WorldWideScience

Sample records for flow blockage analysis

  1. A CFD analysis of flow blockage phenomena in ALFRED LFR demo fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Magugliani, Fabrizio [Ansaldo Nucleare, ANN, Corso Perrone n.25, Genova (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Alemberti, Alessandro [Ansaldo Nucleare, ANN, Corso Perrone n.25, Genova (Italy)

    2014-09-15

    Highlights: • URANS simulations were performed on internal flow blockage in HLM fuel assemblies. • Comparison with RELAP results for foot blockage shows a very good agreement. • The temperature peak behind the blockage is dominant for large blockages. • A blockage of ∼15% leads to a maximum clad temperature around 800 °C in 3–4 s. • Local clad temperatures around 1000 °C are reached for blockages of 30% or more. - Abstract: A CFD study was carried out on fluid flow and heat transfer in the Lead-cooled Fuel Pin Bundle of the ALFRED LFR DEMO. In the context of GEN-IV heavy liquid metal-cooled reactors safety studies, the flow blockage in a fuel sub-assembly is considered one of the main issues to be addressed and the most important and realistic accident for LFR fuel assembly. The present paper is a first step toward a detailed analysis of such phenomena, and a CFD model and approach are presented to have a detailed thermo-fluid dynamic picture in the case of blockage. In particular the closed hexagonal, grid-spaced fuel assembly of the LFR ALFRED was modeled and computed. At this stage, the details of the spacer grids were not included, but a conservative analysis has been carried out based on the current main geometrical and physical features. Reactivity feedback, as well as axial power profile, were not included in this analysis. Results indicate that critical conditions, with clad temperatures around ∼900 °C, are reached with blockage larger than 30% in terms of area fraction. Two main effects can be distinguished: a local effect in the wake/recirculation region downstream the blockage and a global effect due to the lower mass flow rate in the blocked subchannels; the former effect gives rise to a temperature peak behind the blockage and it is dominant for large blockages (>20%), while the latter effect determines a temperature peak at the end of the active region and it is dominant for small blockages (<10%). The blockage area was placed at

  2. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  3. Advanced neutron source reactor probabilistic flow blockage assessment

    International Nuclear Information System (INIS)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool

  4. Complete Flow Blockage of a Fuel Channel for Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Park, Suki

    2015-01-01

    The CHF correlation suitable for narrow rectangular channels are implemented in RELAP5/MOD3.3 code for the analyses, and the behavior of fuel temperatures and MCHFR(minimum critical heat flux ratio) are compared between the original and modified codes. The complete flow blockage of fuel channel for research reactor is analyzed using original and modified RELAP5/MOD3.3 and the results are compared each other. The Sudo-Kaminaga CHF correlation is implemented into RELAP5/MOD3.3 for analyzing the behavior of fuel adjacent to the blocked channel. A flow blockage of fuel channels can be postulated by a foreign object blocking cooling channels of fuels. Since a research reactor with plate type fuel has isolated fuel channels, a complete flow blockage of one fuel channel can cause a failure of adjacent fuel plates by the loss of cooling capability. Although research reactor systems are designed to prevent foreign materials from entering into the core, partial flow blockage accidents and following fuel failures are reported in some old research reactors. In this report, an analysis of complete flow blockage accident is presented for a 15MW pool-type research reactor with plate type fuels. The fuel surface experience different heat transfer regime in the results from original and modified RELAP5/MOD3.3. By the discrepancy in heat transfer mode of two cases, a fuel melting is expected by the modified RELAP5/MOD3.3, whereas the fuel integrity is ensured by the original code

  5. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  6. The development of code for the analysis of the flow blockage of rod bundles of LMR

    International Nuclear Information System (INIS)

    Ha, Q. S.; Jeong, H. Y.; Jang, W. P.; Lee, Y. B.

    2003-01-01

    A partial flow blockage within a fuel assembly in liquid metal reactor may result in localized boiling or a failure of the fuel cladding. Thus, the precise analysis for the phenomenon is required for a safe design of LMR. To take account of the effects of the surfaces of rod and wire spacer on the fluid, the distributed resistance model was implemented into the MATRA-LMR code, which is important to the analysis for flow blockage. Also central differencing scheme for the velocities is used in the flow with the lRel less than 2 and for the enthalpies with the lPel less than 2. Diffusion terms are added to the equations of momentum and energy. The validation calculation was carried out against to the experiment of FFM series tests and the results using MATRA-LMR with the distributed resistance model and above hybrid scheme well agree with the experimental data

  7. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  8. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.

    Science.gov (United States)

    Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C

    2013-02-28

    This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.

  9. FLECHT-SEASET 21-rod bundle flow blockage heat transfer during reflood

    International Nuclear Information System (INIS)

    Loftus, M.; Hochreiter, L.; Lee, N.

    1983-01-01

    The effect of various flow blockage shapes and distributions during a PWR reflood was investigated using six 21-rod bundles with full length, internally heated, cosine power-shaped electrical rods. The flow blockage shapes, simulating the fuel rod clad ballooning, were made of thin-wall stainless steel tubes hydroformed into a short, concentric shape and along, nonconcentric shape. The blockage sleeves were distributed both coplanar, with all sleeves located at the same elevation, and non-coplanar. The initial and boundary conditions were varied to include parametric effects of pressure, inlet water temperature, and primarily, flooding rate. The initial mid-plane rod temperature was 871 0 C (1600 0 F) in all tests. Rod and vapor temperature measurements were made throughout the rod bundle with emphasis on the blockage region. The rod heat transfer downstream of the blockage was found to be greater for rods in a blocked bundle than for similar rods in an unblocked bundle. The heat transfer improvement decreases both with time after flood initiation and as the distance increased downstream of the blockage. The improvement in the heat transfer is attributed primarily to the breakup of the water droplets entrained in the steam flow. The smaller droplets subsequently evaporate and desuperheat the steam, which then improves the heat transfer between the rods and the steam in and downstream of the blockage zone

  10. Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan

    2011-01-01

    In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented

  11. Preliminary validation of the MATRA-LMR-FB code for the flow blockage in a subassembly

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Kwon, Y. M.; Chang, W. P.; Lee, Y. B.; Heo, S.

    2005-01-01

    To analyze the flow blockage in a subassembly of a Liquid Metal-cooled Reactor (LMR), the MATRA-LMR-FB code has been developed and validated for the existing experimental data. Compared to the MATRA-LMR code, which had been successfully applied for the core thermal-hydraulic design of KALIMER, the MATRA-LMR-FB code includes some advanced modeling features. Firstly, the Distributed Resistance Model (DRM), which enables a very accurate description of the effects of wire-wrap and blockage in a flow path, is developed for the MATRA-LMR-FB code. Secondly, the hybrid difference method is used to minimize the numerical diffusion especially at the low flow region such as recirculating wakes after blockage. In addition, the code is equipped with various turbulent mixing models to describe the active mixing due to the turbulent motions as accurate as possible. For the validation of the MATRA-LMR-FB code the ORNL THORS test and KOS 169-pin test are analyzed. Based on the analysis results for the temperature data, the accuracy of the code is evaluated quantitatively. The MATRA-LMR-FB code predicts very accurately the exit temperatures measured in the subassembly with wire-wrap. However, the predicted temperatures for the experiment with spacer grid show some deviations from the measured. To enhance the accuracy of the MATRA-LMR-FB for the flow path with grid spacers, it is suggested to improve the models for pressure loss due to spacer grid and the modeling method for blockage itself. The developed MATRA-LMR-FB code is evaluated to be applied to the flow blockage analysis of KALIMER-600 which adopts the wire-wrapped subassemblies

  12. Fundamental water experiment on subassembly with porous blockage in 4 sub-channel geometry. Influence of flow on temperature distribution in the porous blockage

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kobayashi, Jun; Isozaki, Tadasi; Nishimura, Motohiko; Kamide, Hideki

    1998-03-01

    In the liquid metal cooled Fast Breeder Reactor, Local Fault incident is recognized as a key issue of the local subassembly accident. In terms of the reactor safety assessment, it is important to predict the velocity and temperature distributions not only in the fuel subassembly but also in the blockage accurately to evaluate the location of the hottest point and the maximum temperature. In this study, the experiment was performed with the 4 sub-channel geometry water test facility. Dimension is five times larger than that of a real FBR. The porous blockage is located at the center sub-channel in the test section and surrounded with three unplugged sub-channels. The blockages used in this study were, the solid metal, the porous medium consisted of metal spheres, the porous blockage with end plates covering the side or top faces of the blockage to prevent the horizontal and axial flows into the blockage. The experimental parameters were the heater output provided by the electrical heater in the simulated fuel pins and the flow rate. Temperature of the fluid was measured inside/outside the blockage and velocity profiles outside the blockage were measured. (J.P.N.)

  13. Influence of leakage flow on the behaviour of gas behind a blockage in LMFBR subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1980-07-01

    Observations were made of the behaviour of gas behind a uniform porous 21% corner blockage within a pin-bundle of LMFBR subassembly geometry. The main parameter of the experiment was the leakage flow rate through the blockage. The behaviour of gas is significantly influenced by the leakage flow rate. The measured size and residence time of a gas cavity formed behind the blockage are shown and the mechanisms of the gas cavity dispersion by the leakage flow discussed by using a simple model of the liquid flow distribution behind the blockage. (orig.) [de

  14. Stress analysis for CANDU reactor structure assembly following a postulated p/t, c/t rupture after flow blockage

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S A; Lee, T; Ibrahim, A M; Hodgson, S [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    This paper describes the collapse load calculations for the reactor structure assembly under the postulated fuel channel flow blockage Level D (faulted) loading condition. Under the flow blockage condition, the primary coolant flow path is obstructed between the inlet and outlet feeder connections to the headers. This, in turn, is postulated to cause the pressure tube and calandria tube to rupture and release hot molten fuel into the moderator, producing a hydrodynamic transient within the calandria shell. The most severe hydrodynamic loads occur within a fraction of a second (0.14 second). The peak pressure for the limiting case scenario for Level D condition is 120 psig, due to a single channel failure event. Under this accident condition, it is shown that the reactor structure assembly can withstand the pressure transient and the structural integrity of the core is assured. A finite element model is generated and used to calculate the minimum collapse load. The ANSYS code is used with element type Stif-43 for elastic/plastic, large deformation and small strain analysis. (author). 1 ref., 3 tabs., 9 figs.

  15. Stress analysis for CANDU reactor structure assembly following a postulated p/t, c/t rupture after flow blockage

    International Nuclear Information System (INIS)

    Soliman, S.A.; Lee, T.; Ibrahim, A.M.; Hodgson, S.

    1995-01-01

    This paper describes the collapse load calculations for the reactor structure assembly under the postulated fuel channel flow blockage Level D (faulted) loading condition. Under the flow blockage condition, the primary coolant flow path is obstructed between the inlet and outlet feeder connections to the headers. This, in turn, is postulated to cause the pressure tube and calandria tube to rupture and release hot molten fuel into the moderator, producing a hydrodynamic transient within the calandria shell. The most severe hydrodynamic loads occur within a fraction of a second (0.14 second). The peak pressure for the limiting case scenario for Level D condition is 120 psig, due to a single channel failure event. Under this accident condition, it is shown that the reactor structure assembly can withstand the pressure transient and the structural integrity of the core is assured. A finite element model is generated and used to calculate the minimum collapse load. The ANSYS code is used with element type Stif-43 for elastic/plastic, large deformation and small strain analysis. (author). 1 ref., 3 tabs., 9 figs

  16. PWR FLECHT SEASET 21-rod bundle flow blockage task. Task plan report. FLECHT SEASET Program report No. 5

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Basel, R.A.; Dennis, R.J.; Lee, N.; Massie, H.W. Jr.; Loftus, M.J.; Rosal, E.R.; Valkovic, M.M.

    1980-10-01

    This report presents a descriptive plan of tests for the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). This task will consist of forced and gravity reflooding tests utilizing electrical heater rods to simulate PWR nuclear core fuel rod arrays. All tests will be performed with a cosine axial power profile. These tests are planned to be used to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 161-rod flow blockage bundle tests

  17. Effects of thermohydraulics on clad ballooning, flow blockage and coolability in a LOCA

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Neitzel, H.J.; Wiehr, K.

    1983-01-01

    Thermohydraulic boundary conditions have a dominating effect on clad ballooning, flow blockage and coolability: Increasing heat transfer to the fluid decreases the total circumferential strain; Countercurrent flow in a combined injection leads to a relatively small flow blockage; Burst claddings exhibit premature quenching. Differences in the test results obtained in several countries are mainly due to different thermohydraulic test conditions; all test data are consistent with the understanding elaborated within the REBEKA program. Core coolability in a LOCA can be maintained. (author)

  18. Local flow blockage analysis with checkerboard configuration in a wire wrapped fuel subassembly using the ASFRE code

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Fukano, Yoshitaka

    2014-01-01

    Local fault (LF) has been historically considered as one of the possible causes of severe accidents in sodium-cooled fast reactors because fuel pins are generally densely arranged in the fuel subassemblies (FSAs) in this type of reactors. Local flow blockage (LB) has been one of the dominant initiators of LFs. Therefore evaluations were performed on LBs in the past safety licensing assuming a planar and impermeable blockage of 66% of the total flow area at an FSA for the Japanese prototype fast breeder reactor. A conservative evaluation revealed that fuel pin damage propagation would be limited within a restricted area of the reactor core, even assuming such a hypothetical initiating event. In the newly formulated regulatory requirements, however, after the accident at the Fukushima Dai-ichi nuclear power plant, best estimate (BE) safety analyses on the basis of state-of-the-art knowledge are being required for beyond design basis accidents. A deterministic and BE evaluation therefore based on the most-recent knowledge was newly performed in this study for revalidation of the above-mentioned historical background using the ASFRE code, whereas the LF accidents would not be identified as a representative accident sequence from a viewpoint of both its frequencies and consequences. Nominal power and flow rate without safety margins were assumed for the analyses in order to make the accidental conditions to be realistic. A most likely and realistic blockage configuration was newly proposed and employed based on the existing experimental data in accordance with the BE concept mentioned above. The aforementioned blockage configuration was excessively conservative on a state-of-the-art knowledge basis. The most-recent experimental studies clarified that LBs due to foreign substances would be formed by accumulating the steel fragments of certain sizes trapped along the wrapping wires. This leads to an LB in a checkerboard configuration for an FSA of wire spacer type, which

  19. Temperature fluctuation of sodium in annular flow channel heated by single-pin with blockage

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kimura, Jiro; Ogawa, Masuro; Okada, Toshio

    1978-01-01

    Root mean square (RMS) value and power spectral density (PSD) of temperature fluctuation were measured with use of forced-circulating sodium in an annular channel (6.5 mm I.D., 20mm O.D.) with concentric disk to simulate blockage (about 80%) of sodium flow. The experimental range of the heat flux was 40 -- 150 W/cm 2 and the bulk flow velocity 0.14--0.41m/sec (Re=7.7x10 3 --2.3x10 4 ) under a temperature of 500--800 0 C. The RMS value measured at the exit of heating section (150mm downstream from the blockage) is larger by a factor of 2 -- 3 than that in the wake (10 -- 20mm downstream from the blockage), marking a few deg.C for a heat flux of 105W/cm 2 and a flow velocity of 0.27m/sec. The RMS value is proportional to the wall-to-bulk-fluid temperature difference in heat transfer, presenting the similar dependence on the heat flux and flow velocity. The fluctuations of temperature are greatly attenuated in the upper unheated section where the radial temperature gradient is absent, and consequently it is suggested that the fluctuations of temperature should be caused by the local turbulence of flow, such as a vortex street due to blockage in the present experiment, under the presence of large gradient of temperature near the heating surface. (auth.)

  20. Three-Dimensional, Numerical Investigation of Flow and Heat Transfer in Rectangular Channels Subject to Partial Blockage

    KAUST Repository

    Salama, Amgad; El-Amin, Mohamed; Sun, Shuyu

    2014-01-01

    Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.

  1. Three-Dimensional, Numerical Investigation of Flow and Heat Transfer in Rectangular Channels Subject to Partial Blockage

    KAUST Repository

    Salama, Amgad

    2014-08-25

    Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.

  2. Blockages in LMFBR fuel assemblies: a review

    International Nuclear Information System (INIS)

    Han, J.T.; Fontana, M.H.

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions

  3. Blockages in LMFBR fuel assemblies: a review

    Energy Technology Data Exchange (ETDEWEB)

    Han, J T; Fontana, M H

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions.

  4. Thermal-Hydraulic Analysis of Coolant Flow Decrease in Fuel Channels of Smolensk-3 RBMK during GDH Blockage Event

    International Nuclear Information System (INIS)

    Costa, A. L.; Cherubini, M.; D'Auria, F.; Giannotti, W.; Moskalev, A.

    2007-01-01

    One of the transients that have received considerable attention in the safety evaluation of RBMK reactors is the partial break of a group distribution header (GDH). The coolant flow rate blockage in one GDH might lead to excessive heat-up of the pressure tubes and can result in multiple fuel channels (FC) ruptures. In this work, the GDH flow blockage transient has been studied considering the Smolensk-3 RBMK NPP (nuclear power plant). In the RBMK, each GDH distributes coolant to 40-43 FC. To investigate the behavior of each FC belonging to the damaged GDH and to have a more realistic trend, one (affected) GDH has been schematised with its forty-two FC, one by one. The calculations were performed using the 0-D NK (neutron kinetic) model of the RELAP5-3.3 stand-alone code. The results show that, during the event, the mass flow rate is disturbed differently according to the power distribution established for each FC in the schematization. The start time of the oscillations in mass flow rate depends strongly on the attributed power to each FC. It was also observed that, during the event, the fuel channels at higher thermal power values tend to undergo first cladding rupture leaving the reactor to scram and safeguarding all the other FCs connected to the affected GDH.

  5. CFD analysis of blockage length on a partially blocked fuel rod

    International Nuclear Information System (INIS)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de; Angelo, Gabriel; Angelo, Edvaldo

    2017-01-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  6. CFD analysis of blockage length on a partially blocked fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Gabriel [Centro Universitário FEI (UNIFEI), São Paulo, SP (Brazil). Dept. de Engenharia Mecânica; Angelo, Edvaldo, E-mail: nikolas.scuro@gmail.com, E-mail: delvonei@ipen.br, E-mail: gangelo@fei.edu.br, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, São Paulo, SP (Brazil). Escola da Engenharia. Grupo de Simulação Numérica

    2017-07-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  7. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  8. Transient response of small molten salt reactor at duct blockage accident

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi; Ikeuchi, Koji; Suzuki, Takashi

    2005-01-01

    This paper performed transient core analysis of a small Molten Salt Reactor (MSR) at the time of a duct blockage accident. The numerical model employed in this study consists of continuity and momentum conservation equations for fuel salt flow, two group diffusion equations for fast and thermal neutron fluxes, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The analysis shows that (1) the effective multiplication factor and reactor power after the blockage accident hardly change because of the self-control performance of the MSR, (2) fuel salt and graphite moderator temperatures rise at the blockage point and its vicinity, drastically but locally, (3) the highest temperature after the blockage accident is 1 363 K, very lower than the boiling point of fuel salt and melt point of reactor vessel, (4) fast and thermal neutron fluxes distributions after the blockage accident hardly change, and (5) delayed neutron precursors accumulate at the blockage point, especially 1st delayed neutron precursor due to is large decay constant. These results lead that the safety of MSR is assured in the blockage accident. (author)

  9. Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing.

    Science.gov (United States)

    Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio

    2009-01-01

    Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate

  10. 2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage

    Directory of Open Access Journals (Sweden)

    M. Ozgun Korukcu

    2015-05-01

    Full Text Available Energy and exergy characteristics of a square cylinder (SC in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo and spanwise (v/Uo velocities attain the values of u/Uo = 0.840®0.879 and v/Uo = 0.236®0.386 (Re = 10®50 on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m non-dimensional temperature values (ζ from ζ = 0.387®0.926 (Re = 10®50 at xth = 0 mm to ζ = 0.002®0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0®10 mm. Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.

  11. Fuel temperature analysis method for channel-blockage accident in HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Hayakawa, Hitoshi

    1994-01-01

    During operation of the High Temperature Engineering Test Reactor (HTTR), coolability must be maintained without core damage under all postulated accident conditions. Channel blockage of a fuel element was selected as one of the design-basis accidents in the safety evaluation of the reactor. The maximum fuel temperature for such a scenario has been evaluated in the safety analysis and is compared to the core damage limits.For the design of the HTTR, an in-core thermal and hydraulic analysis code ppercase[flownet/trump] was developed. This code calculates fuel temperature distribution, not only for a channel blockage accident but also for transient conditions. The validation of ppercase[flownet/trump] code was made by comparison of the analytical results with the results of thermal and hydraulic tests by the Helium Engineering Demonstration Loop (HENDEL) multi-channel test rig (T 1-M ), which simulated one fuel column in the core. The analytical results agreed well with the experiments in which the HTTR operating conditions were simulated.The maximum fuel temperature during a channel blockage accident is 1653 C. Therefore, it is confirmed that the integrity of the core is maintained during a channel blockage accident. ((orig.))

  12. Shutdown cooling temperature perturbation test for analysis of potential flow blockages

    International Nuclear Information System (INIS)

    Handbury, J.; Newman, C.; Shynot, T.

    1996-01-01

    This paper details the methods and results of the 'shutdown cooling test' in October 1995. This novel test was conducted at PLGS while the reactor was shutdown and shutdown cooling (SDC) waster was recirculating to find potential channel blockages resulting from the introduction of wood debris. This test discovered most of the channels that contained major wood and metal debris. (author)

  13. Protection system for minimizing the consequences of a flow blockage incident at a pool-type research reactor

    International Nuclear Information System (INIS)

    de Vries, J.W.; van Dam, H.; Gysler, G.

    1990-01-01

    Safety analysis activities were performed for the HOR, a pool-type research reactor with plate-type fuel elements and a maximum licensed power of 3 MW. Following internationally accepted guidelines, a wide variety of possible process disturbances has been considered. For the HOR the most aggravating accident conditions could result from a sudden flow blockage of cooling channels. If this event occurs in the high power density region of the core, a decrease of the hot channel flow either causes flow reversal or prompts burnout. Unless the reactor is scrammed in time, the fuel plates will heat up rapidly and local melting will occur with possible propagation of voiding and burnout to adjacent channels. In the analysis, melting of the cladding has been considered by using a simplified model approach. The number of voided coolant channels, as well as the propagation rate of fuel plates reaching locally the melting temperature, were calculated for different conditions of operation. In order to reduce the risk of a fuel melt accident occurring at the HOR, the protection system features a special design option. The system recognizes cooling channel voiding by detection of a sudden decrease of neutron flux. In the present work, it has been shown that a flow blockage incident can be detected in the early stages of development. Also, in accordance with the results of experimental tests, it can be concluded that in many cases melting of fuel plates will be effectively prevented. If such an accident occurs on a very fast time scale, at least the radiological consequences are significantly mitigated by preventing propagation, thus limiting the number of molten fuel plates

  14. Blockage effects on viscous fluid flow and heat transfer past a magnetic obstacle in a duct

    International Nuclear Information System (INIS)

    Zhang Xi-Dong; Huang Hu-Lin

    2013-01-01

    The effect of lateral walls on fluid flow and heat transfer is investigated when a fluid passes a magnetic obstacle. The blockage ratio β that represents the ratio between the width of external magnet M y and the spanwise width L y is employed to depict the effect. The finite volume method (FVM) based on the PISO algorithm is applied for the blockage ratios of 0.2, 0.3, and 0.4. The results show that the value of Strouhal number St increases as the blockage ratio β increases, and for small β, the variation of St is very small when the interaction parameter and Reynolds number are increasing. Moreover, the cross-stream mixing induced by the magnetic obstacle can enhance the wall-heat transfer and the maximum value of the overall heat transfer increment is about 50.5%

  15. Thermohydraulic and thermal stress aspects of a porous blockage in an LMFBR fuel assembly

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Marr, W.W.; Helenberg, H.W.; Ariman, T.; Wilson, R.E.; Pedersen, D.R.

    1979-01-01

    The current safety scenarios of Liquid Metal Fast Breeder Reactors (LMFBR) under local fault propagation include the study of a hypothetical accident initiated by the formation of an external debris porous blockage in a fuel subassembly. In this preliminary experimental and analytical investigation, a non-heat-generating porous blockage was postulated to cover 18 flow channels of a 37 pin Fast Test Reactor (FTR) type fuel subassembly. The axial extent of the blockage is 50 mm. The blockage material is stainless steel (SS 316) with 30 percent average porosity (percent void volume). The blockage and the pins were modeled with a finite element technique and the thermal field in the blockage was predicted. This thermal field was utilized to do a planar thermal stress analysis of the postulated blockage. To verify the analytical model and also to better understand the thermal-hydraulics of such a porous blockage out-of-pile tests were conducted in a sodium loop. Data from the out-of-pile tests was utilized to calibrate and improve the analytical model

  16. Heat transfer in tube bundles subjected to blockages. Pt. 1

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    The present work is carried out on unblocked test section bundle, half blocked, single ballooning and four ballooning blockages. The hydro-thermal performance of the bundle, (4x4) stainless steel, under each of the previous cases are studied. It is found that the existance of blockages increases the eddies and swirling flow streams. Furthermore, the average heat transfer in a bundle without blockages is superior than that with blockages. The percentage decrease of the average heat transfer coefficient with blockages depends on the position and shape of the blockage. Correlations describing average heat transfer, pressure drop and friction factor are established. All experimental tests are carried out under non-boiling region. (orig.) [de

  17. Analysis of Post-LOCA Core Inlet Blockage to Evaluate In-vessel Downstream Effect in APR1400

    International Nuclear Information System (INIS)

    Bang, Young Seok

    2015-01-01

    The method was developed to have a conservatism to cover the uncertainty of analysis and the acceptance is judged by the representative bounding estimation. However, the important safety parameters such as the available driving head need to be confirmed by the plant specific calculation. Also an interaction between the debris induced head loss and the core flow rate needs to be explained because the head loss induced by debris in actual condition may reduce the core inflow rate faster. To confirm the safety parameters, in this study, thermal-hydraulic response considering the core inlet blockage (CIB) by debris during LTCC process following a double-ended guillotine break of cold leg (CLB), one of hot leg (HLB) and one of intermediate leg (ILB) of the APR1400 were calculated, respectively. MARS-KS 1.3 code has been used. The CIB has been modeled by the closure of valves to the core in exponential manner with time to observe the behavior near the complete blockage. To understand the effect of core inlet blockage (CIB) during a long term core cooling (LTCC) phase following a loss-of-coolant accident (LOCA) in the light of in-vessel downstream effect (IDE) of Generic Safety Issue (GSI) 191, double-ended guillotine break of hot leg (HLB), one of cold leg (CLB) and one of intermediate leg (ILB) were calculated, respectively. And the important safety parameters such as the available driving head and the head loss due to debris were calculated using MARS-KS code and discussed in comparison with the WCAP method. As a result, a little delayed heatup behavior of the fuel cladding was found for all the cases, which due to the redistribution of flow within the core after blockage

  18. Analysis of Post-LOCA Core Inlet Blockage to Evaluate In-vessel Downstream Effect in APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The method was developed to have a conservatism to cover the uncertainty of analysis and the acceptance is judged by the representative bounding estimation. However, the important safety parameters such as the available driving head need to be confirmed by the plant specific calculation. Also an interaction between the debris induced head loss and the core flow rate needs to be explained because the head loss induced by debris in actual condition may reduce the core inflow rate faster. To confirm the safety parameters, in this study, thermal-hydraulic response considering the core inlet blockage (CIB) by debris during LTCC process following a double-ended guillotine break of cold leg (CLB), one of hot leg (HLB) and one of intermediate leg (ILB) of the APR1400 were calculated, respectively. MARS-KS 1.3 code has been used. The CIB has been modeled by the closure of valves to the core in exponential manner with time to observe the behavior near the complete blockage. To understand the effect of core inlet blockage (CIB) during a long term core cooling (LTCC) phase following a loss-of-coolant accident (LOCA) in the light of in-vessel downstream effect (IDE) of Generic Safety Issue (GSI) 191, double-ended guillotine break of hot leg (HLB), one of cold leg (CLB) and one of intermediate leg (ILB) were calculated, respectively. And the important safety parameters such as the available driving head and the head loss due to debris were calculated using MARS-KS code and discussed in comparison with the WCAP method. As a result, a little delayed heatup behavior of the fuel cladding was found for all the cases, which due to the redistribution of flow within the core after blockage.

  19. Air velocity profiles near sleeve blockages in an unheated 7 x 7 rod bundle. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J. M.; Bates, J. M.

    1979-04-01

    Local air velocity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 x 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create an area reduction of 90% in the center four subchannels of the bundle. Experimental results indicated that severe flow disturbances occurred downstream from the blockage cluster but showed only minor flow disturbances upstream from the blockage. Flow reversals were detected downstream from the blockage and persisted for approximately five subchannel hydraulic diameters. The air velocity profiles were in excellent agreement with water velocity data previously obtained at essentially the same Reynolds number. Subchannel average velocity predictions obtained with the COBRA computer program were in good agreement with subchannel average velocities estimated using the measured local velocity data.

  20. PHEBUS FPT-1 simulation by using MELCOR and primary blockage model exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Institite of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wang, Chen [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Corradini, Michael L.; Haskin, Troy [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Tian, Wenxi; Su, Guanghui [Institite of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [Institite of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-10-15

    Highlights: • Flow channel blockage model is expected to be the key parameter for hydrogen generation calculation. • Flow channel blockage situation is studied in this work. • MELCOR is used as the tool, and PHEBUS FPT1 is used as benchmark. • Model sensitivity analysis on hydrogen generation will be done in next step. - Abstract: Recently, MAAP and MELCOR research teams completed a set of accident simulations to reconstruct the Fukushima-Daiichi accident in order to better understand severe accident progression. One result from this work is that the predicted hydrogen generation in MELCOR is notably more than that in MAAP. The fuel rod degradation process (i.e., debris formation and blockage models) may be responsible for this difference and opportunity exists to understand the key reasons for the difference. To examine this hypothesis, in this paper, the PHEBUS FPT1 experiment is selected as a benchmark test and MELCOR is used as the analysis tool. MELCOR calculation results are compared with PHEBUS FPT1 data to verify our model. Based on the validation of a nominal MELCOR simulation of the FPT1 test, we use the volume fractions of each component to visualize the debris-blockage geometric arrangement for PHEBUS FPT1 as the fuel degradation event proceeds. Cloud figures for the volume fractions of each component such as flow volume fraction, cladding volume fraction, fuel rod volume fraction, supporting material volume fraction, non-supporting material volume fraction and debris bed porosity fraction are shown in this paper. The results provide us with a visualized approach for improving our understanding of core degradation.

  1. PHEBUS FPT-1 simulation by using MELCOR and primary blockage model exploration

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Chen; Corradini, Michael L.; Haskin, Troy; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2016-01-01

    Highlights: • Flow channel blockage model is expected to be the key parameter for hydrogen generation calculation. • Flow channel blockage situation is studied in this work. • MELCOR is used as the tool, and PHEBUS FPT1 is used as benchmark. • Model sensitivity analysis on hydrogen generation will be done in next step. - Abstract: Recently, MAAP and MELCOR research teams completed a set of accident simulations to reconstruct the Fukushima-Daiichi accident in order to better understand severe accident progression. One result from this work is that the predicted hydrogen generation in MELCOR is notably more than that in MAAP. The fuel rod degradation process (i.e., debris formation and blockage models) may be responsible for this difference and opportunity exists to understand the key reasons for the difference. To examine this hypothesis, in this paper, the PHEBUS FPT1 experiment is selected as a benchmark test and MELCOR is used as the analysis tool. MELCOR calculation results are compared with PHEBUS FPT1 data to verify our model. Based on the validation of a nominal MELCOR simulation of the FPT1 test, we use the volume fractions of each component to visualize the debris-blockage geometric arrangement for PHEBUS FPT1 as the fuel degradation event proceeds. Cloud figures for the volume fractions of each component such as flow volume fraction, cladding volume fraction, fuel rod volume fraction, supporting material volume fraction, non-supporting material volume fraction and debris bed porosity fraction are shown in this paper. The results provide us with a visualized approach for improving our understanding of core degradation.

  2. Development of multi-dimensional analysis method for porous blockage in fuel subassembly. Numerical simulation for 4 subchannel geometry water test

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kamide, Hideki

    2001-02-01

    This investigation deals with the porous blockage in a wire spacer type fuel subassembly in Fast Breeder Reactors (FBR's). Multi-dimensional analysis method for a porous blockage in a fuel subassembly is developed using the standard k-ε turbulence model with the typical correlations in handbooks. The purpose of this analysis method is to evaluate the position and the magnitude of the maximum temperature, and to investigate the thermo-hydraulic phenomena in the porous blockage. Verification of this analysis method was conducted based on the results of 4-subchannel geometry water test. It was revealed that the evaluation of the porosity distribution and the particle diameter in a porous blockage was important to predict the temperature distribution. This analysis method could simulate the spatial characteristic of velocity and temperature distributions in the blockage and evaluate the pin surface temperature inside the porous blockage. Through the verification of this analysis method, it is shown that this multi-dimensional analysis method is useful to predict the thermo-hydraulic field and the highest temperature in a porous blockage. (author)

  3. An Experimental Evaluation of Blockage Corrections for Current Turbines

    Science.gov (United States)

    Ross, Hannah; Polagye, Brian

    2017-11-01

    Flow confinement has been shown to significantly alter the performance of turbines that extract power from water currents. These performance effects are related to the degree of constraint, defined by the ratio of turbine projected area to channel cross-sectional area. This quantity is referred to as the blockage ratio. Because it is often desirable to adjust experimental observations in water channels to unconfined conditions, analytical corrections for both wind and current turbines have been derived. These are generally based on linear momentum actuator disk theory but have been applied to turbines without experimental validation. This work tests multiple blockage corrections on performance and thrust data from a cross-flow turbine and porous plates (experimental analogues to actuator disks) collected in laboratory flumes at blockage ratios ranging between 10 and 35%. To isolate the effects of blockage, the Reynolds number, Froude number, and submergence depth were held constant while the channel width was varied. Corrected performance data are compared to performance in a towing tank at a blockage ratio of less than 5%. In addition to examining the accuracy of each correction, underlying assumptions are assessed to determine why some corrections perform better than others. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256082 and the Naval Facilities Engineering Command (NAVFAC).

  4. Studies on the effects of blockage upon LWR emergency core cooling systems

    International Nuclear Information System (INIS)

    Fairbairn, S.A.; Piggott, B.D.G.

    1985-01-01

    Ballooning of the zircaloy cladding of PWR fuel pins could occur during certain postulated Loss of Coolant Accidents. This report describes experimental data obtained in a 44-rod bundle with and without a localized coplanar blockage under conditions relevant to the reflood phase of a LOCA. The aim of the work is to provide a data base for modelling dispersed flow heat transfer around a local blockage. This work concentrates on the thermohydraulic aspects of the ballooning problem by use of pre-formed balloon shapes attached to the rods of an electrically heated rod bundle. The various thermohydraulic effects are investigated separately, as far as possible, in a unique series of tests of increasing complexity proceeding from single to two phase conditions as follows: isothermal air flow tests, used to infer the single phase mass flow distribution; steady state steam flow tests, used to quantify single phase heat transfer; steam and droplet tests, in which a dispersed flow of well specified inlet conditions is created by injecting water droplets into the subchannel centres between the rods with a co-current steam flow; and finally, conventional reflood tests. The first part makes an extensive presentation of all the data obtained for an undistorted bundle and a bundle containing a centrally placed 4x4 array of balloon shapes (approximately 50 mm long, solid) which create a 90% subchannel blockage at their centre elevations. In part 2 tests on two blockage shapes each producing 90% subchannel blockage are described. The first shape is composed of thick walled sleeves (1.0 to 2.5 mm) and the second of sleeves with a more realistic thermal capacity being only about 0.3 mm thick. 48 refs., 335 figs.

  5. Numerical study of the influence of flow blockage on the aerodynamic coefficients of models in low-speed wind tunnels

    Science.gov (United States)

    Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.

    2017-11-01

    With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.

  6. Transport and screen blockage characteristics of reflective metallic insulation materials

    International Nuclear Information System (INIS)

    Brocard, D.N.

    1984-01-01

    In the event of a LOCA within a nuclear power plant, it is possible for insulation debris to be generated by the break jet. Such debris has the potential for PWR sump screen (or BWR RHR suction inlet) blockage and thus can affect the long-term recirculation capability. In addition to the variables of break jet location and orientation, the types and quantities of debris which could be generated are dependent on the insulation materials employed. This experimental investigation was limited to reflective metallic insulation and components thereof. The study was aimed at determining the flow velocities needed to transport the insulation debris to the sump screens and the resulting modes of screen blockage. The tests revealed that thin metallic foils (0.0025 in. and 0.004 in.) could transport at low flow velocities, 0.2 to 0.5 ft/sec. Thicker foils (0.008 in.) transported at higher velocities, 0.4 to 0.8 ft/sec, and as fabricated half cylinder insulation units required velocities in excess of 1.0 ft/sec for transport. The tests also provided information on screen blockage patterns that showed blockage could occur at the lower portion of the screen as foils readily flipped on the screen when reaching it

  7. Investigation of flow blockage in a fuel channel with the ASSERT subchannel code

    International Nuclear Information System (INIS)

    Harvel, G.D.; Dam, R.; Soulard, M.

    1996-01-01

    On behalf of New Brunswick Power, a study was undertaken to determine if safe operation of a CANDU-6 reactor can be maintained at low reactor powers with the presence of debris in the fuel channels. In particular, the concern was to address if a small blockage due to the presence of debris would cause a significant reduction in dryout powers, and hence, to determine the safe operation power level to maintain dryout margins. In this work the NUCIRC(1,2), ASSERT-IV(3), and ASSERT-PV(3) computer codes are used in conjunction with a pool boiling model to determine the safe operation power level which maintains dryout safety margins. NUCIRC is used to provide channel boundary conditions for the ASSERTcodes and to select a representative channel for analysis. This pool boiling model is provided as a limiting lower bound analysis. As expected, the ASSERT results predict higher CHF ratios than the pool boiling model. In general, the ASSERT results show that as the model comes closer to modelling a complete blockage it reduces toward, but does not reach the pool boiling model. (author)

  8. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  9. Reflooding experiments on a 49-rod cluster containing a long 90% blockage

    International Nuclear Information System (INIS)

    Pearson, K.G.; Cooper, C.A.; Jowitt, D.; Kinneir, J.H.

    1983-01-01

    A series of reflooding experiments was performed on a model fuel assembly, containing a very severe partial blockage, in the THETIS rig. The assembly comprised 49 full length, electrically heated fuel rod simulators and the blockage was created by attaching thin-walled, preformed swellings to a group of 16 rods. Results are presented for single phase and forced reflooding experiments. The most important findings relate to the improvements in heat transfer created by spacer grids and the nature of the heat transfer processes within the blockage. Spacer grids are shown to improve heat transfer by increasing turbulence and also, when wet, by cooling the steam flowing through them. Liquid penetration evidently deteriorates as the rewetting front approaches the blockage, allowing the steam through the blockage to superheat strongly and giving rise to a late peak in cladding temperature. At low reflooding rates there is a temperature penalty associated with the blockage which becomes increasingly larger as the reflooding rate is reduced. The adequacy of cooling in this very severe blockage becomes questionable when the reflooding rate falls to about 2cm/s. (U.K.)

  10. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    Science.gov (United States)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  11. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-01-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation

  12. Identification of partial blockages in pipelines using genetic algorithms

    Indian Academy of Sciences (India)

    A methodology to identify the partial blockages in a simple pipeline using genetic algorithms for non-harmonic flows is presented in this paper. A sinusoidal flow generated by the periodic on-and-off operation of a valve at the outlet is investigated in the time domain and it is observed that pressure variation at the valve is ...

  13. BLOCKAGE 2.5 user's manual

    International Nuclear Information System (INIS)

    Rao, D.V.; Brideau, J.; Shaffer, C.; Souto, F.; Bernahl, W.

    1996-12-01

    The BLOCKAGE 2.5 code described in this User's Manual was developed by the US Nuclear Regulatory Commission (NRC) as a tool to evaluate licensee compliance with NRC Bulletin 96-03, ''Potential Plugging of Emergency Core Cooling Suction Strainers by Debris in Boiling Water Reactors.'' As such, BLOCKAGE 2.5 provides a generalized framework into which a user can input plant-specific and insulation-specific data for performing analyses in accordance with Regulatory Guide 1.82, Rev. 2. This user's manual describes the capabilities of BLOCKAGE 2.5 along with a description of the graphics user's interface provided for data entry. Each input/output dialog is described in detail along with special considerations related to developing and executing BLOCKAGE. Also, several sample problems are provided such that user can easily modify them to suit a particular plant of interest. The models used in BLOCKAGE 2.5 and their validation are presented in the accompanying NUREG/CR-6371. The BLOCKAGE models were designed to be parametric in nature, allowing the user flexibility to examine the impact of several modeling assumptions and to conduct sensitivity analyses. As a result, BLOCKAGE 2.5 results are known to be very sensitive to the user provided input. It is therefore strongly recommended that users become thoroughly familiar with BLOCKAGE models and their limitations as described in NUREG/CR-6224

  14. Air-water flooding in multirod channels: effects of spacer grids and blockages

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Jun, Hyung Gil

    1993-01-01

    This paper presents the experimental results on flooding of countercurrent flow in vertical multirod channels, which consists of falling water film and upward air flow. In particular, the effects of spacer grids, with and without mixing vane, and of blockage in the multirod bundle on the behaviour of flooding were investigated. The 5 x 5 zircaloy tube bundle was used for the test section. The comparison of previous analytical models and empirical correlations with present data on flooding showed that the existing models and correlations predict much higher flooding curves. The spacer grid causes the lower flooding air flow rate to compare with the bare rod bundle. However, the mixing spacer grids need a higher flooding air flow rate for a constant liquid flow rate than the spacer grids without mixing vanes. The bundle containing blockages has the highest flooding air flow rate among the bundles with spacer grids and blokages. Empirical flooding correlations for the three types of test section have been made. (Author)

  15. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    Science.gov (United States)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  16. Design approach to local blockages

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Govindarajan, S.; Chetal, S.C.; Bhoje, S.B.

    2000-01-01

    In LMFBR, whole core meltdown accident falls in residual risk category. Propagation of a local fault to whole core, however, needs attention. Subassembly accidents are divided into two categories, Design Basis and Beyond Design Basis accidents. Design Basis is further classified into four categories. All events affecting fuel pin performance are identified and categorised, Total Instantaneous Blockage has been identified as the envelope of all local faults and categorised as BDB event and the safety objective is to demonstrate that no damage will propagate beyond six neighbouring SA. A core catcher has been provided for retention of core debris and cooling it by natural convection. Local blockages may be active and passive. Active blockages can be detected by DND signal. For passive blockages, detection is difficult. Hence, development of a finite volume computer code based on the porous body formulation has been undertaken to define the maximum allowable defect. Experimental programmes have been undertaken to understand blockage mechanism, define maximum credible defect and the thermalhydraulic behaviour of SA with local blockages. Also an experimental programme with a totally blocked SA with a bundle of heated pins has been undertaken to understand the behaviour of the SA. (author)

  17. Effects of sleeve blockages on axial velocity and intensity of turbulence in an unheated 7 x 7 rod bundle

    International Nuclear Information System (INIS)

    Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.

    1976-01-01

    An experimental study is described which was performed to investigate the turbulent flow phenomena near postulated sleeve blockages in a model nuclear fuel rod bundle. The sleeve blockages were characteristic of fuel clad ''swelling'' or ''ballooning'' which could occur during loss-of-coolant accidents (LOCA) in pressurized water reactors. The study was conducted to provide information relative to the flow phenomena near postulated blockages to support detailed safety analyses of LOCAs. The results of the study are especially useful for verification of the hydraulic treatment of reactor core computer programs such as COBRA

  18. A survey of blockage measurement methods used in PWR multi-rod experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E.D.; Jones, C.; Whitty, S. (AEA Reactor Services, Springfield (UK))

    1986-05-01

    The deformation characteristics of Zircaloy multi-rod arrays are being investigated in laboratory and in-reactor tests, and heat transfer experiments are being carried out on pre-deformed arrays. The primary objective is to demonstrate that cladding distension occurring under hypothetical loss-of-coolant accident (LOCA) conditions will not impede the PWR emergency coolant flow during the reflood stage to the extent that unacceptably high cladding temperatures are reached, i.e. that a coolable geometry is maintained. This Report critically reviews the current methods for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed even though it still has drawbacks in the case of overall blockage measurement. A method for automatically measuring the individual rod strain, general cluster blockage sub-channel blockage and sub-channel perimeter changes is described and the results from a deformed array presented. (author).

  19. A survey of blockage measurement methods used in PWR multi-rod experiments

    International Nuclear Information System (INIS)

    Hindle, E.D.; Jones, C.; Whitty, S.

    1986-05-01

    The deformation characteristics of Zircaloy multi-rod arrays are being investigated in laboratory and in-reactor tests, and heat transfer experiments are being carried out on pre-deformed arrays. The primary objective is to demonstrate that cladding distension occurring under hypothetical loss-of-coolant accident (LOCA) conditions will not impede the PWR emergency coolant flow during the reflood stage to the extent that unacceptably high cladding temperatures are reached, i.e. that a coolable geometry is maintained. This Report critically reviews the current methods for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed even though it still has drawbacks in the case of overall blockage measurement. A method for automatically measuring the individual rod strain, general cluster blockage sub-channel blockage and sub-channel perimeter changes is described and the results from a deformed array presented. (author)

  20. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effect of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  1. Advanced evaluation method of SG TSP BEC hole blockage rate

    International Nuclear Information System (INIS)

    Izumida, Hiroyuki; Nagata, Yasuyuki; Harada, Yutaka; Murakami, Ryuji

    2003-01-01

    In spite of the control of the water chemistry of SG secondary feed-water in PWR-SG, SG TSP BEC holes, which are the flow path of secondary water, are often clogged. In the past, the trending of BEC hole blockage rate has conducted by evaluating ECT original signals and visual inspections. However, the ECT original signals of deposits are diversified, it becomes difficult to analyze them with the existing evaluation method using the ECT original signals. In this regard, we have developed the secondary side visual inspection system, which enables the high-accuracy evaluation of BEC hole blockage rate, and new ECT signal evaluation method. (author)

  2. An overview of the BWR ECCS strainer blockage issues

    International Nuclear Information System (INIS)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-01-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, open-quotes Containment Emergency Sump Performance,close quotes and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts

  3. Assessment of fuel damage of pool type research reactor in the case of fuel plates blockage

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, Jafari; Samad, Khakshournia [AEOI, Karegar Ave. School of R and D of Nuclear Reactors and Accelerators, Teheran (Iran, Islamic Republic of); D' Auria, F. [Pisa Univ., DIMNP (Italy)

    2007-07-01

    Tehran Research Reactor (TRR) is a pool type 5 MW research reactor. It is assumed that external objects or debris that may fall down to reactor core cause obstruction of coolant flow through one of the fuel assemblies. Thermal hydraulic analysis of this event, using the RELAP5 system code has been studied. The reported transient is related to the partial and total obstruction of a single Fuel Element (FE) cooling channel of 27 FE equilibrium core of TRR. Such event constitutes a severe accident for this type of reactor since it may lead to local dryout and eventually to loss of the FE integrity. Two scenarios are analysed to emphasize the severity of the accident. The first one is a partial blockage of an average FE considering four different obstruction levels: 25%, 50%, 75% and 97% of nominal flow area. The second one is an extreme scenario consisting of total blockage of the same FE. This study constitutes the first step of a larger work which consists of performing a 3-dimensional simulation using the Best Estimate coupled code technique. However, as a first approach the instantaneous reactor power is derived through the point kinetic calculation included in the RELAP5 code. Main results obtained from the RELAP5 calculations are as following. First, in the case of flow blockage under 97% of the nominal flow area of an average FE, only an increase of the coolant and clad temperatures is observed without any consequences for the integrity of the FE. The mass flow rate remains sufficient to cool the clad safely. Secondly, in the case of total obstruction of the nominal flow area, it is seen that transient turns out to be a severe accident due to the dryout conditions are reached shortly and melting of the cladding occurs. Thirdly, the use of the point kinetic approach leads to conservative results. A best estimate simulation of such kind of transients requires the use of 3-dimensional kinetic calculations, which could be done using the current Coupled Codes

  4. Observations of the behaviour of gas in the wake behind a corner blockage in fast breeder reactor subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1979-07-01

    Observations were made of gas behaviour in the wake behind a 21% corner blockage in the subassembly geometry of a liquid metal fast breeder reactor. The test section used represented one half of the reactor fuel subassembly, divided along the vertical plane of symmetry through the blockage. A glass wall occupied the position of this plane. Water was allowed to flow between glass rods simulating fuel pins, the velocity being changed from 1.2 to 4.5 m/s. Argon was injected into the wake or into the flow upstream of the blockage, the injection rate being changed from 1 to 230 Ncm 3 /s (standard temperature and pressure). From the present experiment, the following is evident: The gas is accumulated in the wake behind the blockage, forming a gas cavity. The flow patterns of the two-phase mixture in the wake are classified into three types, depending on the liquid velocity. In the lower velocity range, a gas cavity cannot be present at rest, rising up through the wake as a single bubble due to buoyancy. In the higher velocity range, the gas cavity is broken up by the liquid flow forces, only small gas bubbles circulating in the wake. In the velocity range in between, the gas cavity is present in the wake. The cavity size depends on the gas injection rate and on the liquid velocity. From the results, the possibility of fuel failure caused by fission gas release at a blockage in the fast breeder reactor can be considered to depend on the operating conditions of the reactor, specially on the coolant velocity. (orig.) [de

  5. Studies on the effects of blockage upon LWR emergency core cooling systems

    International Nuclear Information System (INIS)

    Fairbairn, S.A.; Piggott, B.D.G.

    1985-01-01

    Ballooning of the zircaloy cladding of PWR fuel pins could occur during a conservatively calculated large break LOCA. This report is Part 3 of three reports which describe the experimental data obtained in a 44 rod bundle with and without localised coplanar blockages under conditions relevant to the reflood phase of a LOCA. The various thermohydraulic effects are investigated separately, as far as possible, in a unique series of tests of increasing complexity proceeding from single to two phase conditions as follows: isothermal air flow tests, used to infer single phase mass flow distribution; steady state steam flow tests, used to quantify single phase heat transfer; steam and drop tests, in which a dispersed flow of well specified inlet conditions is created by injecting water drops into the subchannel centres between the rods with a co-current steam flow; and finally conventional reflood tests. This report makes an extensive presentation of data obtained from a bundle containing a centrally placed 4 x 4 array of balloon shapes. The balloon sleeves were hydraulically formed to give a wall thickness of 0.325 mm typical of reactor fuel pin balloons. They were 196 mm long with a maximum subchannel blockage of 61% over a 175 mm length. 6 refs., 15 tabl., 134 figs.

  6. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    Minden, C. v.; Schultheiss, G.F.

    1982-01-01

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.) [de

  7. BLOCKAGE 2.5 reference manual

    International Nuclear Information System (INIS)

    Shaffer, C.J.; Brideau, J.; Rao, D.V.; Bernahl, W.

    1996-12-01

    The BLOCKAGE 2.5 code was developed by the US Nuclear Regulatory Commission (NRC) as a tool to evaluate license compliance regarding the design of suction strainers for emergency core cooling system (ECCS) pumps in boiling water reactors (BWR) as required by NRC Bulletin 96-03, ''Potential Plugging of Emergency Core Cooling Suction Strainers by Debris in Boiling Water Reactors''. Science and Engineering Associates, Inc. (SEA) and Software Edge, Inc. (SE) developed this PC-based code. The instructions to effectively use this code to evaluate the potential of debris to sufficiently block a pump suction strainer such that a pump could lose NPSH margin was documented in a User's Manual (NRC, NUREG/CR-6370). The Reference Manual contains additional information that supports the use of BLOCKAGE 2.5. It contains descriptions of the analytical models contained in the code, programmer guides illustrating the structure of the code, and summaries of coding verification and model validation exercises that were performed to ensure that the analytical models were correctly coded and applicable to the evaluation of BWR pump suction strainers. The BLOCKAGE code was developed by SEA and programmed in FORTRAN as a code that can be executed from the DOS level on a PC. A graphical users interface (GUI) was then developed by SEA to make BLOCKAGE easier to use and to provide graphical output capability. The GUI was programmed in the C language. The user has the option of executing BLOCKAGE 2.5 with the GUI or from the DOS level and the Users Manual provides instruction for both methods of execution

  8. Influence of partial blockage of a BWR bundle on heat transfer, cladding temperature, and quenching during bottom flooding or top spraying under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Brand, B.; Gaul, H.P.; Sarkar, J.

    1982-01-01

    In a test facility with two parallel boiling water reactor fuel assemblies, experiments were carried out with top spray and bottom flooding, simulating loss-of-coolant accident (LOCA) conditions. The flow area restriction, caused by the ballooning of fuel rod cladding within one of the bundles, was provided by blockage plates, which had reductions of 37% in one case and in a second series 70% of the flow area. Test parameters were system pressure (1, 5, and 10 bars), spray (0.68 and 1.02 m 3 /h) and flooding rates (1.5,2, and 3.3 cm/s), power input (520 and 614 kW), and the initial cladding temperature (600 and 800 0 C at midplane) of the heaters. The test results showed no significant variations from those without blockage, except in the blocked region. An enhancement of heat transfer was observed in a close region downstream from the blockage in cases such as bottom flooding and top spray tests. The results will serve the purpose of code verification for reactor LOCA analysis

  9. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    International Nuclear Information System (INIS)

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken

  10. Decision Support System for Blockage Management in Fire Service

    Directory of Open Access Journals (Sweden)

    Krasuski Adam

    2014-08-01

    Full Text Available In this article we present the foundations of a decision support system for blockage management in Fire Service. Blockage refers to the situation when all fire units are out and a new incident occurs. The approach is based on two phases: off-line data preparation and online blockage estimation. The off-line phase consists of methods from data mining and natural language processing and results in semantically coherent information granules. The online phase is about building the probabilistic models that estimate the block-age probability based on these granules. Finally, the selected classifier judges whether a blockage can occur and whether the resources from neighbour fire stations should be asked for assistance.

  11. Effect of a blockage length on the coolability during reflood in a 2 × 2 rod bundle with a 90% partially blocked region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kihwan, E-mail: kihwankim@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Kim, Byung-Jae, E-mail: byoungjae@kaeri.re.kr [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseoung-Gu, Daejeon 34134 (Korea, Republic of); Choi, Hae-Seob, E-mail: hschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of); Song, Chul-Hwa, E-mail: chsong@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989-111, Yuseong-Gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • This test was conducted to understand the effect of blockage length on the coolability. • Reflood tests were conducted with blockage simulators for various reflood rates. • The coolability in the downstream of the blockage region is significantly enhanced. - Abstract: If fuel rods are ballooned or rearranged during the reflood phase of a large break loss-of-coolant accident (LBLOCA) in a pressurized-water reactor (PWR), the transient heat transfer behavior is entirely different with those of the intact fuel rods owing to the deformed blockage region. The coolability in the blocked region depends on a complex two-phase heat transfer with various thermal hydraulic conditions. In addition, the blockage characteristics, such as the blockage ratio, length, shape, and configurations, are also significant factors affecting the coolability. In the present study, reflood experiments were carried out to understand the effect of the blockage length upon the coolability by varying the reflooding rates. The experiments were performed in electrically heated 2 × 2 rod bundles with blockage simulators having the same blockage ratio but different blockage lengths. The characteristics of quenching and heat transfer were evaluated to investigate the influence of the blockage region on the coolability. The droplet behaviors were also observed by measuring the droplets velocity and size near the blockage region. The coolability in the downstream region of the blockage was significantly enhanced, owing to the reduced flow area of the sub-channel, intensification of turbulence, and the entrained droplets in the blockage region.

  12. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  13. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR

  14. Distributed resistance model for the analysis of wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Ha, K. S.; Jung, H. Y.; Kwon, Y. M.; Jang, W. P.; Lee, Y. B.

    2003-01-01

    A partial flow blockage within a fuel assembly in liquid metal reactor may result in localized boiling or a failure of the fuel cladding. Thus, the precise analysis for the phenomenon is required for a safe design of LMR. MATRA-LMR code developed by KAERI models the flow distribution in an assembly by using the wire forcing function to consider the effects of wire-wrap spacers, which is important to the analysis for flow blockage. However, the wire forcing function does not have the capabilities of analysis when the flow blockage is occurred. And thus this model was altered to the distributed resistance model and the validation calculation was carried out against to the experiment of FFM 2A

  15. In-situ Blockage Monitoring of Sensing Line

    Directory of Open Access Journals (Sweden)

    Aijaz Ahmed Mangi

    2016-02-01

    Full Text Available A reactor vessel level monitoring system measures the water level in a reactor during normal operation and abnormal conditions. A drop in the water level can expose nuclear fuel, which may lead to fuel meltdown and radiation spread in accident conditions. A level monitoring system mainly consists of a sensing line and pressure transmitter. Over a period of time boron sediments or other impurities can clog the line which may degrade the accuracy of the monitoring system. The aim of this study is to determine blockage in a sensing line using the energy of the composite signal. An equivalent Pi circuit model is used to simulate blockages in the sensing line and the system's response is examined under different blockage levels. Composite signals obtained from the model and plant's unblocked and blocked channels are decomposed into six levels of details and approximations using a wavelet filter bank. The percentage of energy is calculated at each level for approximations. It is observed that the percentage of energy reduces as the blockage level in the sensing line increases. The results of the model and operational data are well correlated. Thus, in our opinion variation in the energy levels of approximations can be used as an index to determine the presence and degree of blockage in a sensing line.

  16. Measurement of blockage in deformed LWR multi-rod arrays

    International Nuclear Information System (INIS)

    Hindle, E.D.; Jones, C.; Whitty, S.

    1983-01-01

    This paper critically reviews the current methods used for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed. Also examples of the application of automatic computerised techniques to directly measure rod strain, blockage, sub-channel blockage and perimeter changes from photographs of sections through deformed arrays are presented. (author)

  17. Analytical evaluation of local fault in sodium cooled small fast reactor (4S). Preliminary evaluation of partial blockage in coolant channel

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Ueda, Nobuyuki

    2007-01-01

    Local faults are fuel failures that result from heat removal imbalance within a single subassembly especially in FBRs. Although the occurrence frequency of local faults is quite low, the licensing body required local faults evaluations in previous FBR plants to confirm the potential for the occurrence of severe fuel subassembly failure and its propagation. A conceptual design of 4S (Super-Safe, Small and Simple) is a sodium cooled fast reactor, which aims at an application to dispersed energy source and long core lifetime. It has a dense arrangement of fuel pins to achieve a long lifetime. Therefore, from the viewpoint of thermal hydraulics, the 4S reactor is considered to have more potential for coolant boiling and fuel pin failure caused by formation of local blockage, comparing these potential in the conventional FBRs. The objective of the present study is to evaluate the effect of local blockage on the coolant flow pattern and temperature rise in the 4S-type fuel subassembly under the normal operation condition. A series of three-dimensional thermal-hydraulic analysis in a single subassembly with local blockage was conducted by the commercialized CFD code 'PHOENICS'. Analytical results show that the peak coolant temperature behind the blockage rises with increasing the blockage area, however, the coolant boiling does not occur under the present analytical conditions. On the other hand, it is found that the liquid phase formation caused by eutectic reactions will occur between the metallic fuel and the cladding under the local blockage condition. However, the penetration rate of liquid phase at fuel-cladding interface is quit low. Therefore, it is expected that rapid fuel pin failure and its propagation to surrounding pins due to liquid phase formation will not occur. (author)

  18. Urine Blockage in Newborns

    Science.gov (United States)

    ... the ureter joins the kidney. Bladder outlet obstruction (BOO). BOO describes any blockage in the urethra or at ... urethral valves (PUV), the most common form of BOO seen in newborns and during prenatal ultrasound exams, ...

  19. Determining of the Parking Manoeuvre and the Taxi Blockage Adjustment Factor for the Saturation Flow Rate at the Outlet Legs of Signalized Intersections: Case Study from Rasht City (Iran)

    Science.gov (United States)

    Behbahani, Hamid; Jahangir Samet, Mehdi; Najafi Moghaddam Gilani, Vahid; Amini, Amir

    2017-10-01

    The presence of taxi stops within the area of signalized intersections at the outlet legs due to unnatural behaviour of the taxis, sudden change of lanes, parking manoeuvres activities and stopping the vehicle to discharge or pick up the passengers have led to reduction of saturation flow rate at the outlet leg of signalized intersections and increased delay as well as affecting the performance of a crossing lane. So far, in term of evaluating effective adjustment factors on saturation flow rate at the inlet legs of the signalized intersections, various studies have been carried out, however; there has not been any studies on effective adjustment factors on saturation flow rate at the inlet legs. Hence, the evaluating of the traffic effects of unique behaviours on the saturation flow rate of the outlet leg is very important. In this research the parking manoeuvre time and taxi blockage time were evaluated and analyzed based on the available lane width as well as determining the effective adjustment factors on the saturation flow rate using recording related data at four signalized intersections in Rasht city. The results show that the average parking manoeuvre time is a function of the lane width and is increased as the lane width is reduced. Also, it is suggested to use the values of 7.37 and 11.31 seconds, respectively for the average parking manoeuvre time and the average blockage time of taxies at the outlet legs of signalized intersections for the traffic designing in Rasht city.

  20. RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Parisi, C.; D'Auria, F.

    2007-01-01

    The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)

  1. Overcoming Blockages to Collective Innovation in Digital Infrastructures

    DEFF Research Database (Denmark)

    Rukanova, Boriana; Reuver, Mark; Henningsson, Stefan

    2017-01-01

    Decentralized digital technologies increasingly enable multiple organizations to co-create digital infrastructures. However, collective innovation processes often come to a stand-still because of conflicting interests and business models. While existing research suggests various factors that block...... collective innovation processes, there is still little understanding of how organizations can overcome these blockages. In this paper, we identify patterns that explain how organizations overcome blockages of collective innovation processes for digital infrastructures. We follow a processual approach...... and develop a conceptual framework based on collective action theory. We evaluate the framework through a longitudinal case study on mobile payment infrastructure development. We find various reconfiguration processes that organizations use to overcome blockages of collective innovation. Theoretically...

  2. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is ... blockage due to microbial growth and blockage caused by formation of .... HQS) and chlorine, are used to assess its actions in the microorganisms ...

  3. Thermal-hydraulics analysis of a PWR reactor using zircaloy and carbide silicon reinforced with type S fibers as fuel claddings: Simulation of a channel blockage transient

    Energy Technology Data Exchange (ETDEWEB)

    Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  4. Blockage-induced condensation controlled by a local reaction

    Science.gov (United States)

    Cirillo, Emilio N. M.; Colangeli, Matteo; Muntean, Adrian

    2016-10-01

    We consider the setup of stationary zero range models and discuss the onset of condensation induced by a local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage parameter curve characterized by two nonanalyticity points.

  5. Exploring relationships of catheter-associated urinary tract infection and blockage in people with long-term indwelling urinary catheters.

    Science.gov (United States)

    Wilde, Mary H; McMahon, James M; Crean, Hugh F; Brasch, Judith

    2017-09-01

    To describe and explore relationships among catheter problems in long-term indwelling urinary catheter users, including excess healthcare use for treating catheter problems. Long-term urinary catheter users experience repeated problems with catheter-related urinary tract infection and blockage of the device, yet little has been reported of the patterns and relationships among relevant catheter variables. Secondary data analysis was conducted from a sample in a randomised clinical trial, using data from the entire sample of 202 persons over 12 months' participation. Descriptive statistics were used to characterise the sample over time. Zero-inflated negative binomial models were employed for logistic regressions to evaluate predictor variables of the presence/absence and frequencies of catheter-related urinary tract infection and blockage. Catheter-related urinary tract infection was marginally associated with catheter blockage. Problems reported at least once per person in the 12 months were as follows: catheter-related urinary tract infection 57%, blockage 34%, accidental dislodgment 28%, sediment 87%, leakage (bypassing) 67%, bladder spasms 59%, kinks/twists 42% and catheter pain 49%. Regression analysis demonstrated that bladder spasms were significantly related to catheter-related urinary tract infection and sediment amount, and catheter leakages were marginally significantly and positively related to catheter-related urinary tract infection. Frequencies of higher levels of sediment and catheter leakage were significantly associated with higher levels of blockage, and being female was associated with fewer blockages. Persons who need help with eating (more disabled) were also more likely to have blockages. Catheter-related urinary tract infection and blockage appear to be related and both are associated with additional healthcare expenditures. More research is needed to better understand how to prevent adverse catheter outcomes and patterns of problems in

  6. Transcription blockage by stable H-DNA analogs in vitro.

    Science.gov (United States)

    Pandey, Shristi; Ogloblina, Anna M; Belotserkovskii, Boris P; Dolinnaya, Nina G; Yakubovskaya, Marianna G; Mirkin, Sergei M; Hanawalt, Philip C

    2015-08-18

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. French studies on local blockages in LMFBR fuel subassemblies

    International Nuclear Information System (INIS)

    Girard, C.; Jolas, P.; Seiler, J.M.

    1979-08-01

    This paper reviews experimental and theoretical studies done in FRANCE on the problem of partial subassembly blockages. The priorities are defined and the development of the French program in the European context is presented. Results of the out of pile experiments performed at CEA and EDF in single and two phases flow are given. A description of the main codes used to interpret these experiments is then shortly reviewed. It is found that the thermal behavior in single phase may be calculated with good precision, and that a simple semi-empirical formula can predict with good accuracy the number of channels blocked that lead to sodium boiling

  8. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huiying [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Hao, Shuangying; Sun, Xiaoyan [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Zhang, Dingding; Gao, Xin; Yu, Zhuang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Li, Kuanyu, E-mail: likuanyu@nju.edu.cn [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Hang, Chun-Hua, E-mail: hang_neurosurgery@163.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2015-01-24

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.

  9. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  10. An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Saha, Ujjwal K.

    2014-01-01

    Highlights: • Significance of the blockage correction in wind tunnel experiments of Savonius-style wind turbine. • Adaptation of blockage factor correlations under open type test sections for blockage ratio of 21.16%. • Effectiveness of adapted correlations for smaller blockage ratios (BRs) of 16% and 12.25%. • Estimate the magnitude of the blockage correction under various loading conditions for each BR. • Variation of blockage correction factor with respect to tip speed ratio and BR. - Abstract: An investigation into the blockage correction effects in wind tunnel experiments of a small-scale wind energy conversion system in an open type test section is carried out. The energy conversion system includes a Savonius-style wind turbine (SSWT) and a power measurement assembly. As the available correlations for the closed type test sections may not be appropriate for the open test section under dynamic loading conditions, new correlations are adapted for the blockage correction factors with free stream wind speed, turbine rotational speed and variable load applied to the turbine to quantify the energy conversion coefficients more precisely. These are obtained for a blockage ratio of 21.16% through a comparison of present experimental data with those of established experimental data under dynamic loading conditions. Further, the accuracy of the adapted correlations is substantiated into the experiments with smaller blockage ratios of 16% and 12.25%. The relationships of the tip speed ratios and blockage ratios with the blockage correction factor are also discussed. Using these correlations, this study provides evidence of increase of blockage correction in the range 1–10% with the increase of both tip speed ratio and blockage ratio. The results also indicate that for blockage ratios approaching 10 and tip speed ratios below 0.5, the blockage effects are almost negligible in the open type test sections

  11. Forum on unsteady flow - 1985

    International Nuclear Information System (INIS)

    Rothe, P.H.

    1985-01-01

    This book presents the papers given at a conference on fluid flow and hydraulics. Topics considered at the conference included a numerical study of pressure transients in a borehole due to pipe movement, laminar fluid transients in conduits of unconventional shape, water hammer analysis needs in nuclear power plant design, modeling blockage in unsteady slurry flow in conduits, and check valve slamming in a BWR feedwater system following a postulated pipe break

  12. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks

    Science.gov (United States)

    Belotserkovskii, Boris P.; Neil, Alexander J.; Saleh, Syed Shayon; Shin, Jane Hae Soo; Mirkin, Sergei M.; Hanawalt, Philip C.

    2013-01-01

    The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816–12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation. PMID:23275544

  13. Analysis of local subassembly accident in KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Jeong, Kwan Seong; Hahn, Do Hee

    2000-10-01

    Subassembly Accidents (S-A) in the Liquid Metal Reactor (LMR) may cause extensive clad and fuel melting and are thus regarded as a potential whole core accident initiator. The possibility of S-A occurrence must be very low frequency by the design features, and reactor must have specific instrumentation to interrupt the S-A sequences by causing a reactor shutdown. The evaluation of the relevant initiators, the event sequences which follow them, and their detection are the essence of the safety issue. Particularly, the phenomena of flow blockage caused by foreign materials and/or the debris from the failed fuel pin have been researched world-widely. The foreign strategies for dealing with the S-A and the associated safety issues with experimental and theoretical R and D results are reviewed. This report aims at obtaining information to reasonably evaluate the thermal-hydraulic effect of S-A for a wire-wrapped LMR fuel pin bundle. The mechanism of blockage formation and growth within a pin bundle and at the subassembly entrance is reviewed in the phenomenological aspect. Knowledge about the recent LMR subassembly design and operation procedure to prevent flow blockage will be reflected for KALIMER design later. The blockage analysis method including computer codes and related analytical models are reviewed. Especially SABRE4 code is discussed in detail. Preliminary analyses of flow blockage within a 271-pin driver subassembly have been performed using the SABRE4 computer code. As a result no sodium boiling occurred for the central 24-subchannel blockage as well as 6-subchannel blockage.

  14. Water modelling studies of blockage with discrete permeabilities in an 11 pin geometry

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1977-06-01

    A linear array of 11 pins, representing a radial section through a 325 pin bundle, has been used to investigate the effect of discrete permeabilities on the wake geometry behind a local blockage in water. Three series of experiments were performed in each of which a different position of the permeability was considered. The complex wake geometries, visualised by the injection of air, are shown to be controlled by the position of, and flowrate through the permeability. Good agreement is shown between the experimental flow patterns and predictions by SABRE 1. (author)

  15. Thermal hydraulic behavior of sub-assembly local blockage in China experiment fast reactor

    International Nuclear Information System (INIS)

    Yang Zhimin

    2000-01-01

    The geometrical parameter ratio of pitch to diameter of China Experiment Fast Reactor (CEFR) subassembly is 1,167. To address the thermal hydraulic behavior of subassembly local blockage which may be caused by deformation of cladding due to severe swelling and thermal stresses and by space swirl loosening etc., the porous numerical model and SIMPLE-P code used to solve Navier-Stokes and energy equations in porous medium was developed, and the bundle experiment with 19 pins with 24 subchannels blocked in the sodium coolant was carried on in China Institute of Atomic Energy (CIAE). The comparison of code predictions against experiments (including non-blockage and ten blockage conditions) seems well. The thermal hydraulic behavior of fuel subassembly with 61 fuel pins blockage of CEFR is calculated with SIMPLE-P code. The results indicate that the maximum temperature is 815 deg. C when the blockage area is about 37% (54 central subchannels are blocked). In this case the cladding won't be damaged and no sodium coolant boiling takes place. (author)

  16. Numerical Simulation for Flow Distribution in ACE7 Fuel Assemblies affected by a Spacer Grid Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongpil; Jeong, Ji Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In spite of various efforts to understand hydraulic phenomena in a rod bundle containing deformed rods due to swelling and/or ballooning of clad, the studies for flow blockage due to spacer grid deformation have been limited. In the present work, 3D CFD analysis for flow blockage was performed to evaluate coolant flow within ACE7 fuel assemblies (FAs) containing a FA affected by a spacer grid deformation. The real geometry except for inner grids was used in the simulation and the region including inner grid was replaced by porous media. In the present work, the numerical simulation was performed to predict coolant flow within ACE7 FAs affected by a Mid grid deformation. The 3D CFD result shows that approximately 60 subchannel hydraulic diameter is required to fully recover coolant flow under normal operating condition.

  17. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  18. Infertility caused by tubal blockage: An ayurvedic appraisal

    Science.gov (United States)

    Shukla (Upadhyaya), Kamayani; Karunagoda, Kaumadi; Dei, L. P.

    2010-01-01

    Tubal blockage is one of the most important factors for female infertility. This condition is not described in Ayurvedic classics, as the fallopian tube itself is not mentioned directly there. The present study is an effort to understand the disease according to Ayurvedic principles. Correlating fallopian tubes with the Artavavaha (Artava-bija-vaha) Srotas, its block is compared with the Sanga Srotodushti of this Srotas. Charak's opinion that the diseases are innumerable and newly discovered ones should be understood in terms of Prakriti, Adhishthana, Linga, and Aayatana, is followed, to describe this disease. An effort has been made to evaluate the role of all the three Doshas in producing blockage, with classification of the disease done as per the Dasha Roganika. PMID:22131704

  19. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    Science.gov (United States)

    Waghole, D. R.

    2018-01-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  20. Analysis of a total flow blockage of a Fuel Assembly in a typical MTR Research Reactor by RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Adorni, M.; Salah, A.B.; Di Maro, B.; Pierro, F.; D'Auria, F.; Hamidouche, T.

    2004-01-01

    The lack of full understanding of complex mechanisms connected with the interaction between thermal-hydraulics and neutronics still challenge the design and the operation of nuclear reactors by the adoption of conservative safety limits. The recent availability of powerful computer and computational techniques together with the continuing increase in operational experience imposes the revisiting of those areas and eventually the identification of design/safety requirements that can be relaxed [1]. Currently, the enlarged commercial exploitation of nuclear Research Reactors (RR) has increased the consideration to their corresponding safety issues. Almost all of the safety analyses have so far been performed using conservative computational tools [2]. Nowadays, the application of Best-Estimate (BE) methods constitutes a real necessity in order to increase their commercial productivity. In this framework, an attempt is made to apply the BE technique to perform a safety evaluation under research reactors operational conditions. In fact, this technique has been largely verified and validated for power reactors using coupled system thermal-hydraulic and three-dimensional neutron kinetics [1]. For this purpose, as typical representative of research reactors, the IAEA 10 MW MTR Research Reactors problem [3] is considered. The system thermal-hydraulic RELAP5 [4] code was developed to simulate transient scenarios in Power reactors such PWR, BWR, VVER, etc. However, only limited work was performed to access the applicability of the code to Research Reactors operating conditions (low pressure, mass flow rates, power, etc) [5]. Previous works performed in this field are reported in [5], [6] and [7]. In this framework, total and partial blockage of a single Fuel Assembly cooling channel are investigated. As a first attempt the calculations are performed by applying the BE thermal-hydraulic system code RELAP5 alone using its point kinetic model to derive the instantaneous core

  1. Detection blockages and valve statues in natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl; Short, Gordon; Wang, Xuesong [Pipeline Engineering Ltd, North Yorkshire, (United Kingdom); Lennox, Barry; Lewis, Keith; Turner, John [University of Manchester, Manchester, (United Kingdom); Lewis, Chris [BP exploration, Aberdeen, (United Kingdom)

    2010-07-01

    Detecting features in pipelines containing flowing gas is difficult. This paper investigated a patented acoustic reflectometry technique for detecting defects in gas pipelines. The basic concept of this technique is to inject a pulse of sound into a pipeline and then measure the reflections produced while the signal travels along the length of the pipe. A modification in the internal section of the pipe will produce a reflection which, given with the speed of sound in the gas within the pipeline, provides the location of the feature. Laboratory tests on a 16m rigid PVC pipe and two field trials were undertaken to test this new method. The results showed that acoustic reflectometry can be used to identify features resulting from blockages and leakages. The field tests demonstrated that the method is capable of surveying both small and large diameter pipelines with lengths up to 10 km.

  2. Occurrence of blockage in cut stems of Clematis L.

    Directory of Open Access Journals (Sweden)

    Agata Jędrzejuk

    2013-04-01

    Full Text Available During vase life of cut flowers obstructions in stem xylem vessels develop. Such obstructions may restrict water uptake in stems and its transport towards flowers, thus lowering their ornamental value and longevity. Clematis is a very attractive plant which can be used as a cut flower in floral compositions. However, nothing is known about the histochemical or cytolo- gical nature of xylem blockages occurring in cut stems of this plant. Observations carried out on Clematis cv. 'Solidarność' proved that tyloses appeared as a principal source of xylem blockage in cut stems. The preservative composed of 200 mg × dm-3 8-HQC (8-hydroxyquinolin citrate and 2% sucrose arre-sted development of xylem blockage, while the vessels in stems kept in water were filled with tyloses or an amorphic substance. PAS reaction proved that polysaccharides were present in the xylem occlusions, whereas no homogalacturonans were immunolocalized in tyloses using JIM 5 and JIM 7 antibodies. The present study provides new information on the origin of xylem occlusions in clematis and their development in two different vase solutions. Such information can be useful to develop pro- per postharvest treatments aiming to improve keeping qualities of this new cut flower.

  3. Design and Development of Vision Based Blockage Clearance Robot for Sewer Pipes

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Nesaian

    2012-03-01

    Full Text Available Robotic technology is one of the advanced technologies, which is capable of completing tasks at situations where humans are unable to reach, see or survive. The underground sewer pipelines are the major tools for the transportation of effluent water. A lot of troubles caused by blockage in sewer pipe will lead to overflow of effluent water, sanitation problems. So robotic vehicle that is capable of traveling at underneath effluent water determining blockage using ultrasonic sensors and clearing by means of drilling mechanism is done. In addition to that wireless camera is fixed which acts as a robot vision by which we can monitor video and capture images using MATLAB tool. Thus in this project a prototype model of underground sewer pipe blockage clearance robot with drilling type will be developed

  4. Modeling of the acoustic boiling noise of sodium during an assembly blockage in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Vanderhaegen, M.

    2013-01-01

    In the framework of the fourth generation of nuclear reactors safety requirements, the acoustic boiling detection is studied to detect subassembly blockages. Boiling, that might occur during subassembly blockages and that can lead to clad failure, generates hydrodynamic noise that can be related to the two-phase flow. A bubble dynamics study shows that the sound source during subassembly boiling is condensation. This particular phenomenon generates most noise as a high subcooling is present in the subassembly and because of the high thermal diffusivity of sodium. This result leads to an estimate of the form of the acoustic spectrum that will be filtered and amplified during propagation inside the liquid. And even though it is unlikely that bubbles will be present inside the subassembly, due to the very gradual temperature profile at the wall and due to the geometry that leads to a strong confinement of the vapor, the historical bubble dynamics approach gives some insight in previous measurements. Additionally, some hypotheses can be disproved. These theoretical ideas are validated with a small water experiment, yet it also shows that a simple experience in sodium doesn't lead to a better knowledge of the acoustic source. A theoretical analysis also revealed that a realistic experiment with a simulant fluid, such as water or mercury, isn't representative. A similar conclusion is obtained when studying cavitation as a simulant acoustic source. As such, the acoustic detection of boiling, in comparison with other detection systems, isn't sufficiently developed yet to be applied as a reactor protective system. (author) [fr

  5. Relap5 simulation for severe accident analysis of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Andi Sofrany Ekariansyah; Endiah P-Hastuti; Sudarmono

    2018-01-01

    The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational characteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element. (author)

  6. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.; Heath, Robert W.

    2017-01-01

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  7. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.

    2017-02-07

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  8. Detailed flow analysis for the Three Mile Island unit 2 reactor accident

    International Nuclear Information System (INIS)

    Lillington, J.N.; Lyons, A.J.

    1990-01-01

    Some particular characteristics of the steam flow in the accident at the Three Mile Island unit 2 pressurized water reactor are investigated using the AEA Technology Flow3D code. Natural circulation flows with heat removal from the core and deposition in the upper plenum are predicted during the primary heating phase. The structure of the upper plenum cylinder and core blockage, owing to material relocation, are shown to force the flow into a complex three-dimensional pattern. The flows and temperature distributions from the calculations are shown to be consistent with the observed damage pattern above the core. Despite high core temperatures, damage was limited by the operation of one of the pumps at the end of the initial heating phase. Flow3D calculations are also carried out to demonstrate that the three-dimensional buoyancy driven flows are completely destroyed by the high steam generation rates arising from the pump operation. (author)

  9. Development of an Infection-Responsive Fluorescent Sensor for the Early Detection of Urinary Catheter Blockage.

    Science.gov (United States)

    Milo, Scarlet; Acosta, Florianne B; Hathaway, Hollie J; Wallace, Laura A; Thet, Naing T; Jenkins, A Toby A

    2018-03-23

    Formation of crystalline biofilms following infection by Proteus mirabilis can lead to encrustation and blockage of long-term indwelling catheters, with serious clinical consequences. We describe a simple sensor, placed within the catheter drainage bag, to alert of impending blockage via a urinary color change. The pH-responsive sensor is a dual-layered polymeric "lozenge", able to release the self-quenching dye 5(6)-carboxyfluorescein in response to the alkaline urine generated by the expression of bacterial urease. Sensor performance was evaluated within a laboratory model of the catheterized urinary tract, infected with both urease positive and negative bacterial strains under conditions of established infection, achieving an average "early warning" of catheter blockage of 14.5 h. Signaling only occurred following infection with urease positive bacteria. Translation of these sensors into a clinical environment would allow appropriate intervention before the occurrence of catheter blockage, a problem for which there is currently no effective control method.

  10. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    Science.gov (United States)

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  11. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  12. A Novel Method for Borehole Blockage Removal and Experimental Study on a Hydraulic Self-Propelled Nozzle in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Zhaolong Ge

    2016-08-01

    Full Text Available When coal bed methane (CBM drainage boreholes cross fractured, soft, or water-swelling strata, they collapse and block frequently. Borehole blockages result in a rapid decrease in CBM extraction ability, which leads to a reduction in CBM output and threatens coal mine safety production. To solve these problems, a novel method that uses a self-propelled water-jet nozzle to dredge blocked boreholes in coal seams has been proposed on the basis of the existing technology. Based on a theoretical analysis of the reason for borehole caving and the theory of blockage removal, we optimized the nozzle inlet pressure and selected an appropriate high-pressure resin pipe. A field experiment on the blockage removal of blocked CBM drainage boreholes using the proposed method was run in the Fengchun coal mine, Qijiang, Chongqing, southwest China. In this field trial, the time spent to unblock a borehole varied between 18.52 and 34.98 min, which is much shorter than using a drilling rig. After blockage removal, the average pure volume of the methane drainage of a single borehole was increased from 0.03 L/min to ~1.91–7.30 L/min, and the methane drainage concentration of a single borehole increased from 5% to ~44%–85%. The extraction effect increased significantly.

  13. EDF steam generators fleet: In-operation monitoring of TSP blockage and tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, P.; Gay, N.; Crinon, R. [Electricite De France (France)

    2012-07-01

    EDF operates 58 Pressurized Water Reactors in France. In the mid 2000‟s some of them have been affected by Steam Generators (SG) Tube Support Plates (TSP) blockage and U-tubes external surface fouling with iron oxides deposits due to corrosion of secondary-side components. These issues have been tackled by a global maintenance strategy of chemical cleanings and a method for in-operation monitoring of fouling and TSP blockage has been developed and is implemented since mid 2009. This monitoring is aimed at giving information for SG maintenance planning as regards non destructive examinations and chemical cleaning. This paper will first remind of the physical reasons of fouling and TSP blockage and identify the resulting stakes regarding safety and availability along with the action levers available to control both phenomena. Then details will be given on how in-operation monitoring of fouling and TSP blockage is carried out, using measurements of Wide Range water Level (WRL) and SG steam pressure during thermally stabilized periods. Information will also be given on how those data are analyzed and shared as well at a local as at a corporate level to participate in the planning of SG inspection and maintenance operations. Finally, possible refinements will be discussed, notably regarding the issue of WRL measurements reliability and the possibility to use the analysis of SG dynamic behavior during power transients to assess the TSP blockage ratio. In terms of „issues requiring discussion‟, the following are operational issues currently being investigated by EDF: 1. SG pressure can have quite large variations during one operating cycle (notably after a plant trip) and from one cycle to the other and generally pressure tends to decrease on a long-term basis. How can such variations be explained? What are the solutions to moderate/stop the pressure loss? 2. On some of the SG-models operated by EDF, hard curative Chemical Cleaning of the U-tubes didn't bring

  14. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Tsuchida, Noboru; Shiraishi, Tadao; Takahashi, Yutaka; Inada, Seiji; Saito, Minoru; Futamura, Yoshiaki; Kitano, Kyoshiro.

    1992-10-01

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  15. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    Alves Vieira, M.; Mayos, M.; Coquio, N.; Fourcroy, H.; Battesti, P.

    2010-01-01

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH 25 o C (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  16. A model of gas cavity breakup behind a blockage in fast breeder reactor subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1980-05-01

    A semi-empirical model has been developed to describe the transient behaviour of a gas cavity due to breakup behind a blockage in Liquid Metal Fast Breeder Reactor subassembly geometry. The main mechanisms assumed for gas cavity breakup in the present model are as follows: The gas cavity is broken up by the pressure fluctuation at the interface due to turbulence in the liquid. The centrifugal force on the liquid opposes breakup. The model is able to describe experimental results on the transient behaviour of a gas cavity due to breakup after the termination of gas injection. On the basis of the present model the residence time of a gas cavity behind a blockage in sodium is predicted and the dependence of the residence time on blockage size is discussed. (orig.) [de

  17. Physiological blockage in plants in response to postharvest stress ...

    African Journals Online (AJOL)

    Flowers have been designed primarily for cutting because of the diversity of shapes, colors and also durability. However, ornamental plants are used in floral arrangements in vases and have limited shelf-life. Thus, this study showed that one of the factors contributing to this limitation is the physiological blockage that occurs ...

  18. Influence of strong perturbations on wall-bounded flows

    Science.gov (United States)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  19. Safety analysis for key design features of KALIMER-600 design concept

    International Nuclear Information System (INIS)

    Lee, Yong-Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Joeng, H. Y.; Ha, K. S.; Heo, S.

    2005-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents, containment design basis accidents, and flow blockages in the KALIMER design are presented. First, the basic approach to achieve the safety goal and main design features of KALIMER-600 are introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2, In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. The objectives of Chapter 4, are to assess the response of KALIMER-600 containment to the design basis accidents and to evaluate whether the consequences are acceptable or not in the aspect of structural integrity and the exposure dose rate. In Chapter 5, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly, are described. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed

  20. Experimental study of blockage of monochromatic waves by counter currents

    NARCIS (Netherlands)

    Suastika, I.K.

    1999-01-01

    Blockage of waves by a current can occur if waves are propagating on a spatially varying opposing current in which the velocity is increasing in the wave propagation direction. The ongoing waves become shorter and steeper while they are propagating against the current. Blocking occurs at the

  1. A Preliminary Experimental Study on Flow Boiling CHF Characteristics of Ballooned Channel

    International Nuclear Information System (INIS)

    Kim, Yong Jin; Song, Sub Lee; Chang, Soon Heung; Moon, Sang Ki

    2013-01-01

    The purpose of this research is to measure heat transfer characteristics experimentally and to develop correlation based on experimental data. Experiments are in progress. The result of preliminary experimental test of ballooned channel was reported. The trends of CHF value for deformed channel is not usual as normal smooth tube. The spot of CHF was moved by changing different experimental cases. The transition of flow pattern at neck of deformation is considered as main factor of changing CHF trends. More cases are under operation and analysis based on flow dynamics are developing. Cladding is one of the most important parts in nuclear power plant because it is second barrier of radiation leakage from nuclear fuel. Originally, cladding keeps its integrity in 1200 .deg. C and 150bar, which is normal operation state of nuclear power plant. However, integrity of cladding can be deformed by more severe conditions caused by accident. In case of LOCA, high temperature, oxidation and thermal shock induced by safety injection can deform cladding. Main problem of deformed cladding is blockage of cooled to prevent core melt accident. Change of flow path by blockage affects flow of safety coolant, heat transfer coefficient and critical heat flux of rod bundles. Until now, there are insufficient heat transfer data for deformed flow path compared to normal flow path. In order to enhance safety of nuclear power plant after accident, it should be clarified that how deformed cladding affects heat transfer

  2. Identification of flow patterns by neutron noise analysis during actual coolant boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Kozma, R.; van Dam, H.; Hoogenboom, J.E.

    1992-01-01

    The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels

  3. A new paradigm for the reversible blockage of whisker sensory transmission.

    Science.gov (United States)

    Gener, Thomas; Reig, Ramon; Sanchez-Vives, Maria V

    2009-01-30

    The objective of this study was to explore a paradigm that would allow a temporary deprivation of whisker information lasting for a few hours. An additional requirement was to be non-invasive in order to be usable in awake chronically implanted rats without inducing stress. With that aim, electrophysiological recordings from the barrel cortex of anesthetized rats were obtained. The pressure of an air-puff (5-10 ms) delivered to the whiskers was adjusted to evoke a consistent response of around 100 microV (extracellular) or approximately 5 mV (intracellular) in the contralateral cortex. Lidocaine was then locally applied in different forms (cream, local injection, aerosol, drops) and concentrations (2-10%) to the base of the whiskers. The stimulus-induced response was monitored once every 5s for several hours (3-6h) in order to characterize its course of action. Local injection of lidocaine induced the fastest and most complete blockage, but was ruled out for being invasive. Out of the remaining forms of application, a lidocaine drop (0.4 ml, 10%) to the base of the whiskers was found to induce a reliable blockage (to an average 9% the original response). The maximum effect was reached after 150-200 min, and the response was totally recovered approximately 300 min after lidocaine application. This characterization should be useful to induce an efficient, short term and reversible blockage of whisker sensory transmission in both anesthetized and awake preparations, while not causing stress in an awake animal.

  4. Empirical investigation of wind farm blockage effects in Horn Rev 1 offshore wind farm

    DEFF Research Database (Denmark)

    Mitraszewski, Karol; Hansen, Kurt Schaldemose; Nygaard, Nicolai

    We present an empirical study of wind farm blockage effects based on Horns Rev 1 SCADA data. The mean inflow non-uniformities in wind speed are analyzed by calculating the mean power outputs of turbines located along the outer edges of the farm for different wind directions, wind speeds and stabi......We present an empirical study of wind farm blockage effects based on Horns Rev 1 SCADA data. The mean inflow non-uniformities in wind speed are analyzed by calculating the mean power outputs of turbines located along the outer edges of the farm for different wind directions, wind speeds...

  5. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  6. Review on the NEI Methodology of Debris Transport Analysis in Sump Blockage Issue for APR1400

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Lee, Jeong Ik; Hong, Soon Joon; Lee, Byung Chul; Bang, Young Seok

    2007-01-01

    Since USNRC (United State Nuclear Regulatory Committee) initially addressed post-accident sump performance under Unresolved Safety Issue USI A-43, sump blockage issue has gone through GSI-191, Regulation Guide 1.82, Rev. 3 (RG. 1.82 Rev.3), and generic Letter 2004-02 for PWRs (Pressurized Water Reactors). As a response of these USNRC's activities, NEI 04-07 was issued in order to evaluate the post-accident performance of a plant's recirculation sump. The baseline methodology of NEI 04-07 is composed of break selection, debris generation, latent debris, debris transport, and head loss. In analytical refinement of NEI 04-07, computational fluid dynamic (CFD) is suggested for the evaluation of debris transport in emergency core cooling (ECC) recirculation mode as guided by RG. 1.82 Rev.3. In Korea nuclear industry also keeps step with international activities of this safety issue, with Kori 1 plant as a pioneering edge. Korean nuclear industry has been also pursuing development of an advanced PWR of APR1400, which incorporates several improved safety features. One of the key features, considering sump blockage issue, is the adoption of IRWST (In-containment Refueling Water Storage Tank). This device, as the acronym implies, changes the emergency core cooling water injection pattern. This fact makes us to review the applicability of NEI 04-07's methodology. In this paper we discuss the applicability of NEI 04- 07's methodology, and more over, new methodology is proposed. And finally the preliminary debris transport is analyzed

  7. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Science.gov (United States)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  8. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Directory of Open Access Journals (Sweden)

    V. R. Sanal Kumar

    2018-02-01

    Full Text Available A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  9. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    International Nuclear Information System (INIS)

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo

    2008-01-01

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  10. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  11. Conversion Method of the Balance Test Results in Open Jet Tunnel on the Free Flow Conditions

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available The paper considers a problem of sizing a model and converting the balance test results in the low speed open-jet wind tunnel to free-flow conditions. The ANSYS Fluent commercial code performs flow model calculations in the test section and in the free flow, and the ANSYS ICEM CFD module is used to provide grid generation. A structured grid is generated in the free flow and an unstructured one is provided in the test section. The changes of aerodynamic coefficients are determined at the different values of the blockage factor for the segmental-conical and hemisphere cylinder-cone shapes of the model. The blockage factor values are found at which the interference of the test section – model is neglected. The paper presents a technique to convert the wind tunnel test results to the free flow conditions.

  12. Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors

    International Nuclear Information System (INIS)

    Curtis, Franklin G.; Ekici, Kivanc; Freels, James D.

    2011-01-01

    The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

  13. Convective heat transfer in supercritical flows of CO_2 in tubes with and without flow obstacles

    International Nuclear Information System (INIS)

    Eter, Ahmad; Groeneveld, Dé; Tavoularis, Stavros

    2017-01-01

    Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO_2-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m"2 s, and a heat flux range from 1 to 175 kW/m"2. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.

  14. Validation of attenuation, beam blockage, and calibration estimation methods using two dual polarization X band weather radars

    Science.gov (United States)

    Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.

    2011-12-01

    The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.

  15. Convective heat transfer in supercritical flows of CO{sub 2} in tubes with and without flow obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca

    2017-03-15

    Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO{sub 2}-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m{sup 2} s, and a heat flux range from 1 to 175 kW/m{sup 2}. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.

  16. Reliability-based assessment of flow assurance of hot waxy crude pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jinjun, Zhang; Wenke, Zhang; Jianlin, Ding; Bo, Yu [China University of Petroleum - Beijing (CUPB), Beijing (China)

    2009-07-01

    Waxy crude is characterized by its high pour point. Pipeline blockage may occur after prolonged shutdown of a pipeline due to crude oil gelation. Another flow assurance problem is the instable operation at a flow rate below the lowest allowable operation flow rate which is dependent on heat transfer of the pipeline and the viscosity vs. temperature relation of the crude pumped. Besides, for pipelines with thick wax deposition layer, massive depletion of wax deposit in some cases such as pipeline restart at high expelling pressure may also result in blockage of the pipeline, and the pig may be jammed during pigging as a result of thick wax deposition. Conventionally, assessment of these risks has been made by using the deterministic approach. However, many related physical quantities are subject to uncertainty and contribute to reliability of flow assurance. Therefore, the probabilistic approach is suggested and a framework of reliability based assessment of flow assurance of waxy crude pipelines is proposed in this paper. Discussions are also made on the limit state functions and target safety level. In the future study, development of an efficient and robust stochastic-numerical method is crucial. (author)

  17. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Directory of Open Access Journals (Sweden)

    Zhang Dong

    2011-11-01

    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  18. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe and Viburnum

    NARCIS (Netherlands)

    Loubaud, M.; Doorn, van W.G.

    2004-01-01

    We previously concluded that the xylem blockage that prevents water uptake into several cut flowers is mainly due to the presence of bacteria, whilst in chrysanthemum and Bouvardia we observed a xylem occlusion that was mainly due to a wound-reaction of the plant. We have further tested which of

  19. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. How to prevent ripening blockage in 1-MCP-treated 'Conference' pears.

    Science.gov (United States)

    Chiriboga, Maria-Angeles; Schotsmans, Wendy C; Larrigaudière, Christian; Dupille, Eve; Recasens, Inmaculada

    2011-08-15

    Some European pear varieties treated with 1-methylcyclopropene (1-MCP) often remain 'evergreen', meaning that their ripening process is blocked and does not resume after removal from cold storage. In this work this was confirmed also to be the case in 'Conference' pears. To reverse the blockage of ripening 1-MCP treatments combined with external exogenous ethylene were tested. 1-MCP treatment of 'Conference' pears is very effective in delaying ripening and, more specifically, softening. The same 1-MCP concentration in different experimental years caused a different response. The higher dose of 1-MCP (600 nL L⁻¹) always resulted in irreversible blockage of ripening, whereas the behaviour of fruit receiving a lower dose (300 nL L⁻¹) depended on the year, and this did not depend on maturity at harvest or on storage conditions. Simultaneous exposure to 1-MCP and exogenous ethylene significantly affected fruit ripening, allowing significant softening to occur but at a lower rate compared with control fruit. The application of exogenous ethylene and 1-MCP simultaneously after harvest permitted restoration of the ripening process after storage in 'Conference' pears, extending the possibility of marketing and consumption. Copyright © 2011 Society of Chemical Industry.

  1. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  2. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  3. A comparison of the consequences of the design basis accident of the Greek Research Reactor with those of a serious realistic accident

    International Nuclear Information System (INIS)

    Kollas, J.G.; Anoussis, J.N.

    1985-12-01

    An analysis of the radiological consequences of the design basis and the coolant flow blockage accidents of the Greek Research Reactor is presented. The results indicate that the consequences of the coolant flow blockage accident are practically trivial being 1-2 orders of magnitude lower than the corresponding consequences of the design basis accident. (author)

  4. Experimental investigation of pressure and blockage effects on combustion limits in H2-air-steam mixtures

    International Nuclear Information System (INIS)

    Sherman, M.P.; Berman, M.; Beyer, R.F.

    1993-06-01

    Experiments with hydrogen-air-steam mixtures, such as those found within a containment system following a reactor accident, were conducted in the Heated Detonation Tube (43 cm diameter and 12 m long) to determine the region of benign combustion; i.e., the region between the flammability limits and the deflagration-to-detonation transition limits. Obstacles were used to accelerate the flame; these include 30% blockage ratio annular rings, and alternate rings and disks of 60% blockage ratio. The initial conditions were 110 degree C and one or three atmospheres pressure. A benign burning region exists for rich mixtures, but is generally smaller than for lean mixtures. Effects of the different obstacles and of the different pressures are discussed

  5. Development of explicit solution scheme for the MATRA-LMR code and test calculation

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Chang, W. P.; Kwon, Y. M.; Jeong, K. S.

    2003-01-01

    The local blockage in a subassembly of a liquid metal reactor is of particular importance because local sodium boiling could occur at the downstream of the blockage and integrity of the fuel clad could be threatened. The explicit solution scheme of MATRA-LMR code is developed to analyze the flow blockage in a subassembly of a liquid metal cooled reactor. In the present study, the capability of the code is extended to the analysis of complete blockage of one or more subchannels. The results of the developed solution scheme shows very good agreement with the results obtained from the implicit scheme for the experiments of flow channel without any blockage. The applicability of the code is also evaluated for two typical experiments in a blocked channel. Through the sensitivity study, it is shown that the explicit scheme of MATRA-LMR predicts the flow and temperature profile after blockage reasonably if the effect of wire is suitably modeled. The simple assumption in wire-forcing function is effective for the un-blocked case or for the case of blockage with lower velocity. A different type of wire-forcing function describing the velocity reduction after blockage or an accurate distributed resistance model is required for more improved predictions

  6. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    International Nuclear Information System (INIS)

    Moriya, Shoichi

    2001-01-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  7. Results of postirradiation examination of the in-pile blockage experiments MOL-7C/4 and MOL-7C/5

    International Nuclear Information System (INIS)

    Weimar, P.; Schleisiek, K.

    1991-01-01

    The Mol-7C in-pile local blockage experiments are performed in the BR-2 reactor at Mol, Belgium as a joint project of Kernforchungszentrum Karlsruhe (KfK) and Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nuclearire-Mol. The main objective is to investigate the consequences of local cooling disturbances in liquid-metal-cooled reactor (LMR) fuel subassemblies. In the tests Mol-7C/4 and MOL-7C/5, fuel pins from KNK II are used with a burnup of 5 and 1.7%, respectively. An active central porous blockage is used to simulate the cooling disturbance. During irradiation, the blockage causes significant local damage, including melting of cladding and fuel. Extensive postirradiation examinations (PIE) are performed to investigate the extent of damage. In this paper a description and interpretation of results of the destructive PIE performed at the Hot Cells Laboratory at KfK is given, along with some conclusions related to LMR safety

  8. Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan

    International Nuclear Information System (INIS)

    Guo, En Min; Kim, Kwang Yong

    2004-01-01

    This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient

  9. Local blockage of EMMPRIN impedes pressure ulcers healing in a rat model.

    Science.gov (United States)

    Zhao, Xi-Lan; Luo, Xiao; Wang, Ze-Xin; Yang, Guo-Li; Liu, Ji-Zhong; Liu, Ya-Qiong; Li, Ming; Chen, Min; Xia, Yong-Mei; Liu, Jun-Jie; Qiu, Shu-Ping; Gong, Xiao-Qing

    2015-01-01

    Excessive extracellular matrix degradation caused by the hyperfunction of matrix metalloproteinases (MMPs) has been implicated in the failure of pressure ulcers healing. EMMPRIN, as a widely expressed protein, has emerged as an important regulator of MMP activity. We hypothesize that EMMPRIN affects the process of pressure ulcer healing by modulating MMP activity. In the rat pressure ulcer model, the expression of EMMPRIN in ulcers detected by Western blot was elevated compared with that observed in normal tissue. To investigate the role of EMMPRIN in regulating ulcer healing, specific antibodies against EMMPRIN were used via direct administration on the pressure ulcer. Local blockage of EMMPRIN resulted in a poor ulcer healing process compared with control ulcers, which was the opposite of our expectation. Furthermore, inhibiting EMMPRIN minimally impacted MMP activity. However, the collagen content in the pressure ulcer was reduced in the EMMPRIN treated group. Angiogenesis and the expression of angiogenic factors in pressure ulcers were also reduced by EMMPRIN local blockage. The results in the present study indicate a novel effect of EMMPRIN in the regulation of pressure ulcer healing by controlling the collagen contents and angiogenesis rather than MMPs activity.

  10. Flow cytometric analysis of p21 protein expression on irradiated human lymphocytes; Analise por citometria de fluxo da expressao da proteina p21 em linfocitos humanos irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, N.F.G.; Amaral, A., E-mail: neyliane@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Laboratorio de Modelagem e Biodosimetria Aplicada; Freitas-Silva, R. [Universidade Federal de Pernambuco (UFPE), Garanhuns, PE (Brazil). Departamento de Ciencias Naturais e Exatas; Pereira, V.R.A. [Fundacao Oswaldo Cruz (FIOCRUZ), Recife, PE (Brazil). Centro de Pesquisas Aggeu Magalhaes. Departamento de Imunologia. Lab. de Imunoparasitologia; Tasat, D.R. [Universidad Nacional de General San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Tecnologia. Laboratorio de Biologia Celular del Pulmon

    2013-08-15

    Cell cycle blockage in G1 is a mechanism p21 protein-regulated and coupled to DNA damage response to permit genetic content analysis, damage repair and cell death. Analysis of proteins that participates of this response has progressed with new analytic tools, and data contributes to comprehension of radioinduced molecular events as well as to new approaches on practices that employ ionizing radiation. On this perspective, the aim of this research was to evaluate, by flow cytometry, p21 expression on irradiated human lymphocytes, maintained under different experimental conditions. Peripheral blood samples from 10 healthy subjects were irradiated with doses of 0 (non-irradiated), 1, 2 and 4 Gy. Lymphocytes were processed to analysis on ex vivo (no cultured) condition and after 24; 48 and 72 hours culture, with and without phytohemagglutinin stimulation. p21 protein expression levels were measured by flow cytometry, as percentage values. Results indicate that flow cytometric assay allows detection of changes on p21 expression, since it was detected significant increase on phytohemagglutinin-stimulated samples, for all times, against basal expression (ex vivo). However, it was not observed significant alterations on p21 protein radioinduced levels, for all doses, times and culture conditions analyzed. These results not indicate so p21 protein as bioindicator of ionizing radiation exposure. Nevertheless, data confirmation may to require analysis of a more numerous population. (author)

  11. Influence of blockage effect on measurement by vane anemometers

    Directory of Open Access Journals (Sweden)

    Sluse Jan

    2017-01-01

    Full Text Available The article deals with influence of blockage effect caused by vane anemometer in the wind tunnel by measurement via this anemometer. The influences will be represented by correction coefficient. The first part of this article is focused on the design of the impeller of vane anemometers. The impellers are printed on 3D printer with variable parameters. The anemometer is fixed in an open section of the wind tunnel with closed loop and the velocity profile is measured by Laser Doppler velocimetry (LDV in front and behind it for all impellers. The experimental data are compared with the numerical simulation in OpenFOAM. The results are correction coefficients.

  12. Two-dimensional transient thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-07-01

    One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)

  13. Pressure loss coefficient and flow rate of side hole in a lower end plug for dual-cooled annular nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr; Park, Ju-Yong, E-mail: juyong@kaeri.re.kr; In, Wang-Kee, E-mail: wkin@kaeri.re.kr

    2013-12-15

    Highlights: • A lower end plug with side flow holes is suggested to provide alternative flow paths of the inner channel. • The inlet loss coefficient of the lower end plug is estimated from the experiment. • The flow rate through the side holes is estimated in a complete entrance blockage of inner channel. • The consequence in the reactor core condition is evaluated with a subchannel analysis code. - Abstract: Dual-cooled annular nuclear fuel for a pressurized water reactor (PWR) has been introduced for a significant increase in reactor power. KAERI has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized PWR in Korea, the OPR1000. This annular fuel can help decrease the fuel temperature substantially relative to conventional cylindrical fuel at a power uprate. Annular fuel has dual flow channels around itself; however, the inner flow channel has a weakness in that it is isolated unlike the outer flow channel, which is open to other neighbouring outer channels for a coolant exchange in the reactor core. If the entrance of the inner channel is, as a hypothetical event, completely blocked by debris, the inner channel will then experience a rapid increase in coolant temperature such that a departure from nucleate boiling (DNB) may occur. Therefore, a remedy to avoid such a postulated accident is indispensable for the safety of annular fuel. A lower end plug with side flow holes was suggested to provide alternative flow paths in addition to the central entrance of the inner channel. In this paper, the inlet loss coefficient of the lower end plug and the flow rate through the side holes were estimated from the experimental results even in a complete entrance blockage of the inner channel. An optimization for the side hole was also performed, and the results are applied to a subchannel analysis to evaluate the consequence in the reactor core condition.

  14. Analysis of cell flow and cell loss following X-irradiation using sequential investigation of the total number of cells in the various parts of the cell cycle

    International Nuclear Information System (INIS)

    Skog, S.; Tribukait, B.

    1985-01-01

    The cell flow and cell loss of an in vivo growing Ehrlich ascites tumour were calculated by sequential estimation of changes in total number of cells in the cell cycle compartments. Normal growth was compared with the grossly disturbed cell flow evident after a 5 Gy X-irradiation. The doubling time of normal, exponentially growing cells was 24 hr. The generation time was 21 hr and the potential doubling time was 21 hr. Thus, the growth fraction was 1.0 and the cell loss rate about 0.5%/hr. Following irradiation, a transiently increased relative outflow rate from all cell cycle compartments was found at about 3 and 40 hr, and from S phase at 24 hr after irradiation. Increase in cell loss as well as non-viable cells was observed at 24 hr after irradiation at the time of release of the irradiation-induced G 2 blockage. The experiments show the applicability and limitations of cell flow and cell loss calculations by sequential analysis of the total number of cells in the various parts of the cell cycle. (author)

  15. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  16. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  17. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).

    Science.gov (United States)

    Li, Xiao; Zhang, Yuan; Li, Huanhuan; Zhao, Yong

    2017-12-01

    Human ether-a-go-go related gene (hERG) K+ channel plays an important role in cardiac action potential. Blockage of hERG channel may result in long QT syndrome (LQTS), even cause sudden cardiac death. Many drugs have been withdrawn from the market because of the serious hERG-related cardiotoxicity. Therefore, it is quite essential to estimate the chemical blockage of hERG in the early stage of drug discovery. In this study, a diverse set of 3721 compounds with hERG inhibition data was assembled from literature. Then, we make full use of the Online Chemical Modeling Environment (OCHEM), which supplies rich machine learning methods and descriptor sets, to build a series of classification models for hERG blockage. We also generated two consensus models based on the top-performing individual models. The consensus models performed much better than the individual models both on 5-fold cross validation and external validation. Especially, consensus model II yielded the prediction accuracy of 89.5 % and MCC of 0.670 on external validation. This result indicated that the predictive power of consensus model II should be stronger than most of the previously reported models. The 17 top-performing individual models and the consensus models and the data sets used for model development are available at https://ochem.eu/article/103592. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of Ganoderma lucidum on pollen-induced biphasic nasal blockage in a guinea pig model of allergic rhinitis.

    Science.gov (United States)

    Mizutani, Nobuaki; Nabe, Takeshi; Shimazu, Masaji; Yoshino, Shin; Kohno, Shigekatsu

    2012-03-01

    Ganoderma lucidum (GL), an oriental medical mushroom, has been used in Asia for the prevention and treatment of a variety of diseases. However, the effect of GL on allergic rhinitis has not been well defined. The current study describes the inhibitory effect of GL on the biphasic nasal blockage and nasal hyperresponsiveness induced by repeated antigen challenge in a guinea pig model of allergic rhinitis. Intranasally sensitized guinea pigs were repeatedly challenged by inhalation of Japanese cedar pollen once every week. Ganoderma lucidum was orally administered once daily for 8 weeks from the time before the first challenge. The treatment with GL dose-dependently inhibited the early and late phase nasal blockage at the fifth to ninth antigen challenges. Furthermore, nasal hyperresponsiveness to intranasally applied leukotriene D₄ on 2 days after the eighth antigen challenge was also inhibited by the treatment with GL. However, Cry j 1-specific IgE antibody production was not affected by the treatment. In conclusion, we demonstrated that the pollen-induced biphasic nasal blockage and nasal hyperresponsiveness were suppressed by the daily treatment with GL in the guinea pig model of allergic rhinitis. These results suggest that GL may be a useful therapeutic drug for treating patients with allergic rhinitis. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Computational Investigation on Fully Developed Periodic Laminar Flow Structure in Baffled Circular Tube with Various BR

    Directory of Open Access Journals (Sweden)

    Withada Jedsadaratanachai

    2014-01-01

    Full Text Available This paper presents a 3D numerical analysis of fully developed periodic laminar flow in a circular tube fitted with 45° inclined baffles with inline arrangement. The computations are based on a finite volume method, and the SIMPLE algorithm has been implemented. The characteristics of fluid flow are presented for Reynolds number, Re = 100–1000, based on the hydraulic diameter (D of the tube. The angled baffles were repeatedly inserted at the middle of the test tube with inline arrangement to generate vortex flows over the tested tube. Effects of different Reynolds numbers and blockage ratios (b/D, BR with a single pitch ratio of 1 on flow structure in the tested tube were emphasized. The flows in baffled tube show periodic flow at x/D ≈ 2-3, and become a fully developed periodic flow profiles at x/D ≈ 6-7, depending on Re, BR and transverse plane positions. The computational results reveal that the higher of BR and closer position of turbulators, the faster of fully developed periodic flow profiles.

  20. Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter.

    Science.gov (United States)

    Belotserkovskii, Boris P; Soo Shin, Jane Hae; Hanawalt, Philip C

    2017-06-20

    Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Analysis of fuel pin mechanics in case of flow blockage of a single RBMK channel

    International Nuclear Information System (INIS)

    Pierro, F.; Moretti, F.; Mazzini, D.; D'Auria, F.

    2005-01-01

    The evaluation of the consequences of the pressure tube rupture due to accidental overheating is one of the key elements for addressing an RBMK safety analysis, since it causes the lost of design boundaries against the fission products release. Several events are expected to take place: thermal hydraulic crisis (energy unbalance), fuel overheating, fuel rod damage, pressure tube overheating, pressure tube failure and graphite stack damage, Hydrogen and fission products release. The present work deals with the research activity carried out at ''Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione'' (DIMNP) of the University of Pisa aimed at assessing numerical models for safety analysis of the RBMK-1000. The attention is focused on the modelling of (1) a single fuel channel and its surrounding graphite column for evaluating the transient conditions enabling the different damaging phenomena, (2) a single fuel rod for investigating fuel pin behaviour, (3) the ruptured fuel channel for figuring the magnitude of the hydrodynamic loads acting on fuel rods. Different codes were employed to cover the competences for the investigation of each field; in particular, RELAP5 code for thermal-hydraulics, FRAPCON-3 and FRAPTRAN1-2 codes for fuel pin mechanics, FLUENT-6 for fluid dynamics. The paper discusses the numerical models, the analysis capabilities of numerical models in comparison with available data about the Leningrad NPP 1992 accident. Furthermore, the possibility to draw a failure map identifying the range of the cladding safety respect to the transient condition is outlined. (author)

  2. Effect of Local Nasal Immunotherapy on Nasal Blockage in Pollen-Induced Allergic Rhinitis of Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Takeshi Nabe

    2008-01-01

    Conclusions: Local nasal immunotherapy may be clinically useful for allergic nasal blockage associated with nasal hyperresponsiveness. The mechanisms responsible for this effectiveness might not be related to IgE production. Additionally, the effectiveness for nasal tissue was dissociated from that seen for the ocular tissue.

  3. Analysis of closed-pool boilup using the TRANSIT-HYDRO code

    International Nuclear Information System (INIS)

    Graff, D.L.

    1983-01-01

    The benign termination of the transition phase of a hypothetical LMFBR accident rests on the avoidance of highly energetic recriticalities prior to escape of bottled molten core materials from the active core region. In scenarios where molten fuel is trapped due to axial blockages, the maintenance of subcritical configurations until radial flow paths develop requires stable boil-up of the molten fuel/steel mixture. This paper describes the analysis of an experiment investigating the behavior of closed boiling pools using the two-fluid hydrodynamics module of TRANSIT-HYDRO, a deterministic transition-phase analysis code

  4. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  5. R and D on early detection of the Total Instantaneous Blockage for 4. Generation Reactors - Inventory of non-nuclear methods investigated by the CEA

    International Nuclear Information System (INIS)

    Paumel, K.; Jeannot, J.-P.; Vanderhaegen, M.; Massacret, N.; Jeanne, T.; Laffont, G.

    2013-06-01

    In the safety analysis for the core of the 4. Generation Reactors, the Total Instantaneous Blockage (TIB) is a hypothetic accident scenario involving the melting of the blocked subassembly with a risk of propagation to the neighbouring subassemblies. To avoid this latter consequence a detection system has to scram the reactor. For Superphenix or EFR project a Delayed Neutron Detection Integrated (DND I) was considered as efficient to limit the melting to the first neighbouring subassemblies. Nonetheless for the CFV core the objective of improving the safety leads to limit the melting to the blocked subassembly. For this purpose, the CEA has launched a program development to find a new detection method. This paper provides a brief review of the feedback of R and D, progress and program on the various early non-nuclear detection methods investigated by the CEA: - Temperature measurement at the subassemblies outlet by thermocouples. The advantage of this method is that it will require no additional instrumentation to that already present for continuous monitoring. - Temperature measurement at the subassemblies outlet by Optical Fibers Bragg Grating (OFBG). This technology has the electromagnetic immunity, compactness and short response time. - Temperature measurement at the subassemblies outlet by ultrasound. The measuring point is located closer to the head subassembly and the response time could be shorter. - Acoustic detection of sodium boiling. Boiling occurs early in the accident progress and the area to be monitored may be covered by few sensors. - Subassemblies loss of flow detection by eddy-current flowmeters. This method seems logically the easiest and the most immediate method to detect a blockage. To date, none of these methods has been fully demonstrated to be feasible. It should be noted that temperature measurement methods will probably consist of the detection of a low increase rate using specific signal processing. These methods have been compared

  6. Validation of a Subchannel Analysis Code MATRA Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, Kyung Won; Kwon, Hyouk

    2008-10-15

    A subchannel analysis code MATRA has been developed for the thermal hydraulic analysis of SMART core. The governing equations and important models were established, and validation calculations have been performed for subchannel flow and enthalpy distributions in rod bundles under steady-state conditions. The governing equations of the MATRA were on the basis of integral balance equation of the two-phase mixture. The effects of non-homogeneous and non-equilibrium states were considered by employing the subcooled boiling model and the phasic slip model. Solution scheme and main structure of the MATRA code, as well as the difference of MATRA and COBRA-IV-I codes, were summarized. Eight different test data sets were employed for the validation of the MATRA code. The collected data consisted of single-phase subchannel flow and temperature distribution data, single-phase inlet flow maldistribution data, single-phase partial flow blockage data, and two-phase subchannel flow and enthalpy distribution data. The prediction accuracy as well as the limitation of the MATRA code was evaluated from this analysis.

  7. Subcubic Control Flow Analysis Algorithms

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Van Horn, David

    We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...

  8. The development of technologies of safety analysis for LMR ('03)

    International Nuclear Information System (INIS)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S.

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C up to the

  9. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko Toshimitsu; Koutarou Nishikawa; Wataru Haruki; Shinichi Oono; Manabu Takao; Yuji Ohya

    2008-01-01

    The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec-tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey-nolds number, 0.9x105. Furthermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av-erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.

  10. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    Science.gov (United States)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  11. Temperature noise analysis and sodium boiling detection in the fuel failure mockup

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Fry, D.N.; Leavell, W.H.; Mathis, M.V.; Saxe, R.F.

    1976-01-01

    Sodium temperature noise was measured at the exit of simulated, fast-reactor fuel subassemblies in the Fuel Failure Mockup (FFM) to determine the feasibility of using temperature noise monitors to detect flow blockages in fast reactors. Also, acoustic noise was measured to determine whether sodium boiling in the FFM could be detected acoustically and whether noncondensable gas entrained in the sodium coolant would affect the sensitivity of the acoustic noise detection system. Information from these studies would be applied to the design of safety systems for operating liquid-metal fast breeder reactors (LMFBRs). It was determined that the statistical properties of temperature noise are dependent on the shape of temperature profiles across the subassemblies, and that a blockage upstream of a thermocouple that increases the gradient of the profile near the blockage will also increase the temperature noise at the thermocouple. Amplitude probability analysis of temperature noise shows a skewed amplitude density function about the mean temperature that varies with the location of the thermocouple with respect to the blockage location. It was concluded that sodium boiling in the FFM could be detected acoustically. However, entrained noncondensable gas in the sodium coolant at void fractions greater than 0.4 percent attenuated the acoustic signals sufficiently that boiling was not detected. At a void fraction of 0.1 percent, boiling was indicated only by the two acoustic detectors closest to the boiling site

  12. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  13. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  14. The development of technologies of safety analysis for LMR ('03)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C

  15. Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Martinez-Martinez, Sinuhe; Messai, Nadhir; Jeannot, Jean-Philippe; Nuzillard, Danielle

    2015-01-01

    The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. - Highlights: • We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor. • The TIB symptom is simulated as an abrupt rise on temperature (0.1–1 °C/s). • The goal is to improve the early detection of the incident. • Two strategies laying on neural networks are proposed. • TIB is detected in 3 s for 1 °C/s and 18–21 s for 0.1 °C/s

  16. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels

    International Nuclear Information System (INIS)

    Mishima, K.; Nishihara, H.

    1985-01-01

    Critical heat flow (CHF) at low flow condition can become important in an MTR-type research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a condition which is basically the decay heat removal by natural convention boiling can develop. Under such conditions, burnout may occur even at a very low heat flow. In view of this, the CHF at low-flow-rate and low-pressure conditions has been studied for water flowing in thin rectangular channels. Experiments were carried out with two types of rectangular test sections, namely, the one heated from one wide side and the other heated from two opposite sides. In order to observe the effects of gravity, CHF was measured both in upflow and downflow. The CHF at complete bottom blockage was also studied. The results indicate that burnout can occur at a much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. There was observed a minimum CHF at complete bottom blockage and at very low downflow. The low CHF at very low downflow appears to be due to the stagnation of the bubble in the heated section. This fact indicates that special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)

  17. Information Flow Analysis for VHDL

    DEFF Research Database (Denmark)

    Tolstrup, Terkel Kristian; Nielson, Flemming; Nielson, Hanne Riis

    2005-01-01

    We describe a fragment of the hardware description language VHDL that is suitable for implementing the Advanced Encryption Standard algorithm. We then define an Information Flow analysis as required by the international standard Common Criteria. The goal of the analysis is to identify the entire...... information flow through the VHDL program. The result of the analysis is presented as a non-transitive directed graph that connects those nodes (representing either variables or signals) where an information flow might occur. We compare our approach to that of Kemmerer and conclude that our approach yields...

  18. Kidney Rehabilitation Technology by Improving Blood Flow and Nerve Activation

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim

    2016-01-01

    The rehabilitation of kidney is impossible from doctors point of view. Kidney failure happens when nephron in kidney fail to filter blood and water. Two major causes of kidney failure. First is the shrinkage of kidney and the second is the blockage of kidney medulla. Kidney shrinkage is because nephron damage due to long term diabetes (Nephrology expert point of view). Whereas blockage of kidney is due to food consume which in turn build up deposit at the blood duct connecting to the medulla. Experiment specimen own body. The rehabilitation methodology is to build up your blood flow system and nerve activation. Result from the study is through analyzing blood components such as creatinine, hemoglobin, urea and potassium. Conclusion, creatinine value has lowered and kidney shrinkage has normalize to its original size. It is hopeful I regain my health 100 % when my GFR reading achieved below 100. (author)

  19. Experimental study of flow patterns near tube support structures

    International Nuclear Information System (INIS)

    Rummens, H.E.C.; Turner, C.W.

    1994-07-01

    Extensive blockage of broached support plates in steam generators has occurred at the Bruce A Nuclear Generating Station (NGS), forcing unit derating in 1988 March. Blockage has also been found on the lower broached plates of the Pickering B and Point Lepreau NGSs. Water chemistry and operating conditions are known to influence fouling directly. We suspect that flow patterns also play a role, that these patterns are influenced by the geometry of steam generator (SG) components, and that particularly the broached plate design actively creates an environment favorable to deposition. Experiments are in progress to examine the flow patterns near various tube supports: the broached plate, two types of lattice bars, and the formed bars. Preliminary tests in an air/water loop with 1/2- and 7-tube SG mockups containing the tube supports have been completed. Flow patterns were visualized using injected air bubbles. Local velocities and turbulence levels were measured using a laser technique, which confirmed observations of flow recirculation and stagnation. Axial pressure profiles were measured to determine overall resistance coefficients, and to identify local pressure extremes. Some visualization tests were also carried out on an artificially fouled broached plate. Based on results to date, several deposition mechanisms are proposed: deposition of particles in stagnant regions, deposition of solubles due to flashing in low-pressure regions, and deposition in smaller channels due to steam migration toward larger channels. A qualitative assessment of the tube support designs based on these mechanisms implies that the relative resistances to fouling are: (WORST) broach plate << lattice bars << formed bars (BEST). As the air/water simulation shows only hydraulic flow patterns, further tests will be done in a simple liquid/vapor Freon loop to examine thermal effects. (author). 3 refs., 10 figs

  20. Instrumentation in the Rapsodie test circuits of 1 and 10 MW - flow-meters, manometers, level indicators, blockage indicators; L'instrumentation dans les cilicuits d'essais rapsodie 1 et 10 MW - debitmetres, manometres, indicateurs de niveau, indicateurs de bouchage

    Energy Technology Data Exchange (ETDEWEB)

    Lisle, J.P. de; Lions, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The main measuring instruments, which operate in the presence of liquid metals and which have been developed by the liquid metal section over the last few years, are electromagnetic flowmeters, differential manometers, level indicators and blockage indicators. We give here results obtained with these instruments during trial, in the 1 and 10 MW test circuits, together with the conclusions drawn about their possible use in the reactor Rapsodie, The flow rate measurements are carried out using electromagnetic flow meters with permanent magnets. We have studied more particularly the reliability of these instruments. The measurements matte show that the induction in the space between the poles is very constant with time and in the presence of the prevailing demagnetization phenomena to which the magnets are subjected. The differential manometers placed in the test circuits are very accurate. It is nevertheless necessary to carry out some technological modifications on them in order that they may operate satisfactorily over long periods. The continuous and discontinuous level-indicators tried out operate on the principle of a change in resistance. Studies carried out on the test loops of the reliability and of the accuracy of this equipment have shown the existence of phenomena convected with the condensation of sodium vapour on the upper parts of the reservoir, and have shown the importance of the condensed deposits when the oxygen content of the covering gas is appreciable. From the various blockage indicators tried out, the one chosen for equipping the reactor circuits is an automatic model with continuous recording. The development and testing of this apparatus has been going on for one year on an industrial scale circuit and has made it possible to show clearly an effect of a double blockage temperature. (authors) [French] Les principaux instruments de mesure, fonctionnant en presence de metal liquide, qui ont ete developpes et mis au point a la Section des Metaux

  1. FLICA III. A digital computer program for thermal-hydraulic analysis of reactors and experimental loops

    International Nuclear Information System (INIS)

    Plas, Roger.

    1975-05-01

    This computer program describes the flow and heat transfer in steady and transient state in two-phase flows. It is the present stage of the evolution about FLICA, FLICA II and FLICA II B codes which have been used and developed at CEA for the thermal-hydraulic analysis of reactors and experimental loops with heating rod bundles. In the mathematical model all the significant terms of the fundamental hydrodynamic equations are taken into account with the approximations of turbulent viscosity and conductivity. The two-phase flow is calculated by the homogeneous model with slip. In the flow direction an implicit resolution scheme is available, which make possible to study partial or total flow blockage, with upstream and downstream effects. A special model represents the helical wire effects in out-of pile experimental rod bundles [fr

  2. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  3. Scaled experiments using the helium technique to study the vehicular blockage effect on longitudinal ventilation control in tunnels

    DEFF Research Database (Denmark)

    Alva, Wilson Ulises Rojas; Jomaas, Grunde; Dederichs, Anne

    2015-01-01

    A model tunnel (1:30 compared to a standard tunnel section) with a helium-air smoke mixture was used to study the vehicular blockage effect on longitudinal ventilation smoke control. The experimental results showed excellent agreement with full-scale data and confirmed that the critical velocity...

  4. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s.

    Science.gov (United States)

    Hafner, Andreas; Meisenbach, Mark; Sedelmeier, Joerg

    2016-08-05

    The benefits and limitations of a simple continuous flow setup for handling and performing of organolithium chemistry on the multigram scale is described. The developed metalation platform embodies a valuable complement to existing methodologies, as it combines the benefits of Flash Chemistry (chemical synthesis on a time scale of <1 s) with remarkable throughput (g/min) while mitigating the risk of blockages.

  5. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  6. Cell cycle analysis in patients with Fanconi anemia from Serbia

    Directory of Open Access Journals (Sweden)

    Ćirković Sanja

    2013-01-01

    Full Text Available Fanconi anemia (FA is a rare autosomal recessive disorder, characterized by progressive bone marrow failure, chromosomal instability and cell cycle blockage in the G2 phase. The hypersensitivity of FA cells can be additionally induced with specific alkylating agents such as diepoxybutane (DEB and mitomycin C, which is used in differential diagnosis of FA. Among 72 patients with clinical suspicion of FA, who were diagnosed at the Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic” and the University Children’s Hospital (2004 - 2011, in 10 patients the diagnosis of FA was confirmed on the basis of an increased chromosome sensitivity to DEB. Five out of 10 FA patients were available for further flow cytometric analysis of cell cycle. We examined cell cycle blockage in G2 phase in untreated and with DEB treated lymphocyte cultures from FA patients and from the healthy persons, as control group. All five patients affected with FA, showed an increased DEB induced G2-phase-blockage which was over two times higher than in controls. The percentage of FA cells arrested in G2 phase was between 4,41% and 10,45% with mean value (MV of 7,76%, but in the control group this range was lower: 1,56% - 4,11% (MV: 2.84%, with no overlapping. FA patients showed an increased spontaneous arrest in G2 phase, as well, comparing to healthy controls (MV: 14,63% vs. 5,82%. Cell cycle assay of G2 phase blockage could be used as an additional diagnostic tool for confirmation of FA in patients with clinical suspicion of this disease. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  7. Usefulness of DC power flow for active power flow analysis with flow controlling devices

    NARCIS (Netherlands)

    Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.

    2006-01-01

    DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.

  8. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT.

    Science.gov (United States)

    Leijte, Joost A P; van der Ploeg, Iris M C; Valdés Olmos, Renato A; Nieweg, Omgo E; Horenblas, Simon

    2009-03-01

    The reliability of sentinel node biopsy is dependent on the accurate visualization and identification of the sentinel node(s). It has been suggested that extensive metastatic involvement of a sentinel node can lead to blocked inflow and rerouting of lymph fluid to a "neo-sentinel node" that may not yet contain tumor cells, causing a false-negative result. However, there is little evidence to support this hypothesis. Recently introduced hybrid SPECT/CT scanners provide both tomographic lymphoscintigraphy and anatomic detail. Such a scanner enabled the present study of the concept of tumor blockage and rerouting of lymphatic drainage in patients with palpable groin metastases. Seventeen patients with unilateral palpable and cytologically proven metastases in the groin underwent bilateral conventional lymphoscintigraphy and SPECT/CT before sentinel node biopsy of the contralateral groin. The pattern of lymphatic drainage in the 17 palpable groin metastases was evaluated for signs of tumor blockage or rerouting. On the CT images, the palpable node metastases could be identified in all 17 groins. Four of the 17 palpable node metastases (24%) showed uptake of radioactivity on the SPECT/CT images. In 10 groins, rerouting of lymphatic drainage to a neo-sentinel node was seen; one neo-sentinel node was located in the contralateral groin. A complete absence of lymphatic drainage was seen in the remaining 3 groins. The concept of tumor blockage and rerouting was visualized in 76% of the groins with palpable metastases. Precise physical examination and preoperative ultrasound with fine-needle aspiration cytology may identify nodes with considerable tumor invasion at an earlier stage and thereby reduce the incidence of false-negative results.

  9. Blockage of progestin physiology disrupts ovarian differentiation in XX Nile tilapia (Oreochromis niloticus)

    International Nuclear Information System (INIS)

    Zhou, Linyan; Luo, Feng; Fang, Xuelian; Charkraborty, Tapas; Wu, Limin; Wei, Jing; Wang, Deshou

    2016-01-01

    Previous studies indicated that maturation inducing hormone, 17α, 20β-Dihydroxy-4-pregnen-3-one (DHP), probably through nuclear progestin receptor (Pgr), might be involved in spermatogenesis and oogenesis in fish. To further elucidate DHP actions in teleostean ovarian differentiation, we analyzed the expression of pgr in the ovary of Nile tilapia (Oreochromis niloticus), and performed RU486 (a synthetic Pgr antagonist) treatment in XX fish from 5 days after hatching (dah) to 120dah. Tilapia Pgr was abundantly expressed in the follicular cells surrounding oocytes at 30 and 90dah. Continuous RU486 treatment led to the blockage of oogenesis and masculinization of somatic cells in XX fish. Termination of RU486 treatment and maintenance in normal condition resulted in testicular differentiation, and estrogen compensation in RU486-treated XX fish successfully restored oogenesis. In RU486-treated XX fish, transcript levels of female dominant genes were significantly reduced, while male-biased genes were evidently augmented. Meanwhile, both germ cell mitotic and meiotic markers were substantially reduced. Consistently, estrogen production levels were significantly declined in RU486-treated XX fish. Taken together, our data further proved that DHP, possibly through Pgr, might be essential in the ovarian differentiation and estrogen production in fish. - Highlights: • DHP plays a critical role in early stage oogenesis of XX tilapia. • Blockage of DHP actions by RU486 treatment led to masculinization and/or sex reversal in XX tilapia. • Both DHP and estrogen are indispensable for ovarian differentiation.

  10. Blockage of progestin physiology disrupts ovarian differentiation in XX Nile tilapia (Oreochromis niloticus)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Linyan; Luo, Feng; Fang, Xuelian [Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715 (China); Charkraborty, Tapas [South Ehime Fisheries Research Center, Ehime University, Ainan, 798-4206 (Japan); Wu, Limin; Wei, Jing [Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715 (China); Wang, Deshou, E-mail: wdeshou@swu.edu.cn [Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715 (China)

    2016-04-22

    Previous studies indicated that maturation inducing hormone, 17α, 20β-Dihydroxy-4-pregnen-3-one (DHP), probably through nuclear progestin receptor (Pgr), might be involved in spermatogenesis and oogenesis in fish. To further elucidate DHP actions in teleostean ovarian differentiation, we analyzed the expression of pgr in the ovary of Nile tilapia (Oreochromis niloticus), and performed RU486 (a synthetic Pgr antagonist) treatment in XX fish from 5 days after hatching (dah) to 120dah. Tilapia Pgr was abundantly expressed in the follicular cells surrounding oocytes at 30 and 90dah. Continuous RU486 treatment led to the blockage of oogenesis and masculinization of somatic cells in XX fish. Termination of RU486 treatment and maintenance in normal condition resulted in testicular differentiation, and estrogen compensation in RU486-treated XX fish successfully restored oogenesis. In RU486-treated XX fish, transcript levels of female dominant genes were significantly reduced, while male-biased genes were evidently augmented. Meanwhile, both germ cell mitotic and meiotic markers were substantially reduced. Consistently, estrogen production levels were significantly declined in RU486-treated XX fish. Taken together, our data further proved that DHP, possibly through Pgr, might be essential in the ovarian differentiation and estrogen production in fish. - Highlights: • DHP plays a critical role in early stage oogenesis of XX tilapia. • Blockage of DHP actions by RU486 treatment led to masculinization and/or sex reversal in XX tilapia. • Both DHP and estrogen are indispensable for ovarian differentiation.

  11. Fuel dynamics loss-of-flow test L3. Final report

    International Nuclear Information System (INIS)

    Fischer, A.K.; Lo, R.K.; Barts, E.W.

    1976-06-01

    The behavior of FTR-type, mixed-oxide, preirradiated, ''intermediate-power-structure'' fuel during a simulation of an FTR loss-of-flow accident was studied in the Mark-IIA integral TREAT loop. Analysis of the data reported here leads to a postulated scenario (sequence and timing) of events in the test. This scenario is presented, together with the calculated timing of events obtained by use of the SAS code. The initial fuel motion, starting during the preheat phase, consisted of coherent motion of the entire intact fuel bundle toward the pump. Incoherence developed as temperature rose. The fuel motion was mostly upward, and the greatest was in the top third of the fuel column. Fuel fragments formed against the pump side of the fluted tube near the original fuel midplane. A penetration of fluted tube occurred. A sudden voiding of the central region of the fuel column occurred at 29.75 s and was largely completed within 150 ms. The lower steel blockage of the fuel elements occurred in the vicinity of the lower insulator pellets. The upper steel blockage just above the tops of the original fuel pins appeared to have channels through it. Cladding and spacer wires melted away in the fuel section. Fuel pellets were only evident at and above the top and at the bottom of the original fuel column, where a large mass of melted fuel was present. Over the length of the fuel column, most of the fluted tube had melted away

  12. Entropy generation due to external fluid flow and heat transfer from a cylinder between parallel planes

    Directory of Open Access Journals (Sweden)

    Melhem Omar A.

    2017-01-01

    Full Text Available In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.

  13. Flow analysis techniques for phosphorus: an overview.

    Science.gov (United States)

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  14. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  15. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    Science.gov (United States)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  16. Modular Control Flow Analysis for Libraries

    DEFF Research Database (Denmark)

    Probst, Christian W.

    2002-01-01

    One problem in analyzing object oriented languages is that the exact control flow graph is not known statically due to dynamic dispatching. However, this is needed in order to apply the large class of known interprocedural analysis. Control Flow Analysis in the object oriented setting aims...

  17. Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow

    International Nuclear Information System (INIS)

    Ramskill, Nicholas P; Wang, Mi

    2011-01-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime

  18. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  19. ANALYSIS AND ACCOUNTING OF TOTAL CASH FLOW

    Directory of Open Access Journals (Sweden)

    MELANIA ELENA MICULEAC

    2012-01-01

    Full Text Available In order to reach the objective of supplying some relevant information regarding the liquidity inflows and outflows during a financial exercise, the total cash flow analysis must include the analysis of result cashable from operation, of payments and receipts related to the investment and of financing decisions of the last exercise, as well as the analysis of treasury variation (of cash items. The management of total cash flows ensures the correlation of current liquidness flows as consequence of receipts with the payments ’flows, in order to provide payment continuity of mature obligations.

  20. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    OpenAIRE

    Jang, Jaesung; Wereley, Steven

    2007-01-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...

  1. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  2. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-09-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition.

  3. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    International Nuclear Information System (INIS)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-01-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition

  4. Hybrid Information Flow Analysis for Programs with Arrays

    Directory of Open Access Journals (Sweden)

    Gergö Barany

    2016-07-01

    Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.

  5. Criticality safety analysis of a calciner exit chute

    International Nuclear Information System (INIS)

    Haught, C.F.; Basoglu, B.; Brewer, R.W.; Hollenback, D.F.; Wilkinson, A.D.; Dodds, H.L.

    1994-01-01

    Calcination of uranyl nitrate into uranium oxide is part of normal operations of some enrichment plants. Typically, a calciner discharges uranium oxide powder (U 3 O 8 ) into an exit chute that directs the powder into a receiving can located in a glove box. One possible scenario for a criticality accident is the exit chute becoming blocked with powder near its discharge. The blockage restricts the flow of powder causing the exit chute to become filled with the powder. If blockage does occur, the height of the powder could reach a level that would not be safe from a criticality point of view. In this analysis, the subcritical height limit is examined for 98% enriched U 3 O 8 in the exit chute with full water reflection and optimal water moderation. The height limit for ensuring criticality safety during such an accumulation is 28.2 cm above the top of the discharge pipe at the bottom of the chute. Chute design variations are also evaluated with full water reflection and optimal water moderation. Subcritical configurations for the exit chute variation are developed, but the configurations are not safe when combined with the calciner. To ensure criticality safety, modifications must be made to the calciner tube or safety measures must be implemented if these designs are to be utilized with 98% enriched material. A geometrically safe configuration for the exit chute is developed for a blockage of 20% enriched powder with full water reflection and optimal water moderation, and this configuration is safe when combined with the existing calciner

  6. Unstart phenomena induced by flow choking in scramjet inlet-isolators

    Science.gov (United States)

    Im, Seong-kyun; Do, Hyungrok

    2018-02-01

    A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.

  7. LFSTAT - An R-Package for Low-Flow Analysis

    Science.gov (United States)

    Koffler, D.; Laaha, G.

    2012-04-01

    When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.

  8. Numerical simulation of fuel assembly thermohydraulics of fast reactors with the partial blockage of cross section under the coolant

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.

    2000-01-01

    The problems of numerical modeling of thermohydraulics in assembly of fuel elements of fast reactors with the partial blockage of cross-section under the coolant are considered. The information about existing codes constructed on use of subchannel technique and model of porous body are presented. The results of calculation obtained by these codes are presented. (author)

  9. Self-sustained oscillations in blood flow through a honeycomb capillary network.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2014-09-01

    Numerical simulations of unsteady blood flow through a honeycomb network originating at multiple inlets and terminating at multiple outlets are presented and discussed under the assumption that blood behaves as a continuum with variable constitution. Unlike a tree network, the honeycomb network exhibits both diverging and converging bifurcations between branching capillary segments. Numerical results based on a finite difference method demonstrate that as in the case of tree networks considered in previous studies, the cell partitioning law at diverging bifurcations is an important parameter in both steady and unsteady flow. Specifically, a steady flow may spontaneously develop self-sustained oscillations at critical conditions by way of a Hopf bifurcation. Contrary to tree-like networks comprised entirely of diverging bifurcations, the critical parameters for instability in honeycomb networks depend weakly on the system size. The blockage of one or more network segments due to the presence of large cells or the occurrence of capillary constriction may cause flow reversal or trigger a transition to unsteady flow.

  10. Heat-transfer in a partially-blocked sodium-cooled rod bundle

    International Nuclear Information System (INIS)

    Han, J.T.

    1979-01-01

    Heat transfer coefficients were experimentally determined for 31-rod sodium-cooled bundle with a 6-subchannel central blockage. The Nusselt number is presented as a function of the Peclet number for both the free flow region undisturbed by the blockage and the wake region immediately downstream of the blockage. Results are compared with the existing correlations for liquid metals. The heat transfer coefficient was generally higher in the unblocked free flow region than in the wake region. A leak at the blockage improved the heat transfer coefficient in the wake region

  11. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  12. Model based flow measurement using venturi flumes for return flow during drilling

    Directory of Open Access Journals (Sweden)

    Ivan Pirir

    2017-07-01

    Full Text Available In an oil well drilling operation, a proper knowledge of the return fluid flowrate is necessary both for the stabilization of the bottom hole pressure of the well and also as a primary indication of a kick or loss. In practice, the drill fluid flowing through the return line is usually measured with Coriolis meters. However this method is both expensive and has some downsides. For instance there is a risk of blockage due to drill cuttings while measuring the discharge. The presence of gas and cuttings in the drilling fluid will also have a negative effect in the measurement i.e. for multi-phase fluid, the readings from Coriolis meters may not be accurate. A cheaper alternative would be to use an open channel for the measurement of the discharge from the return flowline. In this paper, a venturi rig is used as the open channel and modeled by the Saint Venant equations. Experimental verification of the simulation results show a promising behavior of the model based measurement of the return fluid flow.

  13. Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study.

    Science.gov (United States)

    Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Safaei, Mohammad Reza; Nguyen, Truong Khang

    2018-01-01

    We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced.

  14. Development of sub-channel/system coupled code and its application to a supercritical water-cooled test loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Yang, T.; Cheng, X.

    2014-01-01

    To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code and system code are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal-hydraulic parameters are predicted by the sub-channel code COBRA-SC. Sensitivity analysis are carried out respectively in ATHLET-SC and COBRA-SC code, to identify the appropriate models for description of the flow blockage phenomenon in the test loop. Some measures to mitigate the accident consequence are also trialed to demonstrate their effectiveness. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel assembly can be reduced effectively by the safety measures of SCWR-FQT. (author)

  15. Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yojina, Jiraporn; Ngamsaad, Waipot; Nuttavut, Narin; Triampo, Darapond; Lenbury, Yongwimon; Sriyab, Somchai; Triampo, Wannapong [Faculty of Science, Mahidol University, Bangkok (Thailand); Kanthang, Paisan [Rajamangala University of Technology, Bangkok (Thailand)

    2010-10-15

    In this work, mesoscopic modeling via a computational lattice Boltzmann method (LBM) is used to investigate the flow pattern phenomena and the physical properties of the flow field around one and two square obstacles inside a two-dimensional channel with a fixed blockage ratio,{beta} =14 , centered inside a 2D channel, for a range of Reynolds numbers (Re) from 1 to 300. The simulation results show that flow patterns can initially exhibit laminar flow at low Re and then make a transition to periodic, unsteady, and, finally, turbulent flow as the Re get higher. Streamlines and velocity profiles and a vortex shedding pattern are observed. The Strouhal numbers are calculated to characterize the shedding frequency and flow dynamics. The effect of the layouts or configurations of the obstacles are also investigated, and the possible connection between the mixing process and the appropriate design of a chemical mixing system is discussed

  16. Multifractal Analysis for the Teichmueller Flow

    Energy Technology Data Exchange (ETDEWEB)

    Meson, Alejandro M., E-mail: meson@iflysib.unlp.edu.ar; Vericat, Fernando, E-mail: vericat@iflysib.unlp.edu.ar [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB) CCT-CONICET, La Plata-UNLP and Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI) UNLP (Argentina)

    2012-03-15

    We present a multifractal description for Teichmueller flows. A key ingredient to do this is the Rauzy-Veech-Zorich reduction theory, which allows to treat the problem in the setting of suspension flows over subshifts. To perform the multifractal analysis we implement a thermodynamic formalism for suspension flows over countable alphabet subshifts a bit different from that developed by Barreira and Iommi.

  17. Flows method in global analysis

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1994-12-01

    We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs

  18. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    International Nuclear Information System (INIS)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira

    2015-01-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  19. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira, E-mail: ecfoliveira@hotmail.com, E-mail: lazara.castrillo@upe.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco

    2015-07-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  20. Instability of a cantilevered flexible plate in viscous channel flow

    Science.gov (United States)

    Balint, T. S.; Lucey, A. D.

    2005-10-01

    The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.

  1. Fluid dynamics of cryogenic two-phase flows

    International Nuclear Information System (INIS)

    Verfondern, K.; Jahn, W.

    2004-01-01

    The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)

  2. Flow Injection Analysis in Industrial Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2009-01-01

    Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...

  3. The THETIS 80% blocked cluster experiment. Pt. 2

    International Nuclear Information System (INIS)

    Cooper, C.A.; Pearson, K.G.; Jowitt, D.

    1984-09-01

    Thermal-hydraulics experiments on a model PWR fuel assembly containing partial blockage are reported. The amount of heat removed by convection in single-phase flow is relatively small because a large fraction of the flow is diverted to bypass the blockage. Radial heat conduction across the blockage is an important heat transfer mechanism, particularly at low Reynolds numbers. Experimental results are in good agreement with predictions from the BERTHA code. (U.K.)

  4. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  5. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  6. Abnormal traffic flow data detection based on wavelet analysis

    Directory of Open Access Journals (Sweden)

    Xiao Qian

    2016-01-01

    Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.

  7. LDV measurement, flow visualization and numerical analysis of flow distribution in a close-coupled catalytic converter

    International Nuclear Information System (INIS)

    Kim, Duk Sang; Cho, Yong Seok

    2004-01-01

    Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC

  8. EDF feedback on recent EPRI SGOG SG chemical cleanings applications for TSP blockage reduction and heat transfer recover

    International Nuclear Information System (INIS)

    Dijoux, M.; De Bouvier, O.; Mercier, S.; Pages, D.; Bretelle, J.-L.; Leclercq, P.; Mermillod, A.

    2010-01-01

    Between 2007 and 2008, six Steam Generators Chemical Cleanings (SGCC) with the inhibitor free high temperature process were applied on EDF PWR units. The main goal was to reduce the excessive Tube Support Plate blockages observed on several units of the EDF fleet and the consequences on wide range levels and the risk of tube cracks. The heat transfer recovery was the second objective. Despite the correct results obtained, the corrosion impact of the high temperature process on internal metallic surfaces, higher than expected, and the environmental issues led EDF to move to a new cleaning process. The low temperature process developed by EPRI SGOG and applied for many years was selected for the same purpose. Some qualification laboratory tests were performed by Dominion Engineering Inc (DEI) to demonstrate the innocuousness an the efficiency of the process to achieve these goals. The EPRI SGOG process was then applied seven times by Westinghouse on the EDF units Cruas 3, Cruas 2, Belleville 1, Cattenom 1, Cattenom 3, Chinon B3 and Cattenom 4 between 2008 and 2010. All these units operate from the initial start at low AVT pH 25 o C (9,2) in the secondary circuit. Due to copper presence in the deposits to remove, the cleaning sequence 'Copper - Iron - Copper steps' was performed each time. After a short description of the process, including the specific adaptation in France, lessons learned are reported in this paper in the following areas: process monitoring, corrosion, efficiency, liquid and gaseous wastes, chemical pollution during start-up. Based on the 3 first applications in 2008, some modifications of the process were implemented, particularly for the copper step. For the units cleaned, 1100 to 4500 kg of deposits per SG have been removed, including TS sludge lancing. The reduction of TSP blockages was satisfying. The effect on steam pressure improvement and the wide range level is then discussed. The paper concludes on EDF perspectives for soft

  9. Flow Analysis for the Falkner–Skan Wedge Flow

    DEFF Research Database (Denmark)

    Bararnia, H; Haghparast, N; Miansari, M

    2012-01-01

    In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtai...

  10. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  11. Present status of numerical analysis on transient two-phase flow

    International Nuclear Information System (INIS)

    Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.

    1987-01-01

    The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)

  12. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington

    Science.gov (United States)

    Denlinger, Roger P.

    2012-01-01

    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage

  13. Analysis of the equalizing holes resistance in fuel assembly spike for lead-based reactor

    International Nuclear Information System (INIS)

    Zhang, Guangyu; Jin, Ming; Wang, Jianye; Song, Yong

    2017-01-01

    Highlights: • A RELAP5 model for a 10 MWth lead-based reactor was built to study the hydrodynamic characteristics between the equalizing holes in the fuel assembly spike. • Different fuel assembly total blockage scenarios and different resistances for different fuel assemblies were examined. • The inherent safety characteristics of the lead-based reactor was improved by optimizing the configuration of equalizing holes in the fuel assembly spike. - Abstract: To avoid the damage of the fuel rod cladding when a fuel assembly (FA) is totally blocked, a special configuration of the fuel assembly spike was designed with some equalizing holes in the center region which can let the coolant to flow during the totally blockage scenarios of FA. To study the hydrodynamic characteristics between the equalizing holes and an appropriate resistance, a RELAP5 model was developed for a 10 MWth lead-based reactor which used lead-bismuth as coolant. Several FA total blockage and partial core blockage scenarios were selected. The simulation results indicated that when all the FA spike equalizing holes had the same hydraulic resistance, only a narrow range of suitable equalizing holes resistances could be chosen when a FA was blocked. However, in the two or more FA blockage scenarios, there were no appropriate resistances to meet the requirement. In addition, with different FA spike equalizing holes with different resistances, a large range of suitable equalizing hole resistances could be chosen. Especially a series of suitable resistances were selected when the small power FA resistance was 1/2, 1/4, 1/8 of the large one. Under these circumstances, one, two or three FA blockages would not damage the core. These demonstrated that selecting a series of suitable hydraulic resistances for the equalizing holes could improve the safety characteristics of the reactor effectively.

  14. Finite element analysis of advanced neutron source fuel plates

    International Nuclear Information System (INIS)

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles

  15. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  16. Reflood modeling under oscillatory flow conditions with Cathare

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J M; Bartak, J; Janicot, A

    1994-12-31

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs.

  17. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    Science.gov (United States)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  18. Analysis of an out-of-pile experiment for materials redistribution under core disruptive accident condition of fast breeder reactors

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi; Shimizu, Akinao

    1995-01-01

    Calculation of one of the SIMBATH experiments was performed using the SIMMER-II code. The experiments were intended to simulate the fuel pin disintegration, the molten materials relocation and following materials redistribution that could occur during core disruptive accidents assumed in fast breeder reactors. The calculation by SIMMER-II showed that the incorporated step-wise fuel pin disintegration model and the modified particle jamming model were capable of reproducing the course of materials relocation within the identified ranges of the parameters which governed the blockages formation, i.e. the characteristic radius of solid particles jamming and/or sieving out in the flow and the effective particle viscosity. In particular the final materials redistribution calculated by SIMMER-II very well reproduced the experiment. This fact made it possible to interpret theoretically the mechanisms of flow blockages formation and related materials redistribution. (author)

  19. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    Science.gov (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  20. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    Science.gov (United States)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  1. Assessing the thermal-hydraulic behaviour of steam generators in a CANDU-6 type NPP in the event of MSSV blockage on the open-setting

    International Nuclear Information System (INIS)

    Dinca, Elena

    2004-01-01

    This work aims at achieving an analysis regarding the thermal-hydraulic behaviour of a CANDU-6 type NPP in the event of the blockage on open-setting of an MSSV (Main Steam Safety Valve) for steam relief from steam generators. The systems studied are main steam and feedwater mixture in the secondary circuit, particularly being analyzed the behaviour of the steam generators as well as the primary heat transfer and the control system of heavy water pressure and inventory in the primary system. One supposes that the MSSV blockage occurs directly after its opening in the event of an accident that led to the a steam pressure rise in the steam generators up to the threshold value of MSSV o penning. The analysis was applied to two events of initiation which lead to MSSV o penning, namely a Class IV loss of electric supply and loss of vacuum in turbine condenser. In the simulation of the events selected for analysis a long elapse of time is supposed (3600 seconds) and no operator intervention while the NPP is operating at rating power and equilibrium fuel regime. Each of the two events were analyzed for two distinct sets of conditions of event initiation and evolution. The study was focussed on the behaviour of NPP, particularly of the steam generators, and on the estimation of the amount of water in the secondary circuit released into the atmosphere during the event. The analysis is of deterministic type and supplies information required by the Probabilistic Safety Assessment (PSA) applied to nuclear facilities in establishing the operation procedures and documentation. The analysis was based on design data for a CANDU-6 NPP and the HYDN3 code for thermal-hydraulic computation in CANDU type NPPs. In the paper there are presented the analysis, methodology, models, hypotheses and the input data as well as the analyzed cases. Within the computing code some models were developed to allow simulating the event sequences chosen for analyses. The results are plotted and

  2. THE AZERBAIJANI OFFICIAL State DISCOURSE ON THE ARMENIANAZERBAIjANI CONFLICT: BLOCKAGES TO PEACE

    Directory of Open Access Journals (Sweden)

    Lavinia BADULESCU

    2018-05-01

    Full Text Available The intractable conflict between Armenia and Azerbaijan, the first in a series of inter-ethnic wars to arise in the final years of the Soviet Union, has lasted for three decades and has gone through several violent episodes inflicting widespread death and destruction. Against the background of a long period of tried-and-failed resolution attempts, the conflict has led to the fostering of grievances, prejudice, long-lasting societal trauma and victimhood. Starting from these considerations, this paper seeks to emphasize the way in which, in the official state discourse, the Azerbaijani leaders concentrate mainly on their own traumas and victim status. This type of discourse sets off a unilateral solution to the conflict, considered the only right option, thus preventing any dialogue with the Armenian side, and implicitly any resolution of the conflict. From a methodological perspective, I have selected several official speeches belonging to the Azerbaijani leaders between 1994-2016 and held at various national and international forums. The content analysis of the Azerbaijani official speeches will be complemented by the data collected through semi-structured interviews with Azerbaijani experts in the field of International Relations during a field research to Azerbaijan. The paper concludes that trauma and victimhood as reflected in the official Azerbaijani state discourse function as blockages to peace and hinder any changes in the way Azerbaijani leaders represent the conflict and its resolution.

  3. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  4. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  5. Safety design concept and analysis for the upgrading JRR-3

    International Nuclear Information System (INIS)

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  6. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  7. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  8. Supplmental testimony of the AEC Regulatory Staff. Public rulemaking hearing on: interim acceptance criteria for emergency core cooling systems for light-water cooled power reactors

    International Nuclear Information System (INIS)

    1972-01-01

    Information is presented concerning sensitivity analysis, loop codes, two-phase pressure drop, critical flow model, pump modeling, PWR core flow distribution, accumulator bypass, fuel densification, gap thermal conductance and UO 2 thermal conductivity, transition boiling heat transfer, clad-to-fluid heat transfer, heat transfer at low pressure, reflood rate analyses, containment back pressure during reflood, BWR FLECHT, PWR reflooding heat transfer FLECHT data, embrittlement and post-blowdown loads, fuel rod physico-chemical reactions, flow blockage, small break analysis, and decay heat. (U.S.)

  9. Contribution to the analysis and the modelling of turbulent flows in mixed convection regime, application to radioactive waste management

    International Nuclear Information System (INIS)

    Lecocq, Y.

    2008-12-01

    In the frame of radioactive waste management, this work aims to study the flow around a heating wall-mounted cylinder in crossflow in URANS approach. Well-known limitations of first order turbulence models lead us to consider second order turbulence modelling. In that frame, a heat transfer model is developed and validated on academic test cases. To begin with, when mixed convection regime is dominant, these simulations, completed by an isotherm one, all performed with low-Reynolds k-w SST model, give prominence to several eddy structures registered by the bibliography. One simulation is also performed with the high-Reynolds Rij-epsilon SSG model. With the k-w SST model, the heat transfer is correctly reproduced compared to the VALIDA experiment lead by the CEA, though with the Rij-epsilon SSG model, it is strongly under-estimated. It is supposed that it comes from the use of wall functions. Subsequently, when natural convection is predominant, flow topology becomes completely different and the heat transfer becomes less accurate to the VALIDA experiment. Following Durbin's approach, the Elliptic Blending-Renolds Stress Model EBRSM, consists in accounting for wall effects, and in wall blockage in particular. Following this formalism, an Elliptic Blending-Algebraic Flux Model is developed, the EBAFM. With this model, a priori tests in the three convection regimes and then simulations on the same test cases show major improvements in flow predictions. This leads to an interesting perspective to an intermediate model between SGDH and transport equations. (author)

  10. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  11. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  12. Analysis of the brazilian scientific production about information flows

    Directory of Open Access Journals (Sweden)

    Danielly Oliveira Inomata

    2015-07-01

    Full Text Available Objective. This paper presents and discuss the concepts, contexts and applications involving information flows in organizations. Method. Systematic review, followed by a bibliometric analysis and system analysis. The systematic review aimed to search for, evaluate and review evidence about the research topic. The systematic review process comprised the following steps: 1 definition of keywords, 2 systematic review, 3 exploration and analysis of articles and 4 comparison and consolidation of results. Results. A bibliometric analysis aimed to provide a statement of the relevance of articles where the authors, dates of publications, citation index, and periodic keywords with higher occurrence. Conclusions. As survey results confirms the emphasis on information featured in the knowledge management process, and advancing years, it seems that the emphasis is on networks, ie, studies are turning to the operationalization and analysis of flows information networks. The literature produced demonstrates the relationship of information flow with its management, applied to different organizational contexts, including showing new trends in information science as the study and analysis of information flow in networks.

  13. Optoelectronic iron detectors for pharmaceutical flow analysis.

    Science.gov (United States)

    Rybkowska, Natalia; Koncki, Robert; Strzelak, Kamil

    2017-10-25

    Compact flow-through optoelectronic detectors fabricated by pairing of light emitting diodes have been applied for development of economic flow analysis systems dedicated for iron ions determination. Three analytical methods with different chromogens selectively recognizing iron ions have been compared. Ferrozine and ferene S based methods offer higher sensitivity and slightly lower detection limits than method with 1,10-phenantroline, but narrower ranges of linear response. Each system allows detection of iron in micromolar range of concentration with comparable sample throughput (20 injections per hour). The developed flow analysis systems have been successfully applied for determination of iron in diet supplements. The utility of developed analytical systems for iron release studies from drug formulations has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Control Flow Analysis for BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Priami, C.

    2007-01-01

    This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...

  15. Mean streamline analysis for performance prediction of cross-flow fans

    International Nuclear Information System (INIS)

    Kim, Jae Won; Oh, Hyoung Woo

    2004-01-01

    This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans

  16. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    Science.gov (United States)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  17. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  18. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  19. Low flow analysis of the lower Drava River

    International Nuclear Information System (INIS)

    Mijuskovic-Svetinovic, T; Maricic, S

    2008-01-01

    Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.

  20. Substance flow analysis in Finland - Four case studies on N and P flows

    Energy Technology Data Exchange (ETDEWEB)

    Antikainen, R.

    2007-07-01

    Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to such environmental problems as aquatic and terrestrial eutrophication (N, P), acidification (N), global warming (N), groundwater pollution (N), depletion of stratospheric ozone (N), formulation of tropospheric ozone (N) and poor urban air quality (N). Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. Themultiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). IE uses analytical research tools such as material and substance flow analysis (MFA, SFA), energy flow analysis (EFA), life cycle assessment (LCA) and material input per service unit (MIPS). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using SFA in the following four subsystems: (I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical

  1. Random signal tomographical analysis of two-phase flow

    International Nuclear Information System (INIS)

    Han, P.; Wesser, U.

    1990-01-01

    This paper reports on radiation tomography which is a useful tool for studying the internal structures of two-phase flow. However, general tomography analysis gives only time-averaged results, hence much information is lost. As a result, it is sometimes difficult to identify the flow regime; for example, the time-averaged picture does not significantly change as an annual flow develops from a slug flow. A two-phase flow diagnostic technique based on random signal tomographical analysis is developed. It extracts more information by studying the statistical variation of the measured signal with time. Local statistical parameters, including mean value, variance, skewness and flatness etc., are reconstructed from the information obtained by a general tomography technique. More important information are provided by the results. Not only the void fraction can be easily calculated, but also the flow pattern can be identified more objectively and more accurately. The experimental setup is introduced. It consisted of a two-phase flow loop, an X-ray system, a fan-like five-beam detector system and a signal acquisition and processing system. In the experiment, for both horizontal and vertical test sections (aluminum and steel tube with Di/Do = 40/45 mm), different flow situations are realized by independently adjusting air and water mass flow. Through a glass tube connected with the test section, some typical flow patterns are visualized and used for comparing with the reconstruction results

  2. Stereo Scene Flow for 3D Motion Analysis

    CERN Document Server

    Wedel, Andreas

    2011-01-01

    This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot

  3. Temperature fluctuations: an assessment of their use in the detection of fast reactor coolant blockages

    International Nuclear Information System (INIS)

    Greef, C.P.

    1979-01-01

    The temperature noise technique for the detection of local blockages in fast reactor subassemblies is discussed. The main factors involved in an assessment of the technique are outlined and the experimental and theoretical work that has been carried out at BNL on the various aspects of the problem is described. It is concluded that blockings appreciably smaller than those predicted to produce boiling should be detectable against a background noise level due to subassembly power tilts, on a time scale giving protection against rapidly developing incidents. Further work required to increase confidence in the application of the technique to the reactor is outlined, including measurements in fully representative geometries, data from sodium rigs and further information on reactor background noise levels. (Auth.)

  4. Turbulent flow and temperature noise simulation by a multiparticle Monte Carlo method

    International Nuclear Information System (INIS)

    Hughes, G.; Overton, R.S.

    1980-10-01

    A statistical method of simulating real-time temperature fluctuations in liquid sodium pipe flow, for potential application to the estimation of temperature signals generated by subassembly blockages in LMFBRs is described. The method is based on the empirical characterisation of the flow by turbulence intensity and macroscale, radial velocity correlations and spectral form. These are used to produce realisations of the correlated motion of successive batches of representative 'marker particles' released at discrete time intervals into the flow. Temperature noise is generated by the radial mixing of the particles as they move downstream from an assumed mean temperature profile, where they acquire defined temperatures. By employing multi-particle batches, it is possible to perform radial heat transfer calculations, resulting in axial dissipation of the temperature noise levels. A simulated temperature-time signal is built up by recording the temperature at a given point in the flow as each batch of particles reaches the radial measurement plane. This is an advantage over conventional techniques which can usually only predict time-averaged parameters. (U.K.)

  5. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  6. The analysis of exergy and cash flow

    International Nuclear Information System (INIS)

    Weimin, H.

    1989-01-01

    The paper presents the analysis of the economic content of exergy parameter and the thermodynamical analogy of the analysis of cash flow, and gives out the reasonable foundations of the analysis of heat economy. The thoughts of optimum design of the combination of heat economic analysis and investment policy are also put forward

  7. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  8. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  9. An Experimental Study on Flow Boiling Critical Heat Flux Characteristics of Suddenly Expanded Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jin; Song, Sub Lee; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Moon, Sang Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this experiment, test section has been designed to simulate sudden flow path change due to deformation of cladding. It was tended to simulate cladding deformation that has discontinuous diameter change so coolant flow path changes suddenly. Experiments are in progress. Experiments on test section that simulate deformed flow path which contains sudden contraction and sudden expansion part have been done. Location of CHF has been varied by different condition of experiment. CHF at the outlet of test section fits well into the Macbeth's correlation and data of reference experiment, which was held on plain test section that had same diameter with inlet diameter of deformed test section. CHF at sudden expansion part was in churn flow regime and CHF was very low compared to expectation. It is discussed that liquid film separation from wall or bubble accumulation by backflow might be the reason of this result. For future work, experiments for two additional blockage ratio conditions will be carried out. Also, discussion and model development for deformed channel with sudden expand flow path will be held on.

  10. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  11. Deep Packet/Flow Analysis using GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Wenji [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-12

    Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Since the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.

  12. Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators

    International Nuclear Information System (INIS)

    Dörr, P C; Kloker, M J

    2015-01-01

    The applicability of dielectric barrier discharge plasma actuators for controlling the crossflow-vortex-induced laminar breakdown in a three-dimensional swept-wing-type boundary-layer flow is investigated using direct numerical simulation. Similar to the classical application of suction at the wall the aim is to modify the quasi two-dimensional base flow and to weaken primary crossflow (CF) instability, mainly due to a reduction of the basic CF. Not only localised volumetric forcing by plasma actuators but also CF counter-blowing and spots with a moving wall are investigated to identify effective fundamental mechanisms. It is found that counter blowing always results in partial blockage of the flow and eventually increased CF velocity, whereas moving-wall spots can slightly reduce the CF and the amplitude of crossflow vortices. Using discrete volumetric forcing a significant attenuation even of finite-amplitude crossflow vortices and thus a distinct transition delay is achieved. (paper)

  13. To Examine effect of Flow Zone Generation Techniques for Numerical Flow Analysis in Hydraulic Turbine

    International Nuclear Information System (INIS)

    Hussain, M.; Khan, J.A.

    2004-01-01

    A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)

  14. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.

    Science.gov (United States)

    Silva, Rui; Aguiar, Tatiana Q; Domingues, Lucília

    2015-01-10

    The Ashbya gossypii riboflavin biosynthetic pathway and its connection with the purine pathway have been well studied. However, the outcome of genetic alterations in the pyrimidine pathway on riboflavin production by A. gossypii had not yet been assessed. Here, we report that the blockage of the de novo pyrimidine biosynthetic pathway in the recently generated A. gossypii Agura3 uridine/uracil auxotrophic strain led to improved riboflavin production on standard agar-solidified complex medium. When extra uridine/uracil was supplied, the production of riboflavin by this auxotroph was repressed. High concentrations of uracil hampered this (and the parent) strain growth, whereas excess uridine favored the A. gossypii Agura3 growth. Considering that the riboflavin and the pyrimidine pathways share the same precursors and that riboflavin overproduction may be triggered by nutritional stress, we suggest that overproduction of riboflavin by the A. gossypii Agura3 may occur as an outcome of a nutritional stress response and/or of an increased availability in precursors for riboflavin biosynthesis, due to their reduced consumption by the pyrimidine pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mechanistic multidimensional analysis of horizontal two-phase flows

    International Nuclear Information System (INIS)

    Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.

    2010-01-01

    The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.

  16. Analysis of turbulence spectra in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao; Besnard, D.C.; Serizawa, Akimi.

    1993-01-01

    An analysis was made on the turbulence spectra in bubbly flow. Basic equation for turbulence spectrum in bubbly flow was formulated considering the eddy disintegration induced by bubble. Based on the dimensional analysis and modeling of eddy disintegration by bubble, constitutive equations for eddy disintegration were derived. Using these equations, turbulence spectra in bubbly flow (showing -8/3 power) was successfully explained. (author)

  17. Sensitivity analysis of time-dependent laminar flows

    International Nuclear Information System (INIS)

    Hristova, H.; Etienne, S.; Pelletier, D.; Borggaard, J.

    2004-01-01

    This paper presents a general sensitivity equation method (SEM) for time dependent incompressible laminar flows. The SEM accounts for complex parameter dependence and is suitable for a wide range of problems. The formulation is verified on a problem with a closed form solution obtained by the method of manufactured solution. Systematic grid convergence studies confirm the theoretical rates of convergence in both space and time. The methodology is then applied to pulsatile flow around a square cylinder. Computations show that the flow starts with symmetrical vortex shedding followed by a transition to the traditional Von Karman street (alternate vortex shedding). Simulations show that the transition phase manifests itself earlier in the sensitivity fields than in the flow field itself. Sensitivities are then demonstrated for fast evaluation of nearby flows and uncertainty analysis. (author)

  18. TREAT MK III Loop Thermoelastoplastic Stress Analysis for the L03 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, James M.

    1981-03-01

    The STRAW code was used to analyze the static response of a TREAT MK III loop subjected to thermal and mechanical loadings arising from an accident situation for the purpose of determining the defiections and stresses. This analysis provides safety support for the L03 reactivity accident study. The analysis was subdivided into two tasks: (1) an analysis of a flow blockage accident (Cases A and B), where all the energy is assumed deposited in the test leg, resulting in a temperature increase from 530°F to 1720°F, with a small internal pressure throughout the loop and (2) an analysis of a second flow blockage accident (Cases C and D), where again, all the energy is assumed to he deposited in the test leg, resulting in a temperature rise from 530°F to 1845°F, with a small internal pressure throughout the loop. The purpose of these two tasks was to determine if loop failure can occur with the thermal differential across the pump and test legs. Also of interest is whether an undesirable amount of loop lateral deflection will be caused by the thermal differential. A two dimensional analysis of the TREAT MK III loop was performed. The analysis accounted for material nonlinearities, both as a function of temperature and stress, and geometric nonlinearities arising from large deflections. Straight beam elements with annular cross sections were used to model the loop. The analyses show that the maximum strains are less than 21% of their failure strains for all subcases of Cases A and B. For all subcases of cases C and D, the maximum strains are less than 53% of their failure strains. The failure strain is 27.9% for the material at 530°F, 38.1% at 1720°F and 17.8% at 1845°F. Large lateral deflections are observed when the loop is not constrained except at its clamped support--as much as 8.6 inches. However, by accounting for the constraint of the concrete biological shield, the maximum lateral deflection was reduced to less than 0.05 inches at the points of concern.

  19. Application of neutron noise analysis to a swimming pool research reactor

    International Nuclear Information System (INIS)

    Behringer, K.; Lescano, V.H.; Meier, F.; Phildius, J.; Winkler, H.

    1982-01-01

    This work is part of a programme of establishing practical applications of neutron noise techniques to a swimming pool research reactor and deals with two different items: (1) The identification of local boiling caused e.g. by a partial blockage of the coolant flow in a fuel element. Local boiling can easily lead to a burn-out situation. The onset of boiling can be detected by neutron noise analysis and a boiling detection system is presently under development. (2) The measurement of the time evolution of the reactivity induced by xenon after reactor shut-down by an on-line reactivity meter based on neutron noise analysis. From the data, the prompt neutron decay constant at delayed critical, the equilibrium xenon reactivity worth, and an estimate of the average steady-state power flux in the core before reactor shut-down were obtained. (author)

  20. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    Science.gov (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  1. BERTHA: a programme for the thermal/hydraulic analysis of reflooding experiments

    International Nuclear Information System (INIS)

    Pearson, K.G.; Cooper, C.A.

    1985-04-01

    In the event of a large break loss-of coolant accident in a PWR the normal cooling would be restored by reflooding the dry overheated reactor core from below. A model, BERTHA, of heat transfer in this dry region is presented. It includes a film boiling and dispersed flow region and explicitly represents the effect of spacer grids. In parallel channel mode it can calculate the effect of partial flow blockage. Predictions of the model are compared with experimental data and show good agreement in both blocked and unblocked configurations. (U.K.)

  2. ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Goran Vujić

    2010-01-01

    Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.

  3. Precessing rotating flows with additional shear: stability analysis.

    Science.gov (United States)

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

  4. Research on the flow field of undershot cross-flow water turbines using experiments and numerical analysis

    International Nuclear Information System (INIS)

    Nishi, Y; Inagaki, T; Li, Y; Omiya, R; Hatano, K

    2014-01-01

    The purpose of this research is to develop a water turbine appropriate for low-head open channels in order to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of the cross-flow runner to open channels as an undershot water turbine has come under consideration and, to this end, a significant simplification was attained by removing the casings. However, the flow field of undershot cross-flow water turbines possesses free surfaces. This means that with the variation in the rotational speed, the water depth around the runner will change and flow field itself is significantly altered. Thus it is necessary to clearly understand the flow fields with free surfaces in order to improve the performance of this turbine. In this research, the performance of this turbine and the flow field were studied through experiments and numerical analysis. The experimental results on the performance of this turbine and the flow field were consistent with the numerical analysis. In addition, the inlet and outlet regions at the first and second stages of this water turbine were clarified

  5. The influence of distinct types of aquatic vegetation on the flow field

    Science.gov (United States)

    Valyrakis, Manousos; Barcroft, Stephen; Yagci, Oral

    2014-05-01

    The Sustainable management of fluvial systems dealing with flood prevention, erosion protection and restoration of rivers and estuaries requires implementation of soft/green-engineering methods. In-stream aquatic vegetation can be regarded as one of these as it plays an important role for both river ecology (function) and geomorphology (form). The goal of this research is to offer insight gained from pilot experimental studies on the effects of a number of different elements modeling instream, aquatic vegetation on the local flow field. It is hypothesized that elements of the same effective "blockage" area but of distinct characteristics (structure, porosity and flexibility), will affect both the mean and fluctuating levels of the turbulent flow to a different degree. The above hypothesis is investigated through a set of rigorous set of experimental runs which are appropriately designed to assess the variability between the interaction of aquatic elements and flow, both quantitatively and qualitatively. In this investigation three elements are employed to model aquatic vegetation, namely a rigid cylinder, a porous but rigid structure and a flexible live plant (Cupressus Macrocarpa). Firstly, the flow field downstream each of the mentioned elements was measured under steady uniform flow conditions employing acoustic Doppler velocimetry. Three-dimensional flow velocities downstream the vegetation element are acquired along a measurement grid extending about five-fold the element's diameter. These measurements are analyzed to develop mean velocity and turbulent intensity profiles for all velocity components. A detailed comparison between the obtained results is demonstrative of the validity of the above hypothesis as each of the employed elements affects in a different manner and degree the flow field. Then a flow visualization technique, during which fluorescent dye is injected upstream of the element and images are captured for further analysis and comparison, was

  6. Two-phase flow characteristics analysis code: MINCS

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Hirano, Masashi; Akimoto, Masayuki; Tanabe, Fumiya; Kohsaka, Atsuo.

    1992-03-01

    Two-phase flow characteristics analysis code: MINCS (Modularized and INtegrated Code System) has been developed to provide a computational tool for analyzing two-phase flow phenomena in one-dimensional ducts. In MINCS, nine types of two-phase flow models-from a basic two-fluid nonequilibrium (2V2T) model to a simple homogeneous equilibrium (1V1T) model-can be used under the same numerical solution method. The numerical technique is based on the implicit finite difference method to enhance the numerical stability. The code structure is highly modularized, so that new constitutive relations and correlations can be easily implemented into the code and hence evaluated. A flow pattern can be fixed regardless of flow conditions, and state equations or steam tables can be selected. It is, therefore, easy to calculate physical or numerical benchmark problems. (author)

  7. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  8. Combination of material flow analysis and substance flow analysis: a powerful approach for decision support in waste management.

    Science.gov (United States)

    Stanisavljevic, Nemanja; Brunner, Paul H

    2014-08-01

    The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management. © The Author(s) 2014.

  9. Vegetation-Induced Roughness in Low-Reynold's Number Flows

    Science.gov (United States)

    Piercy, C. D.; Wynn, T. M.

    2008-12-01

    Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation

  10. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan

    2011-01-01

    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

  11. The cash-flow analysis of the firm

    OpenAIRE

    Mariana Man

    2001-01-01

    The analysis of economic and financial indicators of the firm regards the profit and loss account analysis and the balance sheet analysis. The cash-flow from operating activities represents the amount of cash obtained by a firm from selling goods and services after deducting the costs involved by raw materials, materials and processenig operations

  12. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  13. Analysis of the cross flow in a radial inflow turbine scroll

    Science.gov (United States)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  14. GO-FLOW methodology. Basic concept and integrated analysis framework for its applications

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2010-01-01

    GO-FLOW methodology is a success oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. Recently an integrated analysis framework of the GO-FLOW has been developed for the safety evaluation of elevator systems by the Ministry of Land, Infrastructure, Transport and Tourism, Japanese Government. This paper describes (a) an Overview of the GO-FLOW methodology, (b) Procedure of treating a phased mission problem, (c) Common cause failure analysis, (d) Uncertainty analysis, and (e) Integrated analysis framework. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis and has a wide range of applications. (author)

  15. Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis

    Science.gov (United States)

    Castruccio, A.; Rust, A.; Sparks, R. S.

    2010-12-01

    We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of

  16. Refurbishment, core conversion and safety analysis of Apsara reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K.; Sasidharan, K.; Sengupta, S. [Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: nram@@apsara.barc.ernet.in

    1998-07-01

    Apsara, a 1 MWt pool type reactor using HEU fuel has been in operation at the Bhabha Atomic Research Centre, Trombay since 1956. In view of the long service period seen by the reactor it is now planned to carry out extensive refurbishment of the reactor with a view to extend its useful life. It is also proposed to modify the design of the reactor wherein the core will be surrounded by a heavy water reflector tank to obtain a good thermal neutron flux over a large radial distance from the core. Beam holes and the majority of the irradiation facilities will be located inside the reflector tank. The coolant flow direction through the core will be changed from the existing upward flow to downward flow. A delay tank, located inside the pool, is provided to facilitate decay of short lived radioactivity in the coolant outlet from the core in order to bring down radiation field in the operating areas. Analysis of various anticipated operational occurrences and accident conditions like loss of normal power, core coolant flow bypass, fuel channel blockage and degradation of primary coolant pressure boundary have been performed for the proposed design. Details of the proposed design modifications and the safety analyses are given in the paper. (author)

  17. Vibration analysis method for detection of abnormal movement of material in a rotary dissolver

    International Nuclear Information System (INIS)

    Smith, C.M.; Fry, D.N.

    1978-11-01

    Vibration signals generated by the movement of simulated nuclear fuel material through a three-stage, continuous, rotary dissolver were frequency analyzed to determine whether these signals contained characteristic signal patterns that would identify each of five phases of operation in the dissolver and, thus, would indicate the proper movement of material through the dissolver. This characterization of the signals is the first step in the development of a system for monitoring the flow of material through a dissolver to be developed for reprocessing spent nuclear fuel. Vibration signals from accelerometers mounted on the dissolver roller supports were analyzed in a bandwidth from 0 to 10 kHz. The analysis established that (1) all five phases of dissolver operation can be characterized by vibration signatures; (2) four of the five phases of operation can be readily and directly identified by a characteristic vibration signature during continuous, prototypic operation; (3) the transfer of material from the inlet to the dissolution stage can be indirectly monitored by one of the other four vibration signatures (the mixing signature) during prototypic operation; (4) a simulated blockage between the dissolution and exit stages can be detected by changes in one or more characteristic vibration signatures; and (5) a simulated blockage of the exit chute cannot be detected

  18. Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austira)

    Science.gov (United States)

    Janu, Stefan; Mehlhorn, Susanne; Moser, Markus

    2013-04-01

    Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austria) Authors: Stefan Janu, Susanne Mehlhorn, Markus Moser The village of St. Lorenzen, in the Styrian Palten valley is situated on the banks of the Lorenz torrent, in which a debris flow event occurred in the early morning hours of the 21st of July 2012, causing catastrophic damage to residential buildings and other infrastructural facilities. In the ministry-approved hazard zone map of 2009, the flood water discharge and bedload volume associated with a 150-year event was estimated at 34 m³/s and 25,000 m³ respectively for the 5.84 km² catchment area. The bedload transport capacity of the torrent was classified as ranging from 'heavy' to 'capable of producing debris flows'. The dominant process type of the mass movement event may be described as a fine-grained debris flow. The damage in the residential area of St.Lorenzen was caused by a debris flow pulse in the lower reach of the Lorenz torrent. This debris flow pulse was in turn caused by numerous landslides along the middle reaches of the torrent, some of which caused blockages, ultimately leading to an outburst event in the main torrent. Discharge cross-sections ranging from 65 - 90 m², and over 100 m² in a few instances, were measured upstream of the St. Lorenzen residential area. Back-calculations of velocities yielded an average debris flow velocity along the middle reaches of the torrent between 11 and 16 m/s. An average velocity of 9 m/s was calculated for the debris flow at the neck of the alluvial fan directly behind the center of the village. Due to both the high discharge values as well as to the height of the mass movement deposits, the natural hazard event of 21 July 2012 in St. Lorenzen is clearly to be described as having had an extreme intensity. A total of 67 buildings were damaged along the Lorenz torrent, 7 of were completely destroyed. According to the Austrian Service for

  19. Analysis of flow induced valve operation and pressure wave propagation for single and two-phase flow conditions

    International Nuclear Information System (INIS)

    Nagel, H.

    1986-01-01

    The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)

  20. Analysis of bubbly flow using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. [Texas A and M University, Nuclear Engineering Dept., College Stagion, TX (United States); Sanchez-Silva, F. [ESIME, INP (Mexico)

    2001-07-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  1. Analysis of bubbly flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  2. OpenFlow Deployment and Concept Analysis

    Directory of Open Access Journals (Sweden)

    Tomas Hegr

    2013-01-01

    Full Text Available Terms such as SDN and OpenFlow (OF are often used in the research and development of data networks. This paper deals with the analysis of the current state of OpenFlow protocol deployment options as it is the only real representative protocol that enables the implementation of Software Defined Networking outside an academic world. There is introduced an insight into the current state of the OpenFlow specification development at various levels is introduced. The possible limitations associated with this concept in conjunction with the latest version (1.3 of the specification published by ONF are also presented. In the conclusion there presented a demonstrative security application addressing the lack of IPv6 support in real network devices since most of today's switches and controllers support only OF v1.0.

  3. Basic considerations for the safety analysis report of the Greek Research Reactor-1 (GRR-1)

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1980-09-01

    The basic considerations upon which the new revised Safety Analysis Report (SAR) for the GRR-1 will be based are presented. The format and the content the SAR will follow are given. A number of credible and less credible accidents is briefly analysed on the basis of present knowledge and experience for similar reactors, as well as the experience gained in the last 10 years of the GRR-1 operation at 5 MW. The accident caused by partial blockage of the cooling flow is considered to be the Maximum Credible Accident (MCA) for the GRR-1. The MCA is analysed and its radiological impact to the environment is estimated using conservative assumptions. (T.A.)

  4. Evaluation of the flow at the contraction of a heat exchanger. Pt. 2. Effect of thermal-hydraulic factors on scale deposition at the contraction

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Yasuo, Akira; Inada, Fumio; Furuya, Masahiro

    2001-01-01

    In heat exchangers used in power plants, scale may deposit on the tube support plates of heat transfer tubes, especially at the leading edge where the flow passes a sudden contraction. This phenomenon can lead to flow path blockage, which in turn can affect plant performance. As a result, the mechanism of scale deposition and growth needs to be clarified. This phenomenon is assumed to be caused by a complex of thermal-hydraulic and electrochemical factors. In this study, flashing induced by pressure drop and turbulence at the leading edge of a contraction were assumed to be the main factors from the thermal-hydraulic point of view. And these factors in two different type of contractions were evaluated with a High Pressure / High Temperature steam-water two-phase flow experiment and 3D numerical analysis. Considerable differences in amount of steam caused by flashing and turbulence magnitude were observed between the two contractions which have same flow path area but different hydraulic diameter. It was also found that the size of bubbles passing the leading edge of contraction were smaller than 1 mm, while the bubbles in the upstream part were more than 10 times larger than those of the leading edge. (author)

  5. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  6. Diagnosing Communication Pathologies.

    Science.gov (United States)

    Mueller, Carol J.

    This paper addresses the concept of the communication audit, i.e., a fact-finding analysis, interpretation, and reporting process that studies the communication philosophy, structure, flow, and practice of the organization. Reasons for doing a communication audit are identified: (1) to uncover information blockages and organizational hindrances;…

  7. Phase-contrast cerebrospinal fluid flow magnetic resonance imaging in qualitative evaluation of patency of CSF flow pathways prior to infusion of chemotherapeutic and other agents into the fourth ventricle.

    Science.gov (United States)

    Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I

    2018-03-01

    Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.

  8. THEBES: a thermal hydraulic code for the calculation of transient two phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Camous, F.

    1983-01-01

    The three dimensional thermal hydraulic code THEBES, capable to calculate transient boiling of sodium in rod bundles is described here. THEBES, derived from the transient single phase code SABRE-2A, was developed in CADARACHE by the SIES to analyse the SCARABEE N loss of flow experiments. This paper also presents the results of tests which were performed against various types of experiments: (1) transient boiling in a 7 pin bundle simulating a partial blockage at the bottom of a subassembly (rapid transient SCARABEE 7.2 experiment), (2) transient boiling in a 7 pin bundle simulating a coolant coast down (slow transient SCARABEE 7.3 experiment), (3) steady local and generalised boiling in a 19 pin bundle (GR 19 I experiment), (4) transient boiling in a 19 pin bundle simulating a coolant coast down (GR 19 I experiment), (5) steady local boiling in a 37 pin bundle with internal blockage (MOL 7C experiment). Excellent agreement was found between calculated and experimental results for these different situations. Our conclusion is that THEBES is able to calculate transient boiling of sodium in rod bundles in a quite satisfying way

  9. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  10. Flow injection analysis in inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Rosias, Maria F.G.G.

    1995-10-01

    The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs

  11. Basic models in transitory analysis in biphasic flows

    International Nuclear Information System (INIS)

    Gonzalez S, J.M.

    1992-02-01

    The two-phase flow but studied and possibly the more complex, is the one integrated by gas-liquid mixtures. These flows are with frequency inside systems and equipment related with the chemical industry, that of the petroleum and in the one dedicated to the electric energy generation, being inside this last, in particular in the nuclear and of geothermal areas, those that but have motivated to the detailed and complete analysis of the behavior of the two-phase flows. The present report, it tries to analyze inside the nuclear reactor area, the emergence of some abnormal operation situations, related exclusively with the two-phase flow in gas-liquid mixtures. (Author)

  12. Transient flow analysis of integrated valve opening process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing

    2017-03-15

    Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.

  13. Repeated peritoneal catheter blockage caused by neurocysticercosis following ventriculoperitoneal shunt placement for hydrocephalus

    Directory of Open Access Journals (Sweden)

    Zhi Hua Li

    2018-01-01

    Full Text Available Cerebral cysticercosis is common, but the possibility for repeated occurrence of peritoneal catheter blockage caused by neurocysticercosis (NCC after two revisions following ventriculoperitoneal shunt placement for hydrocephalus is unusual. Herein, we describe one rare case in which peritoneal catheter revision was performed two times unsuccessfully. Endoscopic cysternostomy rather than peritoneal catheter adjustment was performed successfully, and histopathological examination of excised cystic samples confirmed NCC in our hospital. The present case highlights the need for awareness of NCC as a possible etiology of hydrocephalus, especially in developing countries. Uncommon findings in both lateral ventricles following low-field magnetic resonance imaging scans as well as the rarity of this infection involved in unusual location play important roles in misdiagnosis and incorrect treatment for hydrocephalus; thus, endoscopic cysternostomy, rather than multiple shunt adjustment of the peritoneal end, is recommended in the selected patient. To the best of our knowledge, this is the first report describing the misdiagnosis and inappropriate treatment of hydrocephalus caused by cerebral cysticercosis in China.

  14. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P  0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    International Nuclear Information System (INIS)

    Maruyama, Soh; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Murakami, Tomoyuki.

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T 1-M ) with simulated fuel rods and fuel blocks. (author)

  16. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    Science.gov (United States)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  17. Anthropology, knowledge-flows and global health.

    Science.gov (United States)

    Feierman, S; Kleinman, A; Stewart, K; Farmer, D; Das, V

    2010-01-01

    Global health programmes are damaged by blockages in the upward flow of information from localities and regional centres about realities of professional practice and about patients' lives and conditions of treatment. Power differentials between local actors and national or international decision-makers present further obstacles to effective action. Anthropological research and action, in its most effective current forms, make important contributions to these issues. This research often continues over the long term, intensively. It can be multi-sited, studying actors at local, national and international levels simultaneously. It studies the relative knowledge and power of impoverished patients and global decision-makers, all within a single frame. By doing so, anthropological research is capable of providing new and important insights on the diverse meanings of patient decision-making, informed consent, non-compliance, public health reporting, the building of political coalitions for health and many other issues.

  18. Experiment and Lattice Boltzmann numerical study on nanofluids flow in a micromodel as porous medium

    Science.gov (United States)

    Meghdadi Isfahani, A. H.; Afrand, Masoud

    2017-10-01

    Al2O3 nanofluids flow has been studied in etched glass micromodel which is idealization of porous media by using a pseudo 2D Lattice Boltzmann Method (LBM). The predictions were compared with experimental results. Pressure drop / flow rate relations have been measured for pure water and Al2O3 nanofluids. Because the size of Al2O3 nanoparticles is tiny enough to permit through the pore throats of the micromodel, blockage does not occur and the permeability is independent of the nanofluid volume fraction. Therefore, the nanofluid behaves as a single phase fluid, and a single phase LBM is able to simulate the results of this experiment. Although the flow in micromodels is 3D, we showed that 2D LBM can be used provided an effective viscous drag force, representing the effect of the third dimension, is considered. Good qualitative and quantitative agreement is seen between the numerical and experimental results.

  19. A Flow-Sensitive Analysis of Privacy Properties

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2007-01-01

    that information I send to some service never is leaked to another service? - unless I give my permission? We shall develop a static program analysis for the pi- calculus and show how it can be used to give privacy guarantees like the ones requested above. The analysis records the explicit information flow...

  20. A Coupled Model for Solution Flow and Bioleaching Reaction Based on the Evolution of Heap Pore Structure

    Directory of Open Access Journals (Sweden)

    Shenghua Yin

    2014-01-01

    Full Text Available Based on the basic seepage law, equations have been derived to descript the solution flow within the copper ore heap which is treated as anisotropy porous media. The relationship between heap permeability and pore ratio has been revealed. Given the consideration of cover pressure and particle dissolution, pore evolution model has been set up. The pore evolution mechanism, due to the process of dissolution, precipitation, blockage, collapse, and caking, has been investigated. The comprehensive model for pore evolution and solution flow under the effect of solute transport and leaching reaction has been established. A trapezoidal heap was calculated, and the estimated results show that permeability decreases with the decreasing of pore ratio. Therefore, the permeability of the heap with small particles is relatively low because of its low pore ratio. Furthermore, permeability and height are found to be the two main factors influencing the solution flow.

  1. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    Science.gov (United States)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  2. Typing Local Control and State Using Flow Analysis

    Science.gov (United States)

    Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram

    Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.

  3. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-01-01

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation

  4. The Effect of the Holes Size Change of Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution

    International Nuclear Information System (INIS)

    Lee, Gong Hee; Bang, Young Seok; Cheong, Ae Ju

    2015-01-01

    Complex thermal-hydraulic phenomena exist inside PWR because reactor interiors include a fuel assembly, control rod assembly, ICI (In-Core Instrumentation), and other internal structures. Because changes to reactor design may influence interior, thermal-hydraulic characteristics, licensing applicants commonly conduct a flow-distribution test and use test results (e.g., core-inlet flow-rate distribution) as the input data for a core thermal-margin analysis program. Because the APR+ (Advanced Power Reactor Plus) had more fuel assemblies (241EA → 257EA) and the design of some internal structures was changed (from those of APR1400), the core-inlet flow-rate distribution for a 1/5 scaled-down reactor model was measured and high flow-rates were found especially near the outer region of the reactor core. In this study, to examine the effect of the holes size change (i.e. smaller diameter) in the outer region of the LSSBP, not a 50% blockage of the flow holes, on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD (Computational Fluid Dynamics) software, ANSYS CFX R.14. The predicted results were compared with those of the original LSSBP. In this study, to examine the effect of the holes size change (smaller diameter) in the outer region of the LSSBP on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.14. The predicted results were compared with those of the original LSSBP. Through these comparisons it was concluded that a more uniform distribution of the mass-flow rate at the core-inlet plane could be obtained by reducing the holes size in the outer region of the LSSBP

  5. Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Brunner, Paul H.

    2013-01-01

    materials. Therefore, end-of-life (EOL) plastic materials used for construction must be separated and properly treated, for example, in a state-of-the-art municipal solid waste (MSW) incinerator. In the case of cOctaBDE, the main flows are waste electrical and electronic equipment (WEEE) and, possibly......The present article examines flows and stocks of Stockholm Convention regulated pollutants, commercial penta- and octabrominated diphenyl ether (cPentaBDE, cOctaBDE), on a city level. The goals are to (1) identify sources, pathways, and sinks of these compounds in the city of Vienna, (2) determine...... the fractions that reach final sinks, and (3) develop recommendations for waste management to ensure their minimum recycling and maximum transfer to appropriate final sinks. By means of substance flow analysis (SFA) and scenario analysis, it was found that the key flows of cPentaBDE stem from construction...

  6. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  7. A Calculus for Control Flow Analysis of Security Protocols

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Nielson, Hanne Riis; Nielson, Flemming

    2004-01-01

    The design of a process calculus for anaysing security protocols is governed by three factors: how to express the security protocol in a precise and faithful manner, how to accommodate the variety of attack scenarios, and how to utilise the strengths (and limit the weaknesses) of the underlying...... analysis methodology. We pursue an analysis methodology based on control flow analysis in flow logic style and we have previously shown its ability to analyse a variety of security protocols. This paper develops a calculus, LysaNS that allows for much greater control and clarity in the description...

  8. Comparing treatment outcomes of fractional flow reserve-guided and angiography-guided percutaneous coronary intervention in patients with multi-vessel coronary artery diseases: a systematic review and meta-analysis.

    Science.gov (United States)

    Xiu, Jiancheng; Chen, Gangbin; Zheng, Hua; Wang, Yuegang; Chen, Haibin; Liu, Xuewei; Wu, Juefei; Bin, Jianping

    2016-02-01

    Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is used to assess the need for angioplasty in vessels with intermediate blockages. The treatment outcomes of FFR-guided vs. conventional angiography-guided PCI were evaluated in patients with multi-vessel coronary artery disease (CAD). Prospective and retrospective studies comparing FFR-guided vs. angiography-guided PCI in patients with multi-vessel CAD were identified from medical databases by two independent reviewers using the terms "percutaneous coronary intervention, fractional flow reserve, angiography, coronary heart disease, major adverse cardiac events (MACE) and myocardial infarction". The primary outcome was the number of stents placed, and the secondary outcomes were procedure time, mortality, myocardial infarction (MI) and MACE rates. Seven studies (three retrospective and four prospective), which included 49,517 patients, were included in this review. A total of 4,755 patients underwent FFR, while 44,697 received angiography-guided PCI. The mean patient age ranged from 58 to 71.7 years. The average number of stents used in FFR patients ranged from 0.3-1.9, and in angiography-guided PCI patients ranged from 0.7-2.7. Analysis indicated there was a greater number of stents placed in the angiography-guided group compared with the FFR group (pooled difference in means: -0.64, 95% confidence interval [CI]: -0.81 to -0.47, P < 0.001). There were no differences in the secondary outcomes between the two groups. Both procedures produce similar clinical outcomes, but the fewer number of stents used with FFR may have clinical as was as cost implications.

  9. Swirl flow analysis in a helical wire inserted tube using CFD code

    International Nuclear Information System (INIS)

    Park, Yusun; Chang, Soon Heung

    2010-01-01

    An analysis on the two-phase flow in a helical wire inserted tube using commercial CFD code, CFX11.0, was performed in bubbly flow and annular flow regions. The analysis method was validated with the experimental results of Takeshima. Bubbly and annular flows in a 10 mm inner diameter tube with varying pitch lengths and inserted wire diameters were simulated using the same analysis methods after validation. The geometry range of p/D was 1-4 and e/D was 0.08-0.12. The results show that the inserted wire with a larger diameter increased swirl flow generation. An increasing swirl flow was seen as the pitch length increased. Regarding pressure loss, smaller pitch lengths and inserted wires with larger diameters resulted in larger pressure loss. The average liquid film thickness increased as the pitch length and the diameter of the inserted wire increased in the annular flow region. Both in the bubbly flow and annular flow regions, the effect of pitch length on swirl flow generation and pressure loss was more significant than that of the inserted wire diameters. Pitch length is a more dominant factor than inserted wire diameter for the design of the swirl flow generator in small diameter tubes.

  10. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  11. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Dhir, V.K.; Frank, M.; Kastenberg, W.E.; McKone, T.E.

    1979-03-01

    Three aspects of LMFBR safety are discussed. The first concerns the potential reactivity effects of whole core fuel motion prior to pin failure in low ramp rate transient overpower accidents. The second concerns the effects of flow blockages following pin failure on the coolability of a core following an unprotected overpower transient. The third aspect concerns the safety related implications of using thorium based fuels in LMFBR's

  13. Analysis of the three dimensional flow in a turbine scroll

    Science.gov (United States)

    Hamed, A.; Baskharone, E.

    1979-01-01

    The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

  14. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  15. Application of effective discharge analysis to environmental flow decision-making

    Science.gov (United States)

    McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.

    2016-01-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  16. Business valuation: an analysis of projected cash flows versus takeover bids

    Directory of Open Access Journals (Sweden)

    Camila Menezes

    2017-12-01

    Full Text Available One of the main financial statements is the Cash Flow. It became mandatory from the law # 11,638/2007 on, which changed the law # 6,404/1976 – the Corporations’ law, and the Cash Flow statement allows analysis about the companies’ operations activities effects, investing and financing, highlighting their main sources of financial allocation. In 2005 and 2006, 37 companies registered takeover bids in the Brazilian Securities Exchange Commission (CVM – Comissão de Valores Mobiliários. Based on these companies’ analysis of Projected Cash Flows (FCP – Fluxos de Caixa Projetados when the takeover bids were put in place and their Actual Cash Flows (FCR – Fluxo de Caixa Realizados the objective of this work was to compare those cash flows, to analyze the differences between the Statements of Cash Flows attached to the Appraisal Reports and the actual ones, as well as to check if these companies’ cash were in line with the balances projected in the takeover bids. The obtained results via statistical analysis of differences between the Projected Cash Flows attached to the Appraisal Reports and the effective Actual Cash Flows, all of them compared in the period between 2007 and 2013, did not show significant differences among them. IE: it was observed that, nevertheless the companies did not accomplish the promised Cash Flows delivery when the OPAs were put in place, the differences between the balances projected and the actual ones were not statistically significant.

  17. Mathematical simulation of fluid flow and analysis of flow pattern in the flow path of low-head Kaplan turbine

    Directory of Open Access Journals (Sweden)

    A. V. Rusanov

    2016-12-01

    Full Text Available The results of numerical investigation of spatial flow of viscous incompressible fluid in flow part of Kaplan turbine PL20 Kremenchug HPP at optimum setting angle of runner blade φb = 15° and at maximum setting angle φb = 35° are shown. The flow simulation has been carried out on basis of numerical integration of the Reynolds equations with an additional term containing artificial compressibility. The differential two-parameter model of Menter (SST has been applied to take into account turbulent effects. Numerical integration of the equations is carried out using an implicit quasi-monotone Godunov type scheme of second - order accuracy in space and time. The calculations have been conducted with the help of the software system IPMFlow. The analysis of fluid flow in the flow part elements is shown and the values of hydraulic losses and local cavitation coefficient have been obtained. Comparison of calculated and experimental results has been carried out.

  18. Analysis of a fully developed laminar flow b/w two parallel plates ...

    African Journals Online (AJOL)

    ... Simulation Software Comsol Multiphysics. The flow behavior and the interaction with the boundary has been analysed. Wall no slip conditions were set for evaluation purpose. The analysis is a steady state analysis by using Incompressible Navier Stokes Model. Keywords: Steady state analysis, Velocity profile, Fluid flow.

  19. Lagrangian structure of flows in the Chesapeake Bay: challenges and perspectives on the analysis of estuarine flows

    Directory of Open Access Journals (Sweden)

    M. Branicki

    2010-03-01

    Full Text Available In this work we discuss applications of Lagrangian techniques to study transport properties of flows generated by shallow water models of estuarine flows. We focus on the flow in the Chesapeake Bay generated by Quoddy (see Lynch and Werner, 1991, a finite-element (shallow water model adopted to the bay by Gross et al. (2001. The main goal of this analysis is to outline the potential benefits of using Lagrangian tools for both understanding transport properties of such flows, and for validating the model output and identifying model deficiencies. We argue that the currently available 2-D Lagrangian tools, including the stable and unstable manifolds of hyperbolic trajectories and techniques exploiting 2-D finite-time Lyapunov exponent fields, are of limited use in the case of partially mixed estuarine flows. A further development and efficient implementation of three-dimensional Lagrangian techniques, as well as improvements in the shallow-water modelling of 3-D velocity fields, are required for reliable transport analysis in such flows. Some aspects of the 3-D trajectory structure in the Chesapeake Bay, based on the Quoddy output, are also discussed.

  20. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  1. Geometrical Characterization of Sediment Deposits at the Confluence of Mountain Streams

    Directory of Open Access Journals (Sweden)

    Laura Maria Stancanelli

    2018-03-01

    Full Text Available Debris flow injections from tributaries into a main mountain stream generate deposits of sediments which, in turn, result in obstruction and eventual damming of the river section. This contribution presents the results of a series of flume experiments on the dynamics of these deposits, with reference to three different types of blockage: no blockage, partial blockage, and full blockage. Results show that the shape of the deposit is mainly controlled by the ratio between the debris flow discharge and the main river discharge. The experimental dataset is used to develop a deposit resilience stability index based on the shape of the deposit contour retrieved from photos taken from above. The proposed index is based on the invariant elliptic Fourier coefficients and the dimensionless transverse obstruction parameter. The elliptic Fourier coefficients give information on the symmetry of the deposit contour. High symmetry indicates more stable and resilient deposits. The proposed index is calibrated on the basis of the flume experiments and tested with field data. The results are quite promising and suggest that the index can be appropriate for a fast hazard assessment of multiple debris flow deposits at a regional scale.

  2. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  3. Retro-review of flow injection analysis

    DEFF Research Database (Denmark)

    Ruzicka, Jaromir; Hansen, Elo Harald

    2008-01-01

    It is indeed unusual for authors to review their own monograph – J. Ruzicka, E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, Chichester, West Sussex, UK, 1988. – and even more so if the book was published 20 years ago. Yet such an exercise might yield a perspective on the progress of an...

  4. GenFlow: generic flow for integration, management and analysis of molecular biology data

    Directory of Open Access Journals (Sweden)

    Marcio Katsumi Oikawa

    2004-01-01

    Full Text Available A large number of DNA sequencing projects all over the world have yielded a fantastic amount of data, whose analysis is, currently, a big challenge for computational biology. The limiting step in this task is the integration of large volumes of data stored in highly heterogeneous repositories of genomic and cDNA sequences, as well as gene expression results. Solving this problem requires automated analytical tools to optimize operations and efficiently generate knowledge. This paper presents an information flow model , called GenFlow, that can tackle this analytical task.

  5. Process Measurement Deviation Analysis for Flow Rate due to Miscalibration

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.

  6. Radiometric flow injection analysis with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.

  7. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  8. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  9. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    Science.gov (United States)

    Munday, Phillip M.

    definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the

  10. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  11. Modified and reverse radiometric flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-06-01

    Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.

  12. Power flow as a complement to statistical energy analysis and finite element analysis

    Science.gov (United States)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  13. Unsaturated Zone Flow Patterns and Analysis

    International Nuclear Information System (INIS)

    Ahlers, C.

    2001-01-01

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be

  14. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  15. Parametric distribution approach for flow availability in small hydro potential analysis

    Science.gov (United States)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  16. Flood-flow analysis for Kabul river at Warsak on the basis of flow-records of Kabul river at Nowshera

    International Nuclear Information System (INIS)

    Khan, B.

    2007-01-01

    High flows and stream discharge have long been measured and used by the engineers in the design of hydraulic structures and flood-protection works and in planning for flood-plain use. Probability-analysis is the basis for the engineering design of many projects and advance information about flood-forecasting. High-flow analysis or flood-frequency studies interpret a past record of events, to predict the future probability of occurrence. In many countries, including the author's country, the long term flow data required for design of hydraulic structures and flood-protection works are not available. In such cases, the only tool with hydrologists is to extend the short-term flow data available at some other site in the region. The present study is made to find a reliable estimation of maximum instantaneous flood for higher frequencies of Kabul River at Warsak weir. Kabul River, at Nowshera gaging station is used or the purpose and regression-analysis is performed to extend the instantaneous peak-flow record up to 29 years at Warsak. The frequency-curves of high-flows are plotted on the normal probability paper, using different probability distributions. The Gumbel distribution seemed to be the best fit for the observed data-points, and is used here for estimation of flood for different return periods. (author)

  17. CFD flow pattern analysis on primaryside of IHX for fast reactors

    International Nuclear Information System (INIS)

    Takano, Masahito; Mochizuki, Hiroyasu

    2011-01-01

    The present paper describes the CFD analysis on the primary-side of an intermediate heat exchange (IHX) which has the similar configurations as the IHX for the fast breeder reactor 'Monju'. The IHX is precisely modeled based on the discussion about meshing system. The present model is used for the heat transfer analysis under low-flowrate and natural circulation conditions. The IHX is a shell-and-tube type and counter-flow heat exchanger which has more than 3000 heat transfer tubes on the secondary side. Therefore, the flow pattern on the primary side gets complex. Measurement of flow pattern and temperature distribution on the primary-side of the real IHX are almost impossible. Since the heat transfer tubes of approximately 5 m in length are fixed at 7 plates with many flow holes and placed on the 23 circles with an appropriate lattice pitch, the number of meshes becomes enormous size. In order to overcome these problems, a separate model is discussed. In the present study, two models are discussed. The first one is a precise full-sector model with one flow entrance, 6 windows on the primary-side. The flow distributions are calculated changing inlet flow rate from 100% to 0.1% which is equivalent to 10 6 to 10 3 in the Reynolds numbers. The other model is a sector model with 8 chamber separated by 7 flow-rectifying plats. Pressure losses at each plate and chamber are calculated using this model. As a result of the analysis, since there is only a small flow deviation between the flow from the 6 windows under turbulent flow and laminar flow conditions, the sector model with one window is possible model in the calculation. The small radial velocity gradient is calculated from 23rd layer (outer heat transfer tube) to 10th layer. The distribution is not dependent on the flow rate. Axial flow distributions through the rectifying plates are unified from the entrance to the down-stream. The sector model is applicable to calculate the primary-side flow distributions

  18. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  19. Control-flow analysis of function calls and returns by abstract interpretation

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Jensen, Thomas P.

    2012-01-01

    Abstract interpretation techniques are used to derive a control-flow analysis for a simple higher-order functional language. The analysis approximates the interprocedural control-flow of both function calls and returns in the presence of first-class functions and tail-call optimization. In additi...... a rational reconstruction of a constraint-based CFA from abstract interpretation principles....

  20. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, Material Flow Analysis (MFA) has been carried out to perform the detailed mapping...

  1. Computational analysis of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.

    2007-01-01

    Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing

  2. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  3. Development of an advanced fluid-dynamic analysis code: α-flow

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1990-01-01

    A Project for development of large scale three-dimensional fluid-dynamic analysis code, α-FLOW, coping with the recent advancement of supercomputers and workstations, has been in progress. This project is called the α-Project, which has been promoted by the Association for Large Scale Fluid Dynamics Analysis Code comprising private companies and research institutions such as universities. The developmental period for the α-FLOW is four years, March 1989 to March 1992. To date, the major portions of basic design and program preparation have been completed and the project is in the stage of testing each module. In this paper, the present status of the α-Project, design policy and outline of α-FLOW are described. (author)

  4. Summary and implications of out-of-pile investigations of local cooling disturbances in LMFBR subassembly geometry under single-phase and boiling conditions

    International Nuclear Information System (INIS)

    Huber, F.; Peppler, W.

    1985-05-01

    The consequences of local cooling disturbances in subassemblies of LMFBRs have been investigated out-of-pile at KfK. Flow and temperature distributions in the disturbed region as well as cooling under boiling conditions up to loss of cooling were investigated. Fission gas release was simulated by gas injection. A total of 16 different blockages in 20 test set-ups were used, four of them under sodium and the rest under water conditions. Mainly planar plates of different sizes and arrangements were used as blockages. In some of the experiments performed in water also porous blockages were investigated. The test sections consisted of electrically heated pin bundles with a thermal-hydraulic characteristic corresponding to that of an SNR 300 subassembly. With different parameter settings the single-phase tests in water furnished a multitude of test results on flow and temperature fields and on the behaviour of gas in the recirculation zone. In the experiments involving boiling two boiling patterns were observed: steady-state boiling and oscillating boiling. With increasing boiling intensity the boiling region grew to some extent, but it remained always confined to the blocked zone because of the relatively cold sodium flow around this zone. In the experiments simulating fission gas release it was found that under certain conditions gas accumulates in the reverse flow region behind a blockage and leads to loss of cooling. (orig./GL) [de

  5. Service Interaction Flow Analysis Technique for Service Personalization

    DEFF Research Database (Denmark)

    Korhonen, Olli; Kinnula, Marianne; Syrjanen, Anna-Liisa

    2017-01-01

    Service interaction flows are difficult to capture, analyze, outline, and represent for research and design purposes. We examine how variation of personalized service flows in technology-mediated service interaction can be modeled and analyzed to provide information on how service personalization...... could support interaction. We have analyzed service interaction cases in a context of technology-mediated car rental service. With the analysis technique we propose, inspired by Interaction Analysis method, we were able to capture and model the situational service interaction. Our contribution regarding...... technology-mediated service interaction design is twofold: First, with the increased understanding on the role of personalization in managing variation in technology-mediated service interaction, our study contributes to designing service management information systems and human-computer interfaces...

  6. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  7. Analysis and design of flow limiter used in steam generator

    International Nuclear Information System (INIS)

    Liu Shixun; Gao Yongjun

    1995-10-01

    Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)

  8. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  9. Analysis of IBW-driven plasma flows in tokamaks

    International Nuclear Information System (INIS)

    Berry, L.A.; Jaeger, E.F.; D'Azevedo, E.F.; Batchelor, D.B.; Carlsson, J.A.; Carter, M.D.; Cesario, R.

    2001-01-01

    Both theory and experiment have suggested that damping of Ion Bernstein Waves (IBWs) at ion cyclotron frequency harmonics could drive poloidal flows and lead to enhanced confinement for tokamaks. However, the early analyses were based on Reynolds stress closures of moment equations. More rigorous, finite Larmor radius (FLR) expansions of the radio frequency (RF) kinetic pressure for low harmonic interactions indicated that the Reynolds stress approximation was not generally valid, and resulted in significant changes in the plasma flow response. These changes were largest for wave interactions driven by finite Larmour radius effects. To provide a better assessment of higher harmonic interactions and IBW flow drive prospects, the electromagnetic (E and M) and RF kinetic force models are extended with no assumptions regarding the smallness of the ion Larmor radius. For both models, a spectral-width approximation was used to make the numerical analysis tractable. In addition, it was necessary to include the effects of plasma equilibrium gradients on the plasma conductivity and the RF-induced momentum in order to conserve energy and momentum. The analysis of high-harmonic IBW interactions for TFTR and FTU parameters indicates significant poloidal flow shears (relative to turbulence correlation times) for power levels available in present experiments. Recent advances in all-orders calculations of E and M fields in 2-D are also discussed. (author)

  10. Methodology, Measurement and Analysis of Flow Table Update Characteristics in Hardware OpenFlow Switches

    KAUST Repository

    Kuźniar, Maciej

    2018-02-15

    Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These deployments rely on switches that come from various vendors and differ in terms of performance and available features. Understanding these differences and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a stream of rule updates, while relying on both observing the control plane view as reported by the switch and probing the data plane state to determine switch characteristics by comparing these views. We measure, report and explain the performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to network security and correctness.

  11. Analysis of Employment Flow of Landscape Architecture Graduates in Agricultural Universities

    Science.gov (United States)

    Yao, Xia; He, Linchun

    2012-01-01

    A statistical analysis of employment flow of landscape architecture graduates was conducted on the employment data of graduates major in landscape architecture in 2008 to 2011. The employment flow of graduates was to be admitted to graduate students, industrial direction and regional distribution, etc. Then, the features of talent flow and factors…

  12. Go-flow: a reliability analysis methodology applicable to piping system

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kobayashi, M.

    1985-01-01

    Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given

  13. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  14. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  15. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  16. Unsaturated Zone Flow Patterns and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses

  17. Determination of conveyor-flow parameters by gamma-ray transmission analysis

    International Nuclear Information System (INIS)

    Fanger, H.U.; Pepelnik, R.; Michaelis, W.

    1977-01-01

    Dual-beam γ-ray transmission analysis (Am 241 - Cs 137 ) is successfully applied for the rapid determination of individual space concentrations in triple-component flows. The principle of the method, transmission formulae, the attainable precision and accuracy are discussed with respect to practical application. For determining drift velocities, a dual γ-ray transmission gate has been developed. The velocity is derived from the two gate responses by cross-correlation analysis. Combination of space concentration and mean drift speed data yields the mass transport per unit time. Thus the most important flow parameters can be controlled without interference with the conveyor-flow. Such data are of considerable relevance in testing and operating hydraulic and air-lift mining systems. (orig./HP) [de

  18. An Integrated Numerical and Experimental Analysis for Enhancing the Performance of the Hidden Ceiling Fan

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2014-02-01

    Full Text Available Since the inlet and outlet of hidden ceiling fan are almost located at the same Plane; thus, an improper housing may cause inhale-return phenomenon which significantly affects its power consumption and performance. In this study, a comprehensive investigation by numerical and experimental techniques was used to predict and identify the flow pattern, airflow rate, efficiency, and noise for ceiling fans with different design parameters. The results showed that the unique inhale-return phenomenon happens for an inappropriate housing. Several key parameters, such as fan guard, housing ring, inlet-to-outlet area ratio, and blockage height, are evaluated for finding out the criterion to avoid the inhale-return flow. Consequently the study finds that fan guard changes the airflow to a wider distribution with a lower velocity. A minimum blockage distance and a maximum height of ring-plate are set at 80 mm and 30 mm, respectively. Also, it is suggested that the inlet area must be bigger than the outlet area. Moreover, all the parameters show the same trend under various rotational speeds. In conclusion, this systematic investigation not only provides the fan engineer's design ability to avoid the inhale-return phenomenon, but also the predicting capability on its aerodynamic and acoustic performances.

  19. Analysis of water hammer in two-component two-phase flows

    International Nuclear Information System (INIS)

    Warde, H.; Marzouk, E.; Ibrahim, S.

    1989-01-01

    The water hammer phenomena caused by a sudden valve closure in air-water two-phase flows must be clarified for the safety analysis of LOCA in reactors and further for the safety of boilers, chemical plants, pipe transport of fluids such as petroleum and natural gas. In the present work water hammer phenomena caused by sudden valve closure in two-component two-phase flows are investigated theoretically and experimentally. The phenomena are more complicated than in single phase-flows due to the fact of the presence of compressible component. Basic partial differential equations based on a one-dimensional homogeneous flow model are solved by the method of characteristic. The analysis is extended to include friction in a two-phase mixture depending on the local flow pattern. The profiles of the pressure transients, the propagation velocity of pressure waves and the effect of valve closure on the transient pressure are found. Different two-phase flow pattern and frictional pressure drop correlations were used including Baker, Chesholm and Beggs and Bril correlations. The effect of the flow pattern on the characteristic of wave propagation is discussed primarily to indicate the effect of void fraction on the velocity of wave propagation and on the attenuation of pressure waves. Transient pressure in the mixture were recorded at different air void fractions, rates of uniform valve closure and liquid flow velocities with the aid of pressure transducers, transient wave form recorders interfaced with an on-line pc computer. The results are compared with computation, and good agreement was obtained within experimental accuracy

  20. The Montaguto earth flow: nine years of observation and analysis

    Science.gov (United States)

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  1. Development of flow injection analysis technique for uranium estimation

    International Nuclear Information System (INIS)

    Paranjape, A.H.; Pandit, S.S.; Shinde, S.S.; Ramanujam, A.; Dhumwad, R.K.

    1991-01-01

    Flow injection analysis is increasingly used as a process control analytical technique in many industries. It involves injection of the sample at a constant rate into a steady flowing stream of reagent and passing this mixture through a suitable detector. This paper describes the development of such a system for the analysis of uranium (VI) and (IV) and its gross gamma activity. It is amenable for on-line or automated off-line monitoring of uranium and its activity in process streams. The sample injection port is suitable for automated injection of radioactive samples. The performance of the system has been tested for the colorimetric response of U(VI) samples at 410 nm in the range of 35 to 360mg/ml in nitric acid medium using Metrohm 662 Photometer and a recorder as detector assembly. The precision of the method is found to be better than +/- 0.5%. This technique with certain modifications is used for the analysis of U(VI) in the range 0.1-3mg/ailq. by alcoholic thiocynate procedure within +/- 1.5% precision. Similarly the precision for the determination of U(IV) in the range 15-120 mg at 650 nm is found to be better than 5%. With NaI well-type detector in the flow line, the gross gamma counting of the solution under flow is found to be within a precision of +/- 5%. (author). 4 refs., 2 figs., 1 tab

  2. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  3. Estimate of throughput of bridge transitions and pipe passages built on minor rivers of piedmont areas of Krasnodar Territory-Russia

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2018-01-01

    Full Text Available Stability and accident-free operation of engineering road structures including bridge transitions and pipe passages built on mountain rivers mostly depends on a stream regime and lack of obstructions for water flow. Such structures pose a prominent potential hazard being built in piedmont areas of Caucasus Mountains characterized by flash floods and blockage of structures by floating debris, mudflow deposits and wastes of construction. This notwithstanding, the threats caused by these phenomena are poorly studied. The purpose of this study is in estimation of throughput of bridge transitions and pipe passages built on minor rivers of piedmont areas and analysis of hazards caused by floods and obstructions to water flow. The results of calculation of capacities of existing road structures are provided herein. A qualitative assessment of potential emergencies in case of severe flood is also given. A major hazard of possible blockage of waterways that can cause emergency even in regular flood conditions is noted.

  4. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  5. Technical requirements document for the waste flow analysis

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1996-05-01

    Purpose of this Technical Requirements Document is to define the top level customer requirements for the Waste Flow Analysis task. These requirements, once agreed upon with DOE, will be used to flow down subsequent development requirements to the model specifications. This document is intended to be a ''living document'' which will be modified over the course of the execution of this work element. Initial concurrence with the technical functional requirements from Environmental Management (EM)-50 is needed before the work plan can be developed

  6. Slip analysis of squeezing flow using doubly stratified fluid

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  7. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  8. COMPUTATIONAL ANALYSIS OF BACKWARD-FACING STEP FLOW

    Directory of Open Access Journals (Sweden)

    Erhan PULAT

    2001-01-01

    Full Text Available In this study, backward-facing step flow that are encountered in electronic systems cooling, heat exchanger design, and gas turbine cooling are investigated computationally. Steady, incompressible, and two-dimensional air flow is analyzed. Inlet velocity is assumed uniform and it is obtained from parabolic profile by using maximum velocity. In the analysis, the effects of channel expansion ratio and Reynolds number to reattachment length are investigated. In addition, pressure distribution throughout the channel length is also obtained and flow is analyzed for the Reynolds number values of 50 and 150 and channel expansion ratios of 1.5 and 2. Governing equations are solved by using Galerkin finite element mothod of ANSYS-FLOTRAN code. Obtained results are compared with the solutions of lattice BGK method that is relatively new method in fluid dynamics and other numerical and experimental results. It is concluded that reattachment length increases with increasing Reynolds number and at the same Reynolds number it decreases with increasing channel expansion ratio.

  9. Analysis of magnetohydrodynamic flow in annular duct

    International Nuclear Information System (INIS)

    Yoo, G.J.; Choi, H.K.; Eun, J.J.

    2004-01-01

    In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)

  10. ANALYSIS OF FINANCIAL FLOWS IN FOOD INDURSTRY ENTERPRISES

    OpenAIRE

    Iurie SPIVACENCO

    2015-01-01

    In the present study it was used the analysis of food industry and the financial flows generated by them. The analysis was based on information from the financial statements of these entities, and the study of evolution: food industry output, number of enterprises and employees in food industry, import and export of food production. Following the undertaken analysis are highlighted some shortcomings and made some concrete proposals need to be considered in the sustainable development of the f...

  11. Equivalence of the blockage of ureter and the action of the urethane in {sup 99m}Tc-DMSA biodistribution in rats

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Patricia de A.; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.; Vicente, Irene; Silva, Laercio da; Evedove, Sueli D.; Muramoto, Emiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: patyosborne@yahoo.com; ntfukumo@ipen.br; lsilva@ipen.br; mmatsusa@ipen.br; sevedove@yahoo.com

    2007-07-01

    The indication of the United States Pharmacopoeia (USP) for biological control of {sup 99m}Tc-DMSA is the experiment in rats with ureter occlusion. Urethane has a vessel constriction action in the urinary system and keeps the eliminatory mechanism functioning through glomerular filtration. The objective of this work is to show that the use of urethane in animals without blockage of ureteres has total credibility, even if the expressed value of the renal retention does not correspond to 40% injected dose (I.D.) related in the literature. The experiments were performed in 2 groups of 12 rats each, the first using urethane and the second, urethane and blockage of ureter. Four lots of DMSA were labeled with 10 mCi/3 mL of {sup 99m}Tc solution, and 300 {mu}Ci/0.1 mL was injected intravenously in each animal. After one hour, they were sacrificed and kidneys, bladder, liver, spleen and carcass were taken out for determination of the retained radiation in function of the injected dose. The USP establishes two parameters for the metabolism of {sup 99m}Tc-DMSA: renal retention equal or higher than 40% and kidneys/liver plus spleen relation equal or higher than 6. In animals whose ureteres were obstructed, it was clearly observed that the urine was not transferred from kidneys to bladder 0.05 {+-} 0.35% I.D., while the first group presented 0.50 {+-} 6.50 % I.D. The kidneys/liver plus spleen relation were above 6 for both. Considering the deviation, all results were in the USP limit of acceptability, and for routine evaluation, urethane can be used without surgical intervention. (author)

  12. A review on the analysis and experiment of fluid flow and mixing in micro-channels

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon

    2007-01-01

    The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail

  13. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  14. Control-flow analysis of function calls and returns by abstract interpretation

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Jensen, Thomas P.

    2009-01-01

    We derive a control-flow analysis that approximates the interprocedural control-flow of both function calls and returns in the presence of first-class functions and tail-call optimization. In addition to an abstract environment, our analysis computes for each expression an abstract control stack......, effectively approximating where function calls return across optimized tail calls. The analysis is systematically calculated by abstract interpretation of the stack-based CaEK abstract machine of Flanagan et al. using a series of Galois connections. Abstract interpretation provides a unifying setting in which...

  15. Analysis of Urine Flow in Three Different Ureter Models

    Directory of Open Access Journals (Sweden)

    Kyung-Wuk Kim

    2017-01-01

    Full Text Available The ureter provides a way for urine to flow from the kidney to the bladder. Peristalsis in the ureter partially forces the urine flow, along with hydrostatic pressure. Ureteral diseases and a double J stent, which is commonly inserted in a ureteral stenosis or occlusion, disturb normal peristalsis. Ineffective or no peristalsis could make the contour of the ureter a tube, a funnel, or a combination of the two. In this study, we investigated urine flow in the abnormal situation. We made three different, curved tubular, funnel-shaped, and undulated ureter models that were based on human anatomy. A numerical analysis of the urine flow rate and pattern in the ureter was performed for a combination of the three different ureters, with and without a ureteral stenosis and with four different types of double J stents. The three ureters showed a difference in urine flow rate and pattern. Luminal flow rate was affected by ureter shape. The side holes of a double J stent played a different role in detour, which depended on ureter geometry.

  16. Key technology for treating slack coal blockage in CBM recovery: A case study from multi-lateral horizontal wells in the Qinshui Basin

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2016-01-01

    Full Text Available Due to the nature of coal bed, slack coal production is inevitable in gas recovery sby water drainage. When coalbed methane (CBM wells are reentered after low energy exploitation and shut-in, the negative effect of slack coal production on productivity of CBM is irreversible. In this paper, the CBM occurrence characteristics and multi-lateral horizontal well trajectory in the Qinshui Basin, Shanxi Province, were analyzed. In the multi-lateral horizontal wells, the expected gas production rate could not be reached and the production rate after shut-in maintenance could not restore to the level before shut-in. The reason for these issues is that migration pathways in the reservoirs are blocked by slack coal deposits, while formation water and slack coal deposit accumulated at the troughs of horizontal sections enlarge the resistance for gas to flow into the bottom hole. Furthermore, three key technologies to deal with slack coal blockage were proposed. Firstly, CBM horizontal well trajectory should follow the principle of keeping the wellbores smooth and updip instead of being “wavy”, on the premise of guaranteeing CBM drilling rate. Secondly, the cavities of production wells, as an important part of multi-lateral horizontal wells, are capable of settling sand, and can be used for gas–liquid–solid separation. And thirdly, a tree-like horizontal well with its main hole set on stable seam top or floor, provides a stable well flushing passage for coal powder. This research provides a useful attempt in solving the problem of slack coal production in gas recovery by water drainage.

  17. Complex analysis with applications to flows and fields

    CERN Document Server

    Braga da Costa Campos, Luis Manuel

    2012-01-01

    Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma

  18. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs

  19. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    Science.gov (United States)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  20. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  1. Analysis of Causes of Non-Uniform Flow Distribution in Manifold Systems with Variable Flow Rate along Length

    Science.gov (United States)

    Zemlyanaya, N. V.; Gulyakin, A. V.

    2017-11-01

    The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.

  2. Data-flow Analysis of Programs with Associative Arrays

    Directory of Open Access Journals (Sweden)

    David Hauzar

    2014-05-01

    Full Text Available Dynamic programming languages, such as PHP, JavaScript, and Python, provide built-in data structures including associative arrays and objects with similar semantics—object properties can be created at run-time and accessed via arbitrary expressions. While a high level of security and safety of applications written in these languages can be of a particular importance (consider a web application storing sensitive data and providing its functionality worldwide, dynamic data structures pose significant challenges for data-flow analysis making traditional static verification methods both unsound and imprecise. In this paper, we propose a sound and precise approach for value and points-to analysis of programs with associative arrays-like data structures, upon which data-flow analyses can be built. We implemented our approach in a web-application domain—in an analyzer of PHP code.

  3. Flow analysis of an innovative compact heat exchanger channel geometry

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.

    2016-01-01

    Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.

  4. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    Science.gov (United States)

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  5. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    Science.gov (United States)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  6. Analysis of flow induced vibration in heat exchangers

    International Nuclear Information System (INIS)

    Beek, A.W. van

    1977-01-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  7. Analysis of flow induced vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)

    1977-12-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  8. Interaction of turbulent deflagrations with representative flow obstacles

    International Nuclear Information System (INIS)

    Durst, B.; Ardey, N.; Mayinger, F.

    1997-01-01

    In the case of a gradual release of hydrogen in the course of an assumed, severe accident in a light water reactor, the combustion will normally start out as a slow deflagration. Acceleration of an initially slow flame due to interactions of chemical kinetics and turbulent heat and mass transfer can result in very high flame speeds. Therefore, in order to assess hydrogen mitigation techniques, detailed knowledge about flame acceleration and interaction of flames with obstacles is required. The reported investigations are aimed at the investigation of the mechanisms responsible for turbulent flame acceleration and improving present correlations for estimates and models for numerical simulations of hydrogen combustion processes. A medium-scale square cross-section setup is employed, using flow obstacles with shapes representative for reactor containments. The global flame speed is deduced from measurements using thermocouples, pressure transducers and photodiodes. Measurements using a two-component LDA-system are being carried through in order to correlate global flame spread and local turbulence parameters. Results indicate that low blockage-ratio obstacles only marginally influence the flame, as disturbances which are induced remain local to the vicinity of the obstacle and die out very quickly downstream thereof. Flow visualizations by means of a Schlieren setup indicate very complex flow structures in the vicinity of obstacles. The results are being used to validate turbulent reaction models. A model based on probability density functions (pdf) of assumed shape has been developed and initial calculations are presented. (author)

  9. SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis

    Science.gov (United States)

    Oren, J. A.; Williams, D. R.

    1975-01-01

    The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.

  10. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  11. Voltage stability analysis using a modified continuation load flow ...

    African Journals Online (AJOL)

    This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...

  12. Mathematical annuity models application in cash flow analysis ...

    African Journals Online (AJOL)

    Mathematical annuity models application in cash flow analysis. ... We also compare the cost efficiency between Amortisation and Sinking fund loan repayment as prevalent in financial institutions. Keywords: Annuity, Amortisation, Sinking Fund, Present and Future Value Annuity, Maturity date and Redemption value.

  13. Discretizations in isogeometric analysis of Navier-Stokes flow

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft; Gersborg, Allan Roulund; Gravesen, Jens

    2011-01-01

    This paper deals with isogeometric analysis of 2-dimensional, steady state, incompressible Navier-Stokes flow subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to solve the boundary value problem. Numerical inf-sup stability tests...

  14. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Sekimoto, Hiroshi

    2003-03-01

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  15. The Flow of International Students from a Macro Perspective: A Network Analysis

    Science.gov (United States)

    Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo

    2016-01-01

    This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…

  16. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Lords, L.V.; Kiser, D.M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage

  17. Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis

    International Nuclear Information System (INIS)

    Shin, Chang Hoon; Park, Warn Gyu

    2017-01-01

    This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

  18. Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hoon [Korea Gas Corporation (KOGAS), Daegu (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-04-15

    This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

  19. Development and Application of a Rubric for Analysis of Novice Students' Laboratory Flow Diagrams

    Science.gov (United States)

    Davidowitz, Bette; Rollnick, Marissa; Fakudze, Cynthia

    2005-01-01

    The purpose of this study was to develop and apply a scheme for the analysis of flow diagrams. The flow diagrams in question are a schematic representation of written instructions that require students to process the text of their practical manual. It was hoped that an analysis of the flow diagrams would provide insight into students'…

  20. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  1. Static pressure recovery analysis in the vane island diffuser of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Si, Qiaorui [National Research Center of Pumps, Jiangsu University, Zhenjiang (China); Dupont, Patrick; Bayeul-Laine, Annie-Claude; Dazin, Antoine; Roussette, Olivier; Bois, Gerard [LML, UMR CNRS 8107 Ecole Centrale de Lille, Lille (France)

    2016-02-15

    The overall performance of a vane-island type diffuser of a centrifugal pump model was obtained by means of directional probe traverses. These measurements were performed in an air model of a real hydraulic pump for five volume flow rates. Directional probe traverses are performed with a classical three-hole probe to cover most of the complete inlet section of the diffuser from hub to shroud and from pressure to suction side. Existing Particle image velocimetry (PIV) measurement results are also used to compare probe measurement results between the inlet and outlet throats of vane island diffuser at mid-span. Some assistance from already existing unsteady calculation, including leakage effects, is used to evaluate the numerical approach capability and to correctly define the mean initial conditions at impeller's outlet section. Pressure recovery and the measured total pressure loss levels inside this particular vane diffuser geometry are then calculated. Detailed analysis of the flow structure at the inlet section of the vane island diffuser is presented to focus on pressure evolution inside the entire diffuser section for different flow rates. The combined effects of incidence angle and blockage distributions along hub to shroud direction are found to play an important role on loss distribution in such a diffuser.

  2. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime

    Science.gov (United States)

    Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.

  3. Extended forward sensitivity analysis of one-dimensional isothermal flow

    International Nuclear Information System (INIS)

    Johnson, M.; Zhao, H.

    2013-01-01

    Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)

  4. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor

    2017-06-01

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.

  5. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  6. Analysis on flow characteristic of nuclear heating reactor

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin

    1997-06-01

    The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5 MW Nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam mass, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equation, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations in subcooled boiling region, bulk boiling region in the heated section and in the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that, firstly, subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and stability of the system, especially at lower pressure, secondly, in a wide range of two-phase flow conditions, only subcooled boiling occurs in the heated section. For the designed two-phase regime operation of the 5 MW nuclear heating reactor, the temperature at the core exit has not reaches its saturation value. Thirdly, the mechanism of two-phase flow oscillation, namely, 'zero-pressure-drop', is described. In the wide range of inlet subcooling (0 K<ΔT<28 K) there exists three regions for system flow condition, namely, (1) stable two-phase flow, (2) bulk and subcooled boiling unstable flow, (3) subcooled boiling and single phase stable flow. The response of mass flow rate, after a small disturbance in the heat flux, is showed in the above inlet subcooling range, and based on it the instability map of the system is given through experiment and calculation. (3 refs., 9 figs.)

  7. Cash-Flow Analysis Base of the Company's Performance Evaluation

    OpenAIRE

    Radu Riana Iren; Mihalcea Lucean; Negoescu Gheorghe

    2013-01-01

    Analyses based on the study of financial flows allow coherent merge to study the financial equilibrium of the firm's performance. If static analysis to assess the financial imbalance at some point, but does not explain its evolution, in contrast, dynamic analysis highlights the evolution of financial imbalance, but does not indicate the extent of it. It follows that the two kinds of analysis are complementary and should be pursued simultaneously. Dynamic analysis is based on the concept of st...

  8. User-friendly Tool for Power Flow Analysis and Distributed ...

    African Journals Online (AJOL)

    Akorede

    AKOREDE et al: TOOL FOR POWER FLOW ANALYSIS AND DISTRIBUTED GENERATION OPTIMISATION. 23 ... greenhouse gas emissions and the current deregulation of electric energy ..... Visual composition and temporal behaviour of GUI.

  9. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    Directory of Open Access Journals (Sweden)

    Świsulski Dariusz

    2017-01-01

    Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  10. Experimental and computational analysis of pressure response in a multiphase flow loop

    Science.gov (United States)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  11. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    International Nuclear Information System (INIS)

    Geiger, J.; Markl, M.; Jung, B.; Langer, M.; Grohmann, J.; Stiller, B.; Arnold, R.

    2011-01-01

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution ∝ 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 ± 2.5 vs. 1.1 ± 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s ± 0.7 m/s) than controls (0.9 m/s ± 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  12. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, J.; Markl, M.; Jung, B.; Langer, M. [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Grohmann, J.; Stiller, B.; Arnold, R. [University Hospital Freiburg, Department of Congenital Heart Disease and Pediatric Cardiology, Freiburg (Germany)

    2011-08-15

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution {proportional_to} 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 {+-} 2.5 vs. 1.1 {+-} 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s {+-} 0.7 m/s) than controls (0.9 m/s {+-} 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  13. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  14. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  15. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  16. Flow distribution analysis on the cooling tube network of ITER thermal shield

    International Nuclear Information System (INIS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly

  17. Numerical Analysis of Flow Field in Generator End-Winding Region

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2008-01-01

    Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.

  18. Load Flow Analysis of a 15Mva Injection Substation | Oshevire ...

    African Journals Online (AJOL)

    This load flow helps to determine the state of the power system for a given load and generation distribution. This paper presents the computer aided power flow analysis of the existing Otovwodo33/11kV distribution network using the ETAP 7.0 software. The result showed that out of 91load feeders of which 6 is out of service, ...

  19. Correlation dimension estimate and its potential use in analysis of gas-solid flows

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2005-01-01

    Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the framework of nonlinear dynamics, could provide more useful insights into complex gas-solid flows. One of the positive aspects of state-space analysis is that the major properties of a system can be ...

  20. Oscillatory flow at the end of parallel-plate stacks: phenomenological and similarity analysis

    International Nuclear Information System (INIS)

    Mao Xiaoan; Jaworski, Artur J

    2010-01-01

    This paper addresses the physics of the oscillatory flow in the vicinity of a series of parallel plates forming geometrically identical channels. This type of flow is particularly relevant to thermoacoustic engines and refrigerators, where a reciprocating flow is responsible for the desirable energy transfer, but it is also of interest to general fluid mechanics of oscillatory flows past bluff bodies. In this paper, the physics of an acoustically induced flow past a series of plates in an isothermal condition is studied in detail using the data provided by PIV imaging. Particular attention is given to the analysis of the wake flow during the ejection part of the flow cycle, where either closed recirculating vortices or alternating vortex shedding can be observed. This is followed by a similarity analysis of the governing Navier-Stokes equations in order to derive the similarity criteria governing the wake flow behaviour. To this end, similarity numbers including two types of Reynolds number, the Keulegan-Carpenter number and a non-dimensional stack configuration parameter, d/h, are considered and their influence on the phenomena are discussed.

  1. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  2. Frequency prediction by linear stability analysis around mean flow

    Science.gov (United States)

    Bengana, Yacine; Tuckerman, Laurette

    2017-11-01

    The frequency of certain limit cycles resulting from a Hopf bifurcation, such as the von Karman vortex street, can be predicted by linear stability analysis around their mean flows. Barkley (2006) has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency. This property was named RZIF by Turton et al. (2015); moreover they found that the traveling waves (TW) of thermosolutal convection have the RZIF property. They explained this as a consequence of the fact that the temporal Fourier spectrum is dominated by the mean flow and first harmonic. We could therefore consider that only the first mode is important in the saturation of the mean flow as presented in the Self-Consistent Model (SCM) of Mantic-Lugo et al. (2014). We have implemented a full Newton's method to solve the SCM for thermosolutal convection. We show that while the RZIF property is satisfied far from the threshold, the SCM model reproduces the exact frequency only very close to the threshold. Thus, the nonlinear interaction of only the first mode with itself is insufficiently accurate to estimate the mean flow. Our next step will be to take into account higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.

  3. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  4. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  5. Development of flow network analysis code for block type VHTR core by linear theory method

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-01-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  6. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  7. Computational Analysis of the G-III Laminar Flow Glove

    Science.gov (United States)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  8. An experimental investigation of head loss through a triangular “V- shaped” screen

    Directory of Open Access Journals (Sweden)

    Mahmoud Zayed

    2018-03-01

    Full Text Available Common traditional screens (screens perpendicular and vertical to the flow direction face extensive problems with screen blockage, which can result in adverse hydraulic, environmental, and economic consequences. Experimentally, this paper presents an advanced trash screen concept to reduce traditional screen problems and improve the hydraulic performance of screens. The traditional screen is re-developed using a triangular V shape with circular bars in the flow direction. Triangular V-shaped screen models with different angles, blockage ratios, circular bar designs, and flow discharges were tested in a scaled physical model. The analyses provide promising results. The findings showed that the head loss coefficients were effectively reduced by using the triangular V-shaped screens with circular bars (α < 90° in comparison with the traditional trash screen (α = 90. Additionally, the results indicated that the head loss across the screen increased with increasing flow discharge and blockage ratio. The losses considerably increase by large percentages when the screen becomes blocked by 40%. Low head losses were recorded at low screen angles for the circular bars. A new head loss equation is recommended for triangular screens with circular bars.

  9. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    Science.gov (United States)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  10. Method of critical power prediction based on film flow model coupled with subchannel analysis

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.

    1988-01-01

    A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)

  11. Model for melt blockage (slug) relocation and physico-chemical interactions during core degradation under severe accident conditions

    International Nuclear Information System (INIS)

    Veshchunov, M.S.; Shestak, V.E.

    2008-01-01

    The model describing massive melt blockage (slug) relocation and physico-chemical interactions with steam and surrounding fuel rods of a bundle is developed on the base of the observations in the CORA tests. Mass exchange owing to slug oxidation and fuel rods dissolution is described by the previously developed 2D model for the molten pool oxidation. Heat fluxes in oxidising melt along with the oxidation heat effect at the melt relocation front are counterbalanced by the heat losses in the surrounding media and the fusion heat effect of the Zr claddings attacked by the melt. As a result, the slug relocation velocity is calculated from the heat flux matches at the melt propagation front (Stefan problem). A numerical module simulating the slug behaviour is developed by tight coupling of the heat and mass exchange modules. The new model demonstrates a reasonable capability to simulate the main features of the massive slug behaviour observed in the CORA-W1 test

  12. PNA binding to the non-template DNA strand interferes with transcription, suggesting a blockage mechanism mediated by R-loop formation.

    Science.gov (United States)

    Belotserkovskii, Boris P; Hanawalt, Philip C

    2015-11-01

    Peptide Nucleic Acids (PNAs) are artificial DNA mimics with superior nucleic acid binding capabilities. T7 RNA polymerase (T7 RNAP) transcription upon encountering PNA bound to the non-template DNA strand was studied in vitro. A characteristic pattern of blockage signals was observed, extending downstream from the PNA binding site, similar to that produced by G-rich homopurine-homopyrimidine (hPu-hPy) sequences and likely caused by R-loop formation. Since blocked transcription complexes in association with stable R-loops may interfere with replication and in some cases trigger apoptosis, targeted R-loop formation might be employed to inactivate selected cells, such as those in tumors, based upon their unique complement of expressed genes. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.

  13. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  14. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    International Nuclear Information System (INIS)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon

    2002-01-01

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  15. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  16. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  17. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  18. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  19. Alternatives to current flow cytometry data analysis for clinical and research studies.

    Science.gov (United States)

    Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul

    2018-02-01

    Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.

  20. Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher

    International Nuclear Information System (INIS)

    Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.

    2008-01-01

    Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in

  1. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  2. Experimental analysis of the flow near the boundary of random porous media

    Science.gov (United States)

    Wu, Zhenxing; Mirbod, Parisa

    2018-04-01

    The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.

  3. Analysis and control of supersonic vortex breakdown flows

    Science.gov (United States)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  4. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  5. Flow resistance of orifices and spacers of BWR thermal-hydraulic and neutronic coupling loop

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Asaka, Hideaki; Nakamura, Hideo

    2002-03-01

    Authors are performing THYNC experiments to study thermal-hydraulic instability under neutronic and thermal-hydraulic coupling. In THYNC experiments, the orifices are installed at the exit of the test section and the spacers are installed in the test section, in order to properly simulate in-core thermal-hydraulics in the reactor core. It is necessary to know the flow resistance of the orifices and spacers for the analysis of THYNC experimental results. Consequently, authors measured the flow resistance of orifice and spacer under single-phase and two-phase flows. Using the experimental results, authors investigated the dependency of the flow resistances on the parameters, such as pressure, mass flux, an geometries. Furthermore, authors investigated the applicability of the basic two-phase flow models, for example the separate flow model, to the two-phase flow multiplier. As the result of the investigation on the single-phase flow experiment, it was found (1) that the effects of pressure and mass flux flow resistance are described by a function of Reynolds number, and (2) that flow resistances of the orifice and the spacer are calculated with the previous prediction methods. However, it was necessary to introduce an empirical coefficient, since it was difficult to predict accurately the flow resistance only with the previous prediction method due to the complicated geometry dependency, for example a flow area blockage ratio. On the other hand, according to the investigation on two-phase flow experiment, the followings were found. (1) Relation between the two-phase flow multiplier and the quality is regarded to be linear under pressure of 2MPa - 7MPa. The relation is dependent on pressure and geometry, and is little dependent on mass flux. (2) Relation between the two-phase flow multiplier and void fraction is little dependent on pressure, mass flux, and geometry under pressure of 0.2MPa - 7MPa and void fraction less than 0.6. The relation is less dependent on

  6. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  7. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  8. POD- Mapping and analysis of hydroturbine exit flow dynamics

    Science.gov (United States)

    Kjeldsen, Morten; Finstad, Pal Henrik

    2012-11-01

    Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.

  9. Determination of pH by flow-injection analysis and by fiber-optrode analysis

    International Nuclear Information System (INIS)

    Pia, S.H.; Waltman, D.P.; Hillman, D.C.

    1988-07-01

    Two new procedures for measuring pH were developed. The first measures pH colorimetrically using a proprietary indicator-dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber-optic chemical sensor (FOCS) specifically developed for pH determinations. The FOCS method measures pH by monitoring the fluorescence of a fluorescein derivative bonded to the distal end of a fiber-optic cable called an optrade. The FIA method currently has a precision and accuracy of about + or - 0.2 pH units and can measure 100 samples/hour. The FOCS method has a precision of + or - 0.05-0.20 pH units and an accuracy of + or - 0.1 to 0.6 pH units. About 10 to 60 samples can be analyzed. The characteristics of the FOCS Method will vary significantly with individual optrodes. The experimental results indicate that either flow-injection analysis or fiber optic chemical sensor analysis could form the basis for an alternative to electrometric measurement of pH in certain circumstances

  10. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    Science.gov (United States)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  11. CFD analysis and flow model reduction for surfactant production in helix reactor

    NARCIS (Netherlands)

    Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den

    2014-01-01

    Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is

  12. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  13. Hidden flows and waste processing--an analysis of illustrative futures.

    Science.gov (United States)

    Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T

    2010-12-14

    An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.

  14. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  15. A study of grout flow pattern analysis

    International Nuclear Information System (INIS)

    Lee, S. Y.; Hyun, S.

    2013-01-01

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here

  16. Comparison of MATRA-S and COBRA-SFS for Low Flow Subchannel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyong Won; Kwon, Hyuk; Kim, Seong Jin; Hwang, Dae Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, we compared the MATRA-S with COBRA-SFS for the PNL test because the COBRASFS is believed to be superior to MATRA-S for the low flow conditions. COBRA-SFS code was developed for subchannel analysis of spent fuel storage system based on COBRA-3C, COBRA-4I, and COBRA-WC. As the code was designed to predict temperature and flow distributions in spent fuel storage system, it can analyze thermal hydraulic fields of natural convection as well as radiation and conduction heat transfer. In the way of improving XSHCME of MATRA-S to be applicable to low flow problems, we compared MATRA-S XSCHEM and COBRA-SFS RECIRC for steady state and flow transient. Both methods use similar algorithms to solve pressure, axial flow and cross flow. MATRA-S XSCHEM predicted flow velocity profile well even negative flow in recirculation flow.

  17. Flow induced vibration and stability analysis of multi wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)

    2012-12-15

    The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.

  18. Sensitivity Analysis of Unsteady Flow Fields and Impact of Measurement Strategy

    Directory of Open Access Journals (Sweden)

    Takashi Misaka

    2014-01-01

    Full Text Available Difficulty of data assimilation arises from a large difference between the sizes of a state vector to be determined, that is, the number of spatiotemporal mesh points of a discretized numerical model and a measurement vector, that is, the amount of measurement data. Flow variables on a large number of mesh points are hardly defined by spatiotemporally limited measurements, which poses an underdetermined problem. In this study we conduct the sensitivity analysis of two- and three-dimensional vortical flow fields within a framework of data assimilation. The impact of measurement strategy, which is evaluated by the sensitivity of the 4D-Var cost function with respect to measurements, is investigated to effectively determine a flow field by limited measurements. The assimilation experiment shows that the error defined by the difference between the reference and assimilated flow fields is reduced by using the sensitivity information to locate the limited number of measurement points. To conduct data assimilation for a long time period, the 4D-Var data assimilation and the sensitivity analysis are repeated with a short assimilation window.

  19. Pigging analysis for gas-liquid two phase flow in pipelines

    International Nuclear Information System (INIS)

    Kohda, K.; Suzukawa, Y.; Furukawa, H.

    1988-01-01

    A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good

  20. Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jung-Hua; Lin, Hao Tzu [National Tsing Hua Univ., HsinChu, Taiwan (China). Dept. of Engineering and System Science; Wang, Jong-Rong [Atomic Energy Council, Taoyuan County, Taiwan (China). Inst. of Nuclear Energy Research; Shih, Chunkuan [National Tsing Hua Univ., HsinChu, Taiwan (China). Inst. of Nuclear Engineering and Science

    2012-12-15

    This study aims to develop the Maanshan Pressurized Water Reactor (PWR) analysis model by using the TRACE (TRAC/RELAP Advanced Computational Engine) code. By analyzing the Large Break Loss of Coolant Accident (LBLOCA) sequence, the results are compared with the Maanshan Final Safety Analysis Report (FSAR) data. The critical flow and Counter Current Flow Limitation (CCFL) play an important role in the overall performance of TRACE LBLOCA prediction. Therefore, the sensitivity study on the discharge coefficients of critical flow model and CCFL modeling among different regions are also discussed. The current conclusions show that modeling CCFL in downcomer has more significant impact on the peak cladding temperature than modeling CCFL in hot-legs does. No CCFL phenomena occurred in the pressurizer surge line. The best value for the multipliers of critical flow model would be 0.5 and the TRACE could consistently predict the break flow rate in the LBLOCA analysis as shown in FSAR. (orig.)

  1. Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow

    Science.gov (United States)

    Berdanier, Reid A.; Key, Nicole L.

    2017-01-01

    The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the

  2. Automated flow cytometric analysis across large numbers of samples and cell types.

    Science.gov (United States)

    Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno

    2015-04-01

    Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.

  3. Deterministic sensitivity analysis of two-phase flow systems: forward and adjoint methods. Final report

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1984-07-01

    This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations

  4. Flow characteristics and performance evaluation of butterfly valves using numerical analysis

    International Nuclear Information System (INIS)

    Jeon, S Y; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to various fields that transport fluid in volume, especially water supply and drainage pipeline for flow control. The butterfly valves in various shapes are manufactured, but a fitting performance comparison is not made up. For this reason, we carried out numerical analysis of some kind of butterfly valves for water supply and drainage pipeline using commercial CFD code FLUENT, and made a comparative study of these results. Also, the flow coefficient, the loss coefficient, and pressure distribution of valves according to valve opening rate were compared each other and the influence of these design variables on valve performance were checked over. Through flow around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, we grasped flow characteristics.

  5. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  6. The SABRE code for fuel rod cluster thermohydraulics

    International Nuclear Information System (INIS)

    Macdougall, J.D.; Lillington, J.N.

    1984-01-01

    This paper describes the capabilities of the SABRE code for the calculation of single phase and two phase fluid flow and temperature in fuel pin bundles, discusses the methods used in the modelling and solution of the problem, and presents some results including comparison with experiments. The SABRE code permits calculation of steady-state or transient, single or two phase flows and the geometrical options include general representation of grids, wire wraps, multiple blockages, bowed pins, etc. The derivation and solution of the difference equations is discussed. Emphasis is given to the derivation of the spatial differences in triangular subchannel geometry, and the use of central, upward or vector upwind schemes. The method of solution of the difference equations is described for both steady state and transient problems. Together with these topics we consider the problems involved in turbulence modelling and how it is implemented in SABRE. This includes supporting work with a fine scale curvilinear coordinate programme to provide turbulence source data. The problem of modelling boiling flows is discussed, with particular reference to the numerical problems caused by the rapid density change on boiling. The final part of the paper presents applications of the code to the analysis of blockage situations, the study of flow and power transients and analysis of natural circulation within clusters to demonstrate the scope of the code and compare with available experimental results. The comparisons include the calculation of a flow pressure drop characteristic of a boiling channel showing the Ledinegg instability, examples of overpower and flow rundown transients which lead to coolant boiling, and calculation of natural circulation within a rod cluster. (orig./GL)

  7. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    Science.gov (United States)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  8. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  9. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  10. Construction and analysis of compressible flow calculation algorithms

    International Nuclear Information System (INIS)

    Desideri, Jean-Antoine

    1993-01-01

    The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr

  11. An assessment of software for flow cytometry analysis in banana plants

    Directory of Open Access Journals (Sweden)

    Renata Alves Lara Silva

    2014-02-01

    Full Text Available Flow cytometry is a technique that yields rapid results in analyses of cell properties such as volume, morphological complexity and quantitative DNA content, and it is considered more convenient than other techniques. However, the analysis usually generates histograms marked by variations that can be produced by many factors, including differences between the software packages that capture the data generated by the flow cytometer. The objective of the present work was to evaluate the performance of four software products commonly used in flow cytometry based on quantifications of DNA content and analyses of the coefficients of variation associated with the software outputs. Readings were obtained from 25 ‘NBA’ (AA banana leaf samples using the FACSCalibur (BD flow cytometer, and 25 histograms from each software product (CellQuest™, WinMDI™, FlowJo™ and FCS Express™ were analyzed to obtain the estimated DNA content and the coefficient of variation (CV of the estimates. The values of DNA content obtained from the software did not differ significantly. However, the CV analysis showed that the precision of the WinMDI™ software was low and that the CV values were underestimated, whereas the remaining software showed CV values that were in relatively close agreement with those found in the literature. The CellQuest™ software is recommended because it was developed by the same company that produces the flow cytometer used in the present study.

  12. Unified fluid flow model for pressure transient analysis in naturally fractured media

    International Nuclear Information System (INIS)

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  13. ASRM Multi-Port Igniter Flow Field Analysis

    Science.gov (United States)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  14. Structure analysis of bubble driven flow by time-resolved PIV and POD techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun

    2010-01-01

    In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy

  15. Finite element analysis of helical flows in human aortic arch: A novel index

    OpenAIRE

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  16. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  17. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    Science.gov (United States)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  18. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  19. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  20. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    Science.gov (United States)

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.