WorldWideScience

Sample records for flow field dynamics

  1. Dynamic effects on the stretching of the magnetic field by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2003-08-22

    A key mechanism in the growth of magnetic energy in kinematic dynamos is the stretching of the magnetic field vector by making it point in an unstable direction of the strain matrix. Our objective is to study whether this feature may be maintained in an ideal plasma when also considering the back reaction of the magnetic field upon the flow through the Lorentz force. Several effects occur: in addition to the nonlocal ones exerted by the total pressure, a complex geometry of magnetic field lines decreases the rate of growth of magnetic energy, rotation of the flow enhances it and above all the rate of growth decreases with minus the square of the eigenvalue associated with the magnetic field direction. Thus local dynamics tend to rapidly quench the stretching of the field.

  2. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  3. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  4. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  5. Dynamics of fibres in a turbulent flow field - A particle-level simulation technique

    International Nuclear Information System (INIS)

    Sasic, Srdjan; Almstedt, Alf-Erik

    2010-01-01

    A particle-level simulation technique has been developed for modelling the flow of fibres in a turbulent flow field. A single fibre is conceived here as a chain of segments, thus enabling the model fibre to have all the degrees of freedom (translation, rotation, bending and twisting) needed to realistically reproduce the dynamics of real fibres. Equations of motion are solved for each segment, accounting for the interaction forces with the fluid, the contact forces with other fibres and the forces that maintain integrity of the fibre. The motion of the fluid is resolved as a combination of 3D mean flow velocities obtained from a CFD code and fluctuating turbulent velocities derived from the Langevin equation. A case of homogeneous turbulence is treated in this paper. The results obtained show that fibre flocs in air-fibre flows can be created even when attractive forces are not present. In such a case, contacts between fibres, properties of an individual fibre (such as flexibility and equilibrium shapes) and properties of the flow of the carrying fluid are shown to govern the physics behind formation and breaking up of fibre flocs. Highly irregular fibre shapes and stiff fibres lead to strong flocculation. The modelling framework applied in this work aims at making possible a numerical model applicable for designing processes involving transport of fibres by air at industrial scale.

  6. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    International Nuclear Information System (INIS)

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-01-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  7. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    Science.gov (United States)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  8. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  9. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    Science.gov (United States)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  10. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  11. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    Science.gov (United States)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  12. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

  13. Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis

    Science.gov (United States)

    Leem, Dohyun; Kim, Jin-Hwan; Barlat, Frédéric; Song, Jung Han; Lee, Myoung-Gyu

    2018-03-01

    An inverse approach based on the virtual fields method (VFM) is presented to identify the material hardening parameters under dynamic deformation. This dynamic-VFM (D-VFM) method does not require load information for the parameter identification. Instead, it utilizes acceleration fields in a specimen's gage region. To investigate the feasibility of the proposed inverse approach for dynamic deformation, the virtual experiments using dynamic finite element simulations were conducted. The simulation could provide all the necessary data for the identification such as displacement, strain, and acceleration fields. The accuracy of the identification results was evaluated by changing several parameters such as specimen geometry, velocity, and traction boundary conditions. The analysis clearly shows that the D-VFM which utilizes acceleration fields can be a good alternative to the conventional identification procedure that uses load information. Also, it was found that proper deformation conditions are required for generating sufficient acceleration fields during dynamic deformation to enhance the identification accuracy with the D-VFM.

  14. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin

    2017-01-01

    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  16. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  17. Field programmable gate array reliability analysis using the dynamic flow graph methodology

    Energy Technology Data Exchange (ETDEWEB)

    McNelles, Phillip; Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario (Canada)

    2016-10-15

    Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the 'IEEE 1164 standard', registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  18. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    Science.gov (United States)

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  19. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    Science.gov (United States)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  20. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA) : Field data and reactive transport modeling

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction,

  1. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par

  2. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/D and the length between two successive corrugated sections p/D are varied in the ra...

  3. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  4. Emplacement Dynamics and Timescale of a Holocene Flow from the Cima Volcanic Field (CA): Insights from Rheology and Morphology

    Science.gov (United States)

    Soldati, A.; Beem, J. R.; Gomez, F.; Huntley, J. W.; Robertson, T.; Whittington, A. G.

    2017-12-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. By combining field observations and experimental results, we reconstructed the few weeks-long emplacement timeline of the Cima flow. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (fxtal=0.95±0.04) than the main flow body (fxtal=0.66±0.11), which reveals a multi-stage emplacement history. Airborne photogrammetry data were used to generate a digital elevation model, which allowed us to estimate the flow volume. The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1,361 Pa·s during cooling from the liquidus ( 1230 ˚C) to 1160 ˚C, where crystal fraction is 0.11. Flow curves fitted to measurements at different strain rates indicate a Herschel-Bulkley rheological behavior, combining shear-thinning with a yield strength negligible at the higher measured temperatures but increasing up to 357±41 Pa at 1160˚C. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O+K2O). We determined that the morphological pahoehoe to `a'ā transition of this trachybasalt occurs at a temperature of 1160±10 ˚C, similar to that observed for Hawaiian tholeiitic lavas, but at higher apparent viscosity values. Monogenetic volcanism in the Western United States is typically characterized by low effusion rates and eruption on sub-horizontal desert plains. Under these low strain-rate conditions, the pahoehoe to `a'ā transition is likely to occur abruptly upon minimal cooling, i.e. very close to the vent, but lava tubes may transport fluid lava to flow

  5. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  6. Emplacement dynamics and timescale of a Holocene flow from the Cima Volcanic Field (CA): Insights from rheology and morphology

    Science.gov (United States)

    Soldati, Arianna; Beem, Jordon; Gomez, Francisco; Huntley, John Warren; Robertson, Timothy; Whittington, Alan

    2017-11-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. Our field observations focused on surface morphology, which transitions from smooth core extrusions near the vent to jagged 'a'ā blocks over the majority of the flow, and on channel and levée dimensions. We collected airborne photogrammetry data and used it to generate a digital elevation model. From this, the total flow volume was estimated and surface roughness was quantified in terms of standard deviation of the real surface (5 cm resolution) from the software-generated 1 m-average plane. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (ϕxtal = 0.95 ± 0.04) than the main flow body (ϕxtal = 0.66 ± 0.11). The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1361 Pa·s during cooling from the liquidus ( 1230 °C) to 1160 °C, where crystal fraction is 0.11. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O + K2O). Monte Carlo simulations were used to account for and propagate experimental uncertainties, and to determine which rheological model (Bingham, power law, or Herschel-Bulkley) provides the best-fit of the obtained rheological data. Results suggest that Bingham and Herschel-Bulkley models are statistically indistinguishable from each other, and that both fit the data better than a power law model. By combining field observations and experimental results, we reconstructed the eruption temperature and few days-long emplacement history of the Cima flow.

  7. An effective parameter optimization technique for vibration flow field characterization of PP melts via LS-SVM combined with SALS in an electromagnetism dynamic extruder

    Science.gov (United States)

    Xian, Guangming

    2018-03-01

    A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.

  8. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  9. AN OVERVIEW ON PULSATILE FLOW DYNAMICS

    OpenAIRE

    Çarpinlioğlu, Melda Özdinç

    2015-01-01

    Pulsatile flow dynamics in reference to the relevant experimental research on the manner between the time periods of 1997- 2015 is presented in this paper. The flow field under discussion is generated through a rigid circular cross-sectional pipe as an axial slightly- compressible and sinusoidal one in a controlled range of the oscillation parameters. Laminar and turbulent flow regimes are considered with a particular emphasis devoted to the transitional characteristics of laminar pulsatile f...

  10. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  11. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof

    2008-07-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.

  12. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  13. Field Flows of Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  14. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  15. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2009-01-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  16. Information flow dynamics in the brain

    Science.gov (United States)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  17. A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions

    DEFF Research Database (Denmark)

    De Luca, Sergio; Todd, Billy; Hansen, Jesper Schmidt

    2014-01-01

    by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected...... into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational–rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency...... of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V...

  18. Friction in Carborane-Based Molecular Rotors Driven by Gas Flow or Electric Field: Classical Molecular Dynamics

    Czech Academy of Sciences Publication Activity Database

    Prokop, Alexandr; Vacek, Jaroslav; Michl, Josef

    2012-01-01

    Roč. 6, č. 3 (2012), s. 1901-1914 ISSN 1936-0851 R&D Projects: GA ČR GA203/09/1802; GA MŠk ME09020 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular rotors * molecular dynamics * potential energy barriers * friction * intramolecular vibrational redistribution Subject RIV: CC - Organic Chemistry Impact factor: 12.062, year: 2012

  19. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  20. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    Science.gov (United States)

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  1. Multiphase Flow Dynamics 2 Mechanical Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  2. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  3. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  4. Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Barzegar Ramin

    2013-01-01

    Full Text Available In the present paper, the combustion process and emission formation in the Lister 8.1 I.D.I Diesel engine have been investigated using a Computational Fluid Dynamics (CFD code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately resolved for the swirl chamber (pre-chamber and the main chamber. The results of model verify the fact that the equal amount of the fuel is burned in the main and pre-chamber at full load state while at part load the majority of the fuel is burned in the main chamber. Also, it is shown that the adherence of fuel spray on the pre-chamber walls is due to formation of a stagnation zone which prevents quick spray evaporation and plays an important role in the increase of soot mass fractions at this zone at full load conditions. The simulation results, such as the mean in-cylinder pressure, heat release rate and exhaust emissions are compared with the experimental data and show good agreement. This work also demonstrates the usefulness of multidimensional modeling for complex chamber geometries, such as in I.D.I Diesel engines, to gain more insight into the flow field, combustion process and emission formation.

  5. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  6. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  7. Multiphase Flow Dynamics 1 Fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

  8. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

  9. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  10. Propulsion efficiency and imposed flow fields of a copepod jump

    DEFF Research Database (Denmark)

    Jiang, H.; Kiørboe, Thomas

    2011-01-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed...... the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump...... the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow...

  11. Reconstruction of dynamical equations for traffic flow

    OpenAIRE

    Kriso, S.; Friedrich, R.; Peinke, J.; Wagner, P.

    2001-01-01

    Traffic flow data collected by an induction loop detector on the highway close to Koeln-Nord are investigated with respect to their dynamics including the stochastic content. In particular we present a new method, with which the flow dynamics can be extracted directly from the measured data. As a result a Langevin equation for the traffic flow is obtained. From the deterministic part of the flow dynamics, stable fixed points are extracted and set into relation with common features of the fund...

  12. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    Science.gov (United States)

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  13. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  14. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  15. Description of flow field in the wheelhouses of cars

    International Nuclear Information System (INIS)

    Regert, Tamas; Lajos, Tamas

    2007-01-01

    RANS and URANS modeling of flow past simplified vehicle bodies with wheelhouses and rotating wheels have been carried out in order to understand the flow phenomena through detailed analyses of flow in the wheelhouses. The vortex skeleton method was used to characterize the flow structure. The second invariant of the velocity gradient tensor (Q) and iso-surfaces of total pressure have been applied for detecting dynamically significant vortical structures. It was found that the flow field in the wheelhouse can be characterized by several large recirculation zones, of which six can be classified as qualitatively independent of the grid, numerical scheme, turbulence model and the shape of the vehicle body. The change of flow field structure was investigated for various wheelhouse geometries, and for closed lower and/or lateral gaps between the wheelhouse and the external flow field. Aerodynamic forces acting on the body, wheelhouse and wheel were determined separately for different configurations

  16. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  17. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  18. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  19. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  20. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  1. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  2. Strong-field dissociation dynamics

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, Baorui.

    1993-01-01

    The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

  3. A field study of flow turbulence and sediment transport dynamics on a beach surface in the lee of a coastal foredune under offshore winds

    Science.gov (United States)

    Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.

    2010-12-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that

  4. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  5. Dynamical similarity of geomagnetic field reversals.

    Science.gov (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  6. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  7. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  8. Flow-synchronous field motion refrigeration

    Science.gov (United States)

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  9. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  10. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  11. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  12. Propulsion efficiency and imposed flow fields of a copepod jump.

    Science.gov (United States)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  13. Transient simulation in interior flow field of lobe pump

    International Nuclear Information System (INIS)

    Li, Y B; Sang, X H; Shen, H; Jia, K; Meng, Q W

    2013-01-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium

  14. Development of dynamic PIV for droplet jet flow

    International Nuclear Information System (INIS)

    Okamoto, K.; Hong, S. D.; Bi, W. T.; Sugii, Y.; Madarame, H.; Hayami, H.

    2003-01-01

    The Particle Image Velocimetry (PIV) can capture velocity vector fields with high spatial resolution. In this study, the Dynamic PIV system up to 10kHz temporal resolution was developed with combining the High-speed camera and high speed Laser with Double pulse option. The 1024 x 1024 pixel images with frame straddling were captured in 2kHz. Also, PIV data were measured in 512 x 256 pixel in 10kHz. The system had been applied to capture the water droplet flow. The transient characteristics of the droplet flow can be clearly captured using the developed Dynamic PIV System

  15. Dynamics of assembly production flow

    Science.gov (United States)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  16. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  17. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  18. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  19. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  20. Flow field mapping in data rack model

    Directory of Open Access Journals (Sweden)

    Matěcha J.

    2013-04-01

    Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

  1. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  2. Nonlinear dynamics of two-phase flow

    International Nuclear Information System (INIS)

    Rizwan-uddin

    1986-01-01

    Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques

  3. Dynamic membrane filtration in tangential flow

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Oil-containing waste water is produced in many cleaning processes and also on production of compressed air. Dynamic membrane filtration in the tangential flow mode has proved effective in the treatment of these stable emulsions. The possible applications of ceramic membrane filters are illustrated for a variety of examples. (orig.) [de

  4. Flow field design for high-pressure PEM electrolysis cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    -water distributes. Water not only serves a reactant, it also aids in cooling due to its high specific heat capacity. The movement of liquid water at the anode is difficult to model, since it is highly coupled to the formation of gas bubbles. To capture the complex two-phase flow behaviour that takes place within...... micro-channels and porous media, our research group has developed an Euler-Euler model in the computational fluid dynamics modelling framework of ANSYS CFX. In addition to two-phase flow, the model accounts for turbulence, species transport in the gas phase, heat transport in all three phases (i.......e. solid, gas and liquid), as well as charge transport of electrons and ions. Our recent improvements have focused on the models ability to account for phase change and electrochemistry as well as the modelling of two-phase flow regimes. For comparison, an interdigitated and parallel channel flow field...

  5. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  6. Computational analysis of the flow field downstream of flow conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, Asbjoern

    1997-12-31

    Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.

  7. Dynamical eigenfunction decomposition of turbulent channel flow

    Science.gov (United States)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  8. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  9. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    Science.gov (United States)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  10. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  11. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  12. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  13. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  14. Flow field characteristics of impinging sweeping jets: TR-PIV measurement

    Science.gov (United States)

    Wen, Xin; Peng, Di; Liu, Yingzheng; Tang, Hui

    2017-11-01

    Influence of Reynolds number of sweeping jets on its impinging flow fields was extensively investigated in a water tank. Toward this end, a fluidic oscillator was specially designed to produce spatially sweeping jets which imping on a flat plate. Six Reynolds numbers were tested by controlling the supply flow rate of the fluidic oscillator. Impinging flow fields were captured by time-resolved Particle Image Velocimetry (TR-PIV) measurement. Reference signals were extracted from the flow fields for phase reconstruction. The oscillating flow fields with super-harmonic frequency at different regions were discussed in term of the phase-averaged velocity, vorticity and turbulent velocity. Dynamic mode decomposition (DMD) was used to capture the most-energetic flow patterns with distinct frequencies. By projecting the phase-averaged flow fields onto a reduced basis of DMD modes, the phase correlation between the distinct flow patterns were analyzed under different Reynolds numbers.

  15. Shear Layer Dynamics in Resonating Cavity Flows

    National Research Council Canada - National Science Library

    Ukeiley, Lawrence

    2004-01-01

    .... The PIV data was also combined with the surface pressure measurements through the application of the Quadratic Stochastic Estimation procedure to provide time resolved snapshots of the flow field. Examination of these results indicate the strong pumping action of the cavity regardless of whether resonance existed and was used to visualize the large scale structures interacting with the aft wall.

  16. Multiphase Flow Dynamics 3 Thermal Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

  17. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  18. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  19. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  20. Numerical computation of space shuttle orbiter flow field

    Science.gov (United States)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  1. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  2. Path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-08-20

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  3. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  4. Minimum cost dynamic flows: The series-parallel case

    NARCIS (Netherlands)

    Klinz, Bettina; Woeginger, Gerhard

    2004-01-01

    A dynamic network consists of a directed graph with capacities, costs, and integral transit times on the arcs. In the minimum-cost dynamic flow problem (MCDFP), the goal is to compute, for a given dynamic network with source s, sink t, and two integers v and T, a feasible dynamic flow from s to t of

  5. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  6. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  7. Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

    Directory of Open Access Journals (Sweden)

    Martha J. M. Wells

    2015-09-01

    Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.

  8. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  9. Strong field control of predissociation dynamics.

    Science.gov (United States)

    Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis

    2013-01-01

    Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.

  10. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  11. Dynamic methods of air traffic flow management

    Directory of Open Access Journals (Sweden)

    Jacek SKORUPSKI

    2011-01-01

    Full Text Available Air traffic management is a complex hierarchical system. Hierarchy levels can be defined according to decision making time horizon or to analyze area volume. For medium time horizon and wide analysis area, the air traffic flow management services were established. Their main task is to properly co-ordinate air traffic in European airspace, so as to minimize delays arising in congested sectors. Those services have to assure high safety level at the same time. Thus it is a very complex task, with many goals, many decision variables and many constraints.In the paper review of the methods developed for aiding air traffic flow management services is presented. More detailed description of a dynamic method is given. This method is based on stochastic capacity and scenario analysis. Some problems in utilization of presented methods are also pointed out, so are the next research possibilities.

  12. Performance of a vanadium redox flow battery with and without flow fields

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The performances of a VRFB with/without flow fields are compared. • The respective maximum power efficiency occurs at different flow rates. • The battery with flow fields Exhibits 5% higher energy efficiency. - Abstract: A flow field is an indispensable component for fuel cells to macroscopically distribute reactants onto electrodes. However, it is still unknown whether flow fields are also required in all-vanadium redox flow batteries (VRFBs). In this work, the performance of a VRFB with flow fields is analyzed and compared with the performance of a VRFB without flow fields. It is demonstrated that the battery with flow fields has a higher discharge voltage at higher flow rates, but exhibits a larger pressure drop. The maximum power-based efficiency occurs at different flow rates for the both batteries with and without flow fields. It is found that the battery with flow fields Exhibits 5% higher energy efficiency than the battery without flow fields, when operating at the flow rates corresponding to each battery's maximum power-based efficiency. Therefore, the inclusion of flow fields in VRFBs can be an effective approach for improving system efficiency

  13. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three-dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k-∊ turbulence model of three-dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  14. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three‐dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k‐ε turbulence model of three‐ dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  15. Dynamics of flow behind backward-facing step in a narrow channel

    Directory of Open Access Journals (Sweden)

    Uruba V.

    2013-04-01

    Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  16. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  17. The flow field around a micropillar confined in a microchannel

    International Nuclear Information System (INIS)

    Jung, Junkyu; Kuo, C.-J.; Peles, Yoav; Amitay, Michael

    2012-01-01

    The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100 ⩽ Re D ⩽ 700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.

  18. Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography

    International Nuclear Information System (INIS)

    Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.

    2005-01-01

    The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps

  19. Chameleon field dynamics during inflation

    Science.gov (United States)

    Saba, Nasim; Farhoudi, Mehrdad

    By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.

  20. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  1. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  2. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  3. Statistical dynamical subgrid-scale parameterizations for geophysical flows

    International Nuclear Information System (INIS)

    O'Kane, T J; Frederiksen, J S

    2008-01-01

    Simulations of both atmospheric and oceanic circulations at given finite resolutions are strongly dependent on the form and strengths of the dynamical subgrid-scale parameterizations (SSPs) and in particular are sensitive to subgrid-scale transient eddies interacting with the retained scale topography and the mean flow. In this paper, we present numerical results for SSPs of the eddy-topographic force, stochastic backscatter, eddy viscosity and eddy-mean field interaction using an inhomogeneous statistical turbulence model based on a quasi-diagonal direct interaction approximation (QDIA). Although the theoretical description on which our model is based is for general barotropic flows, we specifically focus on global atmospheric flows where large-scale Rossby waves are present. We compare and contrast the closure-based results with an important earlier heuristic SSP of the eddy-topographic force, based on maximum entropy or statistical canonical equilibrium arguments, developed specifically for general ocean circulation models (Holloway 1992 J. Phys. Oceanogr. 22 1033-46). Our results demonstrate that where strong zonal flows and Rossby waves are present, such as in the atmosphere, maximum entropy arguments are insufficient to accurately parameterize the subgrid contributions due to eddy-eddy, eddy-topographic and eddy-mean field interactions. We contrast our atmospheric results with findings for the oceans. Our study identifies subgrid-scale interactions that are currently not parameterized in numerical atmospheric climate models, which may lead to systematic defects in the simulated circulations.

  4. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  5. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  6. Traffic flow dynamics. Data, models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)

    2013-07-01

    First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

  7. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  8. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  9. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.

    2014-10-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  10. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.; Parker, Joseph T.

    2014-01-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  11. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  12. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  13. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  14. Numerical Simulation of Droplet Motion and Two-Phase Flow Field in an Oscillating Container

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available The dynamic motion of the droplet in the oscillating flow field is simulated numerically using the arbitrary Lagrangian-Eulerian and level set coupled method. It is shown that radiating flows are generated from the droplet surface in the oscillating direction and the droplet moves toward the pressure node. The translational motion of the droplet is caused by the density variation, while the radiating flows are by the pressure variation. The flow field around the droplet in the oscillating container is found to be similar to that around the oscillating droplet in the stationary container.

  15. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  16. String Analysis for Dynamic Field Access

    DEFF Research Database (Denmark)

    Madsen, Magnus; Andreasen, Esben

    2014-01-01

    domains to reason about dynamic field access in a static analysis tool. A key feature of the domains is that the equal, concatenate and join operations take Ο(1) time. Experimental evaluation on four common JavaScript libraries, including jQuery and Prototype, shows that traditional string domains...

  17. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  18. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  19. Branched flow and caustics in random media with magnetic fields

    Science.gov (United States)

    Metzger, Jakob; Fleischmann, Ragnar; Geisel, Theo

    2009-03-01

    Classical particles as well as quantum mechanical waves exhibit complex behaviour when propagating through random media. One of the dominant features of the dynamics in correlated, weak disorder potentials is the branching of the flow. This can be observed in several physical systems, most notably in the electron flow in two-dimensional electron gases [1], and has also been used to describe the formation of freak waves [2]. We present advances in the theoretical understanding and numerical simulation of classical branched flows in magnetic fields. In particular, we study branching statistics and branch density profiles. Our results have direct consequences for experiments which measure transport properties in electronic systems [3].[1] e.g. M. A. Topinka et al., Nature 410, 183 (2001), M. P. Jura et al., Nature Physics 3, 841 (2007)[2] E. J. Heller, L. Kaplan and A. Dahlen, J. Geophys. Res., 113, C09023 (2008)[3] J. J. Metzger, R. Fleischmann and T. Geisel, in preparation

  20. On the role of neutral flow in field-aligned currents

    Science.gov (United States)

    Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Meng, Xing; McGranaghan, Ryan

    2018-01-01

    In this brief note we explore the role of the neutral atmosphere in magnetosphere-ionosphere coupling. We analyze momentum balance in the ion rest frame to form hypotheses regarding the role of neutral momentum in the lower ionosphere during geomagnetic storms. Neutral momentum that appears in the ion rest frame is likely the result of momentum imparted to ionospheric ions by solar wind flow and the resultant magnetospheric dynamics. The resulting ion-neutral collisions lead to the existence of an electric field. Horizontal electron flow balances the momentum supplied by this electric field. We suggest a possible role played by the neutral atmosphere in generating field-aligned currents due to local auroral heating. Our physical interpretation suggests that thermospheric neutral dynamics plays a complementary role to the high-latitude field-aligned currents and electric fields resulting from magnetospheric dynamics.

  1. On the role of neutral flow in field-aligned currents

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2018-01-01

    Full Text Available In this brief note we explore the role of the neutral atmosphere in magnetosphere–ionosphere coupling. We analyze momentum balance in the ion rest frame to form hypotheses regarding the role of neutral momentum in the lower ionosphere during geomagnetic storms. Neutral momentum that appears in the ion rest frame is likely the result of momentum imparted to ionospheric ions by solar wind flow and the resultant magnetospheric dynamics. The resulting ion-neutral collisions lead to the existence of an electric field. Horizontal electron flow balances the momentum supplied by this electric field. We suggest a possible role played by the neutral atmosphere in generating field-aligned currents due to local auroral heating. Our physical interpretation suggests that thermospheric neutral dynamics plays a complementary role to the high-latitude field-aligned currents and electric fields resulting from magnetospheric dynamics.

  2. ASRM Multi-Port Igniter Flow Field Analysis

    Science.gov (United States)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  3. Visualization of Flow Field: Application of PLIF Technique

    Directory of Open Access Journals (Sweden)

    Jiang Bo Peng

    2018-01-01

    Full Text Available The objective of this paper is to apply planar laser-induced fluorescence (PLIF technology to flow field visualization. This experiment was carried out in a one-meter wind tunnel to study the wake flow field around a circular cylinder. This experiment studied the method of injecting tracer into the flow field; the frequency of the vortex in the wake field and the vortex speed are quantitatively analyzed. This paper gives the correspondence between the speed of the flow field and the frequency of the laser, which could be used as a rough reference standard for future wind tunnel visualization experiments. The result shows that PLIF diagnostic technology has great potential in visualization of flow field.

  4. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  5. Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)

    1999-07-01

    Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)

  6. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  7. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  8. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  9. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  10. Estimation of Centers and Stagnation points in optical flow fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local dis...

  11. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  12. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    1998-01-01

    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  13. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  14. Dynamics of coupled phantom and tachyon fields

    International Nuclear Information System (INIS)

    Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  15. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  16. Modeling emotional dynamics : currency versus field.

    Energy Technology Data Exchange (ETDEWEB)

    Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago

    2008-08-01

    Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.

  17. Nonequilibrium statistical averages and thermo field dynamics

    International Nuclear Information System (INIS)

    Marinaro, A.; Scarpetta, Q.

    1984-01-01

    An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles

  18. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  19. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  20. Sutudy on exchange flow under the unstably stratified field

    OpenAIRE

    文沢, 元雄

    2005-01-01

    This paper deals with the exchange flow under the unstably stratified field. The author developed the effective measurement system as well as the numerical analysis program. The system and the program are applied to the helium-air exchange flow in a rectangular channel with inclination. Following main features of the exchange flow were discussed based on the calculated results.(1) Time required for establishing a quasi-steady state exchange flow.(2) The relationship between the inclination an...

  1. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  2. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  3. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Science.gov (United States)

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  4. Dynamical chaos of nonabelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    A special class of the Yang - Mills field-the spatially homogeneous fields (Yan - Mills classical mechanics)-having no analog in the linear abelian electrodynamics is studied. Both the computer and analytical approaches show that such fields possess dynamical stochasticity, this allowing one to claim that the Yang - Mills classical equations without external sources represent a non-integrable system. The Higgs mechanism eliminates this stochasticity: at some expectation value of scalar field, a phase transition of disorder-order (confinement-deconfinement) type takes plce. The system with external sources behaves apparently analogously. A relation of the discovered stochasticity with the dimensional reduction mechanism in the macroscopic systems as well as with colour confinement is considered. It is shown that the presence of the random (Gaussian) currents in vacuum leads to confinement of fields generated by those currents. Attention is paid to the possible manifestation of the revealed stochasticity of the classical non-abelian gauge fields in the multiple hadrnoproduction processes which apparently reflect the universal stochastic regularities typical of the systems of quite different nature

  5. Dynamical chaos of nonabelian gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Matinyan, S G

    1985-01-01

    A special class of the Yang - Mills field-the spatially homogeneous fields (Yan - Mills classical mechanics)-having no analog in the linear abelian electrodynamics is studied. Both the computer and analytical approaches show that such fields possess dynamical stochasticity, this allowing one to claim that the Yang - Mills classical equations without external sources represent a non-integrable system. The Higgs mechanism eliminates this stochasticity: at some expectation value of scalar field, a phase transition of disorder-order (confinement-deconfinement) type takes plce. The system with external sources behaves apparently analogously. A relation of the discovered stochasticity with the dimensional reduction mechanism in the macroscopic systems as well as with colour confinement is considered. It is shown that the presence of the random (Gaussian) currents in vacuum leads to confinement of fields generated by those currents. Attention is paid to the possible manifestation of the revealed stochasticity of the classical non-abelian gauge fields in the multiple hadrnoproduction processes which apparently reflect the universal stochastic regularities typical of the systems of quite different nature.

  6. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)

  7. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  8. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  9. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  10. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  11. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  12. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  13. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  14. Local relativistic invariant flows for quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krahn, R.; Sirugue, M.

    1983-01-01

    For quantum fields with trigonometric interaction in arbitrary space dimension we construct a representation of the Lorentz group by automorphisms on a Banach space generated by the Weyl algebra. (orig.)

  15. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  16. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  17. Modulating patterns of two-phase flow with electric fields.

    Science.gov (United States)

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T

    2014-07-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.

  18. Advances in dynamic and mean field games theory, applications, and numerical methods

    CERN Document Server

    Viscolani, Bruno

    2017-01-01

    This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...

  19. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  20. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  1. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  2. Point defects dynamics in a stress field

    International Nuclear Information System (INIS)

    Smetniansky de De Grande, Nelida.

    1989-01-01

    The dependence of anisotropic defect diffusion on stress is studied for a hexagonal close packed (hcp) material under irradiation and uniaxially stressed. The diffusion is described as a discrete process of thermally activated jumps. It is shown that the presence of an external stress field enhances the intrinsic anisotropic diffusion, being this variation determined by the defect dipole tensors' symmetry in the equilibrium and saddle point configurations. Also, the point defect diffusion equations to sinks, like edge dislocations and spherical cavities, are solved and the sink strengths are calculated. The conclusion is that the dynamics of the interaction between defects and sinks is controlled by the changes in diffusivity induced by stress fields. (Author) [es

  3. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan

    2000-01-01

    . The time-dependent flow is approximated with a continuous sequence of steady state creeping flow fields, where metachronously beating ciliary bands are modelled by linear combinations of singularity solutions to the Stokes equations. Generally, the computed flow fields can be divided into an unsteady......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...... in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...

  4. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  5. Flow field induced particle accumulation inside droplets in rectangular channels.

    Science.gov (United States)

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  6. A Dynamic Growth Model for Flows of Foreign Direct Investment

    OpenAIRE

    Yi-Hui Chiang; Yiming Li; Chih-Young Hung

    2007-01-01

    In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...

  7. Josephson flux-flow oscillators in nonuniform microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    2000-01-01

    We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...

  8. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  9. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  10. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  11. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  12. Are international fund flows related to exchange rate dynamics?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert

    2018-01-01

    Employing monthly data for 53 countries between 1996 and 2015, we investigate the relationship between international fund flows and exchange rate dynamics. We find strong co-movement between funds flows (as measured with the EPFR Global data base) and bilateral real exchange rates vis-à-vis the USD.

  13. Numerical simulation of flow field in the China advanced research reactor flow-guide tank

    International Nuclear Information System (INIS)

    Xu Changjiang

    2002-01-01

    The flow-guide tank in China advanced research reactor (CARR) acts as a reactor inlet coolant distributor and play an important role in reducing the flow-induced vibration of the internal components of the reactor core. Numerical simulations of the flow field in the flow-guide tank under different conceptual designing configurations are carried out using the PHOENICS3.2. It is seen that the inlet coolant is well distributed circumferentially into the flow-guide tank with the inlet buffer plate and the flow distributor barrel. The maximum cross-flow velocity within the flow-guide tank is reduced significantly, and the reduction of flow-induced vibration of reactor internals is expected

  14. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  15. Discharge characteristics in inhomogeneous fields under air flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2017-01-01

    the frequency and magnitude of partial discharges in the vicinity of the electrode due to an increased rate of space charge removal around the tip of the needle and in the gap. The positive polarity shows higher dependency on air flow compared to the negative polarity. It is shown that positive breakdown......This research investigates the impact of high velocity air flow on Partial Discharge (PD) patterns generated in strongly inhomogeneous fields. In the laboratory, a needle plane electrode configuration was exposed to a high electrical DC-field and a laminar air flow up to 22 ms. The needle...

  16. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  17. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  18. Turbomachinery Flow Physics and Dynamic Performance

    CERN Document Server

    Schobeiri, Meinhard T

    2012-01-01

    With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand.   Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.   While maintaining the unifying character of the book structure in this second revised and e...

  19. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...

  20. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  1. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-11-01

    We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.

  2. Numerical simulation of interior flow field of nuclear model pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao

    2009-01-01

    Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)

  3. Instabilities in the flow past localized magnetic fields

    International Nuclear Information System (INIS)

    Beltran, Alberto; Cuevas, Sergio; Smolentsev, Sergey

    2007-01-01

    The flow in a shallow layer of an electrically conducting fluid past a localized magnetic field is analyzed numerically. The field occupies only a small fraction of the total flow domain and resemblances the magnetic field created by a permanent magnet located close to the fluid layer. Two different physical cases are considered. In the first one, the fluid layer is free from externally injected electric currents, therefore, only induced currents are present. In the second case, an external electric current is injected to the fluid layer, transversally to the main flow direction. It is shown that the Lorentz force created by the interaction of the electric currents with the non-uniform magnetic field acts as an obstacle for the flow and creates different flow patterns similar to those observed in the flow past bluff bodies. A quasi-two-dimensional model that takes into account the existence of the bottom wall through a linear Hartmann-Rayleigh friction term is considered. When inertial and magnetic forces are strong enough, the wake formed behind the zone of high magnetic field is destabilized and a periodic vortex shedding similar to the classical von Karman street is found. The effect of Hartmann-Rayleigh friction in the emergence of the instability is analyzed

  4. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  5. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  6. Flow field and load characteristics of the whole MEXICO wind turbine

    DEFF Research Database (Denmark)

    Xu, Haoran; Yang, Hua; Liu, Chao

    2017-01-01

    CFD(Computational Fluid Dynamics) method was used to perform steady numerical simulation investigation on the flow field and load characteristics of MEXICO(Model EXperiment In Controlled cOnditions) wind turbine under non-yawed condition. Circumferentially-Averaged method was used to extract...... characteristics around the blade was analyzed and the points of flow separation were found along the blade, the results show that the points of flow separation move towards trailing edge with the increase of radius. The distribution of vorticity in the wake of MEXICO rotor was also analyzed. The distribution...

  7. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  8. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  9. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response....

  10. MHD shear flows with non-constant transverse magnetic field

    International Nuclear Information System (INIS)

    Núñez, Manuel

    2012-01-01

    Viscous conducting flows parallel to a fixed plate are studied. In contrast with the Hartmann setting, the problem is not linearized near a fixed transverse magnetic field, although the field tends to be transversal far from the wall. While general solutions may be formally obtained for all cases, their behavior is far more clear when the magnetic Prandtl number equals one. We consider two different instances: a fixed magnetic field at the wall, or an insulating sheet. The evolution of the flow and the magnetic field both near the plate and far from it are detailed, analyzing the possibility of reverse flow and instability of the solutions. -- Highlights: ► A conducting shear flow does not leave a transverse magnetic field invariant. ► Solutions are found for all cases, but these are more useful when kinetic and magnetic diffusivities coincide. ► Dirichlet and Neumann conditions on the magnetic field are studied. ► Reverse flow, and eventual instability, are possible.

  11. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    Science.gov (United States)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  12. Magnetic field correlations in random flow with strong steady shear

    International Nuclear Information System (INIS)

    Kolokolov, I. V.; Lebedev, V. V.; Sizov, G. A.

    2011-01-01

    We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.

  13. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  14. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  15. Nonequilibrium dynamical mean-field theory

    International Nuclear Information System (INIS)

    Eckstein, Martin

    2009-01-01

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  16. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  17. Two-phase flow field simulation of horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Ataollah; Kamalinia, Amir Hossein; Hadad, Kamal [School of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  18. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  19. Laboratory observation of magnetic field growth driven by shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T. P., E-mail: intrator@lanl.gov; Feng, Y.; Sears, J.; Weber, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States); Dorf, L. [Applied Materials, Inc., Santa Clara, CA 95054 (United States); Sun, X. [University of Science and Technology, Hefei (China)

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  20. Dynamics of the Random Field Ising Model

    Science.gov (United States)

    Xu, Jian

    The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.

  1. A dynamic model of Venus's gravity field

    Science.gov (United States)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  2. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  3. Flow field studies on a micro-air-vehicle-scale cycloidal rotor in forward flight

    Science.gov (United States)

    Lind, Andrew H.; Jarugumilli, Tejaswi; Benedict, Moble; Lakshminarayan, Vinod K.; Jones, Anya R.; Chopra, Inderjit

    2014-12-01

    This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.

  4. Numerical Analysis of Flow Field in Generator End-Winding Region

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2008-01-01

    Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.

  5. Yanqing solar field: Dynamic optical model and operational safety analysis

    International Nuclear Information System (INIS)

    Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng

    2017-01-01

    Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.

  6. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  7. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  8. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  9. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  10. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  11. Field-effect Flow Control in Polymer Microchannel Networks

    Science.gov (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  12. An evaluation of Dynamic TOPMODEL for low flow simulation

    Science.gov (United States)

    Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.

    2015-12-01

    Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.

  13. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2001-01-01

    Roč. 918, č. 2 (2001), s. 361-370 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : field-flow fractionation * field programming * flow-rate gradients Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001

  14. Flow field calculation around the measuring part of a circulated flow tank for measurement; Keisokuyo kairyu suiso sokuteibu no ryujo keisan ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, H; Ogura, R; Yamazaki, R [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan)

    1996-04-10

    In order to increase a fluid dynamic understanding of the flow field around the measuring part as for the leveling of free surface of the circulated flow tank for measurement, the velocity and free surface profile at the measuring part have been calculated by applying the numerical fluid dynamics. The results were compared with actual phenomena. For the average velocity at the measuring part, inclining angle of surpressing plate, and quantity of water in the tank, the flow field simulation by the numerical fluid dynamics has provided a qualitative agreement with actual phenomena. Especially, it was clarified from the viewpoint of numerical fluid dynamics that the fine adjustment of the inclining angle of surpressing plate and quantity of water in the tank greatly affect the creation of horizontal free surface at the measuring part. Furthermore, effects of the length of measuring part and the ceiling tilt angle of pipe conduit in the downstream of measuring part, which were hard to be analyzed experimentally from the viewpoint of facility and cost, were investigated. Consequently, it was clarified that there are critical length of the measuring part and optimum ceiling tilt angle in the leveling of horizontal free surface. Thus, an instruction for designing was obtained. The present flow field simulation was useful for the fluid dynamic understanding of the flow field at the measuring part, as for the leveling of horizontal free surface. 1 ref., 8 figs.

  15. Alveolar Thin Layer Flows and Surfactant Dynamics

    Science.gov (United States)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  16. Classification of networks of automata by dynamical mean field theory

    International Nuclear Information System (INIS)

    Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.

    1990-01-01

    Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)

  17. On possibility of using E, H - crossed fields and gas-dynamic flowing of argon in the processes of degassing by the method of ion-stimulated desorption of residual gas in the KUTI-20

    International Nuclear Information System (INIS)

    Sharapov, V.E.

    1985-01-01

    In the project considered if the possibility to use the degassing of an adhezatior chamber inner walls, using the method of ion-stimulated desorption (ISD) of residual gas in the glow discharge is considered. It is suggested that the experiment should be realized using the model or the KUTI (PKUTI) prototype to decrease operation pressure to p -7 Pa (2x10 -9 Tor) at the expense of introduction of the technology described and certain modifications in the processes of leak-in and pumping. The use of crossed E,H-fields and gasodynamic regime of argon flow in the process of preliminary degassing of the adhezator chamber by the glow discharge is the main idea of the project

  18. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  19. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Science.gov (United States)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  20. Modeling and simulation of flow field in giant magnetostrictive pump

    Science.gov (United States)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  1. Complex analysis with applications to flows and fields

    CERN Document Server

    Braga da Costa Campos, Luis Manuel

    2012-01-01

    Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma

  2. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    . Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  3. A novel method for unsteady flow field segmentation based on stochastic similarity of direction

    Science.gov (United States)

    Omata, Noriyasu; Shirayama, Susumu

    2018-04-01

    Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.

  4. Dynamic MLD analysis with flow graphs

    International Nuclear Information System (INIS)

    Jenab, K.; Sarfaraz, A.; Dhillon, B.S.; Seyed Hosseini, S.M.

    2012-01-01

    Master Logic Diagram (MLD) depicts the interrelationships among the independent functions and dependent support functions. Using MLD, the manner in which all functions, sub-functions interact to achieve the overall system objective can be investigated. This paper reports a probabilistic model to analyze an MLD by translating the interrelationships to a graph model. The proposed model uses the flow-graph concept and Moment Generating Function (MGF) to analyze the dependency matrix representing the MLD with embedded self-healing function/sub-functions. The functions/sub-functions are featured by failure detection and recovery mechanisms. The newly developed model provides the probability of the system failure, and system mean and standard deviation time to failure in the MLD. An illustrative example is demonstrated to present the application of the model.

  5. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik

    2014-01-01

    of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation......Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of the extent of synchronization in renal cortex dynamics....

  6. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild

    2012-01-01

    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow ......)]. Finally, an experimental work on elastic collisions of wet spheres is briefly discussed....

  7. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    Science.gov (United States)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  8. Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser

    Directory of Open Access Journals (Sweden)

    Itsuo Hanasaki, Akihiro Nakatani and Hiroshi Kitagawa

    2004-01-01

    Full Text Available A carbon nanotube junction consists of two connected nanotubes with different diameters. It has been extensively investigated as a molecular electronic device since carbon nanotubes can be metallic and semiconductive, depending on their structure. However, a carbon nanotube junction can also be viewed as a nanoscale nozzle andv diffuser. Here, we focus on the nanotube junction from the perspective of an intersection between machine, material and device. We have conducted a molecular dynamics simulation of the molecular flow inside a modeled (12,12–(8,8 nanotube junction. A strong gravitational field and a periodic boundary condition are applied in the flow direction. We investigated dense-Ar flows and dense-He flows while controlling the temperature of the nanotube junction. The results show that Ar atoms tend to be near to the wall and the density of the Ar is higher in the wide (12,12 nanotube than in the narrow (8,8 nanotube, while it is lower in the wide tube when no flow occurs. The streaming velocities of both the Ar and the He are higher in the narrow nanotube than in the wide nanotube, but the velocity of the Ar is higher than the velocity of the He and the temperature of the flowing Ar is higher than the temperature of the He when the same magnitude of gravitational field is applied.

  9. Merging of magnetic fields with field-aligned plasma flow components

    International Nuclear Information System (INIS)

    Mitchell, H.G. Jr.; Kan, J.R.

    1978-01-01

    The Sonnerup merging model for an incompressible plasma is extended to allow a flow component along the field lines in the inflow regions. Solutions are found to exist as long as the difference between the quantities B. V for the two inflow regions does not exceed a critical magnitude dependent on the inflow field magnitudes and plasma densities. All such solutions satisfy Vasyliunas' definition of merging, but some classes of solution have radically altered geometries, i.e. geometries in which the inflow regions are much smaller than the outflow regions. The necessary but not sufficient condition for these unusual geometries is that the field-aligned flow component in at least one inflow region be super-Alfvenic. A solution for the case of a vacuum field in one inflow region is obtained in which any flow velocity is allowed in the non-vacuum inflow region, although super-Alfvenic flow can still result in an unusual geometry. For symmetric configurations, the usual geometry, that of Petschek and Sonnerup, is retained as long as both field-aligned flow components in the inflow regions are less than twice the inflow Alfven speed. For the case of a vacuum field on one side and fields approximating the boundary between the solar wind and the earth's dayside magnetosphere, the usual geometry is retained for flow less than about 2.5 times the local Alfven speed. (author)

  10. Three-dimensional laryngeal flow fields induced by a model vocal fold polyp

    Energy Technology Data Exchange (ETDEWEB)

    Erath, Byron D., E-mail: erath@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, 739 Phillips Hall, Washington, DC 20052 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, 739 Phillips Hall, Washington, DC 20052 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Pathological speech with a unilateral polyp is modeled in a scaled-up flow facility. Black-Right-Pointing-Pointer Vortex shedding from the polyp disrupts normal flow behavior. Black-Right-Pointing-Pointer Hairpin vortices create spatial velocity asymmetries in the glottal flow. - Abstract: Pathological laryngeal flow fields are investigated in a dynamically-driven, scaled-up model of the vocal folds. Disruption of the flow field due to the presence of a geometric protuberance, representative of a sessile unilateral polyp, is investigated in both the streamwise and transverse flow directions using phase-averaged particle image velocimetry. It is shown that the protuberance disrupts the normal flow behavior of the glottal jet throughout the phonatory cycle. During the divergent portions of the glottal cycle, the flow is characterized by the formation of hairpin vortices downstream of the protuberance. The protuberance also introduces significant velocity gradients in the anterior-posterior direction, which cover {approx}30 - 40% of the vocal fold length. It is proposed that the disruption of the normal velocity behavior owing to the presence of a polyp will adversely impact the aerodynamic loadings that drive vocal fold motion, contributing to the temporal and spatial vocal fold asymmetries that are clinically-observed in patients with unilateral polyps.

  11. Three-dimensional laryngeal flow fields induced by a model vocal fold polyp

    International Nuclear Information System (INIS)

    Erath, Byron D.; Plesniak, Michael W.

    2012-01-01

    Highlights: ► Pathological speech with a unilateral polyp is modeled in a scaled-up flow facility. ► Vortex shedding from the polyp disrupts normal flow behavior. ► Hairpin vortices create spatial velocity asymmetries in the glottal flow. - Abstract: Pathological laryngeal flow fields are investigated in a dynamically-driven, scaled-up model of the vocal folds. Disruption of the flow field due to the presence of a geometric protuberance, representative of a sessile unilateral polyp, is investigated in both the streamwise and transverse flow directions using phase-averaged particle image velocimetry. It is shown that the protuberance disrupts the normal flow behavior of the glottal jet throughout the phonatory cycle. During the divergent portions of the glottal cycle, the flow is characterized by the formation of hairpin vortices downstream of the protuberance. The protuberance also introduces significant velocity gradients in the anterior-posterior direction, which cover ∼30 − 40% of the vocal fold length. It is proposed that the disruption of the normal velocity behavior owing to the presence of a polyp will adversely impact the aerodynamic loadings that drive vocal fold motion, contributing to the temporal and spatial vocal fold asymmetries that are clinically-observed in patients with unilateral polyps.

  12. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    Science.gov (United States)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  13. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    Mason, V.A.

    1988-01-01

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  14. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  15. Rarefield gas dynamics fundamentals, simulations and micro flows

    CERN Document Server

    Shen, Ching

    2006-01-01

    This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.

  16. Modeling of the Bosphorus exchange flow dynamics

    Science.gov (United States)

    Sözer, Adil; Özsoy, Emin

    2017-04-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  17. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  18. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    Science.gov (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  19. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  20. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  1. A Study of the Flow Field Surrounding Interacting Line Fires

    Directory of Open Access Journals (Sweden)

    Trevor Maynard

    2016-01-01

    Full Text Available The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which results from a momentum imbalance triggered by fire geometry. The model was validated by measuring the velocity field surrounding stationary alcohol pool fires. The flow field was seeded with high-contrast colored smoke, and the motion of smoke structures was analyzed using a cross-correlation optical flow technique. The measured velocities and flame angles are found to compare reasonably with the predicted values, and an analogy between merging fires and wind-blown flames is proposed.

  2. Field research program for unsaturated flow and transport experimentation

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Rautman, C.A.; Glass, R.J.

    1992-01-01

    As part of the Yucca Mountain Site Characterization Project, a field research program has been developed to refine and validate models for flow and transport through unsaturated fractured rock. Validation of these models within the range of their application for performance assessment requires a more sophisticated understanding of the processes that govern flow and transport within fractured porous media than currently exists. In particular, our research is prioritized according to understanding and modeling processes that, if not accurately incorporated into performance assessment models, would adversely impact the project's ability to evaluate repository performance. For this reason, we have oriented our field program toward enhancing our understanding of scaling processes as they relate to effective media property modeling, as well as to the conceptual modeling of complex flow and transport phenomena

  3. Factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    colloidal material is illustrated through the evaluation of thermal diffusion coefficient of PS ... Field-flow fractionation (FFF) is a separation method introduced by Giddings in 1966 [1]. It is a ... no stationary phase is used in FFF. .... that the inversion diameter (diameter at which order of retention changes) can be shifted up or.

  4. factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    In this paper, we report a range of factors which affect the retention of colloidal particles in thermal field-flow fractionation (ThFFF). These results are observed among different sizes of polystyrene (PS) latex particles suspended in both aqueous and nonaqueous liquid carriers and very low density lipoproteins in a phosphate ...

  5. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  6. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  7. Particle trajectories in full 3D flow field of turbomachinery

    International Nuclear Information System (INIS)

    Ling, Z.G.; Huang, S.L.

    1986-01-01

    Particle trajectory prediction is important for particulate laden flow turbomachinery as it helps to understand the cause of erosion phenomena and to improve the design of blade passages. In this paper, on the basis of previous works, particle trajectories in turbine stages are predicted in connection with full 3D gas flow field solved by time marching method. The secondary flow effect is also partially considered by assuming a total pressure distribution at the inlet of the moving blade row. The results show that passage vortex due to secondary flow will cause upward and downward divergence of particle trajectories at the rear part of near blade pressure surface which is evidenced by the real appearance of eroded trace on turbine blade after long period of operation

  8. Flow in porous media under the influence of thermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bories, S; Thirriot, C

    1970-01-01

    Fluid flow in porous media, including natural convection caused by temperature fields, is of particular importance in the exploitation of petroleum deposits. Laboratory experiments with a horizontal Hele-Shaw model in which the convection currents can be visually observed, are reported. The main observations are concerned with fairly stable flow regime cells and the velocity distribution. Photos of the flow, and graphs of the temperature distribution measured by interferometric methods, are given. The essential elements observed are well-represented by a simplified theory; at large Reynolds numbers, large temperature gradients have been observed in the vicinity of the isothermal boundaries. The temperature distribution can be expressed by a dimensionless law, and it seems possible to generalize the observations from the Hele-Shaw model to flow in porous media.

  9. Dynamics of renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    Two separate components could be resolved in tests of the dynamic autoregulation of renal blood flow. The slow component corresponds to the frequency at which spontaneous proximal tubular pressure oscillations are found, and are most likely due to the operation of the TGF. The high frequency...

  10. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  11. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  12. Translanguaging as Dynamic Activity Flows in CLIL Classrooms

    Science.gov (United States)

    Lin, Angel M. Y.; He, Peichang

    2017-01-01

    In this article, the role of translanguaging in facilitating content and language integrated learning (CLIL) is examined in connection with the notion of academic language across the curriculum in multilingual contexts. Ethnographic naturalistic observations and interviews were conducted to analyse translanguaging in the dynamic flow of…

  13. Instabilities and vortex dynamics in shear flow of magnetized plasmas

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.

    1990-03-01

    Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab

  14. Mass conservative fluid flow visualization for CFD velocity fields

    International Nuclear Information System (INIS)

    Li, Zhenquan; Mallinson, Gordon D.

    2001-01-01

    Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al., 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD data and using the existing method

  15. Singularity and dynamics on discontinuous vector fields

    CERN Document Server

    Luo, Albert CJ

    2006-01-01

    This book discussed fundamental problems in dynamics, which extensively exist in engineering, natural and social sciences. The book presented a basic theory for the interactions among many dynamical systems and for a system whose motions are constrained naturally or artificially. The methodology and techniques presented in this book are applicable to discontinuous dynamical systems in physics, engineering and control. In addition, they may provide useful tools to solve non-traditional dynamics in biology, stock market and internet network et al, which cannot be easily solved by the traditional

  16. Dynamic ADMM for Real-time Optimal Power Flow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-23

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.

  17. Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics

    KAUST Repository

    Mostert, W.

    2014-12-01

    The effects of various seed magnetic fields on the dynamics of cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Here, we present a fundamental investigation of this problem utilizing cylindrical and spherical Riemann problems under three seed field configurations to initialize the implosions. The resulting flows are simulated numerically, revealing rich flow structures, including multiple families of magnetohydrodynamic shocks and rarefactions that interact non-linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out of the configurations investigated, a seed field for which the implosion centre is a saddle point in at least one plane exhibits the least degree of asymmetry during implosion.

  18. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  19. Using optic flow in the far peripheral field.

    Science.gov (United States)

    McManus, Meaghan; D'Amour, Sarah; Harris, Laurence R

    2017-07-01

    Self-motion information can be used to update spatial memory of location through an estimate of a change in position. Viewing optic flow alone can create Illusory self-motion or "vection." Early studies suggested that peripheral vision is more effective than central vision in evoking vection, but controlling for retinal area and perceived distance suggests that all retinal areas may be equally effective. However, the contributions of the far periphery, beyond 90°, have been largely neglected. Using a large-field Edgeless Graphics Geometry display (EGG, Christie, Canada, field of view ±112°) and systematically blocking central (±20° to ±90°) or peripheral (viewing through tunnels ±20° to ±40°) parts of the field, we compared the effectiveness of different retinal regions at evoking forwards linear vection. Fifteen participants indicated when they had reached the position of a previously presented target after visually simulating motion down a simulated corridor. The amount of simulated travel needed to match a given target distance was modelled with a leaky spatial integrator model to estimate gains (perceived/actual distance) and a spatial decay factor. When optic flow was presented only in the far periphery (beyond 90°) gains were significantly higher than for the same motion presented full field or in only the central field, resulting in accurate performance in the range of speeds associated with normal walking. The increased effectiveness of optic flow in the peripheral field alone compared to full-field motion is discussed in terms of emerging neurophysiological studies that suggest brain areas dedicated to processing information from the far peripheral field.

  20. Study of the flow field past dimpled aerodynamic surfaces: numerical simulation and experimental verification

    Science.gov (United States)

    Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.

    2017-11-01

    This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.

  1. Field aligned flows driven by neutral puffing at MAST

    Science.gov (United States)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  2. Experimental Evaluation of Discharge Characteristics in Inhomogeneous Fields under Air Flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2018-01-01

    voltages and a laminar air flow up to 22 m/s. In the first setup, the gap was exposed to a variable DC potential of up to 100 kV in order to create space charges in the vicinity of the electrode. The impact of the air flow on partial discharges and the dynamic behavior of the space charges is evaluated...... by means of partial discharge measurement and ultraviolet photography. The results show that the air flow increases the frequency of partial discharges in the gap due to an increased rate of space charge removal in the high field area around the tip of the electrode. The partial discharge behavior shows...... higher dependency on air flow at positive tip polarity as compared to the negative polarity. In the second setup, the standard impulse voltage created by a multistage impulse voltage generator was superimposed to a DC voltage, which continuously created corona and space charges around the tip...

  3. On the geometry of field lines in plasma flows

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1988-01-01

    Many research investigators have applied differential geometry to plasma. Intrinsic properties of fluid flows in streamline, vortex line geometries are we ll known under certain set of geometric conditions. Though this approach has yielded some interesting results but the most general properties of flows can be obtained, using eight geometric parameters ksub(s), tsub(s) θsub(ns), θsub(bs), phisub(s), Ωsub(s), div n, div b and the basic necessary conditions to be satisfied by the flow in general anholonomic co-ordinate system together with the conditions to be satisfied by the geometric parameters of triply orthogonal spatial curves of congruences. Adopting the above techniques for triply orthogonal spatial curves of congruences related to the lines of forces, Purushottam has studied the geometric properties of spatial hydromagnetic fluid flows. Again these results have been studied by him in general along the field lines. These results have been studied for plasma along field lines and the basic equations of plasma have been expressed in intrinsic decomposition forms. Furthe r complex lamellar magnetic field have been studied by introducing Lie surface. (a uthor)

  4. Mode dynamics and confinement in the reversed field pinch

    International Nuclear Information System (INIS)

    Brunsell, P.R.; Bergsaker, H.; Brzozowski, J.H.; Cecconello, M.; Drake, J.R.; Malmberg, J.-A.; Scheffel, J.; Schnack, D.D.

    2001-01-01

    Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the 'slinky mode' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments. (author)

  5. Experimental investigation of flow field in a laboratory-scale compressor

    Directory of Open Access Journals (Sweden)

    Hongwei Ma

    2017-02-01

    Full Text Available The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation (LES. Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry (SPIV. The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV, and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phases according to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the

  6. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    Science.gov (United States)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  7. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.

    Science.gov (United States)

    Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng

    2015-01-01

    Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.

  8. On the evaluation of debris flows dynamics by means of mathematical models

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2003-01-01

    Full Text Available The prediction of debris flow dynamic characteristics in a debris flow prone torrent is generally made through the investigation of past events. This investigation can be carried out through a survey of the marks left by past debris flows along the channel and through a detailed analysis of the type and shape of the deposits found on the debris fan. The rheological behaviour of future debris flows can then be inferred from the results of these surveys and their dynamic characteristics can be estimated applying well known formulas proposed in literature. These latter will make use of the assumptions on the rheological behaviour previously made. This type of estimation has been performed for a debris flow occurred in an instrumented basin, on the North-Eastern Italian Alps, in 1996 and the results have been compared to those obtained by means of a mathematical simulation. For the calibration of the mathematical model the limnographs recorded by three different ultrasonic gauges installed along a torrent reach on the fan were used. The comparison evidenced the importance of time data recordings for a correct prediction of the debris flows dynamics. Without the availability of data recordings, the application of formulas based only on assumptions derived from field analysis could be misleading.

  9. Flow Rate Capacity Reduction Due to Temporal and Dynamic Processes in Large Pipelines. Study with Field Measurements; Efectos dinamicos y temporales en la reduccion de la capacidad de conduccion en grandes acueductos. Estudio con medidas en prototipo

    Energy Technology Data Exchange (ETDEWEB)

    Carmona Paredes, Rafael; Ortiz Nunez, Luis Alfonso; Sanchez Huerta, Alejandro [Universidad Nacional Autonoma de Mexico (Mexico)

    2002-06-01

    More than 15 years of operation have show that some water transport pressurized pipelines change their flow rate capacity faster than expected due to normal roughness increase. As explained by the tubular pinch effects, the radial migration of suspended particles in a flow can produce a high concentration close to the pipe wall. The non-uniform particle concentration leads to higher velocities at the center of the tube, equivalent to a reduced hydraulic section that increases the head losses. A model to explain field measurements at the Chapala-Guadalajara Aqueduct is proposed that suggests to hydraulic engineers to be more distrustful when using traditional head loss formulas to analyze water transport pipelines. [Spanish] La perdida de la capacidad de conduccion es un grave problema en la operacion de grandes acueductos. Mas de 15 anos de estudios y de inspeccion directa al interior de las tuberias de varios sistemas de abastecimiento de agua potable han mostrado el desarrollo de capas de material fino fuertemente adheridas a la pared de los tubos. En algunos casos, la variacion de la perdida de carga no ha podido ser explicada con los modelos tradicionales de crecimiento de la rugosidad interna, por lo que para explicar de forma adecuada las mediciones de campo realizadas en el acueducto Chapala-Guadalajara ha sido necesario incorporar de manera simultanea fenomenos dinamicos y temporales. Con base en el fecto de elongacion tubular (o tubular pinch effect), descrito por otros autores, mas observaciones directas al interior de las tuberias, en este trabajo se plantea como una posible de la disminucion de capacidad de conduccion en el acueducto Chapala-Guadalajara un cambio aparente en la seccion efectiva del flujo, originado por la migracion radial hacia la pared del tubo de las particulas suspendidas en el agua. El modelo que propone reproduce las medidas en campo con diferencias menores al 10% e invita a reflexionar sobre las practicas convencionales para

  10. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  11. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  12. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  13. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    . Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.

  14. Identification of flow paths and quantification of return flow volumes and timing at field scale

    Science.gov (United States)

    Claes, N.; Paige, G. B.; Parsekian, A.

    2017-12-01

    Flood irrigation, which constitutes a large part of agricultural water use, accounts for a significant amount of the water that is diverted from western streams. Return flow, the portion of the water applied to irrigated areas that returns to the stream, is important for maintaining base flows in streams and ecological function of riparian zones and wetlands hydrologically linked with streams. Prediction of timing and volumes of return flow during and after flood irrigation pose a challenge due to the heterogeneity of pedogenic and soil physical factors that influence vadose zone processes. In this study, we quantify volumes of return flow and potential pathways in the subsurface through a vadose zone flow model that is informed by both hydrological and geophysical observations in a Bayesian setting. We couple a two-dimensional vadose zone flow model through a Bayesian Markov Chain Monte Carlo approach with time lapse ERT, borehole NMR datasets that are collected during and after flood irrigation experiments, and soil physical lab analysis. The combination of both synthetic models and field observations leads to flow path identification and allows for quantification of volumes and timing and associated uncertainties of subsurface return that stems from flood irrigation. The quantification of the impact of soil heterogeneity enables us to translate these results to other sites and predict return flow under different soil physical settings. This is key when managing irrigation water resources and predictions of outcomes of different scenarios have to be evaluated.

  15. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.

    Science.gov (United States)

    Oettinger, David; Haller, George

    2016-10-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.

  16. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  17. Elevator mode convection in flows with strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  18. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta.

    Science.gov (United States)

    Akutsu, Toshinosuke; Matsumoto, Akira

    2010-12-01

    The current design of the bileaflet valve, the leaflets of which open outside first, differs significantly from the natural valve whose leaflets open center first. This difference generates a completely different flow field in the bileaflet valve compared to that in the natural heart valve. In a previous study, it was demonstrated that the valve design greatly affects the aortic flow field as well as the circulatory flow inside sinuses of Valsalva, using saline solution as a working fluid. A limited discussion on the turbulence flow field that could be generated by the valve was provided. In this continuation of that study, therefore, a dynamic PIV study was conducted to analyze the influence of the heart valve design on the aortic flow field, and particularly on the turbulent profile. This study also aimed to determine the influence of the viscosity of the testing fluid. Three bileaflet prostheses-the St. Jude Medical (SJM), the On-X, and the MIRA valves-were tested under pulsatile flow conditions. Flow through the central orifice of the SJM valve was slower than that through the newer designs. The newer designs tend to show strong flow through all orifices. The On-X valve generates simple jet-type flow while the MIRA valve with circumferentially curved leaflets generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve with higher turbulence. A 180° orientation that is more popular clinically seems to provide a less diffuse flow than a 90° orientation. The effect of increasing the viscosity was found to be an increase in the flow velocity through the central orifice and a more organized flow field for all of the valves tested.

  19. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  20. Analysis of liver blood flow by dynamic hepatic scintigraphy

    International Nuclear Information System (INIS)

    Xie Tianhao; Jia Shiquan

    1996-01-01

    Liver blood flow was studied in 45 patients with solitary malignant liver cancer, 17 patients with multiple liver metastases, 18 patients with benign liver tumor and 20 control subjects by dynamic hepatic scintigraphy. The hepatic perfusion index (HPI) in control subjects, patients with liver malignant cancer and benign tumor was 0.33 +- 0.069, 0.589 +- 0.084, 0.384 +-0.046 respectively, and the mesenteric fraction (MF) was 0.56 +- 0.054, 0.246 +- 0.064, 0.524 +- 0.086 respectively. In conclusion, flow scintigraphy is a non-invasive, sensitive and repeatable method for detection of liver tumor

  1. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  2. Preliminary study on the flow field over Greece

    International Nuclear Information System (INIS)

    Pissimanis, D; Karras, G; Notaridou, V; Bartzis, J.G.

    1989-02-01

    Full text: For radiation risk assessment from long distance sources, the knowledge of the synoptic air flow field patterns over the territory under consideration is required. In the present study a first representation of the air flow field in the atmospheric boundary layer over Greece is attempted. For this purpose, synoptic weather maps at 850mb available for a ten-years period, as well as sounding data from six meteorological stations were utilized, while the Greek territory was divided into four parts, i.e. NW, NE, SW, SE, with a number of stations in each sector. It was shown that the prevailing wind directions of the upper flow are either of the W/SW sector (winter, spring) or the northern sector (summer, autumn). In the SE sector a stronger tendency towards winds from the nothern sector was shown, due to the thermal low near Cyprus. The main characteristics of the surface flow is the strong influence by topographical features. Typical examples are the strong NW winds in Northern Greece due to the Vardar Valley, and the sea breeze circulations at coastal environments. (author)

  3. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  4. Cutting risk, boosting cash flow and developing marginal fields

    International Nuclear Information System (INIS)

    Baustad, T.; Courtin, G.; Davies, T.; Kenison, R.; Turnbull, J.; Gray, B.; Jalali, Y.; Remondet, J.C.; Hjelmsmark, L.; Oldfield, T.; Romano, C.; Saier, R.; Rannestad, G.

    1996-01-01

    To minimize financial risk and accelerate return on investment, oil companies are using low-cost, reusable production systems. The scope of these development options is illustrated by looking at three offshore case studies that range from extended well test to marginal field development. In each case, production systems technology has been deployed to provide superior data, early oil or both, thus reducing economic uncertainty and delivering accelerated cash flow. 10 figs., 23 refs

  5. Field dipolarization in Saturn's magnetotail with planetward ion flows and energetic particle flow bursts: Evidence of quasi-steady reconnection.

    Science.gov (United States)

    Jackman, C M; Thomsen, M F; Mitchell, D G; Sergis, N; Arridge, C S; Felici, M; Badman, S V; Paranicas, C; Jia, X; Hospodarksy, G B; Andriopoulou, M; Khurana, K K; Smith, A W; Dougherty, M K

    2015-05-01

    We present a case study of an event from 20 August (day 232) of 2006, when the Cassini spacecraft was sampling the region near 32 R S and 22 h LT in Saturn's magnetotail. Cassini observed a strong northward-to-southward turning of the magnetic field, which is interpreted as the signature of dipolarization of the field as seen by the spacecraft planetward of the reconnection X line. This event was accompanied by very rapid (up to ~1500 km s -1 ) thermal plasma flow toward the planet. At energies above 28 keV, energetic hydrogen and oxygen ion flow bursts were observed to stream planetward from a reconnection site downtail of the spacecraft. Meanwhile, a strong field-aligned beam of energetic hydrogen was also observed to stream tailward, likely from an ionospheric source. Saturn kilometric radiation emissions were stimulated shortly after the observation of the dipolarization. We discuss the field, plasma, energetic particle, and radio observations in the context of the impact this reconnection event had on global magnetospheric dynamics.

  6. Goldstone bosons and a dynamical Higgs field

    NARCIS (Netherlands)

    Mooij, S.; Postma, M.

    2011-01-01

    Higgs inflation uses the gauge variant Higgs field as the inflaton. During inflation the Higgs field is displaced from its minimum, which results in associated Goldstone bosons that are apparently massive. Working in a minimally coupled U(1) toy model, we use the closed-time-path formalism to show

  7. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  8. On the relativistic particle dynamics in external gravitational fields

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Naumov, N.D.

    1977-01-01

    On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields

  9. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  10. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    International Nuclear Information System (INIS)

    Huang, S; Guo, J; Yang, F X

    2013-01-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects

  11. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

    Science.gov (United States)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2018-03-01

    We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

  12. Particle Based Modeling of Electrical Field Flow Fractionation Systems

    Directory of Open Access Journals (Sweden)

    Tonguc O. Tasci

    2015-10-01

    Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.

  13. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  14. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  15. A simple delay model for two-phase flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)

    1995-09-01

    A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.

  16. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  17. CFD analysis of hypersonic, chemically reacting flow fields

    Science.gov (United States)

    Edwards, T. A.

    1993-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.

  18. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    Science.gov (United States)

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  19. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Wang, Z W; Yan, Z G; Cui, T

    2012-01-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  20. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  1. Numerical Investigation of the Fully-Developed Periodic Flow Field for Optimal Heat Transfer in Spirally Corrugated Tubes

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...

  2. CFD modelling and PIV experimental validation of flow fields in urban environments

    Directory of Open Access Journals (Sweden)

    Gnatowska Renata

    2017-01-01

    Full Text Available The problem of flow field in the urban boundary-layer (UBL in aspects of wind comfort around buildings and pollutant dispersion has grown in importance since human activity has become so intense that it started to have considerable impact on environment. The issue of wind comfort in urban areas is the result of complex interactions of many flow phenomena and for a long time it arouses a great interest of the research centres. The aim of article is to study urban atmospheric flow at the local scale, which allows for both a detailed reproduction of the flow phenomena and the development of wind comfort criteria. The proposed methodology involves the use of PIV wind tunnel experiments as well as numerical simulations (Computational Fluid Dynamics, CFD in order to enhance understanding of the flow phenomena at this particular scale in urban environments. The analysis has been performed for the 3D case of two surface-mounted buildings arranged in tandem, which were placed with one face normal to the oncoming flow. The local characteristics of flow were obtained by the use of commercial CFD code (ANSYS Fluent. The validation was carried out with reference to the PIV results.

  3. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  4. A note on the theory of fast money flow dynamics

    Science.gov (United States)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  5. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  6. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  7. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  8. Coarse-grained debris flow dynamics on erodible beds

    Science.gov (United States)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  9. Dynamics of a fluid flow on Mars: Lava or mud?

    Science.gov (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  10. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  11. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  12. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  13. Active heat pulse sensing of 3-D-flow fields in streambeds

    Science.gov (United States)

    Banks, Eddie W.; Shanafield, Margaret A.; Noorduijn, Saskia; McCallum, James; Lewandowski, Jörg; Batelaan, Okke

    2018-03-01

    Profiles of temperature time series are commonly used to determine hyporheic flow patterns and hydraulic dynamics in the streambed sediments. Although hyporheic flows are 3-D, past research has focused on determining the magnitude of the vertical flow component and how this varies spatially. This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude up to 200 mm below the water-sediment interface. Short, 1 min heat pulses were injected at one of the three heat sources and the temperature response was monitored over a period of 30 min. Breakthrough curves from each of the sensors were analysed using a heat transport equation. Parameter estimation and uncertainty analysis was undertaken using the differential evolution adaptive metropolis (DREAM) algorithm, an adaption of the Markov chain Monte Carlo method, to estimate the flux and its orientation. Measurements were conducted in the field and in a sand tank under an extensive range of controlled hydraulic conditions to validate the method. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes at the water-streambed interface.

  14. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the \\'hydrodynamic resist to dynamic wetting\\', is discovered where the influence of the capillary\\'s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.

  15. Dynamics of flexible fibers transported in confined viscous flows

    Science.gov (United States)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  16. DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation

    International Nuclear Information System (INIS)

    Schlueter, G.; Efferding, L.E.

    1973-01-01

    1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired

  17. Flow of nucleons and fragments in 40Ar+27Al collisions studied with antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Ono, A.; Horiuchi, H.

    1995-01-01

    Collective transverse momentum flow of nucleons and fragments in intermediate energy 40 Ar+ 27 Al collisions is calculated with the antisymmetrized molecular dynamics (AMD). The observed flow and its balance energy are reproduced well by calculation with the Gogny force which corresponds to the soft equation of state (EOS) of nuclear matter. The calculated absolute value of the fragment flow is larger than that of the nucleon flow in the negative flow region, which can be explained by the existence of two components of flow. In addition to many similarities, the difference in the deuteron flow is found between 12 C+ 12 C and 40 Ar+ 27 Al collisions, and its origin is investigated by studying the production mechanism of light fragments. We also investigate the dependence of the flow of nucleons and fragments on the stochastic collision cross section and the effective interaction, and conclude that the stiff EOS without momentum dependence of the mean field is not consistent with the experimental data

  18. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Science.gov (United States)

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  19. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.

    Science.gov (United States)

    Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai

    2017-10-01

    Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.

  20. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan [Nuvant Systems Inc., Crown Point, IN (United States)

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  1. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    flight experiments, by the P.I. through collaboration with the Canadian Space Agency (STS-85, August 1997), aimed at determining the stability of the interface between two miscible liquids inside an enclosure show that a long liquid column (5 cm) under microgravity isolation conditions can be stable, i.e. the interface remains sharp and vertical over a short time scale; thus transport occurs by molecular mass diffusion. On the other hand, when the two liquids were excited from a controlled vibration source (Microgravity Vibration Isolation Mount) two to four mode large amplitude quasi-stationary waves were observed. The data was limited to CCD recording of the dynamics of the interface between the two fluids. We propose to carry out flight experiments to quantify the dynamics of the flow field using Stereo Imaging Velocimetry and measure the concentration field using laser fluorescence. The results will serve as a basis to understand effects of g-jitter on transport phenomena, in this case mass diffusion. As the measurement of the kinematics of the flow field will shed light on the instability mechanism. The research will allow measurement of the flow field in microgravity environment to prove two hypotheses: (1) Maxwell's hypothesis: finite convection always exists in diffusing systems, and (2) Quasi-stationary waves inside a bounded enclosure in a microgravity environment is generated by Kelvin-Helmholtz instability; resonance of the interface which produces incipient mixing is due to Rayleigh-Taylor instability. The first hypothesis can be used as a benchmark experiment to illustrate diffusive mixing. The second hypothesis will lead to the understanding of g-jitter effects on buoyancy driven flow fields which occur in many situations involving materials processing, and other basic fluid physics phenomena. In addition, the second hypothesis will also provide insight in how Rayleigh-Taylor and Kelvin-Helmholtz instabilities propagate concentration fronts during mixing

  2. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  3. Nuclear dynamics with the (finite range) Gogny force: flow effects

    International Nuclear Information System (INIS)

    Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.

    1988-01-01

    We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details

  4. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    Science.gov (United States)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  5. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  6. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  7. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  8. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    Science.gov (United States)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  9. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  10. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  11. Magnetic field dynamos and magnetically triggered flow instabilities

    Science.gov (United States)

    Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O. N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.

    2017-07-01

    The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.

  12. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  13. A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow

    NARCIS (Netherlands)

    Hunt, T.A.; Hunt, Thomas A.; Bernardi, Stefano; Todd, B.D.

    2010-01-01

    In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose

  14. Muscle blood flow at onset of dynamic exercise in humans.

    Science.gov (United States)

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  15. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (2), flow dynamics calculations for determining mixing factors and mass transfer coefficients

    International Nuclear Information System (INIS)

    Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi

    2009-01-01

    In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)

  16. MINIMUM QUANTITY LUBRICANT FLOW ANALYSIS IN END MILLING PROCESSES: A COMPUTATIONAL FLUID DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    M. S. Najiha

    2012-12-01

    Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.

  17. Edge topology and flows in the reversed-field pinch

    International Nuclear Information System (INIS)

    Spizzo, G.; Agostini, M.; Scarin, P.; Vianello, N.; Cappello, S.; Puiatti, M. E.; Valisa, M.; White, R. B.

    2012-01-01

    Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices, playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010 Plasma Phys. Control. Fusion 52 095011). A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct the potential in the form Φ(ψ p , θ, ζ) (ψ p radial coordinate, θ, ζ angles), by means of the Hamiltonian guiding-centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more uniform over the toroidal angle. The final spatial distribution of Φ(ψ p , θ, ζ) results in a complex 3D pattern, with convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs and tokamaks. (paper)

  18. Magnetohydrodynamic Ekman layers with field-aligned flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel, E-mail: mnjmhd@am.uva.es [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2011-05-01

    The Ekman layer in a conducting fluid with constant angular velocity, provided with a magnetic field aligned with the flow, is studied here. The existence of solutions to the magnetohydrodynamic linearized equations depends on the balance between viscosity and resistivity, on the one hand, and the angular and Alfven velocities, on the other. In most cases, exponentially decreasing solutions exist, although their longitudinal oscillations do not need to be periodic. One of the instances without a solution is explained by the presence of Alfven waves traveling backwards along the streamlines.

  19. Flow vibrations and dynamic instability of heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Granger, S.; Langre, E. de

    1995-01-01

    This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs

  20. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  1. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  2. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  3. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  4. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2017-12-01

    Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.

  5. Steering Micro-Robotic Swarm by Dynamic Actuating Fields

    NARCIS (Netherlands)

    Chao, Q.; Yu, J; Dai, C.; Xu, T; Zhang, L.; Wang, C.C.; Jin, X.

    2016-01-01

    We present a general solution for steering microrobotic
    swarm by dynamic actuating fields. In our approach, the
    motion of micro-robots is controlled by changing the actuating
    direction of a field applied to them. The time-series sequence
    of actuating field’s directions can be

  6. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  7. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  8. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  9. Monitoring the Earth's Dynamic Magnetic Field

    Science.gov (United States)

    Love, Jeffrey J.; Applegate, David; Townshend, John B.

    2008-01-01

    The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation. The program is an integral part of the U.S. Government's National Space Weather Program (NSWP), which also includes programs in the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). The NSWP works to provide timely, accurate, and reliable space weather warnings, observations, specifications, and forecasts, and its work is important for the U.S. economy and national security. Please visit the National Geomagnetism Program?s website, http://geomag.usgs.gov, where you can learn more about the Program and the science of geomagnetism. You can find additional related information at the Intermagnet website, http://www.intermagnet.org.

  10. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  11. Graphene field-effect transistor application for flow sensing

    Directory of Open Access Journals (Sweden)

    Łuszczek Maciej

    2017-01-01

    Full Text Available Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.

  12. Unsteady characteristics of a slat-cove flow field

    Science.gov (United States)

    Pascioni, Kyle A.; Cattafesta, Louis N.

    2018-03-01

    The leading-edge slat of a multielement wing is a significant contributor to the acoustic signature of an aircraft during the approach phase of the flight path. An experimental study of the two-dimensional 30P30N geometry is undertaken to further understand the flow physics and specific noise source mechanisms. The mean statistics from particle image velocimetry (PIV) shows the differences in the flow field with angle of attack, including the interaction between the cove and trailing-edge flow. Phase-locked PIV successfully links narrow-band peaks found in the surface pressure spectrum to shear layer instabilities and also reveals that a bulk cove oscillation at a Strouhal number based on a slat chord of 0.15 exists, indicative of shear layer flapping. Unsteady surface pressure measurements are documented and used to estimate spanwise coherence length scales. A narrow-band frequency prediction scheme is also tested and found to agree well with the data. Furthermore, higher-order spectral analysis suggests that nonlinear effects cause additional peaks to arise in the power spectrum, particularly at low angles of attack.

  13. Energy and ancillary service dispatch through dynamic optimal power flow

    International Nuclear Information System (INIS)

    Costa, A.L.; Costa, A. Simoes

    2007-01-01

    This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)

  14. Fast wave power flow along SOL field lines in NSTX

    Science.gov (United States)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  15. Different elution modes and field programming in gravitational field-flow fractionation: Field programming using density and viscosity gradients

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2006-01-01

    Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  16. Dynamics of classical and quantum fields an introduction

    CERN Document Server

    Setlur, Girish S

    2014-01-01

    Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...

  17. Dynamic characterization of oil fields, complex stratigraphically using genetic algorithms

    International Nuclear Information System (INIS)

    Gonzalez, Santiago; Hidrobo, Eduardo A

    2004-01-01

    A novel methodology is presented in this paper for the characterization of highly heterogeneous oil fields by integration of the oil fields dynamic information to the static updated model. The objective of the oil field's characterization process is to build an oil field model, as realistic as possible, through the incorporation of all the available information. The classical approach consists in producing a model based in the oil field's static information, having as the process final stage the validation model with the dynamic information available. It is important to clarify that the term validation implies a punctual process by nature, generally intended to secure the required coherence between productive zones and petrophysical properties. The objective of the proposed methodology is to enhance the prediction capacity of the oil field's model by previously integrating, parameters inherent to the oil field's fluid dynamics by a process of dynamic data inversion through an optimization procedure based on evolutionary computation. The proposed methodology relies on the construction of the oil field's high-resolution static model, escalated by means of hybrid techniques while aiming to preserve the oil field's heterogeneity. Afterwards, using an analytic simulator as reference, the scaled model is methodically modified by means of an optimization process that uses genetic algorithms and production data as conditional information. The process's final product is a model that observes the static and dynamic conditions of the oil field with the capacity to minimize the economic impact that generates production historical adjustments to the simulation tasks. This final model features some petrophysical properties (porosity, permeability and water saturation), as modified to achieve a better adjustment of the simulated production's history versus the real one history matching. Additionally, the process involves a slight modification of relative permeability, which has

  18. Improved dynamic CT angiography visualization by flow territory masking

    Directory of Open Access Journals (Sweden)

    Søren Christensen

    2015-01-01

    Full Text Available Backgound and Purpose: Computerized tomography (CT perfusion (or CTP source images from CT scanners with small detector widths can be used to create a dynamic CT angiogram (CTA similar to digital subtraction angiography (DSA. Because CTP studies use a single intravenous injection, all arterial territories enhance simultaneously, and individual arterial territories [i.e., anterior cerebral artery (ACA, middle cerebral artery (MCA, and posterior cerebral artery (PCA] cannot be delineated. This limits the ability to assess collateral flow patterns on dynamic CTAs. The aim of this study was to devise and test a postprocessing method to selectively color-label the major arterial territories on dynamic CTA. Materials and Methods: We identified 22 acute-stroke patients who underwent CTP on a 320-slice CT scanner within 6 h from symptom onset. For each case, two investigators independently generated an arterial territory map from CTP bolus arrival maps using a semiautomated method. The volumes of the arterial territories were calculated for each map and the average relative difference between these volumes was calculated for each case as a measure of interrater agreement. Arterial territory maps were superimposed on the dynamic CTA to create a vessel-selective dynamic CTA with color-coding of the main arterial territories. Two experts rated the arterial territory maps and the color-coded CTAs for consistency with expected arterial territories on a 3-point scale (excellent, moderate, poor. Results: Arterial territory maps were generated for all 22 patients. The median difference in arterial territory volumes between investigators was 2.2% [interquartile range (IQR 0.6-8.5%]. Based on expert review, the arterial territory maps and the vessel-selective dynamic CTAs showed excellent consistency with the expected arterial territories in 18 of 22 patients, moderate consistency in 2 patients, and poor consistency in another 2 patients. Conclusion: Using a

  19. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  20. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  1. Increasing the Dynamic Range of Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    images. The emissions for the two imaging modes are interleaved 1-to-1 ratio, providing a high frame rate equal to the effective pulse repetition frequency of each imaging mode. The direction of the flow is estimated, and the velocity is then determined in that direction. This method Works for all angles...... standard deviations are 1.59% and 6.12%, respectively. The presented method can improve the estimates by synthesizing a lower pulse repetition frequency, thereby increasing the dynamic range of the vector velocity imaging....

  2. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  3. Dynamics of particles and fields. Final report

    International Nuclear Information System (INIS)

    Cahill, K.E.

    1985-01-01

    The principal objective of the proposed work is a better understanding of the internal and coordinate symmetries that characterize the interactions of the elementary particles. Their interactions - gravitational, weak, electromagnetic, and strong - seem to be well described by gauge theories, i.e., ones whose equations of motion are invariant under symmetry transformations that vary independently from point to point. The principal subject of the proposed research is the development of techniques for the numerical evaluation of path integrals, particularly those that occur in gauge theories. Other subjects of the proposed research are: quark confinement and other nonperturbative phenomena in field theory, gauge theories of compact and noncompact symmetry groups, supersymmetry, grand unification, the unification of the gravitational and electronuclear forces, and various topics in computer physics

  4. Constrained dynamics of an inertial particle in a turbulent flow

    International Nuclear Information System (INIS)

    Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M

    2011-01-01

    Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.

  5. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    Science.gov (United States)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  6. Time-optimal path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-01-06

    An ensemble-based approach is developed to conduct time-optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where a set deterministic predictions is used to model and quantify uncertainty in the predictions. In the operational setting, much about dynamics, topography and forcing of the ocean environment is uncertain, and as a result a single path produced by a model simulation has limited utility. To overcome this limitation, we rely on a finitesize ensemble of deterministic forecasts to quantify the impact of variability in the dynamics. The uncertainty of flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each the resulting realizations of the uncertain current field, we predict the optimal path by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of sampling strategy, and develop insight into extensions dealing with regional or general circulation models. In particular, the ensemble method enables us to perform a statistical analysis of travel times, and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  7. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  8. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  9. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  10. Control of Flowing Liquid Films By Electrostatic Fields in Space

    Science.gov (United States)

    Bankoff, S. George; Miksis, Michael J.; Kim, Hyo

    1996-01-01

    A novel type of lightweight space radiator has been proposed which employs internal electrostatic fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field, will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case where the electrode is close enough to the film surface that the electric field equation and the surface dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified equipment to a flight experiment.

  11. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik; Szepessy, Anders

    2010-01-01

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  12. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik

    2010-03-17

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  13. Numerical approach of multi-field two-phase flow models in the OVAP code

    International Nuclear Information System (INIS)

    Anela Kumbaro

    2005-01-01

    use full Eigen-structure information. Basic comparisons in terms of numerical results and physical modeling will be provided and interpreted. The intent is to provide guidelines for future development of such methods and models. References: [1] Lahey, R.T. Jr., Drew D.A. An Analysis of Two-Phase Flow and Heat Transfer using a Multidimensional, Multi-Field, Two-Fluid Computational Fluid Dynamics (CFD) Model, Japan/US Seminar on Two-Phase Flow Dynamics, California, June 5-8, 2000. [2] Lo S., Some recent developments and applications of CFD to multiphase flows in stirred reactors, AMIF-ESF Workshop, Computing two-phase flows, Aussois, 2000. [3] Roe P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comp. Phys., 43(2), 1981. [4] Toumi and A. Kumbaro, An Approximate Linearized Riemann Solver for a Two-Fluid Model, J. Comput. Phys., 124, 286-300, 1996. [5] A. Kumbaro, I. Toumi and V. Seignole, Numerical Modeling of Two-Phase Flows Using Advanced Two Fluid Systems, Tenth International Conference on Nuclear Engineering, April 14-18 2002, Arlington, Virginia, USA. (author)

  14. VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. N. Volkov

    2014-05-01

    Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.

  15. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    Science.gov (United States)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number

  16. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  17. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  18. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    Science.gov (United States)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  19. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    International Nuclear Information System (INIS)

    Restrepo, Juan M.

    2008-01-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers encompassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundary conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  20. Chemical and biological activity in open flows: A dynamical system approach

    International Nuclear Information System (INIS)

    Tel, Tamas; Moura, Alessandro de; Grebogi, Celso; Karolyi, Gyoergy

    2005-01-01

    Chemical and biological processes often take place in fluid flows. Many of them, like environmental or microfluidical ones, generate filamentary patterns which have a fractal structure, due to the presence of chaos in the underlying advection dynamics. In such cases, hydrodynamical stirring strongly couples to the reactivity of the advected species: the outcome of the reaction is then typically different from that of the same reaction taking place in a well-mixed environment. Here we review recent progress in this field, which became possible due to the application of methods taken from dynamical system theory. We place special emphasis on the derivation of effective rate equations which contain singular terms expressing the fact that the reaction takes place on a moving fractal catalyst, on the unstable foliation of the reaction free advection dynamics

  1. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation

    International Nuclear Information System (INIS)

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-01-01

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

  2. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  3. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  4. Evaluation of the flow-accelerated corrosion downstream of an orifice. 1. Measurements and numerical analysis of flow field

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), an orifice flow was measured and calculated. The diameter of pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity in a water loop was set at 2.41 m/s. Flow field was measured by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and compared with a calculation for the same flow conditions. Measurements of wall shear stress downstream of the orifice was also planed. The calculated velocity distribution of standard k-□ agreed qualitatively with PIV data and quantitatively with LDV data. Instantaneous flow field measured by PIV showed vortices around the jet from the orifice and some of them reached near the pipe wall. (author)

  5. Comprehensive validation of computational fluid dynamics simulationsof in-vivo blood flow in patient-specific cerebral aneurysms

    NARCIS (Netherlands)

    Sun, Q.; Groth, A.; Aach, T.

    2012-01-01

    Purpose: Recently, image-based computational fluid dynamic (CFD) simulations have been proposed to investigate the local hemodynamics inside human cerebral aneurysms. It is suggested that the knowledge ofthe computed three-dimensional flow fields can be used to assist clinical risk assessment and

  6. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew

    2015-07-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.

  7. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  8. POD- Mapping and analysis of hydroturbine exit flow dynamics

    Science.gov (United States)

    Kjeldsen, Morten; Finstad, Pal Henrik

    2012-11-01

    Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.

  9. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    Science.gov (United States)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  10. Unified solver for fluid dynamics and aeroacoustics in isentropic gas flows

    Science.gov (United States)

    Pont, Arnau; Codina, Ramon; Baiges, Joan; Guasch, Oriol

    2018-06-01

    The high computational cost of solving numerically the fully compressible Navier-Stokes equations, together with the poor performance of most numerical formulations for compressible flow in the low Mach number regime, has led to the necessity for more affordable numerical models for Computational Aeroacoustics. For low Mach number subsonic flows with neither shocks nor thermal coupling, both flow dynamics and wave propagation can be considered isentropic. Therefore, a joint isentropic formulation for flow and aeroacoustics can be devised which avoids the need for segregating flow and acoustic scales. Under these assumptions density and pressure fluctuations are directly proportional, and a two field velocity-pressure compressible formulation can be derived as an extension of an incompressible solver. Moreover, the linear system of equations which arises from the proposed isentropic formulation is better conditioned than the homologous incompressible one due to the presence of a pressure time derivative. Similarly to other compressible formulations the prescription of boundary conditions will have to deal with the backscattering of acoustic waves. In this sense, a separated imposition of boundary conditions for flow and acoustic scales which allows the evacuation of waves through Dirichlet boundaries without using any tailored damping model will be presented.

  11. Reconstruction of the dynamics of the 1800-1801 Hualalai eruption: Implications for planetary lava flows

    Science.gov (United States)

    Baloga, Stephen; Spudis, Paul

    1993-01-01

    The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.

  12. Experiments on the flow field physics of confluent boundary layers for high-lift systems

    Science.gov (United States)

    Nelson, Robert C.; Thomas, F. O.; Chu, H. C.

    1994-01-01

    The use of sub-scale wind tunnel test data to predict the behavior of commercial transport high lift systems at in-flight Reynolds number is limited by the so-called 'inverse Reynolds number effect'. This involves an actual deterioration in the performance of a high lift device with increasing Reynolds number. A lack of understanding of the relevant flow field physics associated with numerous complicated viscous flow interactions that characterize flow over high-lift devices prohibits computational fluid dynamics from addressing Reynolds number effects. Clearly there is a need for research that has as its objective the clarification of the fundamental flow field physics associated with viscous effects in high lift systems. In this investigation, a detailed experimental investigation is being performed to study the interaction between the slat wake and the boundary layer on the primary airfoil which is known as a confluent boundary layer. This little-studied aspect of the multi-element airfoil problem deserves special attention due to its importance in the lift augmentation process. The goal of this research is is to provide an improved understanding of the flow physics associated with high lift generation. This process report will discuss the status of the research being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame. The research is sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report will include a discussion of the models that have been built or that are under construction, a description of the planned experiments, a description of a flow visualization apparatus that has been developed for generating colored smoke for confluent boundary layer studies and some preliminary measurements made using our new 3-component fiber optic LDV system.

  13. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  14. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    Science.gov (United States)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  15. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  16. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young

    2008-01-01

    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  17. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  18. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  19. Dynamics of the cross flow heat exchanger for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    A series of publications is available on the dynamic behaviour of heat exchangers (or heat transmitters, respectively), the subject of which is to deal with direct methods or with refined starting models for this general theme. The bridging between both these manners of advance remained as a problem. The author tried in his own investigation to solve the problem, and indeed by the selection of the correct starting model. He succeeded in this way, in that he removed conceptually a finned pipe from an arbitrary place of a heat exchanger and, furthermore, cut out from this particular pipe an arbitrary section. This section now does not stand alone for itself because the processes, which occur upstream of this section at the air-side and the water-side, are the input quantities of the section, which changes them due to its static and dynamic behaviour and emits them again as output quantities. The author, therefore, treats at first the dynamic behaviour of the section, which is represented in a signal flow diagram and which is used to derive approximate solutions from it. Furthermore, the author discusses the evident derivation of the total behaviour of heat exchangers.

  20. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  1. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    Science.gov (United States)

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  2. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    Directory of Open Access Journals (Sweden)

    Andrew J Reagan

    Full Text Available A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  3. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    . Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.

  4. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

    Science.gov (United States)

    Horn, S.; Schmid, P. J.; Aurnou, J. M.

    2016-12-01

    The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

  5. Dynamics of blood flow: twenty years of achievement

    International Nuclear Information System (INIS)

    Rosendorff, C.

    1988-01-01

    The physiology of blood circulation has evolved from the descriptive phenomenology of William Harvey's time to an interdisciplinary science, involving elements of fluid dynamics, vessel wall mechanics, electrophysiology, cell biology, biochemistry and molecular biology. Most of these new developments have occured during the lifetime of the South African Medical Research Council. Highlights of the research undertaken by the Council regarding circulatory physiology are given. In the 1960s the use of xenon-133 to study the flow of blood to the brain resulted in the first systematic description of cerebral blood flow and its control by sympathetic nerves. During the 1970s this technique was refined and the use of radioactive microspheres for the measurement of tissue blood flow was developed. Research concerning the control of blood vessels in the kidney was also carried out, and this showed that the sympathetic nerves control renal blood flow by releasing a local hormone called renin. The renal release of renin was later recognised as being important in the control of blood pressure. Another development was the discovery that vascular sensitivity to noradrenaline was increased in certain types of liver diseases. An analysis of the blood of patients with obstructive jaundice showed that the substance responsible for this noradrenaline effect was a combination of cholesterol and lipo-protein. This led to the theory that excessive cholesterol in the blood may be dangerous. In the late 1970s a shift in research emphasis to coronary artery physiology occurred and the 1980s saw research move into the area of cell biology

  6. A nonlinear dynamics for the scalar field in Randers spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  7. Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields

    OpenAIRE

    Hipp, Susanne

    2015-01-01

    This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...

  8. Dynamic lymph flow scintigraphy in lymphoedema: Description of a new procedure and normal and abnormal patterns

    International Nuclear Information System (INIS)

    Nawaz, K.; Hamad, M.M.; Sadek, S.; Awdeh, M.; Eklof, B.; Abdel-Dayem, H.M.

    1986-01-01

    A dynamic study of lymphatic flow was performed in 23 patients complaining of lymphoedema of the lower limbs. All were injected intradermally with 1 mCi (37 MBq) of 99 Tcsup(m)-labelled human serum albumin (HSA) in the medial web on the dorsum of each foot. Image acquisition for the lower pelvis and both thighs was started within 5 min. A GE 500A gamma camera with an extra-large field of view and a low energy, all purpose collimator interfaced with a GE Star computer was used. Images were acquired in the dynamic mode with a 128x128 matrix every minute up to 40 min. Delayed images for the same region and for both legs were taken at 90 min. Time-activity curves for equal regions of interest over the inguinal regions on both sides were generated. Three patterns were recognized. (1) Normal flow (12 patients) with symmetrical or slightly increased or decreased flow on one side compared with the other, characterized by early appearance of medial bands and inguinal and pelvic lymph nodes in the early and delayed images. (2) An obstructed pattern (5 patients) characterized by subcutaneous pooling, absent medial bands in the dynamic part of the study, a flat curve on the affected side representing background activity, and absent inguinal and pelvic nodes in the delayed images. Occasionally the obstruction was incomplete and there was a delayed appearance of the nodes, which were less in number and smaller in size than on the normal side. (3) An enhanced pattern (6 patients) characterized by fast flow of lymph through the dilated lymphatics, occasionally subcutaneous pooling and an increase in the number and size of inguinal and pelvic lymph nodes on the affected side. The authors conclude that intradermal injection of 99 Tcsup(m)-HSA can be used to study the pathophysiology of lymphatic flow in the most difficult group of patients suffering from chronic lymphoedema of the lower limbs

  9. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  10. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  11. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  12. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    International Nuclear Information System (INIS)

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-01-01

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments (σ/μ 2 ) for the input function between 0.95 and 0.98, while the maximum enhancement differed by no more than 3.3%. The

  13. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  14. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  15. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids

    Science.gov (United States)

    Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis

    2018-01-01

    We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.

  16. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  17. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  18. Flow Field and Acoustic Predictions for Three-Stream Jets

    Science.gov (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  19. Research on the spatial structure of crude oil flow and the characteristics of its flow field in China

    International Nuclear Information System (INIS)

    Zhao, Yuan; Hao, Li-Sha; Wan, Lu

    2007-01-01

    Crude oil flow is a sort of oil spatial movement, and in China, it is large scale and covers wide area with extensive social-economic effects. This paper analyses the spatial structure of crude oil flow in China, the characters of its flow field and the layout of its flow track. The results show that oil flow in China has a spatial characteristic of centralized output and decentralized input; its spatial structure is composed of Source System in the shape of right-angled triangle, Confluence System in the shape of right-angled trapezium and Multiplex System in the shape of obtuse-angled triangle, which are mutually nested, and on a whole, the presence of Multiplex System balances and optimizes the flow layout; oil flow field in China can be divided into four parts, i.e. the North, North-west, East and South Field, two or three of which overlap with each other, extending the oil flow and making the flow more flexible and maneuverable; oil flow track is a multi-objective decision-making route and in the decision-making process oil transportation cost is one of the essential factors, in China, oil flow track falls into the Northeast, North, East, Northwest and South five cluster regions, which connect with each other, and series-parallel connection between various kinds of transportation channels is widely seen in them, reinforcing the supply security of crude oil

  20. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  1. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    Science.gov (United States)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  2. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    International Nuclear Information System (INIS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-01-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7 mm × 70 mm and resonates at 92.5 Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  3. Transition to magnetorotational turbulence in Taylor–Couette flow with imposed azimuthal magnetic field

    International Nuclear Information System (INIS)

    A Guseva; Avila, M; Willis, A P; Hollerbach, R

    2015-01-01

    The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and momentum transport in astrophysical accretion discs, but obtaining observational evidence of its operation is challenging. Recently, laboratory experiments of Taylor–Couette flow with externally imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of the MRI close to the instability onset. While good agreement was found with linear stability analyses, little is known about the transition to turbulence and transport properties of the MRI. We here report on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the laminar Taylor–Couette flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic Hopf bifurcation. Our results are in qualitative agreement with the PROMISE experiment and dramatically extend their realizable parameter range. We find that as the Reynolds number increases defects accumulate and grow into turbulence, yet the momentum transport scales weakly. (paper)

  4. Analysis of the pressure fields in a swirling annular jet flow

    NARCIS (Netherlands)

    Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.

    2017-01-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional

  5. On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow

    Science.gov (United States)

    Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.

    2006-11-01

    Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.

  6. Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine

    Science.gov (United States)

    Ingvorsen, K. M.; Meyer, K. E.; Walther, J. H.; Mayer, S.

    2014-06-01

    It is desirable to use computational fluid dynamics for optimization of the in-cylinder processes in low-speed two-stroke uniflow-scavenged marine diesel engines. However, the complex nature of the turbulent swirling in-cylinder flow necessitates experimental data for validation of the used turbulence models. In the present work, the flow in a dynamic scale model of a uniflow-scavenged cylinder is investigated experimentally. The model has a transparent cylinder and a moving piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry (PIV) and time-resolved laser Doppler anemometry (LDA). Radial profiles of the phase-locked mean and rms velocities are computed from the velocity fields recorded with PIV, and the accuracy of the obtained profiles is demonstrated by comparison with reference LDA measurements. Measurements are carried out at five axial positions for 15 different times during the engine cycle and show the temporal and spatial development of the swirling in-cylinder flow. The tangential velocity profiles in the bottom of the cylinder near the end of the scavenge process are characterized by a concentrated swirl resulting in wake-like axial velocity profiles and the occurrence of a vortex breakdown. After scavenge port closing, the axial velocity profiles indicate that large transient swirl-induced structures exist in the cylinder. Comparison with profiles obtained under steady-flow conditions shows that the scavenge flow cannot be assumed to be quasi-steady. The temporal development of the swirl strength is investigated by computing the angular momentum. The swirl strength shows an exponential decay from scavenge port closing to scavenge port opening corresponding to a reduction of 34 %, which is in good agreement with theoretical predictions.

  7. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    Science.gov (United States)

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Local field corrections in the lattice dynamics of chromium | Ndukwe ...

    African Journals Online (AJOL)

    This work extends the inclusion of local field corrections in the calculation of the phonon dispersion curves to the transition metal, chromium (Cr3+) using the formalism of lattice dynamics based on the transition metal model potential approach in the adiabatic and hatmonic approximations. The results obtained here have a ...

  9. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  10. Dynamic Incentive Effects of Relative Performance Pay: A Field Experiment

    NARCIS (Netherlands)

    J. Delfgaauw (Josse); A.J. Dur (Robert); J.A. Non (Arjan); W.J.M.I. Verbeke (Willem)

    2010-01-01

    textabstractWe conduct a field experiment among 189 stores of a retail chain to study dynamic incentive effects of relative performance pay. Employees in the randomly selected treatment stores could win a bonus by outperforming three comparable stores from the control group over the course of four

  11. The most general cosmological dynamics for ELKO matter fields

    International Nuclear Information System (INIS)

    Fabbri, Luca

    2011-01-01

    Not long ago, the definition of eigenspinors of charge-conjugation belonging to a special Wigner class has lead to the unexpected theoretical discovery of a form of matter with spin 1/2 and mass dimension 1, called ELKO matter field; ELKO matter fields defined in flat spacetimes have been later extended to curved and twisted spacetimes, in order to include in their dynamics the coupling to gravitational fields possessing both metric and torsional degrees of freedom: the inclusion of non-commuting spinorial covariant derivatives allows for the introduction of more general dynamical terms influencing the behaviour of ELKO matter fields. In this Letter, we shall solve the theoretical problem of finding the most general dynamics for ELKO matter, and we will face the phenomenological issue concerning how the new dynamical terms may affect the behavior of ELKO matter; we will see that new effects will arise for which the very existence of ELKO matter will be endangered, due to the fact that ELKOs will turn incompatible with the cosmological principle. Thus we have that anisotropic universes must be taken into account if ELKOs are to be considered in their most general form.

  12. The Dynamics of the Impact of Past Performance on Mutual Fund Flows

    NARCIS (Netherlands)

    Goriaev, A.P.; Nijman, T.E.; Werker, B.J.M.

    2002-01-01

    This study reconsiders the determinants of flows into US growth funds, focusing in particular on the dynamics of the impact of past performance on flows.We model the flow-performance relationship at the monthly frequency, allowing for dependence of the sensitivity of flows to past performance on

  13. Dynamics of underdamped Josephson arrays in a magnetic field

    International Nuclear Information System (INIS)

    Octavio, M.; Whan, C.B.; Geigenmueller, U.; Lobb, C.J.

    1994-01-01

    We present simulations of the dynamics of underdamped classical Josephson arrays for values of the flux quanta per unit cell f=1/2. We find the dynamics of this system to be quite rich. The I-V characteristics are found to have two distinct regime as the damping is increased. At low voltages the current-voltage characteristics exhibit a regime which we characterize as flux-flow-like since it is dominated by the motion of the vortex superlattice. This regime may exhibit chaotic-like behavior as the damping parameter is increased. At high voltages the characteristics jump to an ohmic-like state in which the junctions are all oscillating. We present a potential model which is quite useful in understanding the dynamics of the system. (orig.)

  14. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  15. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  16. Vortex rings and jets recent developments in near-field dynamics

    CERN Document Server

    Yu, Simon

    2015-01-01

    In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...

  17. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  18. Dynamic interaction between myocardial contraction and coronary flow.

    Science.gov (United States)

    Beyar, R; Sideman, S

    1997-01-01

    Phasic coronary flow is determined by the dynamic interaction between central hemodynamics and myocardial and ventricular mechanics. Various models, including the waterfall, intramyocardial pump and myocardial structural models, have been proposed for the coronary circulation. Concepts such as intramyocardial pressure, local elastance and others have been proposed to help explain the coronary compression by the myocardium. Yet some questions remain unresolved, and a new model has recently been proposed, linking a muscle collagen fibrous model to a physiologically based coronary model, and accounting for transport of fluids across the capillaries and lymphatic flow between the interstitial space and the venous system. One of the unique features of this model is that the intramyocardial pressure (IMP) in the interstitial space is calculated from the balance of forces and fluid transport in the system, and is therefore dependent on the coronary pressure conditions, the myocardial function and the transport properties of the system. The model predicts a wide range of experimentally observed phenomena associated with coronary compression.

  19. Dynamic evolution process of turbulent channel flow after opposition control

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Mingwei; Tian, De; Yongqian, Liu, E-mail: gmwncepu@163.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing102206 (China)

    2017-02-15

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of 〈 v ′ v ′〉 and 〈− u ′ v ′〉 in the viscous sublayer. (paper)

  20. Neural network modeling of chaotic dynamics in nuclear reactor flows

    International Nuclear Information System (INIS)

    Welstead, S.T.

    1992-01-01

    Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons

  1. Developing the technique of image processing for the study of bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Donevski, Bozin; Saga, Tetsuo; Kobayashi, Toshio; Segawa, Shigeki

    1998-01-01

    This study presents the development of an image processing technique for studying the dynamic behavior of vapor bubbles in a two-phase bubbly flow. It focuses on the quantitative assessment of some basic parameters such as a local bubble size and size distribution in the range of void fraction between 0.03 < a < 0.07. The image processing methodology is based upon the computer evaluation of high speed motion pictures obtained from the flow field in the region of underdeveloped subcooled flow boiling for a variety of experimental conditions. This technique has the advantage of providing computer measurements and extracting the bubbles of the two-phase bubbly flow. This method appears to be promising for determining the governing mechanisms in subcooled flow boiling, particularly near the point of net vapor generation. The data collected by the image analysis software can be incorporated into the new models and computer codes currently under development which are aimed at incorporating the effect of vapor generation and condensation separately. (author)

  2. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  3. Dynamic cycling in atrial size and flow during obstructive apnoea.

    Science.gov (United States)

    Pressman, Gregg S; Cepeda-Valery, Beatriz; Codolosa, Nicolas; Orban, Marek; Samuel, Solomon P; Somers, Virend K

    2016-01-01

    Obstructive sleep apnoea (OSA) is strongly associated with cardiovascular disease. However, acute cardiovascular effects of repetitive airway obstruction are poorly understood. While past research used a sustained Mueller manoeuver to simulate OSA we employed a series of gasping efforts to better simulate true obstructive apnoeas. This report describes acute changes in cardiac anatomy and flow related to sudden changes in intrathoracic pressure. 26 healthy, normal weight participants performed 5-6 gasping efforts (target intrathoracic pressure -40 mm Hg) while undergoing Doppler echocardiography. 14 participants had sufficient echocardiographic images to allow comparison of atrial areas during the manoeuver with baseline measurements. Mitral and tricuspid E-wave and A-wave velocities postmanoeuver were compared with baseline in all participants. Average atrial areas changed little during the manoeuver, but variance in both atrial areas was significantly greater than baseline. Further, an inverse relationship was noted with left atrial collapse and right atrial enlargement at onset of inspiratory effort. Significant inverse changes were noted in Doppler flow when comparing the first beat postmanoeuver (pMM1) with baseline. Mitral E-wave velocity increased 9.1 cm/s while tricuspid E-wave velocity decreased 7.0 cm/s; by the eighth beat postmanoeuver (pMM8) values were not different from baseline. Mitral and tricuspid A-wave velocities were not different from baseline at pMM1, but both were significantly higher by pMM8. Repetitive obstructive apnoeas produce dynamic, inverse changes in atrial size and Doppler flow across the atrioventricular valves. These observations have important implications for understanding the pathophysiology of OSA.

  4. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  5. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  6. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  7. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  8. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    International Nuclear Information System (INIS)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A

    2006-01-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations

  9. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Science.gov (United States)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  10. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  11. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  12. Dynamical local field, compressibility, and frequency sum rules for quasiparticles

    International Nuclear Information System (INIS)

    Morawetz, Klaus

    2002-01-01

    The finite temperature dynamical response function including the dynamical local field is derived within a quasiparticle picture for interacting one-, two-, and three-dimensional Fermi systems. The correlations are assumed to be given by a density-dependent effective mass, quasiparticle energy shift, and relaxation time. The latter one describes disorder or collisional effects. This parametrization of correlations includes local-density functionals as a special case and is therefore applicable for density-functional theories. With a single static local field, the third-order frequency sum rule can be fulfilled simultaneously with the compressibility sum rule by relating the effective mass and quasiparticle energy shift to the structure function or pair-correlation function. Consequently, solely local-density functionals without taking into account effective masses cannot fulfill both sum rules simultaneously with a static local field. The comparison to the Monte Carlo data seems to support such a quasiparticle picture

  13. Active Self-Assembled Spinners: dynamic crystals, transport and induced surface flows

    Science.gov (United States)

    Snezhko, Alexey; Kokot, Gasper

    Strongly interacting colloids driven out-of-equilibrium by an external periodic forcing often develop nontrivial collective dynamics. Active magnetic colloids proved to be excellent model experimental systems to explore emergent behavior and active (out-of-equilibrium) self-assembly phenomena. Ferromagnetic micro-particles, suspended at a liquid interface and energized by a rotational homogeneous alternating magnetic field applied along the supporting interface, spontaneously form ensembles of synchronized self-assembled spinners with well-defined characteristic length. The size and the torque of an individual self-assembled spinner are controlled by the frequency of the driving magnetic field. Experiments reveal a rich collective dynamics in large ensembles of synchronized magnetic spinners that spontaneously form dynamic spinner lattices at the interface in a certain range of the excitation parameters. Non-trivial dynamics inside of the formed spinner lattices is observed. Transport of passive cargo particles and structure of the underlying self-induced surface flows is analyzed. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering.

  14. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  15. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  16. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  17. Large N dynamics in QED in a magnetic field

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A.

    2003-01-01

    The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large number of the fermion flavor N in the framework of 1/N expansion. The existence of a threshold value N thr , dividing the theories with essentially different dynamics, is established. For the number of flavors N thr , the dynamical mass is very sensitive to the value of the coupling constant α b , related to the magnetic scale μ=√(vertical bar eB vertical bar). For N of the order of N thr or larger, a dynamics similar to that in the Nambu-Jona-Lasinio model with a cutoff of the order of √(vertical bar eB vertical bar) and the dimensional coupling constant G∼1/(N vertical bar eB vertical bar) takes place. In this case, the value of the dynamical mass is essentially α b independent (the dynamics with an infrared stable fixed point). The value of N thr separates a weak coupling dynamics (with α-tilde b ≡Nα b b > or approx. 1) and is of the order of 1/α b

  18. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  19. Mean field theory of dynamic phase transitions in ferromagnets

    International Nuclear Information System (INIS)

    Idigoras, O.; Vavassori, P.; Berger, A.

    2012-01-01

    We have studied the second order dynamic phase transition (DPT) of the two-dimensional kinetic Ising model by means of numerical calculations. While it is well established that the order parameter Q of the DPT is the average magnetization per external field oscillation cycle, the possible identity of the conjugate field has been addressed only recently. In this work, we demonstrate that our entire set of numerical data is fully consistent with the applied bias field H b being the conjugate field of order parameter Q. For this purpose, we have analyzed the Q(H b )-dependence and we have found that it follows the expected power law behavior with the same critical exponent as the mean field equilibrium case.

  20. A video-image study of electrolytic flow structure in parallel electric-magnetic fields

    International Nuclear Information System (INIS)

    Gu, Z.H.; Fahidy, T.Z.

    1987-01-01

    The structure of free convective flow propagating from a vertical cathode into the electrolyte bulk has been studied via video-imaging. The enhancing effect of imposed horizontal uniform magnetic fields is manifest by vortex propagation and bifurcating flow

  1. The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model

    International Nuclear Information System (INIS)

    Lahey, Richard T.; Drew, Donald A.

    2001-01-01

    This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)

  2. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  3. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, B.

    1993-01-01

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  4. Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures

    Directory of Open Access Journals (Sweden)

    Yulia eSandamirskaya

    2014-01-01

    Full Text Available Dynamic Field Theory (DFT is an established framework for modelling embodied cognition. In DFT, elementary cognitive functions such as memory formation, formation of grounded representations, attentional processes, decision making, adaptation, and learning emerge from neuronal dynamics. The basic computational element of this framework is a Dynamic Neural Field (DNF. Under constraints on the time-scale of the dynamics, the DNF is computationally equivalent to a soft winner-take-all (WTA network, which is considered one of the basic computational units in neuronal processing. Recently, it has been shown how a WTA network may be implemented in neuromorphic hardware, such as analogue Very Large Scale Integration (VLSI device. This paper leverages the relationship between DFT and soft WTA networks to systematically revise and integrate established DFT mechanisms that have previously been spread among different architectures. In addition, I also identify some novel computational and architectural mechanisms of DFT which may be implemented in neuromorphic VLSI devices using WTA networks as an intermediate computational layer. These specific mechanisms include the stabilization of working memory, the coupling of sensory systems to motor dynamics, intentionality, and autonomous learning. I further demonstrate how all these elements may be integrated into a unified architecture to generate behavior and autonomous learning.

  5. Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media

    CERN Document Server

    Tarasov, Vasily E

    2010-01-01

    "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...

  6. Framework based on communicability and flow to analyze complex network dynamics

    Science.gov (United States)

    Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.

    2018-05-01

    Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.

  7. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    CERN Document Server

    Floerchinger, Stefan

    2015-01-01

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

  8. Mean-field theory of nuclear structure and dynamics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1982-01-01

    The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission

  9. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  10. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades

    Science.gov (United States)

    Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi

    2017-10-01

    Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.

  11. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    Science.gov (United States)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  12. The study of sheath flow dark zone phenomenon in dynamic individual cells scattering measurement

    Science.gov (United States)

    Zhang, Lu; Zhao, Hong; Wang, Xiaopin; Zhang, Weiguang

    2008-09-01

    Dynamic cells scattering is one of the most efficient approaches exploring in measurements of cells size, morphology and growth states. This technique can be widely applied in real-time detection for pharmaceutical industry, food industry, liquor industry and other biological fields. A novel method named dynamic individual cells scattering measurement is designed in this paper, which can make cells pass through quartz glass measurement zone one by one with sheath flow driving force. During the experiments, an obvious phenomenon has been found which is called sheath flow dark zone phenomenon (SFDZ). Under the influence of SFDZ, sheath flow forming detection becomes very difficult. In this paper, the causes giving rise to SFDZ have been analyzed. And an improved method is put forward, in which the orifice inside the measurement zone is set as an optical system. Then the illuminating system is redesigned. In this way, almost all the illuminating light can enter orifice so that the total reflection energy decreases substantially. A comparison experiments have been done, which proves the efficiency of this redesigned optical system and its sound effects on SFDZ avoiding.

  13. Fictive impurity approach to dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, A.

    2006-10-15

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  14. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  15. Vortex dynamics in superconducting Corbino disk at zero field

    International Nuclear Information System (INIS)

    Enomoto, Y.; Ohta, M.

    2007-01-01

    We study the radial current driven vortex dynamics in the Corbino disk sample at zero field, by using a logarithmically interacting point vortex model involving effect of temperature, random pinning centers, and disk wall confinement force. We also take into account both the current induced vortex pair nucleation and the vortex pair annihilation processes in the model. Simulation results demonstrate that the vortex motion induced voltage exhibits almost periodic pulse behavior in time, observed experimentally, for a certain range of the model parameters. Such an anomalous behavior is thought to originate from large fluctuations of the vortex number due to the collective dynamics of this vortex system

  16. Slow dynamics at critical points: the field-theoretical perspective

    International Nuclear Information System (INIS)

    Gambassi, Andrea

    2006-01-01

    The dynamics at a critical point provides a simple instance of slow collective evolution, characterised by aging phenomena and by a violation of the fluctuation-dissipation relation even for long times. By virtue of the universality in critical phenomena it is possible to provide quantitative predictions for some aspects of these behaviours by field-theoretical methods. We review some of the theoretical results that have been obtained in recent years for the relevant (universal) quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics

  17. Fictive impurity approach to dynamical mean field theory

    International Nuclear Information System (INIS)

    Fuhrmann, A.

    2006-10-01

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  18. Dynamical renormalization group approach to relaxation in quantum field theory

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de

    2003-01-01

    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths

  19. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  20. Semiquantifying regional cerebral blood flow by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Kasahara, Eishi; Takahashi, Eriko; Kojima, Seiichi; Ogawa, Haruhiko; Suzuki, Keiko; Miyamae, Tatsuya; Yamazaki, Setsuo.

    1990-01-01

    The study was undertaken to evaluate the semi-quantitative significance of the absolute value obtained by calculating the regional cerebral blood flow index (rCBFI) from dynamic CT in comparison with SPECT. rCBFI was calculated from mean transit time (MTT) and blood capacity index (BCI) obtained by rapidly infusing 50 ml of Omnipurk into the elbow vein by the use of Hitachi's W-600. [rCBFI=BCI/MTT unit/sec (U/S)] measurment of the rCBF by SPECT was made according to the semi-quantitative method by Matsuda et al. by the use of SHIMADZU's improved type HEADTOME SET-050 with rapid infusion of 123 I-IMP in 3.5 m Ci from the elbow vein. Patients in whom no abnormality was observed in the cardiopulmonary function were enrolled as subjects. The rCBFI in each intracranial site was calculated from dynamic CT in 10 normal adults (aged 35-60, averaging 46.7) as subjects and compared with the rCBF obtained from SPECT in the same cases and same site. Comparative investigation was made similarly between rCBFI and rCBF regarding 10 patients with tracranial diseases (age 29-65, averaging 51.2). The mean rCBFIs in the normal adults obtained from dynamic CT were 1.15±0.18 U/S in the frontal lobar cortex, 1.28±0.19 U/S in the temporal lobar cortex, 1.43±0.1 U/S in the occipital lobar cortex, 1.27±0.2 U/S in the basal ganglia region and 0.43±0.1 U/S in the white matter. On the other hand, the mean rCBFs by SPECT were 47.36±3.93 ml/100 g/min, 55.19±2.22 ml/100 g/min, 61.92±5.42 ml/100 g/min, 54.38±3.51 ml/100 g/min and 38.68±6.18 ml/100 g/min, respectively. Positive correlation was observed between rCBFIs and rCBFs of 10 normal adults and 10 patients with intracranial disease, totalling 20 cases (r=0.79, P<0.005). The rCBFI by dynamic CT has a correlation with the rCBF by SPECT, suggesting the possibility of its evaluation as an absolute value, though semi-quantitatively. (author)