exchange of high-priced liquid heat media such as heavy water. Originally, plate type heat exchangers were used for food and chemical industries, therefore the prevention of mixing two liquids, sanitary construction, and corrosion resistance were required. Then they were adopted in iron and steel industry, and large thermal load, large heat transfer area and corrosion resistance to sea water were required. They were adopted in a nuclear power plant for the first time in 1964. In this heat exchanger, channels are formed with corrugated metal sheets, and titanium, stainless steels, Incoloy, Hastelloy and others are used as occasion demands. The Alfa-Laval heat exchangers and their features are explained. (Kako, I.)

  13. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  14. Methods of designing and manufacturing a heat exchanger for the ...

    African Journals Online (AJOL)

    The article describes the method of calculation, design and manufacture of the the plate heat exchanger for the gas turbine plants with heat recovery. We represented the method of threedimensional calculation, which allowed conducting a virtual experiment and clarifying the design of the heat exchanger for the given ...

  15. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  16. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method

    International Nuclear Information System (INIS)

    Li Min; Lai, Alvin C.K.

    2013-01-01

    Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.

  17. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  18. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  19. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  20. An efficient and low resistant circumferential overlap trisection helical baffle heat exchanger with folded baffles

    International Nuclear Information System (INIS)

    Dong, Cong; Li, Dongshuang; Zheng, Youqu; Li, Guoneng; Suo, Yange; Chen, Yaping

    2016-01-01

    Highlights: • The novel cothHXf with circumferential overlap and folded baffles is first proposed. • The key sections of cylindrical and dumbbell are constructed to analyze local flow field characteristics. • The restricted leakage, easier to install and low resistant characteristics are emphasized. • The enhanced heat transfer mechanism of Dean Vortex secondary flow is analyzed. • A variety of comprehensive efficiency assessments are used. - Abstract: An efficient and low resistant circumferential overlap trisection helical baffle shell-and-tube heat exchanger with folded baffles (cothHXf) is presented. It is a modified trisection helical baffle heat exchanger with folded helical baffles for setting rods-and-spanning sleeves. It not only inherits all the merits of circumferential overlap helical baffle scheme, but also adds many additional advantages, such as supporting the inclined baffles with the least rods, simplifying the manufacturing process of spanning tubes and effectively inhibiting the reverse leakage at triangular areas between adjacent baffles. The improved flow characteristic and heat transfer enhancement mechanism of this heat exchanger were numerically investigated in comparison with conventional segmental baffles shell-and-tube heat exchanger (segHX). The flow fields within triangular area of adjacent baffles and nearby regions were depicted. The impacts of the folded baffles on shell-side helical flow, secondary vortex flow, and leakage pattern were analyzed. The distribution configurations of fields of velocity, pressure, temperature and local heat flow rate were revealed. The results show that the heat transfer performance and comprehensive performance evaluation indexes of the cothHXf are much better than those of the segHX while the pressure drop of the cothHXf is much lower than that of the segHX. The numerical simulation results of vivid distributions of flow and thermal fields of the cothHXf can provide theoretical basis for an

  1. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  2. Hydraulic and thermal behaviour of a corrugated plane canal. Application to plate-based heat exchangers

    International Nuclear Information System (INIS)

    Amblard, Alain

    1986-01-01

    As corrugations are often used in heat exchangers in order to promote heat exchange mechanisms through a reduction of boundary layer thickness, an increase of turbulence within the boundary layer, and an increase of exchange surface, the objectives of this research thesis are, on the one hand, to determine the influence of corrugation geometry on heat exchange and friction laws, and, on the other hand, to develop a computing software to describe the flow and heat exchange in the elementary canal. This study is limited to the case of single-phase forced convection in water. After a bibliographical overview on the hydraulic and thermal behaviour of corrugated surfaces used in heat exchangers, the author presents the different studied geometries, and the experimental installation used to determine the friction and exchange coefficient in a vertical duct formed by two corrugated plates. Experimental results are presented and compared with respect to the shape of exchange surfaces. The author then reports the use of two-dimensional code used to describe the flow in an exchanger duct [fr

  3. A pump/intermediate heat exchanger assembly for a liquid metal reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Alexion, C.C.; Sumpman, W.C.

    1987-01-01

    A heat exchanger and electromagnetic pump assembly is disclosed comprising a heat exchanger housing defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. An electromagnetic pump disposed beneath the heat exchanger comprises a circular array of flow couplers. Each flow coupler comprises a pump duct receiving primary liquid metal and a generator duct receiving a pumped intermediate liquid metal. A first plenum chamber is in communication with the generator ducts of all the flow couplers and receives intermediate liquid metal from inlet duct. The generator ducts exit their flows of intermediate liquid metal to a second plenum chamber in communication with the heat exchanger annularly shaped cavity to permit the flow of the intermediate liquid metal therethrough. A third plenum chamber receives collectively the flows of the primary liquid metal from the tubes and directs the primary liquid metal to the pump ducts of the flow couplers. The annular magnetic field of the electromagnetic pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of intermediate liquid metal via tubes and manifolds. The leads to the electromagnets pass through an annular space around the inlet duct. (author)

  4. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  5. Continued evaluation of compact heat exchangers for OTEC evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.

    1979-10-01

    The objectives of this work investigating the applicability of compact plate heat type heat exchangers to OTEC power systems were: (1) an analytical and experimental evaluation of the performance characteristics of compact heat exchangers using ammonia as the working fluid operating under the entire range of OTEC system conditions; and (2) an evaluation of the applicable manufacturing processes, maintenance requirements, and arrangement concepts for large-scale compact OTEC heat exchangers with specific emphasis on total economics. The work was carried out to establish the applicability of compact plate type heat exchangers to OTEC power systems and to provide: (1) experimental verification of predicted performance (heat transfer and fluid flow) under OTEC operating conditions (using NH/sub 3/); (2) provide initial performance data for several desirable plate type OTEC heat exchanger panels; (3) provide test apparatus for continued experimental testing of OTEC compact heat exchanger panels; and (4) provide design information on applicable manufacturing processes maintenance requirements and arrangement concepts for plate type heat exchangers.

  6. Overhaul of the heat exchanger in JRR-3

    International Nuclear Information System (INIS)

    Ouchi, Yasuhiro; Kawamata, Satoshi; Taguchi, Yuji; Kamiishi, Eigo; Koda, Nobuyuki

    2013-01-01

    In JRR-3, heat exchangers are installed in the cooling system equipment to remove the heat generated in the nuclear reactor, For the heat exchangers, overhaul inspection based on the JRR-3 reactor facility maintenance plan, as well as the inspection and maintenance based on reactor facility security provisions and JRR-3 operation guidelines are systematically conducted. Considering the results of overhaul inspection, the second overhaul inspection was applied to the primary coolant heat exchanger. The thinning of heat transfer tubes is within judgment standards with little effects of aging, which verified their soundness. From the fact that the effects of corrosion have been confirmed on the inside of the water chamber, repair work through overlay welding or the like is planned in the next overhaul. As for heavy water heat exchanger and the spent fuel pool water heat exchanger, it is planned to conduct the second overhaul inspection in FY2013 to confirm their soundness. (A.O.)

  7. Heat exchanger vibrations - a case study (Paper No. 5.12)

    International Nuclear Information System (INIS)

    Khilnaney, V.K.

    1992-01-01

    The satisfactory performance of heat exchangers is crucial to the reliability of the plant. Thorough vibration analysis is essential at design stage to avoid failures at the time of operation. Detailed vibration analysis techniques were not available at the time of designing these exchangers and the exchangers were designed as per general guidelines and prevalent good engineering practices. The designs were not checked especially from the point of view of their proneness to excessive flow induced vibration. The present paper gives a study of revamping of cooling water heat exchanger at Heavy Water Plant, Kota. (author)

  8. Development of a control system for shell and tube heat exchanger in Matlab simulink

    International Nuclear Information System (INIS)

    Zeeshan, H.M.

    2014-01-01

    The main objective of this research is to develop a control system for heat exchanger so that the desired outlet temperature can be achieved by controlling the flow rate. For this purpose, shell and tube heat exchanger was chosen and modeled it by using its mathematical equations in MATLAB (Matrix Laboratory) Simulink and calculated the outlet temperature by NTU (Number of Transfer Units) effectiveness method. For the purpose of Control system, MPC (Model Predictive Controller) was used. This research will open a new way of Modeling Equations instead of transfer functions in MATLAB (Matrix Laboratory) Simulink. Using the model, it was developed; with controller, so as to manipulate the output temperature by simply controlling the flow rate. It can be justified weather the design of a new heat exchanger would be feasible or not for the specific requirements. At last this research is very helpful in Industries for the purpose of designing, development and control of new Heat Exchangers. (author)

  9. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  10. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  11. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  12. Micro tube heat exchangers for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles, economizers...

  13. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  14. Tube Plugging Criterion for the TPCCW Heat Exchanger of Yonggwang NPP 1 and 2

    International Nuclear Information System (INIS)

    Kim, Hyung Nam; Yoo, Hyun Ju; Choi, Sung Nam; Song, Seok Yoon

    2009-01-01

    The turbine plant component cooling water(TPCCW) system circulates the cooling water to cool the components in the turbine building and discharges the heat from the components through the TPCCW heat exchanger. Recently, Yonggwang NPP 1 and 2 replaced the TPCCW heat exchanger because of tube degradation. The tubing material of new TPCCW heat exchanger of Yonggwang NPP 1 and 2 is titanium. If the tube wall cannot withstand the pressure, the cooling water with the chemicals flows into the tube side and it is discharged to the open water. The chemicals can pollute the open water. Therefore, the tubes of the TPCCW heat exchanger should be inspected and degraded tubes should be plugged. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. However, tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. This method relies on the similar plugging criteria used in the steam generator

  15. Tube Plugging Criterion for the TPCCW Heat Exchanger of Yonggwang NPP 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Nam; Yoo, Hyun Ju; Choi, Sung Nam; Song, Seok Yoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The turbine plant component cooling water(TPCCW) system circulates the cooling water to cool the components in the turbine building and discharges the heat from the components through the TPCCW heat exchanger. Recently, Yonggwang NPP 1 and 2 replaced the TPCCW heat exchanger because of tube degradation. The tubing material of new TPCCW heat exchanger of Yonggwang NPP 1 and 2 is titanium. If the tube wall cannot withstand the pressure, the cooling water with the chemicals flows into the tube side and it is discharged to the open water. The chemicals can pollute the open water. Therefore, the tubes of the TPCCW heat exchanger should be inspected and degraded tubes should be plugged. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. However, tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. This method relies on the similar plugging criteria used in the steam generator

  16. Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Md. Hasan Ali

    2017-10-01

    Full Text Available This paper highlights the thermal performance of reclined (parallel to ground surface and standing (perpendicular to ground surface slinky horizontal ground heat exchangers (HGHEs with different water mass flow rates in the heating mode of continuous and intermittent operations. A copper tube with an outer surface protected with low-density polyethylene was selected as the tube material of the ground heat exchanger. Effects on ground temperature around the reclined slinky HGHE due to heat extraction and the effect of variation of ground temperatures on reclined HGHE performance are discussed. A higher heat exchange rate was experienced in standing HGHE than in reclined HGHE. The standing HGHE was affected by deeper ground temperature and also a greater amount of backfilled sand in standing HGHE (4.20 m3 than reclined HGHE (1.58 m3, which has higher thermal conductivity than site soil. For mass flow rate of 1 L/min with inlet water temperature 7 °C, the 4-day average heat extraction rates increased 45.3% and 127.3%, respectively, when the initial average ground temperatures at 1.5 m depth around reclined HGHE increased from 10.4 °C to 11.7 °C and 10.4 °C to 13.7 °C. In the case of intermittent operation, which boosted the thermal performance, a short time interval of intermittent operation is better than a long time interval of intermittent operation. Furthermore, from the viewpoint of power consumption by the circulating pump, the intermittent operation is more efficient than continuous operation.

  17. Interpretation of lunar heat flow data

    International Nuclear Information System (INIS)

    Conel, J.E.; Morton, J.B.

    1975-01-01

    Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the Moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the Earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions--possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the Moon

  18. Theory and design of heat exchanger : shell and tube condenser and reboiler

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book gives descriptions of shell and tube heat exchanger including from, sorts, structure like shell and shell side, channel, and sliding bar, basic design of heat exchanger, flow-induced vibration, shell side condenser, tube side condenser and design of basic structure of condenser by types, selection of reboiler type, kettle type reboiler, internal reboiler, pump through reboiler, design of reboiler like kettle and internal reboiler, and horizontal and vertical thermosyphon reboiler.

  19. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  20. Superphenix 1 intermediate heat exchanger fabrication

    International Nuclear Information System (INIS)

    Noel, H.; Granito, F.; Pouderoux, P.

    1985-01-01

    The eight Superphenix 375-MW (thermal) intermediate heat exchangers (IHXs) are similar in overall design to the Phenix components. Detailed design changes had to be made during fabrication on the following grounds: Due to seismic resistance, the support area was raised as high as possible to situate the component natural frequencies well out of the resonance peak range and remove thick plate-to-shell connections from heavy thermal load areas. Integration of lessons drawn from the Phenix incidents, due mainly to secondary sodium radial temperature disparities, resulted in the design of a more adaptable outlet header, together with a sodium mixing device, and in the reduction of temperature differences by heat insulation. To avoid circumferential temperature disparities, the iron shot biological shielding plug was replaced by stacked stainless steel plates within an outer shell, which in the new design, is not a supporting structure. The thermal-hydraulic and mechanical design of the component necessitated the elaboration of sophisticated computer codes, with validation of results on mock-ups. The detailed design studies and the actual manufacturing work had to adapt to both design developments and to inherent fabrication difficulties, mainly related to the very tight tolerances imposed for these exceptionally large components and to the welding of steel with an excessive boron content. The construction of the Creys-Malville IHXs afforded valuable industrial experience, which should provide a basis for the design of simpler and less costly IHX units for the forthcoming 1500-MW (electric) breeder

  1. Study regarding the influence of the crimping angle on the performances of the heat exchangers

    Directory of Open Access Journals (Sweden)

    Opruta D.

    2013-04-01

    Full Text Available The aim of this study is to determine the geometry of a plate for heat exchanger with high heat flow and low values for pressure losses. For this, in Solid Work software, were designed three plate geometries with different crimping angles for the flow channels. Was analyzed the influence of the crimping angle β on the fluid distribution and heat transfer. Also, were compared the data resulted from Computational Fluid Dynamics numeric simulation with the experimental ones for the plate heat exchangers with gaskets. The analysis of the vortices and temperature field distribution was achieved with the aid of simulation software Fluent. In order to validate the numerical simulation's results experimental research were carried out on a heat exchangers stand

  2. Miniaturized Air-to-Refrigerant Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States); Bacellar, Daniel [Univ. of Maryland, College Park, MD (United States); Aute, Vikrant [Univ. of Maryland, College Park, MD (United States); Huang, Zhiwei [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Muehlbauer, Jan [Univ. of Maryland, College Park, MD (United States); Tancabel, James [Univ. of Maryland, College Park, MD (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Mingkan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-23

    Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs and also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX designs

  3. Optimization of geometric parameters of heat exchange pipes pin finning

    Science.gov (United States)

    Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.

    2018-05-01

    The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.

  4. Heat exchanger, particularly liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Robin, Marcel; Tillequin, Jean.

    1977-01-01

    This invention relates to a liquid sodium heated steam generator the characteristic of which is an annular distribution chamber fed by two independent and diametrically opposed manifolds on a common horizontal axis, issuing respectively into two adjacent compartments made in the chambers on both sides of a vertical transversal partition containing the axis of the casing and extending perpendicularly to the manifolds, each compartment being itself divided into a number of adjacent sectors marked by folded metal sheets fixed to the distributor and shaped so as to present in pairs and with the chamber opposite the manifold issuing into a compartment two independent ducts for distributing the sodium flow [fr

  5. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  6. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  7. Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Hussein Talal Dhaiban

    2016-04-01

    Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.

  8. Fluid induced structural vibrations in steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Catton, I.; Adinolfi, P.; Alquaddoomi, O.

    2003-01-01

    Fluid-elastic instability (FEI) in tube bundle heat exchangers was studied experimentally. The motion of an array of 15 stainless steel vibrating tubes (Φ 25.4mm) in water cross-flow, suspended using stainless steel piano wire has been recorded with a CCD camera. The individual motion and relative