WorldWideScience

Sample records for floral morphogenesis stochastic

  1. A developmental basis for stochasticity in floral organ numbers

    Science.gov (United States)

    Kitazawa, Miho S.; Fujimoto, Koichi

    2014-01-01

    Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932

  2. Floral morphology and morphogenesis in Camptotheca (Nyssaceae), and its systematic significance.

    Science.gov (United States)

    Gong, Jing-Zhi; Li, Qiu-Jie; Wang, Xi; Ma, Yue-Ping; Zhang, Xiao-Hui; Zhao, Liang; Chang, Zhao-Yang; Ronse De Craene, Louis

    2018-03-22

    Camptotheca is endemic to China and there are limited data about the breeding system and morphogenesis of the flowers. Camptotheca is thought to be related to Nyssa and Davidia in Nyssaceae, which has sometimes been included in Cornaceae. However, molecular phylogenetic studies confirmed the inclusion of Camptotheca in Nyssaceae and its exclusion from Cornaceae. The aim of this study was to reveal developmental features of the inflorescence and flowers in Camptotheca to compare with related taxa in Cornales. Inflorescences and flowers of Camptotheca acuminata at all developmental stages were collected and studied with a scanning electron microscope and stereo microscope. Camptotheca has botryoids which are composed of several capitate floral units (FUs) that are initiated acropetally. On each FU, flowers are grouped in dyads that are initiated acropetally. All floral organs are initiated centripetally. Calyx lobes are restricted to five teeth. The hypanthium, with five toothed calyx lobes, is adnate to the ovary. The five petals are free and valvate. Ten stamens are inserted in two whorls around the central depression, in which the style is immersed. Three carpels are initiated independently but the ovary is syncarpous and unilocular. The ovule is unitegmic and heterotropous. Inflorescences are functionally andromonoecious varying with the position of the FUs on the inflorescence system. Flowers on the upper FU often have robust styles and fully developed ovules. Flowers on the lower FU have undeveloped styles and aborted ovules, and the flowers on the middle FU are transitional. Camptotheca possesses several traits that unify it with Nyssa, Mastixia and Diplopanax. Inflorescence and floral characters support a close relationship with Nyssaceae and Mastixiaceae but a distant relationship with Cornus. Our results corroborate molecular inferences and support a separate family Nyssaceae.

  3. Stochastic occurrence of trimery from pentamery in floral phyllotaxis of Anemone (Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Miho S. Kitazawa

    2016-12-01

    Full Text Available Merosity, indicating the basic number of floral organs such as sepals and petals, has been constrained to specific and stable numbers during the evolution of angiosperms. The ancestral flower is considered to have a spiral arrangement of perianth organs, as in phyllotaxis, the arrangement of leaves. How has the ancestral spiral evolved into flowers with specific merosities? To address this question, we studied perianth organ arrangement in the Anemone genus of the basal eudicot family Ranunculaceae, because various merosities are found in this genus. In three species, A. flaccida, A. scabiosa, and A. nikoensis that are normally pentamerous, we found positional arrangement of the excessive sixth perianth organ indicating the possibility of a transition from pentamerous to trimerous arrangement. Arrangement was intraspecifically stochastic, but constrained to three of five types, where trimerous arrangement was the most frequent in all species except for a form of A. scabiosa. The rank of frequency of the other two types was species-dependent. We connect these observations with classical theories of spiral phyllotaxis. The phyllotaxis model for initiation of the sixth organ showed that the three arrangements occur at a divergence angle <144°, indicating the spiral nature of floral phyllotaxis rather than a perfect penta-radial symmetry of 144°. The model further showed that selective occurrence of trimerous arrangement is mainly regulated by the organ growth rate. Differential organ growth as well as divergence angle may regulate transitions between pentamerous and trimerous flowers in intraspecific variation as well as in species evolution.

  4. Bioinformatics and expressional analysis of cDNA clones from floral buds

    Science.gov (United States)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.

  5. Floral induction, floral hormones and flowering

    NARCIS (Netherlands)

    Pol, van de P.A.

    1972-01-01

    The factors, influencing the synthesis and action of floral hormones, and possible differences between floral hormones in different plants were studied. The experimental results are summarized in the conclusions 1-20, on pages 35-36 (Crassulaceae'); 21-39 on pages

  6. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  7. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  8. Floral development and floral phyllotaxis in Anaxagorea (Annonaceae).

    Science.gov (United States)

    Endress, Peter K; Armstrong, Joseph E

    2011-10-01

    Background and Aims Anaxagorea is the phylogenetically basalmost genus in the large tropical Annonaceae (custard apple family) of Magnoliales, but its floral structure is unknown in many respects. The aim of this study is to analyse evolutionarily interesting floral features in comparison with other genera of the Annonaceae and the sister family Eupomatiaceae. Methods Live flowers of Anaxagorea crassipetala were examined in the field with vital staining, liquid-fixed material was studied with scanning electron microscopy, and microtome section series were studied with light microscopy. In addition, herbarium material of two other Anaxagorea species was cursorily studied with the dissecting microscope. Key Results Floral phyllotaxis in Anaxagorea is regularly whorled (with complex whorls) as in all other Annonaceae with a low or medium number of floral organs studied so far (in those with numerous stamens and carpels, phyllotaxis becoming irregular in the androecium and gynoecium). The carpels are completely plicate as in almost all other Annonaceae. In these features Anaxagorea differs sharply from the sister family Eupomatiaceae, which has spiral floral phyllotaxis and ascidiate carpels. Flat stamens and the presence of inner staminodes differ from most other Annonaceae and may be plesiomorphic in Anaxagorea. However, the inner staminodes appear to be non-secretory in most Anaxagorea species, which differs from inner staminodes in other families of Magnoliales (Eupomatiaceae, Degeneriacae, Himantandraceae), which are secretory. Conclusions Floral phyllotaxis in Anaxagorea shows that there is no signature of a basal spiral pattern in Annonaceae and that complex whorls are an apomorphy not just for a part of the family but for the family in its entirety, and irregular phyllotaxis is derived. This and the presence of completely plicate carpels in Anaxagorea makes the family homogeneous and distinguishes it from the closest relatives in Magnoliales.

  9. Floral development and floral phyllotaxis in Anaxagorea (Annonaceae)

    OpenAIRE

    Endress, Peter K.; Armstrong, Joseph E.

    2011-01-01

    Background and Aims Anaxagorea is the phylogenetically basalmost genus in the large tropical Annonaceae (custard apple family) of Magnoliales, but its floral structure is unknown in many respects. The aim of this study is to analyse evolutionarily interesting floral features in comparison with other genera of the Annonaceae and the sister family Eupomatiaceae. Methods Live flowers of Anaxagorea crassipetala were examined in the field with vital staining, liquid-fixed material was studied with...

  10. Dependency on floral resources determines the animals' responses to floral scents.

    Science.gov (United States)

    Junker, Robert R; Blüthgen, Nico

    2010-08-01

    Animal-pollinated angiosperms either depend on cross-pollination or may also reproduce after self-pollination - the former are thus obligately, the latter facultatively dependent on the service of animal-pollinators. Analogously, flower visitors either solely feed on floral resources or complement their diet with these, and are hence dependent or not on the flowers they visit. We assume that obligate flower visitors evolved abilities that enable them to effectively forage on flowers including mechanisms to bypass or tolerate floral defences such as morphological barriers and repellent / deterrent secondary metabolites. Facultative flower visitors, in contrast, are supposed to lack these adaptations and are often prevented to consume floral resources by defence mechanisms. In cases where obligate flower visitors are mutualists and facultative ones are antagonists, this dichotomy provides a solution for the plants' dilemma to attract pollinators and simultaneously repel exploiters. In a meta-analysis, we recently supported this hypothesis: obligate flower visitors are attracted to floral scents, while facultative ones are repelled. Here, we add empirical evidence to these results: bumblebees and ants, obligate and facultative flower visitors, respectively, responded as predicted by the results of the meta-analysis to synthetic floral scent compounds.

  11. Why Do Floral Perfumes Become Different? Region-Specific Selection on Floral Scent in a Terrestrial Orchid

    Science.gov (United States)

    Gross, Karin; Sun, Mimi; Schiestl, Florian P.

    2016-01-01

    Geographically structured phenotypic selection can lead to adaptive divergence. However, in flowering plants, such divergent selection has rarely been shown, and selection on floral signals is generally little understood. In this study, we measured phenotypic selection on display size, floral color, and floral scent in four lowland and four mountain populations of the nectar-rewarding terrestrial orchid Gymnadenia odoratissima in two years. We also quantified population differences in these traits and pollinator community composition. Our results show positive selection on display size and positive, negative, or absence of selection on different scent compounds and floral color. Selection on the main scent compounds was consistently stronger in the lowlands than in the mountains, and lowland plants emitted higher amounts of most of these compounds. Pollinator community composition also differed between regions, suggesting different pollinators select for differences in floral volatiles. Overall, our study is the first to document consistent regional differences in selection on floral scent, suggesting this pattern of selection is one of the evolutionary forces contributing to regional divergence in floral chemical signaling. PMID:26886766

  12. Stochasticity and stereotypy in the Ciona notochord.

    Science.gov (United States)

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-15

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  14. Regulation of Floral Stem Cell Termination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Toshiro eIto

    2015-02-01

    Full Text Available In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network.

  15. Floral biology of candeia (Eremanthus erythropappus, Asteraceae Biologia floral da candeia (Eremanthus erythropappus, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Vieira

    2012-12-01

    Full Text Available Floral biology and pollinators of candeia (Eremanthus erythropappus were analyzed in a natural population. We studied anthesis, flower morphology, stigmatic receptivity, pollen viability and floral visitors. The small flowers (10.17 mm in length are pink, hermaphrodites and organized in dense capitula (mean = 29 flowers. We observed a large percentage of viable pollen (77.25% and relatively scarce nectar availability for floral visitors (0.63 μL. The bees Apis mellifera and Trigona sp. were the most frequent visitors. The length of the bud, style and flowers varied significantly among plants. O objetivo deste trabalho foi examinar e documentar a biologia floral e os polinizadores da candeia (Eremanthus erythropappus em uma população natural, sendo estudados a antese, a morfologia floral, a receptividade estigmática, a viabilidade de pólen e os visitantes florais. As flores pequenas (10,17 mm de comprimento são cor de rosa, hermafroditas e organizadas em densos capítulos (média = 29 flores. Foi observada alta porcentagem de pólen viável (77,25% e relativamente pouca disponibilidade de néctar para os visitantes florais (0,63 μL. As abelhas Apis mellifera e Trigona sp. foram os visitantes mais frequentes. Os comprimentos dos botões, estiletes e flores variaram significativamente entre plantas.

  16. The floral transcriptome of Eucalyptus grandis

    CSIR Research Space (South Africa)

    Vining, KJ

    2015-10-01

    Full Text Available As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages...

  17. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L.

    Science.gov (United States)

    Krajncic, B; Kristl, J; Janzekovic, I

    2006-01-01

    Jasmonic acid (JA) is implicated in a wide variety of developmental and physiological processes in plants. Here, we studied the effects of JA and the combination of JA and ethylenediamine-dio-hydroxyphenyl-acetic acid (EDDHA) on flowering in Lemna minor in axenical cultures. JA (0.475-47.5 nmol l(-1)) enhanced floral induction in L. minor under long-day (LD) conditions. Under the same conditions, at a concentration of 237.5 nmol l(-1), JA inhibited floral induction, and at a concentration of 475 nmol l(-1) it prevented floral induction. Under LD conditions with LD preculture, a combination of EDDHA (20,500 nmol l(-1)) and JA (47.5 nmol l(-1)) had a synergistic effect on the promotion of floral induction. Floral induction was enhanced to the greatest extent in experiments with LD precultures. Microscopic examination of microphotographs of histological sections showed that JA and, to an even greater extent, JA+EDDHA at optimal concentrations promote apical floral induction (evocation). Furthermore, JA, and to an even greater extent JA in combination with EDDHA in an optimal concentration, also promote flower differentiation, especially the development of stamens, as is evident from the microphotographs. The experimental results show that JA promotes floral induction in other species of Lemnaceae from various groups according to their photoperiodic response. The results support our hypothesis that, in addition to previously ascribed functions, JA may regulate floral induction, evocation and floral differentiation. Our hypothesis is supported also by the results obtained by quantitative determination of endogenous JA levels in L. minor at three growth stages. The levels of endogenous JA decreased from 389 ng JA g(-1) (fresh weight) of L. minor during the vegetative stage to 217 ng JA g(-1) during the evocation stage, and to 37.5 ng JA g(-1) during the flowering stage, which proves that JA is used for flowering.

  18. Floral colour versus phylogeny in structuring subalpine flowering communities.

    Science.gov (United States)

    McEwen, Jamie R; Vamosi, Jana C

    2010-10-07

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure.

  19. Floral colour versus phylogeny in structuring subalpine flowering communities

    OpenAIRE

    McEwen, Jamie R.; Vamosi, Jana C.

    2010-01-01

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chanc...

  20. Stochastic model of cell rearrangements in convergent extension of ascidian notochord

    Science.gov (United States)

    Lubkin, Sharon; Backes, Tracy; Latterman, Russell; Small, Stephen

    2007-03-01

    We present a discrete stochastic cell based model of convergent extension of the ascidian notochord. Our work derives from research that clarifies the coupling of invagination and convergent extension in ascidian notochord morphogenesis (Odell and Munro, 2002). We have tested the roles of cell-cell adhesion, cell-extracellular matrix adhesion, random motion, and extension of individual cells, as well as the presence or absence of various tissue types, and determined which factors are necessary and/or sufficient for convergent extension.

  1. Época da indução e evocação floral em Citrus sinensis (L. Osbeck cv. Pêra Rio The flower induction and evocation period in Citrus sinensis (L. Osbeck cv. Pêra Rio

    Directory of Open Access Journals (Sweden)

    Iara Alvarenga Mesquita Pereira

    2003-10-01

    time of the year in which the vegetative buds are induced to blossom was determined through the bud shape changes, chiefly considering the diameter, which has increased with the induction. Bud diameter variations were detected on the second half of July, the period of floral morphogenesis incipience. The measurement of the bud diameter is an efficient procedure to follow up the phenomena originated from the floral induction, evocation and morphogenesis. Vegetative buds bring out an average diameter of 100µm with a three-layer tunic in a conic shape, recovering its body. The reproductive bud, in turn, is flatter, after the initiation of the first sepal primordium, showing an average diameter of 200µm. The pironina Y-methylgreen stain provides the observation of the floral evocation phenomenon, through the detection of regions with a higher RNA level, in the bud external areas. This biochemical alteration precedes the sepal emission.

  2. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors.

    Science.gov (United States)

    Antoń, Sebastian; Komoń-Janczara, Elwira; Denisow, Bożena

    2017-12-01

    Main conclusion The floral nectars were sucrose-dominant; however, nectar protein and amino acid contents differed, indicating that composition of nitrogenous compounds may vary considerably even between closely related plant species, irrespectively of nectary structure. Numerous zoophilous plants attract their pollinators by offering floral nectar; an aqueous solution produced by specialized secretory tissues, known as floral nectaries. Although many papers on nectaries and nectar already exist, there has been a little research into the structure of nectaries and/or nectar production and composition in species belonging to the same genus. To redress this imbalance, we sought, in the present paper, to describe the floral nectary, nectar production, and nectar composition in five nocturnal Oenothera species with respect to their floral visitors. The structure of nectaries was similar for all the species investigated, and comprised the epidermis (with nectarostomata), numerous layers of nectary parenchyma, and subsecretory parenchyma. Anthesis for a single flower was short (ca. 10-12 h), and flowers lasted only one night. The release of floral nectar commenced at the bud stage (approx. 4 h before anthesis) and nectar was available to pollinators until petal closure. Nectar concentration was relatively low (ca. 27%) and the nectar was sucrose-dominant, and composed mainly of sucrose, glucose and fructose. The protein content of the nectar was also relatively low (on average, 0.31 µg ml -1 ). Nevertheless, a great variety of amino acids, including both protein and non-protein types, was detected in the nectar profile of the investigated taxa. We noted both diurnal and nocturnal generalist, opportunistic floral insect visitors.

  3. Nocturnal bees are attracted by widespread floral scents.

    Science.gov (United States)

    Carvalho, Airton Torres; Maia, Artur Campos Dalia; Ojima, Poliana Yumi; dos Santos, Adauto A; Schlindwein, Clemens

    2012-03-01

    Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.

  4. The role of jasmonates in floral nectar secretion.

    Directory of Open Access Journals (Sweden)

    Venkatesan Radhika

    Full Text Available Plants produce nectar in their flowers as a reward for their pollinators and most of our crops depend on insect pollination, but little is known on the physiological control of nectar secretion. Jasmonates are well-known for their effects on senescence, the development and opening of flowers and on plant defences such as extrafloral nectar. Their role in floral nectar secretion has, however, not been explored so far. We investigated whether jasmonates have an influence on floral nectar secretion in oil-seed rape, Brassica napus. The floral tissues of this plant produced jasmonic acid (JA endogenously, and JA concentrations peaked shortly before nectar secretion was highest. Exogenous application of JA to flowers induced nectar secretion, which was suppressed by treatment with phenidone, an inhibitor of JA synthesis. This effect could be reversed by additional application of JA. Jasmonoyl-isoleucine and its structural mimic coronalon also increased nectar secretion. Herbivory or addition of JA to the leaves did not have an effect on floral nectar secretion, demonstrating a functional separation of systemic defence signalling from reproductive nectar secretion. Jasmonates, which have been intensively studied in the context of herbivore defences and flower development, have a profound effect on floral nectar secretion and, thus, pollination efficiency in B. napus. Our results link floral nectar secretion to jasmonate signalling and thereby integrate the floral nectar secretion into the complex network of oxylipid-mediated developmental processes of plants.

  5. Spectrum of induced floral mutants in Petunia

    International Nuclear Information System (INIS)

    Padmaja, V.; Sudhakar, P.

    1987-01-01

    A total of six floral mutants of garden Petunia isolated from the populations raised from the seed treatment with γ-rays, 2, 4-D and sodium azide are described. Five of the mutants viz. stellata, Campyloflora, Rubriflora mixed, Grandiflora and Albiflora mixed originated as segregants in M 2 generation while the chimeral floral phenotype was expressed in M 1 generation itself. Breeding behaviour of these horticulturally interesting altered floral phenotypes were studied in subsequent generations and appropriate conclusions were drawn regarding mode of inheritance of the mutant traits. 15 refs., 4 figures, 1 table. (author)

  6. Disentangling the role of floral sensory stimuli in pollination networks

    DEFF Research Database (Denmark)

    Kantsa, Aphrodite; Raguso, Robert A.; Dyer, Adrian G.

    2018-01-01

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use...... a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering...... period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role...

  7. Perithecium morphogenesis in Sordaria macrospora.

    Science.gov (United States)

    Lord, Kathryn M; Read, Nick D

    2011-04-01

    The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck. Copyright © 2010. Published by Elsevier Inc.

  8. floral bud distortion

    Indian Academy of Sciences (India)

    PRASHANT B. KALE

    logical behaviour of floral reproductive organs and in silico characterization of differentially ... also prone to be attacked by various biotic and abiotic factors. ... environment. ..... play contributory role and also reported for synergistic effect.

  9. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  10. Evolution and developmental genetics of floral display-A review of progress

    Institute of Scientific and Technical Information of China (English)

    Qing Ma; Wenheng Zhang; Qiu-Yun (Jenny) Xiang

    2017-01-01

    Angiosperms evolved a great diversity of ways to display their flowers for reproductive success by variation in floral color,size,shape,scent,arrangements,and flowering time.The various innovations in floral forms and the aggregation of flowers into different kinds of inflorescences can drive new ecological adaptations,speciation,and angiosperm diversification.Evolutionary developmental biology (evo-devo) seeks to uncover the developmental and genetic basis underlying morphological diversification.Advances in the developmental genetics of floral display have provided a foundation for insights into the genetic basis of floral and inflorescence evolution.A number of regulatory genes controlling floral and inflorescence development have been identified in model plants (e.g.,Arabidopsis thaliana,Antirrhinum majus) using forward genetics and conserved functions of many of these genes across diverse non-model species have been revealed by reverse genetics.Gene-regulatory networks that mediated the developmental progresses of floral and inflorescence development have also been established in some plant species.Meanwhile,phylogeny-based comparative analysis of morphological and genetic character has enabled the identification of key evolutionary events that lead to morphological complexity and diversification.Here we review the recent progress on evo-devo studies of floral display including floral symmetry,petal fusion,floral color,floral scent,and inflorescences.We also review the molecular genetic approaches applied to plant evo-devo studies and highlight the future directions of evo-devo.

  11. Identification of Genes Associated with Lemon Floral Transition and Flower Development during Floral Inductive Water Deficits: A Hypothetical Model.

    Science.gov (United States)

    Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi

    2017-01-01

    Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5' flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis -regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.

  12. A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja E. M.; Navarro, Marí a; Merks, Roeland M. H.; Blom, Joke G.

    2015-01-01

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand

  13. Floral ontogeny in legume genera Petalostylis, Labichea, and Dialium (Caesalpinioideae: Cassieae), a series in floral reduction.

    Science.gov (United States)

    Tucker, S

    1998-02-01

    Floral ontogeny of taxa of two subtribes (Labicheinae, Dialiinae) of caesalpinioid tribe Cassieae, characterized by reduced number of floral organs, was compared. All three taxa studied are distichous; Petalostylis labicheoides flowers are solitary in leaf axils, Labichea lanceolata has few-flowered racemes, and Dialium guineense has numerous-flowered cymes. The first sepal primordium in each is initiated abaxially and nonmedianly. Order of organogenesis in Petalostylis is: five sepals bidirectionally, five petals and carpel simultaneously, then five stamens bidirectionally, starting abaxially. The order in Labichea is: five sepals helically (one lagging in time), five petals unidirectionally starting abaxially, the carpel and petals concurrently, then two stamens successively, starting laterally. Order in Dialium is: five sepals bidirectionally, the single petal adaxially, and lastly the carpel and two stamens concurrently. Specializations include (1) reduction of the five sepals to four by fusion in Petalostylis and Labichea; (2) reduction of petal number to one in Dialium; (3) reduction of stamen number to two in Labichea and Dialium, and reduction of functional stamens to three in Petalostylis; and (4) an elaborate, late-developing style in Petalostylis. Floral asymmetry, another specialization, characterizes Labichea, expressed by dissimilar stamens, while the other genera have zygomorphic flowers. Floral ontogenies are compared with other taxa of Cassieae.

  14. Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees

    OpenAIRE

    Leonard, Anne S.; Brent, Joshua; Papaj, Daniel R.; Dornhaus, Anna

    2013-01-01

    Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant's reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create...

  15. Circadian Rhythms in Floral Scent Emission.

    Science.gov (United States)

    Fenske, Myles P; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  16. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  17. Specialist Osmia bees forage indiscriminately among hybridizing Balsamorhiza floral hosts

    Science.gov (United States)

    James H. Cane

    2011-01-01

    Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar...

  18. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS

    Directory of Open Access Journals (Sweden)

    MARISOL AMAYA

    2009-05-01

    Full Text Available RESUMEN Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas sociales puede

  19. A global sensitivity analysis approach for morphogenesis models

    NARCIS (Netherlands)

    S.E.M. Boas (Sonja); M.I. Navarro Jimenez (Maria); R.M.H. Merks (Roeland); J.G. Blom (Joke)

    2015-01-01

    textabstract{\\bf Background} %if any Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the

  20. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    Science.gov (United States)

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  1. EL ÁCIDO ABSCÍSICO ACELERA EL DESARROLLO FLORAL DE SOLIDAGO EN DÍAS CORTOS ABSCISIC ACID SPEED UP FLORAL DEVELOPMENT OF SOLIDAGO UNDER SHORT DAYS

    Directory of Open Access Journals (Sweden)

    Víctor Julio Flórez Roncancio

    2009-06-01

    Full Text Available Solidago x luteus (M. L. Greene Broulliet y Semple (= x Solidaster hybridus, x S. luteus es una planta que responde a días cortos (DC para el desarrollo floral. En este proceso se ha establecido la participación de varias fitohormonas, entre éstas, la presencia del ácido abscísico (ABA en zonas y periodos específicos durante el desarrollo de la flor lo cual sugiere su acción promotora en la velocidad de antesis floral de esta especie en DC. En este trabajo se buscaron nuevos indicios de la participación de fitohormonas presentes en la fracción ácida con el proceso de floración. En una primera etapa, extractos foliares provenientes de hojas de plantas en días largos (caracterizadas por menor velocidad de antesis floral se aplicaron en botones florales de plantas en días cortos (caracterizadas por una mayor velocidad de antesis floral. Se realizaron ocho aplicaciones con diferentes frecuencias totalizando un periodo de tratamiento de 25 días. Los resultados mostraron que las sustancias presentes en los extractos de la fracción ácida, no alteran la velocidad promedio de antesis floral en los botones florales de plantas en DC. En la segunda etapa del experimento, la cuantificación de los extractos por ELISA, permitió establecer una mayor concentración de ABA en los extractos de hojas y de botones florales de plantas en DC y de botones florales en el inicio del tratamiento. Estos resultados confirman la relación del ABA con la mayor velocidad de antesis floral en plantas de Solidago x luteus en condiciones de DC.Solidago x luteus (M.L. Greene Broulliet & Semple (= x Solidaster hybridus, x S. luteus is a plant that respond to short days (SD for flower development. In this process, there has been established the involvement of many phytohormones, between these, the presence of the abscisic acid (ABA in zones and specific periods during flower development, suggests its promoter roll on the floral anthesis period of this species under

  2. Building beauty: the genetic control of floral patterning

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, J. U., and Weigel, D.

    2002-02-01

    OAK-B135 Floral organ identity is controlled by combinatorial action of homeotic genes expressed in different territories within the emerging flower. This review discusses recent progress in our understanding of floral homeotic genes, with an emphasis on how their region-specific expression is regulated.

  3. chemical profiles of honeys originating from different floral sources

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... FLORAL SOURCES AND GEOGRAPHIC LOCATIONS EXAMINED BY A ... quality honeys retail for premium prices, but these honeys are increasingly being counterfeited ... distinguish between two floral sources in Malaysia.

  4. Variations on a theme: changes in the floral ABCs in angiosperms.

    NARCIS (Netherlands)

    Rijpkema, A.S.; Vandenbussche, M.; Koes, R.E.; Heijmans, K.; Gerats, T.

    2010-01-01

    Angiosperms display a huge variety of floral forms. The development of the ABC-model for floral organ identity, almost 20 years ago, has created an excellent basis for comparative floral development (evo-devo) studies. These have resulted in an increasingly more detailed understanding of the

  5. Variations on a theme: changes in the floral ABCs in angiosperms.

    NARCIS (Netherlands)

    Rijpkema, A.S.; Vandenbussche, M.; Koes, R.E.; Heijmans, K.; Gerats, T.

    2009-01-01

    Angiosperms display a huge variety of floral forms. The development of the ABC-model for floral organ identity, almost 20 years ago, has created an excellent basis for comparative floral development (evo-devo) studies. These have resulted in an increasingly more detailed understanding of the

  6. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    Science.gov (United States)

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect

  7. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    Directory of Open Access Journals (Sweden)

    Lisa Horth

    2014-07-01

    Full Text Available Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent

  8. Morphological Observation on Floral Variations of the Genus Cuscuta in Taiwan

    Directory of Open Access Journals (Sweden)

    Gwo-Ing Liao

    2005-06-01

    Full Text Available The variations in floral structure of Cuscuta in Taiwan were studied with special reference to C. campestris. The variations of the floral structure were described and illustrated by using light and scanning electron microscopy. The variations including the following: (1 the absence of floral organs; (2 the abnormal fusion of floral organs; (3 petaloid stamens; (4 the lack of distinctive anther lobes; (5 the unusual protrusions on ovaries; and (6 the extrusion of ovule on ovary surfaces. The variations occur in early developmental stages when the primordia of floral organ were initiated. The findings that the abnormal position of the ovule and the lateral fusion of the scale with the filament or the petal in the species of Cuscuta are first time reported here.

  9. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  10. Non-volatile floral oils of Diascia spp. (Scrophulariaceae).

    Science.gov (United States)

    Dumri, Kanchana; Seipold, Lars; Schmidt, Jürgen; Gerlach, Günter; Dötterl, Stefan; Ellis, Allan G; Wessjohann, Ludger A

    2008-04-01

    The floral oils of Diascia purpurea, Diascia vigilis, Diascia cordata, Diascia megathura, Diascia integerrima and Diascia barberae (Scrophulariaceae) were selectively collected from trichome elaiophores. The derivatized floral oils were analyzed by gas chromatography-mass spectrometry (GC-MS), whilst the underivatized samples were analysed by electrospray ionization mass spectrometry (ESI-MS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). The most common constituents of the floral oils investigated are partially acetylated acylglycerols of (3R)-acetoxy fatty acids (C(14), C(16), and C(18)), as was proven with non-racemic synthetic reference samples. The importance of these oils for Rediviva bees is discussed in a co-evolutionary context.

  11. Overhead irrigation increased winter chilling and floral bud ...

    African Journals Online (AJOL)

    Eucalyptus nitens requires a sufficiently cold winter to produce flower buds. In areas in South Africa where E. nitens commercial plantations as well as breeding and production seed orchards are located, winter chilling is often insufficient for floral bud initiation. Hence, under such conditions, E. nitens floral bud and seed ...

  12. Do Plants Eavesdrop on Floral Scent Signals?

    Science.gov (United States)

    Caruso, Christina M; Parachnowitsch, Amy L

    2016-01-01

    Plants emit a diverse array of volatile organic compounds that can function as cues to other plants. Plants can use volatiles emitted by neighbors to gain information about their environment, and respond by adjusting their phenotype. Less is known about whether the many different volatile signals that plants emit are all equally likely to function as cues to other plants. We review evidence for the function of floral volatile signals and conclude that plants are as likely to perceive and respond to floral volatiles as to other, better-studied volatiles. We propose that eavesdropping on floral volatile cues is particularly likely to be adaptive because plants can respond to these cues by adjusting traits that directly affect pollination and mating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja E. M.

    2015-11-21

    Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  14. A global sensitivity analysis approach for morphogenesis models.

    Science.gov (United States)

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  15. Floral reward in Ranunculaceae species

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2016-04-01

    Full Text Available Floral reward is important in ecological and evolutionary perspectives and essential in pollination biology. For example, floral traits, nectar and pollen features are essential for understanding the functional ecology, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. We believe to present a synthetic description in the field of floral reward in Ranunculaceae family important in pollination biology and indicating connections between ecological and evolutionary approaches. The links between insect visitors’ behaviour and floral reward type and characteristics exist. Ranunculaceae is a family of aboot 1700 species (aboot 60 genera, distributed worldwide, however the most abundant representatives are in temperate and cool regions of the northern and southern hemispheres. The flowers are usually radially symmetric (zygomorphic and bisexual, but in Aconitum, Aquilegia are bilaterally symmetric (zygomorphic. Most Ranunculaceae flowers offer no nectar, only pollen (e.g., Ranunculus, Adonis vernalis, Thalictrum, but numerous species create trophic niches for different wild pollinators (e.g. Osmia, Megachile, Bombus, Andrena (Denisow et al. 2008. Pollen is a source of protein, vitamins, mineral salts, organic acids and hormones, but the nutritional value varies greatly between different plant species. The pollen production can differ significantly between Ranunculacea species. The mass of pollen produced in anthers differ due to variations in the number of developed anthers. For example, interspecies differences are considerable, 49 anthers are noted in Aquilegia vulgaris, 70 anthers in Ranunculus lanuginosus, 120 in Adonis vernalis. A significant intra-species differences’ in the number of anthers are also noted (e.g. 41 to 61 in Aquilegia vulgaris, 23-45 in Ranunculus cassubicus. Pollen production can be up to 62 kg per ha for Ranunculus acer

  16. Sea Urchin Morphogenesis.

    Science.gov (United States)

    McClay, David R

    2016-01-01

    In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future

  17. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  18. Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species

    Science.gov (United States)

    Jacquemyn, Hans; Lenaerts, Marijke; Tyteca, Daniel; Lievens, Bart

    2013-01-01

    Abstract Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity. PMID:23836678

  19. Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae).

    Science.gov (United States)

    Chanderbali, André S; Albert, Victor A; Leebens-Mack, Jim; Altman, Naomi S; Soltis, Douglas E; Soltis, Pamela S

    2009-06-02

    The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, male and female reproductive organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure of floral organs, whereas the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. Here we show that broadly overlapping transcriptional programs characterize the floral transcriptome of the basal angiosperm Persea americana (avocado), whereas floral gene expression domains are considerably more organ specific in the model eudicot Arabidopsis thaliana. Our findings therefore support the "fading borders" model for organ identity determination in basal angiosperm flowers and extend it from the action of regulatory genes to downstream transcriptional programs. Furthermore, the declining expression of components of the staminal transcriptome in central and peripheral regions of Persea flowers concurs with elements of a previous hypothesis for developmental regulation in a gymnosperm "floral progenitor." Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.

  20. Floral nectar guide patterns discourage nectar robbing by bumble bees.

    Directory of Open Access Journals (Sweden)

    Anne S Leonard

    Full Text Available Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant's reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called "nectar robbing" because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees' (Bombus impatiens propensity to rob or access nectar "legitimately." We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees' flower handling in a way that could benefit the plant.

  1. Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees

    Science.gov (United States)

    Leonard, Anne S.; Brent, Joshua; Papaj, Daniel R.; Dornhaus, Anna

    2013-01-01

    Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant’s reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called “nectar robbing” because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees’ (Bombus impatiens) propensity to rob or access nectar “legitimately.” We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees’ flower handling in a way that could benefit the plant. PMID:23418475

  2. Circadian rhythms in floral scent emission

    Directory of Open Access Journals (Sweden)

    Myles eFenske

    2016-04-01

    Full Text Available To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the benzenoid/phenylpropanoid (FVBP pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT1 (ODO1, EMISSION OF BENZENOIDS I (EOBI, and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  3. Floral nectary, nectar production dynamics, and floral reproductive isolation among closely related species of Pedicularis.

    Science.gov (United States)

    Liu, Ya-Nan; Li, Yan; Yang, Fu-Sheng; Wang, Xiao-Quan

    2016-02-01

    Floral nectar is thought to be one of the most important rewards that attract pollinators in Pedicularis; however, few studies have examined variation of nectary structure and/or nectar secretion in the genus, particularly among closely related species. Here we investigated nectary morphology, nectar quality, and nectar production dynamics in flowers of Pedicularis section Cyathophora. We found a conical floral nectary at the base of the ovary in species of the rex-thamnophila clade. Stomata were found on the surface of the nectary, and copious starch grains were detected in the nectary tissues. In contrast, a semi-annular nectary was found in flowers of the species of the superba clade. Only a few starch grains were observed in tissues of the semi-annular nectary, and the nectar sugar concentration in these flowers was much lower than that in the flowers of the rex-thamnophila clade. Our results indicate that the floral nectary has experienced considerable morphological, structural, and functional differentiation among closely related species of Pedicularis. This could have affected nectar production, leading to a shift of the pollination mode. Our results also imply that variation of the nectary morphology and nectar production may have played an important role in the speciation of sect. Cyathophora. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. Floral structure and ontogeny of Syndiclis (Lauraceae.

    Directory of Open Access Journals (Sweden)

    Gang Zeng

    Full Text Available Generic delimitation in the Beilschmiedia group of the Lauraceae remains ambiguous because flowering specimens of a few genera with confined distribution are poorly represented in herbaria, and a few floral characters important for taxonomy are still poorly known. Syndiclis is sporadically distributed in southwestern China, and is represented in the herbaria by only a few flowering specimens. We conducted field investigations to collect floral materials of four species and observed structures and ontogeny of the tiny flowers using both light microscopy (LM and scanning electron microscopy (SEM. The results show that the genus Syndiclis possesses flowers with huge variation in both merosity and organ number. Flowers of the genus are dimerous, trimerous, or tetramerous, or have mixed merosity with monomerous and dimerous, or dimerous and trimerous, or trimerous and tetramerous whorls. The number of staminodes ranges from two to eight, depending on floral merosity, and on how many stamens of the third androecial whorl are reduced to staminodes. The staminodes of the fourth androecial whorl are comparable to the staminodes in Potameia, but the staminodes of the third androecial whorl of Syndiclis are relatively larger than the staminodes in Potameia. They are erect or curved inwards, covering the ovary. The anthers are usually two-locular, but rarely one-locular or three-locular. Each stamen of the third androecial whorl bears two conspicuous and enlarged glands at the base. The lability of floral merosity and organ number of Syndiclis may have been caused by changes of pollination system and loss of special selective pressures that are present in most Lauraceous plants with fixed floral organ number. This study furthers our understanding of variation and evolution of a few important characters of the Beilschmiedia group and provides essential data for a revised generic classification of the group.

  5. How scent and nectar influence floral antagonists and mutualists.

    Science.gov (United States)

    Kessler, Danny; Kallenbach, Mario; Diezel, Celia; Rothe, Eva; Murdock, Mark; Baldwin, Ian T

    2015-07-01

    Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services.

  6. Aromas florales y su interacción con los insectos polinizadores Floral scents and their interaction with insect pollinators

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2011-12-01

    Full Text Available Las plantas emplean diversas señales visuales y olfativas con la finalidad de atraer a los polinizadores que en su mayoría son insectos. Algunas plantas han desarrollado mecanismos, basándose en mensajes olfativos que los hacen únicos para sus polinizadores específicos. Estos mecanismos, así como las variaciones intra- e interespecíficas en el perfil de los aromas florales han evolucionado para determinadas especies. Los aromas florales son un conjunto de compuestos volátiles orgánicos y para su estudio hay varios métodos que requieren de técnicas que cada vez son más eficientes. El uso de estos aromas podría ser una opción en determinados sistemas de polinización, utilizándolos como atrayente de polinizadores o de depredadores y/o herbívoro para incrementar la producción y disminuir los daños por plagas. En este trabajo se revisan las distintas interacciones de los insectos y los aromas florales, los sistemas específicos planta-polinizador, los métodos de análisis, así como algunos patrones o tendencias de estas interacciones y su aplicación e importancia.Plants use visual and olfactory cues to attract pollinators and to allow them to detect the presence of flowers, which most of them are insects. Some plants have evolved with their pollinators, based on the olfactory messages, which make them unique for their specific pollinators. These mechanisms have evolved in certain plants in relation to their pollinators, and there are also inter and intra-specific variation in fragrance cues which show specific chemical profile for each plant species, so insects attracted are specific to them. Most of the floral scents are organic compounds identified with techniques and methodologies which become more specific and efficient along the time. The application of floral scent could be used as a tool in pollination and pest management. In these studies, insect interaction with floral scent is reviewed and specificity of plant

  7. Pollen diversity, viability and floral structure of some Musa genotypes

    African Journals Online (AJOL)

    Pollen diversity, viability and floral structure of some Musa genotypes. ... This experiment was designed to study the floral structure, pollen morphology and the potential pollen viability of five Musa genotypes obtained ... HOW TO USE AJOL.

  8. Physics and the canalization of morphogenesis: a grand challenge in organismal biology

    International Nuclear Information System (INIS)

    Von Dassow, Michelangelo; Davidson, Lance A

    2011-01-01

    Morphogenesis takes place against a background of organism-to-organism and environmental variation. Therefore, fundamental questions in the study of morphogenesis include: How are the mechanical processes of tissue movement and deformation affected by that variability, and in turn, how do the mechanic of the system modulate phenotypic variation? We highlight a few key factors, including environmental temperature, embryo size and environmental chemistry that might perturb the mechanics of morphogenesis in natural populations. Then we discuss several ways in which mechanics—including feedback from mechanical cues—might influence intra-specific variation in morphogenesis. To understand morphogenesis it will be necessary to consider whole-organism, environment and evolutionary scales because these larger scales present the challenges that developmental mechanisms have evolved to cope with. Studying the variation organisms express and the variation organisms experience will aid in deciphering the causes of birth defects

  9. Floral visitors of Ananas comosus in Ghana: A preliminary assessment

    Directory of Open Access Journals (Sweden)

    Peter Kwapong

    2010-11-01

    Full Text Available Ananas comosus var comosus (L. Merr. is the third most important tropical fruit in the world production and the leading foreign exchange earner among fresh fruits exported from Ghana. A survey was conducted in pineapple farms in the Central region of Ghana to identify floral visitors and their activities on the flowers. Nectar concentration and energetics and effect of floral visitors on fruit production were determined. Fourteen species of butterflies and one ant species were the main insect floral visitors as well as four species of sunbirds. The mean nectar concentration was 23.3% (± 0.39, SE and pollination limitation did not significantly affect fruit yield (weight: p = 0.285; length: p = 0.056; width: p= 0.268. The study showed that butterflies, ants and sunbirds are the main floral visitors on A. comosus. However their visits did not results in pollination and fruit production was not affected in any way by floral visitation. Still, it was found that A. comosus provides an important nectar resource for its foragers. Even if pollination is not crucial in pineapple cultivation, it is still essential in pineapple breeding programs to promote genetic diversity and conservation.

  10. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Disruption of a belowground mutualism alters interactions between plants and their floral visitors.

    Science.gov (United States)

    Cahill, James F; Elle, Elizabeth; Smith, Glen R; Shore, Bryon H

    2008-07-01

    Plants engage in diverse and intimate interactions with unrelated taxa. For example, aboveground floral visitors provide pollination services, while belowground arbuscular mycorrhizal fungi (AMF) enhance nutrient capture. Traditionally in ecology, these processes were studied in isolation, reinforcing the prevailing assumption that these above- and belowground processes were also functionally distinct. More recently, there has been a growing realization that the soil surface is not a barrier to many ecological interactions, particularly those involving plants (who live simultaneously above and below ground). Because of the potentially large impact that mycorrhizae and floral visitors can have on plant performance and community dynamics, we designed an experiment to test whether these multi-species mutualisms were interdependent under field conditions. Using benomyl, a widely used fungicide, we suppressed AMF in a native grassland, measuring plant, fungal, and floral-visitor responses after three years of fungal suppression. AMF suppression caused a shift in the community of floral visitors from large-bodied bees to small-bodied bees and flies, and reduced the total number of floral visits per flowering stem 67% across the 23 flowering species found in the plots. Fungal suppression has species-specific effects on floral visits for the six most common flowering plants in this experiment. Exploratory analyses suggest these results were due to changes in floral-visitor behavior due to altered patch-level floral display, rather than through direct effects of AMF suppression on floral morphology. Our findings indicate that AMF are an important, and overlooked, driver of floral-visitor community structure with the potential to affect pollination services. These results support the growing body of research indicating that interactions among ecological interactions can be of meaningful effect size under natural field conditions and may influence individual performance

  12. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  13. Effects of Hydrogen Cyanamide on the Floral Morphogenesis of Kiwifruit Buds Efectos de la Cianamida de Hidrógeno sobre la Morfogénesis Floral de Kiwi

    Directory of Open Access Journals (Sweden)

    Hakan Engin

    2010-09-01

    Full Text Available The influence of hydrogen cyanamide (HC on the flower bud development of kiwifruit (Actinidia deliciosa (A. Chev. C.F. Liang & A.R. Ferguson. ‘Hayward’ was studied. The bud samples were taken every 5-10 d starting from dormant season (March and fixed in FAA (10% formalin, 50% ethanol, 5% glacial acetic acid. Flower bud development was compared in three HC concentrations and the control. 1%, 2%, and 3% of HC was applied 35 d before the expected natural bud break. During the onset of bud break, only 57.6% of control buds had sepal primordia developed. On the other hand, HC treated buds had almost completed their stamen formation and started stigma primordia. When the control vines were in advanced bud break, gynoecial plateau already began to form in the vines treated with 2 and 3% HC. Vines treated with 1% HC lagged a little behind and had not started developing the gynoecial plateau. As the bud developed from the open cluster to the tight bud stage, the differences between the control and HC treated plants were more distinct. However, there were no differences between HC treatments as the ovule initiation took place in the buds.El presente estudio evalúa la influencia de la aplicación de cianamida de hidrogeno (HC sobre el desarrollo de las yemas florales de kiwi (Actinidia deliciosa (A. Chev. C.F. Liang & A.R. Ferguson cv. Hayward. Las muestras de yemas se tomaron cada 5-10 días comenzando en la época de dormancia en marzo y se fijaron en FAA (10% formaldehido, 50% etanol, 5% ácido acético glacial. Se comparó el desarrollo de las yemas florales en tres concentraciones de HC y el control. Se aplicó HC al 1%, 2% y 3% 35 días antes del brote natural de las yemas. En el momento de la apertura de las yemas, sólo el 57,6% de las yemas de control habían desarrollado los primordios de los sépalos. Por el contrario, las yemas tratadas con HC casi habían completado la formación de estambres y habían empezado el desarrollo de primordios

  14. Floral scent and pollinators of the holoparasite Pilostyles thurberi (Apodanthaceae

    Directory of Open Access Journals (Sweden)

    Sedonia D Sipes

    2014-02-01

    Full Text Available Floral scent is likely important to the pollination of parasitic plants, despite that it has not been well-studied. We studied the pollination ecology of the North American stem holoparasite Pilostyles thurberi (Apodanthaceae at two field sites in Texas. To identify effective pollinators, we collected floral visitors to P. thurberi flowers, observed their foraging behavior, and looked for P. thurberi pollen on their bodies. Augochloropsis metallica bees (Halictidae and eumenine potter wasps (Vespidae were pollinators. P. thurberi flowers are visually inconspicuous but produce a strong fruity fragrance. GC/MS analysis of whole floral extracts and dynamic headspace samples revealed the fragrance to be an unusually simple bouquet of raspberry ketone and several eugenols. Comparison of scent profiles to those from uninfected host plants (Dalea formosa allowed putative separation of parasite and host volatiles. This is the first report of the constituents of floral fragrance in Apodanthaceae.

  15. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.

    Science.gov (United States)

    Hepworth, Shelley R; Klenz, Jennifer E; Haughn, George W

    2006-03-01

    The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear "chimeric" at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.

  16. Floral biology of Stachytarpheta maximiliani Scham. (Verbenaceae and its floral visitors Biologia floral de Stachytarpheta maximiliani Scham. (Verbenaceae e seus visitantes florais

    Directory of Open Access Journals (Sweden)

    Ivana de Freitas Barbola

    2006-12-01

    Full Text Available This study describes the reproductive system of Stachytarpheta maximiliani (Verbenaceae, including its floral biology, nectar and pollen availability and insect foraging patterns, identifying whose species act as pollinators. It was carried out in a Brazilian Atlantic rain forest site. Observations on the pollination biology of the Verbenaceae S. maximiliani indicate that their flowering period extends from September through May. Anthesis occurs from 5:30 a.m. to 5:00 p.m. and nectar and pollen are available during all the anthesis. Many species of beetles, hemipterans, flies, wasps, bees and butterflies visit their flowers, but bees and butterflies are the most frequent visitors. The flowers are generally small, gathered in dense showy inflorescences. A complex of floral characteristcs, such as violet-blue color of flowers, long floral tubes, without scents, nectar not exposed, high concentration of sugar in nectar (about 32%, allowed identification of floral syndromes (melittophily and psicophily and function for each visitor. The bees, Bombus morio, B. atratus, Trigonopedia ferruginea, Xylocopa brasilianorum and Apis mellifera and the butterflies Corticea mendica mendica, Corticea sp., Vehilius clavicula, Urbanus simplicius, U. teleus and Heraclides thoas brasiliensis, are the most important pollinators.Este estudo descreve alguns aspectos do sistema reprodutivo de Stachytarpheta maximiliani (Verbenaceae, incluindo características da flor, disponibilidade de néctar e pólen e o padrão de forrageio dos insetos visitantes florais, em uma área de Floresta Atlântica, no sul do Brasil. Observações sobre sua biologia floral indicam que esta espécie tem um período de floração que se estende de setembro a maio, antese diurna (das 5:30h às 17:00h e oferta de néctar e pólen praticamente durante todo o período de antese. Suas flores são visitadas por diferentes espécies de coleópteros, dípteros, hemípteros, himenópteros e lepid

  17. Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Schewe, Lauren C; Sawhney, Vipen K; Davis, Arthur R

    2011-07-01

    Flax (Linum usitatissimum) is an important crop worldwide; however, a detailed study on flower development of this species is lacking. Here we describe the pattern of initiation and a program of key developmental events in flax flower ontogeny. This study provides important fundamental information for future research in various aspects of flax biology and biotechnology. Floral buds and organs were measured throughout development and examined using scanning electron microscopy. Floral organs were initiated in the following sequence: sepals, stamens and petals, gynoecium, and nectaries. The five sepals originated in a helical pattern, followed evidently by simultaneous initiation of five stamens and five petals, the former opposite of the sepals and the latter alternate to them. The gynoecium, with five carpels, was produced from the remaining, central region of the floral apex. Stamens at early stages were dominated by anther growth but filaments elongated rapidly shortly before anthesis. Early gynoecium development occurred predominantly in the ovary, and ovule initiation began prior to enclosure of carpels. A characteristic feature was the twisted growth of styles, accompanied by the differentiation of papillate stigmas. Petal growth lagged behind that of other floral organs, but petals eventually grew rapidly to enclose the inner whorls after style elongation. Flask-shaped nectaries bearing stomata developed on the external surface of the filament bases. This is the first detailed study on flax floral organ development and has established a key of 12 developmental stages, which should be useful to flax researchers.

  18. Is floral structure a reliable indicator of breeding system in the Brassicaceae?

    Directory of Open Access Journals (Sweden)

    Phillip A Salisbury

    Full Text Available This study investigated the usefulness of floral characters as a potential indicator of breeding system in the Brassicaceae. Initially, pod set, seed set and pollen tube growth experiments were carried out to confirm the breeding systems of 53 lines representing 25 different cultivated and weedy species from the Brassicaceae. The results of the pod set tests clearly differentiated between self-compatible and self-incompatible species. Floral characters were then evaluated on one or more lines of each of the 25 species. Fourteen floral characters were evaluated including, flower diameter, Cruden's outcrossing index, timing and direction of dehiscence and pollen-ovule ratio. Significant differences between species were evident in all of the floral characteristics evaluated. Flower diameter was generally larger in self-incompatible species than self-compatible species and pollen/ovule ratio was generally higher in self-incompatible species than self-compatible species. However, none of the floral characteristics was able to clearly differentiate the self-compatible and self-incompatible species and allow prediction of the breeding system with absolute confidence. The floral characteristic which was most effective at differentiating the two groups was anther direction at dehiscence.

  19. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  20. Epithelial morphogenesis: the mouse eye as a model system.

    Science.gov (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard

    2015-01-01

    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  1. Ascidian notochord morphogenesis

    OpenAIRE

    Jiang, Di; Smith, William C.

    2007-01-01

    The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate models systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in th...

  2. Computational models of airway branching morphogenesis.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Floral anatomy of Delphinieae (Ranunculaceae: comparing flower organization and vascular patterns

    Directory of Open Access Journals (Sweden)

    Andrew V. Novikoff

    2014-04-01

    Full Text Available Species of the tribe Delphinieae have dorsoventralized flowers; their pentamerous calyx and reduced corolla are dorsally spurred and inner spurs are nectariferous. Based on this common floral scheme, Delphinieae species exhibit a wide diversity of floral structures and morphologies. We present here the first investigation of the floral anatomy in Delphinieae. The organization of the floral vascular system has been studied in species representative of the floral morphological diversity of Delphinieae: Aconitum lasiocarpum, Delphinium elatum, and Consolida regalis. The three species show a similar vascularization of the calyx and of the reproductive organs, but exhibit distinct anatomical features in the corolla where the nectaries are borne. The sepals and the stamens have a trilacunar three-traced and a unilacunar one-traced vascularization, respectively. Three free carpels in D. elatum and A. lasiocarpum are basically supplied by six vascular bundles – three independent dorsal bundles and three fused lateral bundles. In C. regalis the single carpel is supplied by three independent vascular bundles (one dorsal and two ventral. Staminodes are not vascularized. The basic type of petal vascularization is unilacunar one-traced, but in the case of C. regalis the derived bilacunar two-traced type has been observed. This latter state arose as a result of the fusion of the two dorsal petal primordia. The results of this first comparative study of the floral anatomy of Delphinieae are discussed with the recent phylogenetic, morphological, and evo-devo findings concerning the tribe.

  4. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  5. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  6. Reproduction and survival of a solitary bee along native and exotic floral resource gradients.

    Science.gov (United States)

    Palladini, Jennifer D; Maron, John L

    2014-11-01

    Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.

  7. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  8. Biologia floral de Virola surinamensis (Rol. Warb. (Myristicaceae Virola surinamensis (Rol. Warb. (Myristicaceae floral biology

    Directory of Open Access Journals (Sweden)

    Mario Augusto Gonçalves Jardim

    2007-12-01

    Full Text Available Neste artigo são apresentadas informações sobre a biologia floral de Virola surinamensis (Rol. Warb. (Myristicaceae, espécie florestal dióica de relevante importância econômica na região amazônica. O estudo foi realizado em uma área de várzea próximo à bacia do igarapé Murutucum, lado direito do rio Guamá, localizada no Campus da Faculdade de Ciências Agrárias do Pará, na cidade de Belém, Estado do Pará, no período de janeiro a dezembro de 2001. Avaliou-se a biologia floral desde o aparecimento dos botões florais até a senescência das flores estaminadas, bem como a formação de frutos nas flores pistiladas. Testes bioquímicos foram aplicados para verificação de odor, pigmentos, osmóforos e receptividade do estigma. A observação no comportamento dos visitantes florais foi realizada durante o período diurno, registrando-se os horários de visitas, tempo de permanência na flor e freqüência; alguns indivíduos foram coletados com rede entomológica e identificados no Departamento de Zoologia do Museu Paraense Emílio Goeldi. A antese ocorreu entre 6 e 16 h nas flores estaminadas e entre 8 e 16 h nas flores pistiladas; a presença de odor foi constatada apenas nas flores estaminadas, enquanto os pigmentos e osmóforos foram encontrados em ambas as flores; o estigma mostrou-se receptivo no período entre 12 e 14 h. Os insetos da ordem diptera foram os visitantes mais freqüentes nas flores estaminadas e pistiladas e as espécies Copestylum sp. e Erystalys sp., as responsáveis pela polinização.Information was obtained on the floral biology of Virola surinamensis (Rol. Warb. (Myristicaceae, a dioecious arboreal species of great importance for the Amazon region economy. The study was carried out in the floodplain area near the Murucutu stream, on the right side of the Guamá River, at the Universidade Federal Rural da Amazônia-UFRA, Belém-Pará , from January to December 2001. Floral biology was assessed from

  9. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    Science.gov (United States)

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis

  10. Dependency on floral resources determines the animals' responses to floral scents

    OpenAIRE

    Junker, Robert R; Blüthgen, Nico

    2010-01-01

    Animal-pollinated angiosperms either depend on cross-pollination or may also reproduce after self-pollination—the former are thus obligately, the latter facultatively dependent on the service of animal-pollinators. Analogously, flower visitors either solely feed on floral resources or complement their diet with these, and are hence dependent or not on the flowers they visit. We assume that obligate flower visitors evolved abilities that enable them to effectively forage on flowers including m...

  11. Floral scents and their interaction with insect pollinators

    OpenAIRE

    Grajales-Conesa, Julieta; Meléndez-Ramírez, Virginia; Cruz-López, Leopoldo

    2011-01-01

    Las plantas emplean diversas señales visuales y olfativas con la finalidad de atraer a los polinizadores que en su mayoría son insectos. Algunas plantas han desarrollado mecanismos, basándose en mensajes olfativos que los hacen únicos para sus polinizadores específicos. Estos mecanismos, así como las variaciones intra- e interespecíficas en el perfil de los aromas florales han evolucionado para determinadas especies. Los aromas florales son un conjunto de compuestos volátiles orgánicos y para...

  12. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  13. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    Science.gov (United States)

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes

  14. Enantiostyly in Chamaecrista ramosa (Fabaceae-Caesalpinioideae): floral morphology, pollen transfer dynamics and breeding system.

    Science.gov (United States)

    Almeida, N M de; Castro, C C de; Leite, A V de Lima; Novo, R R; Machado, I C

    2013-03-01

    Enantiostyly is a form of reciprocal herkogamy, in which floral morphs present reciprocal differences in the position of sexual elements, and occurs in monomorphic and dimorphic forms. This polymorphism maximises cross-pollination and reduces self-pollination, being very common within the subtribe Cassiinae (Fabaceae). Nevertheless, few studies have investigated the functionality of enantiostyly, particularly in this plant group. The present study aimed to investigate enantiostyly and its functionality in Chamaecrista ramosa, a monomorphic enantiostylous shrub, in an area of coastal vegetation in northeast Brazil. Pollen deposition and capture on the body of floral visitors, the relationship of these data with floral biology and breeding system, and morph ratio were evaluated. Pollen deposition and capture occurred in specific sites of the floral visitor body, showing the functionality of enantiostyly. The floral architecture, associated with the floral visitor behaviour, resulted in indirect pollen deposition on the floral visitor body. This occurred through a loop made by the pollen upon the inner petal surface, similar that generally reported for other Cassiinae. Chamaecrista ramosa is self-compatible, although no fruit set was observed through spontaneous self-pollination. The occurrence and number of floral morphs was similar within clumps. Enantiostyly seems to be advantageous for this species, as it results in efficient pollen capture and deposition, reduces the chances of autogamy and maximises intermorph pollen flow. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    Science.gov (United States)

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum.

    Science.gov (United States)

    Galen, Candace; Kaczorowski, Rainee; Todd, Sadie L; Geib, Jennifer; Raguso, Robert A

    2011-02-01

    All volatile organic compounds (VOCs) vary quantitatively, yet how such variation affects their ecological roles is unknown. Because floral VOCs are cues for both pollinators and floral antagonists, variation in emission may have major consequences for costs and benefits in plant-pollinator interactions. In Polemonium viscosum, the emission rate for the floral VOC 2-phenylethanol (2PE) spans more than two orders of magnitude. We investigated the ecological and evolutionary impacts of this immense phenotypic variation. The emission rate of 2PE varies independently of nectar rewards and thus is uninformative of profitability. Emission is elevated in flowers that are morphologically vulnerable to ant larcenists, suggesting that chemical deterrence may compensate for weak physical barriers. In nature, plants emitting more 2PE than their neighbors escape ant damage. Flower-damaging ants die when exposed to 2PE in the laboratory, and they avoid high 2PE emitters in the field. High 2PE also reduces bumblebee visitation and pollination, suggesting an ecological cost of defense in pollinator service. However, at more moderate emission rates, 2PE enhances the amount of nectar left in flowers, at no pollination cost. In conclusion, repellency of 2PE is highly sensitive to dosage, giving it a key role in shaping ecological interactions between skypilot plants and their floral visitors.

  17. The modular structure of the floral phenotype in Mimulus luteus var. luteus (Phrymaceae Estructura modular del fenotipo floral en Mimulus luteus var. luteus (Phrymaceae

    Directory of Open Access Journals (Sweden)

    GASTÓN CARVALLO

    2005-12-01

    Full Text Available Most studies of multivariate evolution on the floral phenotype assume that traits evolve independently one from each other, ignoring the modular structure that results from genetic correlations or developmental constraints. In this paper we describe the interdependence of nine floral traits in the herb Mimulus luteus var. luteus (Phrymaceae, as an attempt to characterize functional modules on which natural selection can potentially act upon. Using edge exclusion deviance analysis, we detected four modules: (a an attractiveness module, (b a stigma behavior module, (c a stigma surface module, and (d a herkogamy module. Consequences of these findings for future studies of natural selection in this species are discussedLa mayor parte de los estudios de evolución multivariada sobre el fenotipo floral suponen que los rasgos evolucionan independientemente unos de otros, ignorando la estructura modular que resulta de correlaciones genéticas o restricciones impuestas por el desarrollo. En este trabajo describimos la interdependencia de nueve rasgos florales en Mimulus luteus var. luteus (Phrymaceae, en un intento por caracterizar los módulos funcionales sobre los cuales la selección natural pudiera eventualmente actuar. Mediante análisis de desviación límite-excluyente detectamos cuatro módulos: (a un módulo de atractividad floral, (b un módulo de comportamiento estigmático, (c un módulo de superficie estigmática, y (d un módulo de hercogamia. Se discuten las consecuencias de estos hallazgos para futuros estudios de selección natural en esta especie

  18. Imaging morphogenesis: technological advances and biological insights.

    Science.gov (United States)

    Keller, Philipp J

    2013-06-07

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

  19. Terrestrial floral change during the ETM2 hyperthermal

    Science.gov (United States)

    Wing, S. L.; Currano, E. D.

    2017-12-01

    Hyperthermal events during the Eocene are defined by negative shifts in carbon isotope composition, global temperature increase and carbonate dissolution in marine settings. These features suggest repeated releases of large amounts of carbon followed by increasing concentration of CO2in the atmosphere and ocean, climate change, and biotic responses such as rapid evolution and changes in geographic range and trophic relationships. The Paleocene-Eocene Thermal Maximum (PETM, 56.0 Ma) is the largest Eocene hyperthermal in terms of carbon cycle, climate and biotic effects, including dwarfing of mammalian lineages. Terrestrial floral turnover at the PETM documented in the Bighorn Basin, Wyoming, USA, is very high. Almost all late Paleocene species, most belonging to mesic, warm-temperate lineages, disappeared during the PETM. The PETM flora was composed of species belonging to dry tropical lineages present only during the body of the PETM. Most mesic, warm-temperate species returned to the area immediately after the PETM. Such extreme change in floral composition makes it difficult to assess how much floral turnover is associated with how much change in temperature. The ETM2 hyperthermal event ( 53.7 Ma) is characterized by a carbon isotope excursion and warming about half as great as during the PETM, and by half as much mammalian dwarfing. Here we report on a new fossil flora from ETM2 that demonstrates the magnitude of floral change was also less than during the PETM. Some characteristic PETM plant species reappeared in the Bighorn Basin during ETM2, including species of Fabaceae that dominate PETM assemblages but are less common during ETM2. Many stratigraphically long-ranging plant species that preferred mesic climates remain common in the ETM2 flora. We conclude that warm climate during ETM2 shifted ranges of plant species such that some PETM species returned to northern Wyoming, but was not so severe as to cause local extirpation of species preferring 'background

  20. Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans

    DEFF Research Database (Denmark)

    Thiele, Jan; Hansen, Thomas Møller; Siegismund, Hans Redlef

    2010-01-01

    The magnitude and variation of inbreeding depression (ID) within populations is important for the evolution and maintenance of mixed mating systems. We studied ID and its genetic variation in a range of floral and fitness traits in a small and large population of the perennial herb Silene nutans......, using controlled pollinations in a fully factorial North Carolina II design. Floral traits and early fitness traits, that is seed mass and germination rate, were not much affected by inbreeding (delta0.4). Lack of genetic correlations indicated that ID in floral, early and late traits is genetically...... was statistically significant in most floral and all seed traits, but not in late fitness traits. However, some paternal families had delta...

  1. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    Science.gov (United States)

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  2. Supplementary Material for: A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja

    2015-01-01

    Abstract Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  3. The Fog signaling pathway: Insights into signaling in morphogenesis

    Science.gov (United States)

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  4. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network.

    Directory of Open Access Journals (Sweden)

    Rae Eden Yumul

    Full Text Available Termination of the stem cells in the floral meristem (also known as floral determinacy is critical for the reproductive success of plants, and the molecular activities regulating floral determinacy are precisely orchestrated during the course of floral development. In Arabidopsis thaliana, regulators of floral determinacy include several transcription factor genes, such as APETALA2 (AP2, AGAMOUS (AG, SUPERMAN (SUP, and CRABSCLAW (CRC, as well as a microRNA (miRNA, miR172, which targets AP2. How the transcription factor and miRNA genes are coordinately regulated to achieve floral determinacy is unknown. A mutation in POWERDRESS (PWR, a previously uncharacterized gene encoding a SANT-domain-containing protein, was isolated in this study as an enhancer of the weakly indeterminate ag-10 allele. PWR was found to promote the transcription of CRC, MIR172a, b, and c and/or enhance Pol II occupancy at their promoters, without affecting MIR172d or e. A mutation in mature miR172d was additionally found to enhance the determinacy defects of ag-10 in an AP2-dependent manner, providing direct evidence that miR172d is functional in repressing AP2 and thereby contributes to floral determinacy. Thus, while PWR promotes floral determinacy by enhancing the expression of three of the five MIR172 members as well as CRC, MIR172d, whose expression is PWR-independent, also functions in floral stem cell termination. Taken together, these findings demonstrate how transcriptional diversification and functional redundancy of a miRNA family along with PWR-mediated co-regulation of miRNA and transcription factor genes contribute to the robustness of the floral determinacy network.

  5. Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.

    Science.gov (United States)

    Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora

    2015-01-01

    The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at

  6. Feedback, Lineages and Self-Organizing Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sameeran Kunche

    2016-03-01

    Full Text Available Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities.

  7. Feedback, Lineages and Self-Organizing Morphogenesis

    Science.gov (United States)

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  8. Study on the Development of Yunnan Floral E-commerce

    Institute of Scientific and Technical Information of China (English)

    Yulan; KUANG; Qifang; LI; Wangyun; NING

    2013-01-01

    Cut flower production in Yunnan accounts for 80%nationwide.In order to expand the Yunnan Flower sales channels,the promotion of the development of e-commerce is necessary.In 2012 China’s online shopping users reached 247 million people,but e-commerce of fresh flowers lagged behind due to the constraints of preservation facilities and logistics cost.The analysis of the factors restricting the development of floral e-commerce and the proposition of solutions to this problem can promote faster development of Yunnan floral e-commerce.

  9. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  10. Comparative anatomy of floral elaiophores in Vitekorchis Romowicz & Szlach., Cyrtochilum Kunth and a florally dimorphic species of Oncidium Sw. (Orchidaceae: Oncidiinae).

    Science.gov (United States)

    Davies, Kevin L; Stpiczyńska, Małgorzata; Rawski, Michał

    2014-06-01

    Recently, molecular approaches have been used to investigate the phylogeny of subtribe Oncidiinae, resulting in the re-alignment of several of its genera. Here, a description is given of the structure of the floral elaiophores (oil glands) of four species formerly assigned to Oncidium Sw. Those of Vitekorchis excavata (Lindl.) Romowicz & Szlach., Cyrtochilum meirax (Rchb.f.) Dalström and a species of Oncidium displaying floral dimorphism, namely O. heteranthum Poepp. & Endl. var. album, are compared with that of Gomesa longipes (Lindl.) M.W. Chase & N.H. Williams, whose epithelial elaiophores are typical of many Oncidiinae, in order to extend our understanding of elaiophore diversity within this subtribe. Floral elaiophore structure was examined and compared at anthesis for all four species using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. In all species investigated, with the exception of C. meirax, the floral elaiophore occurs on the labellar callus and is of the intermediate type, possessing both glabrous and trichomatous regions. By contrast, although all four species produce lipid secretions, C. meirax lacks an obvious elaiophore. In each case, the secretory tissue is represented by a single-layered epidermis of cuboidal cells (trichomatous and/or atrichomatous). Palisade cells are absent. The secretion may be wax- or oil-like and is usually produced by smooth endoplasmic reticulum (SER). However, in C. meirax, where rough endoplasmic reticulum (RER) predominates, oil accumulates as plastoglobuli within elaioplasts. These plastoglobuli are then discharged into the cytoplasm, forming oil bodies. In some species, oil usually accumulates within vesicles at the plasmalemma or in the periplasmic space before traversing the cell wall and accumulating beneath the cuticle, sometimes with distension of the latter. Gomesa longipes is unusual in its production of a heterogeneous secretion, whereas Vitekorchis

  11. Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.

    Science.gov (United States)

    Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S

    2017-08-01

    Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and

  12. Morphogenesis in bat wings: linking development, evolution and ecology.

    Science.gov (United States)

    Adams, Rick A

    2008-01-01

    The evolution of powered flight in mammals required specific developmental shifts from an ancestral limb morphology to one adapted for flight. Through studies of comparative morphogenesis, investigators have quantified points and rates of divergence providing important insights into how wings evolved in mammals. Herein I compare growth,development and skeletogenesis of forelimbs between bats and the more ancestral state provided by the rat (Rattus norvegicus)and quantify growth trajectories that illustrate morphological divergence both developmentally and evolutionarily. In addition, I discuss how wing shape is controlled during morphogenesis by applying multivariate analyses of wing bones and wing membranes and discuss how flight dynamics are stabilized during flight ontogeny. Further, I discuss the development of flight in bats in relation to the ontogenetic niche and how juveniles effect populational foraging patterns. In addition, I provide a hypothetical ontogenetic landscape model that predicts how and when selection is most intense during juvenile morphogenesis and test this model with data from a population of the little brown bat, Myotis lucifugus. (c) 2007 S. Karger AG, Basel

  13. Divergence of the Floral A-Function between an Asterid and a Rosid Species.

    Science.gov (United States)

    Morel, Patrice; Heijmans, Klaas; Rozier, Frédérique; Zethof, Jan; Chamot, Sophy; Bento, Suzanne Rodrigues; Vialette-Guiraud, Aurélie; Chambrier, Pierre; Trehin, Christophe; Vandenbussche, Michiel

    2017-07-01

    The ABC model is widely used as a genetic framework for understanding floral development and evolution. In this model, the A-function is required for the development of sepals and petals and to antagonize the C-function in the outer floral whorls. In the rosid species Arabidopsis thaliana , the AP2-type AP2 transcription factor represents a major A-function protein, but how the A-function is encoded in other species is not well understood. Here, we show that in the asterid species petunia ( Petunia hybrida ), AP2B/BLIND ENHANCER ( BEN ) confines the C-function to the inner petunia floral whorls, in parallel with the microRNA BLIND BEN belongs to the TOE-type AP2 gene family, members of which control flowering time in Arabidopsis. In turn, we demonstrate that the petunia AP2-type REPRESSOR OF B-FUNCTION ( ROB ) genes repress the B-function (but not the C-function) in the first floral whorl, together with BEN We propose a combinatorial model for patterning the B- and C-functions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on the genetic context. Combined with earlier results, our findings suggest that the molecular mechanisms controlling the spatial restriction of the floral organ identity genes are more diverse than the well-conserved B and C floral organ identity functions. © 2017 American Society of Plant Biologists. All rights reserved.

  14. More lessons from linalool: insights gained from a ubiquitous floral volatile.

    Science.gov (United States)

    Raguso, Robert A

    2016-08-01

    Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a common floral volatile with two distinct enantiomers and related metabolites involved in the full spectrum of plant-pollinator interactions. Recent studies reveal a complex interplay between pollinator attraction and plant defense mediated by linalool and its derivatives, from the smallest (Arabidopsis, Mitella) to the largest (Datura) flowers studied. Accordingly, fig wasps, fungus gnats and moths of all sizes show remarkable electrophysiological, neural and behavioral sensitivity to different enantiomers and quantitative ratios of linalool in floral bouquets. The diverse functions of linalool, ranging from toxin to long distance pollinator attractant are discussed in the broader context of floral volatile ecology and evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interspecific and Intersexual Differences in the Chemical Composition of Floral Scent in Glochidion Species (Phyllanthaceae in South China

    Directory of Open Access Journals (Sweden)

    Daihong Huang

    2015-01-01

    Full Text Available Plants of the Glochidion (Phyllanthaceae genus are pollinated exclusively by host-specific Epicephala (Gracillariidae moths. Floral scent has been thought to play key role in the obligate pollination mutualism between Glochidion plants and Epicephala moths, but few studies have been reported about chemical variation in floral volatiles of Glochidion species in China. Floral volatiles of male and female flowers of five Glochidion species in south China were collected by dynamic headspace absorption technique and then were chemically analyzed by using gas chromatography-mass spectrometry. A total of 69 compounds were identified from floral scents of five investigated species. Glochidion hirsutum and G. zeylanicum showed no qualitative differences in floral scent, whereas there were clear variations of floral scent among other species (G. eriocarpum, G. daltonii, and G. sphaerogynum and also they distinctly differed from these two species. Male flowers emitted significantly more scent than female flowers. Glochidion plants exhibited qualitative and quantitative differences in floral scent between two sexes of flowers. The findings suggest that the volatile variation of floral scent among Glochidion species reflects adaptations to specific pollinators. Sexual dimorphism in floral scent has evolved to signal alternative rewards provided by each sex to Epicephala moths.

  16. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    Science.gov (United States)

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  17. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.

    Directory of Open Access Journals (Sweden)

    Ethan J Temeles

    Full Text Available Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.

  18. Desarrollo floral del aguacate 'hass' en clima semicálido. Parte II. Generación y validación de modelos de predicción del desarrollo floral

    Directory of Open Access Journals (Sweden)

    S. Salazar-García

    2007-01-01

    Full Text Available Para disponer de herramientas que mejoren la productividad de los huertos de aguacate 'Hass' en el clima semicálido de Nayarit, México, se desarrolló esta investigación multianual (1998 a 2006 con los siguientes objetivos: a cuantificar el efecto de la temperatura ambiental sobre el desarrollo floral de 'Hass', y b desarrollar y validar modelos de predicción para pronosticar etapas críticas del proceso de floración. El desarrollo floral de 'Hass' fue asociado a la temperatura ambiental y pudo ser modelado matemáticamente. El desarrollo floral de brotes del flujo vegetativo de invierno estuvo asociado a la acumulación de días frío (DFA con temperaturas ¿ 21 °C, así como a los intervalos acumulados entre las temperaturas máxima y mínima (INTAC. Para los brotes del flujo de verano fueron los DFA con temperaturas ¿ 9 °C, ¿ 20 °C y los INTAC. Para brotes del flujo de invierno se obtuvieron dos modelos de predicción del desarrollo floral, inviernoDFA ¿ 21 (R2 = 0.99 e inviernoINTAC (R2 = 0.96. En el caso de los brotes del flujo de verano se generaron tres modelos de predicción del desarrollo floral, veranoDFA ¿ 19, veranoDFA ¿ 20 y veranoINTAC, todos ellos con R2 = 0.99.

  19. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses.

    Science.gov (United States)

    You, Xiangrong; Wang, Lingxia; Liang, Wenyu; Gai, Yonghong; Wang, Xiaoyan; Chen, Wei

    2012-02-02

    Two-dimensional gel electrophoresis (2-DE) was used to analyze the proteins related to floral reversion in Dimocarpus longan Lour. Proteins were extracted from buds undergoing the normal process of flowering and from those undergoing floral reversion in three developing stages in D. longan. Differentially expressed proteins were identified from the gels after 2-DE analysis, which were confirmed using matrix-assisted laser desorption/ionization-time of flying-mass spectroscopy and protein database search. A total of 39 proteins, including 18 up-regulated and 21 down-regulated proteins, were classified into different categories, such as energy and substance metabolism, protein translation, secondary metabolism, phytohormone, cytoskeleton structure, regulation, and stress tolerance. Among these, the largest functional class was associated with primary metabolism. Down-regulated proteins were involved in photosynthesis, transcription, and translation, whereas up-regulated proteins were involved in respiration. Decreased flavonoid synthesis and up-regulated GA20ox might be involved in the floral reversion process. Up-regulated 14-3-3 proteins played a role in the regulation of floral reversion in D. longan by responding to abiotic stress. Observations via transmission electron microscopy revealed the ultrastructure changes in shedding buds undergoing floral reversion. Overall, the results provided insights into the molecular basis for the floral reversion mechanism in D. longan. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient.

    Science.gov (United States)

    Bartlewicz, Jacek; Lievens, Bart; Honnay, Olivier; Jacquemyn, Hans

    2016-03-30

    Microbes are common inhabitants of floral nectar and are capable of influencing plant-pollinator interactions. All studies so far investigated microbial communities in floral nectar in plant populations that were located in natural environments, but nothing is known about these communities in nectar of plants inhabiting urban environments. However, at least some microbes are vectored into floral nectar by pollinators, and because urbanization can have a profound impact on pollinator communities and plant-pollinator interactions, it can be expected that it affects nectar microbes as well. To test this hypothesis, we related microbial diversity in floral nectar to the degree of urbanization in the late-flowering plant Linaria vulgaris. Floral nectar was collected from twenty populations along an urbanization gradient and culturable bacteria and yeasts were isolated and identified by partially sequencing the genes coding for small and large ribosome subunits, respectively. A total of seven yeast and 13 bacterial operational taxonomic units (OTUs) were found at 3 and 1% sequence dissimilarity cut-offs, respectively. In agreement with previous studies, Metschnikowia reukaufii and M. gruessi were the main yeast constituents of nectar yeast communities, whereas Acinetobacter nectaris and Rosenbergiella epipactidis were the most frequently found bacterial species. Microbial incidence was high and did not change along the investigated urbanization gradient. However, microbial communities showed a nested subset structure, indicating that species-poor communities were a subset of species-rich communities. The level of urbanization was putatively identified as an important driver of nestedness, suggesting that environmental changes related to urbanization may impact microbial communities in floral nectar of plants growing in urban environments.

  1. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    Directory of Open Access Journals (Sweden)

    Du Guo-Zhen

    2010-05-01

    Full Text Available Abstract Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae. Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers, showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  2. Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae).

    Science.gov (United States)

    Vasconcelos, Thais N C; Lucas, Eve J; Faria, Jair E Q; Prenner, Gerhard

    2018-01-25

    Comparative floral ontogeny represents a valuable tool to understand angiosperm evolution. Such an approach may elucidate subtle changes in development that discretely modify floral architecture and underlie reproductive lability in groups with superficial homogeneous morphology. This study presents a comparative survey of floral development in Eugenia (Myrtaceae), one of the largest genera of angiosperms, and shows how previously undocumented ontogenetic trends help to explain the evolution of its megadiversity in contrast to its apparent flower uniformity. Using scanning electron microscopy, selected steps of the floral ontogeny of a model species (Eugenia punicifolia) are described and compared with 20 further species representing all ten major clades in the Eugenia phylogenetic tree. Additional floral trait data are contrasted for correlation analysis and character reconstructions performed against the Myrtaceae phylogenetic tree. Eugenia flowers show similar organ arrangement patterns: radially symmetrical, (most commonly) tetramerous flowers with variable numbers of stamens and ovules. Despite a similar general organization, heterochrony is evident from size differences between tissues and structures at similar developmental stages. These differences underlie variable levels of investment in protection, subtle modifications to symmetry, herkogamic effects and independent androecium and gynoecium variation, producing a wide spectrum of floral display and contributing to fluctuations in fitness. During Eugenia's bud development, the hypanthium (as defined here) is completely covered by stamen primordia, unusual in other Myrtaceae. This is the likely plesiomorphic state for Myrteae and may have represented a key evolutionary novelty in the tribe. Floral evolution in Eugenia depends on heterochronic patterns rather than changes in complexity to promote flexibility in floral strategies. The successful early establishment of Myrteae, previously mainly linked to the

  3. The relationship between nectaries and floral architecture: a case study in Geraniaceae and Hypseocharitaceae.

    Science.gov (United States)

    Jeiter, Julius; Hilger, Hartmut H; Smets, Erik F; Weigend, Maximilian

    2017-11-10

    Flowers of Geraniaceae and Hypseocharitaceae are generally considered as morphologically simple. However, previous studies indicated complex diversity in floral architecture including tendencies towards synorganization. Most of the species have nectar-rewarding flowers which makes the nectaries a key component of floral organization and architecture. Here, the development of the floral nectaries is studied and placed into the context of floral architecture. Seven species from Geraniaceae and one from Hypseocharitaceae were investigated using scanning electron microscopy and light microscopy. Samples were prepared and processed using standard protocols. The development of the nectary glands follows the same trajectory in all species studied. Minor differences occur in the onset of nectarostomata development. The most striking finding is the discovery that a short anthophore develops via intercalary growth at the level of the nectary glands. This anthophore lifts up the entire flower apart from the nectary gland itself and thus plays an important role in floral architecture, especially in the flowers of Pelargonium. Here, the zygomorphic flowers show a particularly extensive receptacular growth, resulting in the formation of a spur-like receptacular cavity ('inner spur'). The nectary gland is hidden at the base of the cavity. Various forms of compartmentalization, culminating in the 'revolver flower' of Geranium maderense, are described. Despite the superficial similarity of the flowers in Geraniaceae and Hypseocharitaceae, there is broad diversity in floral organization and floral architecture. While the receptacular origin of the spur-like cavity in Pelargonium had already been described, anthophore formation via intercalary growth of the receptacle in the other genera had not been previously documented. In the context of the most recent phylogenies of the families, an evolutionary series for the floral architecture is proposed, underscoring the importance of

  4. Comparative GC analyses of ripe fruits, leaves and floral buds essential oils of Tunisian Myrtus communis L.

    Directory of Open Access Journals (Sweden)

    Ahmed Snoussi

    2014-07-01

    Full Text Available The chemical composition of essential oils obtained by hydrodistillation from Tunisian wild growing myrtle ripe fruits, leaves and floral buds was examined by GC and GC-MS. The yields of hydrodistilled oils obtained from different plant parts were: leaves 0.5%, floral buds 0.2% and ripe fruits 0.02%. Significant differences were found in the concentration of main constituents of the oils: α-pinene [48.9% (floral buds, 34.3% (fruits, 23.7% (leaves], 1,8-cineole [15.3% (floral buds, 26.6% (fruits, 61.0% (leaves]. The leaves oil contained less linalool than floral buds and ripe fruits oils. Tunisian myrtle is characterized by the absence of myrtenyl acetate.

  5. Floral Reversion in Arabidopsis suecica Is Correlated with the Onset of Flowering and Meristem Transitioning.

    Directory of Open Access Journals (Sweden)

    Amelia Asbe

    Full Text Available Angiosperm flowers are usually determinate structures that may produce seeds. In some species, flowers can revert from committed flower development back to an earlier developmental phase in a process called floral reversion. The allopolyploid Arabidopsis suecica displays photoperiod-dependent floral reversion in a subset of its flowers, yet little is known about the environmental conditions enhancing this phenotype, or the morphological processes leading to reversion. We have used light and electron microscopy to further describe this phenomenon. Additionally, we have further studied the phenology of flowering and floral reversion in A. suecica. In this study we confirm and expand upon our previous findings that floral reversion in the allopolyploid A. suecica is photoperiod-dependent, and show that its frequency is correlated with the timing for the onset of flowering. Our results also suggest that floral reversion in A. suecica displays natural variation in its penetrance between geographic populations of A. suecica.

  6. Biología floral de Passiflora foetida (Passifloraceae

    Directory of Open Access Journals (Sweden)

    María T. Amela García

    1998-06-01

    Full Text Available Un experimento reproductivo muestra que Passiflora foetida es autocompatible. Observaciones de las características florales y de los visitantes durante la antesis, más el análisis del polen transportado, permitieron identificar el síndrome floral (melitofilia y las funciones de cada visitante. La antesis ocurre desde las 6 hasta las 11 hs. Se identificaron 3 fases florales: 1 estigmas por encima de las anteras, 2 estigmas a la altura de las anteras, 3 estigmas por encima de las anteras; los radii, los pétalos y los sépalos se incurvan. Los estigmas están receptivos durante toda la antesis. La concentración de azúcares del néctar es 34 %. El color predominante en el espectro visible es el blanco. En el espectro UV, los estambres y el gineceo contrastan con el limen y el androginóforo; pueden ser una guía de néctar. Tres especies de himenópteros fueron los visitantes más frecuentes y constantes: Ptiloglossa tarsata (Colletidae siempre contactan las anteras y los estigmas cuando liban, transportan un alto porcentaje de polen de P. foetida y visitan flores en fase 1 y 2; pueden ser considerados los principales polinizadores. Pseudaugochloropsis sp. (Halictidae raramente contactan las anteras o los estigmas cuando perforan el limen para acceder al néctar y visitan flores en fase 2 y 3; son ladrones de néctar que raramente polinizan. Augochlorella sp. (Halictidae recolectan polen sin tocar los estigmas y visitan flores en fase 2 y 3; son hurtadores de polen.A reproductive experiment shows that Passiflora foetida is autocompatible. Observations of floral characteristics and visitors during anthesis, plus the analysis of pollen allowed identification of floral syndrome (melittophily and functions for each visitor. Anthesis occurs from 6 to 11 AM. Three floral phases were identified: 1 stigmas above anthers, 2 stigmas at anther level, 3 stigmas above anthers; radii, petals and sepals become incurved. The stigmas are receptive during the

  7. Expression and functional role of sprouty-2 in breast morphogenesis.

    Science.gov (United States)

    Sigurdsson, Valgardur; Ingthorsson, Saevar; Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2013-01-01

    Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of

  8. Expression and functional role of sprouty-2 in breast morphogenesis.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs, including epidermal growth factor receptor (EGFR and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2 in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an

  9. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  10. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question.Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres.We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and

  11. Chloride absorption by root, leaf and floral tissues of Petunia

    International Nuclear Information System (INIS)

    Jooste, J.H.

    1980-01-01

    Chloride absorption by root, leaf and floral tissues of Petunia was compared at two temperatures (30 and 2 degrees Celcius), employing different absorption periods, and in the presence and absence of a desorption treatment. All treatments revealed highest absorption by floral tissue. This was further confirmed by the absorption of chloride by the various tissues from solutions in the low (0-1 mM) and high (1-50 mM) concentration ranges. The results offer a possible explanation for the observed effects of organic and inorganic solutes on the longevity of cut flowers [af

  12. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta

    International Nuclear Information System (INIS)

    Hirai, Yohei; Radisky, Derek; Boudreau, Rosanne; Simian, Marina; Stevens, Mary E.; Oka, Yumiko; Takebe, Kyoko; Niwa, Shinichiro; Bissell, Mina J.

    2002-01-01

    We have previously shown that epimorphin, a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which epimorphin mediates luminal morphogenesis. Treatment of cells with epimorphin to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, as constitutive expression of LIP was sufficient to produce lumen formation, while constitutive expression of LAP blocked epimorphin-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which epimorphin expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPbeta, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for epimorphin in luminal morphogenesis through control of C/EBPbeta expression

  13. Floral biology and breeding system of three Ipomoea weeds Biologia floral e sistema reprodutivo de três espécies daninhas de Ipomoea

    Directory of Open Access Journals (Sweden)

    R.C.S. Maimoni-Rodella

    2007-03-01

    Full Text Available The floral biology of three weeds, Ipomoea cairica, I. grandifolia and I. nil (Convolvulaceae, was studied in Botucatu and Jaboticabal, São Paulo, in southeastern Brazil. The three species are melittophilous, with a varied set of floral visitors, but with some overlapping. Cluster analysis using Jacquard similarity index indicated a greater similarity among different plant species in the same locality than among the populations at different places, in relation to floral visitor sets. The promiscuous and opportunistic features of the flowers were shown, with such type of adaptation to pollination being advantageous to weeds since pollinator availability is unpredictable at ruderal environments.A biologia floral de Ipomoea cairica, I. grandifolia e I. nil - plantas daninhas da família Convolvulaceae - foi estudada em Botucatu e Jaboticabal, Estado de São Paulo, Brasil. As três espécies são melitófilas, apresentando conjuntos de visitantes florais bastante diversificados, embora haja alguma sobreposição entre eles. Com relação aos visitantes florais, a análise de agrupamento, empregando-se o índice de similaridade de Jaccard, indicou maior similaridade entre diferentes espécies de Ipomoea ocorrentes no mesmo local do que entre populações da mesma espécie em diferentes localidades. O caráter promíscuo e oportunista da adaptação à polinização, presente nessas espécies, foi demonstrado, sendo essa adaptação vantajosa para plantas daninhas, uma vez que em ambientes ruderais a disponibilidade de polinizadores é imprevisível.

  14. Floral and mating system divergence in secondary sympatry: testing an alternative hypothesis to reinforcement in Clarkia

    Science.gov (United States)

    Briscoe Runquist, Ryan D.; Moeller, David A.

    2014-01-01

    Background and Aims Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement – that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies' range. Methods Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology. Key Results Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction. Conclusions Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower

  15. Floral and mating system divergence in secondary sympatry: testing an alternative hypothesis to reinforcement in Clarkia.

    Science.gov (United States)

    Briscoe Runquist, Ryan D; Moeller, David A

    2014-01-01

    Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement - that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies' range. Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology. Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction. Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower size in sympatric parviflora (and RCD between

  16. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    Science.gov (United States)

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  17. Orchestration of Floral Initiation by APETALA1

    NARCIS (Netherlands)

    Kaufmann, K.; Muino Acuna, J.M.

    2010-01-01

    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding

  18. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    Science.gov (United States)

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  19. Floral vasculature and trichomes of common Indian Scrophulariaceae

    Directory of Open Access Journals (Sweden)

    P. C. Datta

    2015-01-01

    Full Text Available The floral anatomy of 24 species of Scrophulariaceae was studied. The results show that although, clear anatomical bases to differentiate taxa are absent, the Pennell classification of subfamilies is strongly supported.

  20. Apoptosis during budding morphogenesis of dentition

    Czech Academy of Sciences Publication Activity Database

    Peterková, Renata; Peterka, Miroslav; Viriot, L.; Lesot, H.

    2002-01-01

    Roč. 70, č. 7 (2002), s. 353 ISSN 0301-4681. [International Conference of the International Society of Differentiation /12./. Lyon, France, 14.09.2002-17.09.2002] R&D Projects: GA ČR GA304/02/0448 Institutional research plan: CEZ:AV0Z5039906 Keywords : morphogenesis of dentition Subject RIV: FF - HEENT, Dentistry Impact factor: 2.078, year: 2002

  1. The application of low frequency longitudinal guided wave mode for the inspection of multi-hole steel floral pipes

    International Nuclear Information System (INIS)

    Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F

    2012-01-01

    Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.

  2. Morphology of floral papillae in Maxillaria Ruiz & Pav. (Orchidaceae).

    Science.gov (United States)

    Davies, K L; Turner, M P

    2004-01-01

    The labellar papillae and trichomes of Maxillaria Ruiz & Pav. show great diversity. Although papillae also occur upon other parts of the flower (e.g. column and anther cap), these have not yet been studied. Labellar trichomes of Maxillaria are useful in taxonomy, but hitherto the taxonomic value of floral papillae has not been assessed. The aim of this paper is to describe the range of floral papillae found in Maxillaria and to determine whether papillae are useful as taxonomic characters. Light microscopy, histochemistry, low-vacuum scanning and transmission electron microscopy. A total of 75 taxa were studied. Conical papillae with rounded or pointed tips were the most common. The column and anther cap usually bear conical, obpyriform or villiform papillae, whereas those around the stigmatic surface and at the base of the anther are often larger and swollen. Labellar papillae show greater diversity, and may be conical, obpyriform, villiform, fusiform or clavate. Papillae may also occur on multiseriate trichomes that perhaps function as pseudostamens. Labellar papillae contain protein but most lack lipid. The occurrence of starch, however, is more variable. Many papillae contain pigment or act as osmophores, thereby attracting insects. Rewards such as nectar or a protein-rich, wax-like, lipoidal substance may be secreted by papillae onto the labellar surface. Some papillae may have a protective role in preventing desiccation. Species of diverse vegetative morphology may have identical floral papillae, whereas others of similar vegetative morphology may not. Generally, floral papillae in Maxillaria have little taxonomic value. Nevertheless, the absence of papillae from members of the M. cucullata alliance, the occurrence of clavate papillae with distended apices in the M. rufescens alliance and the presence of papillose trichomes in some species may yet prove to be useful.

  3. Climate effects on phytoplankton floral composition in Chesapeake Bay

    Science.gov (United States)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  4. O pessegueiro no sistema de pomar compacto: III. Épocas de poda drástica na diferenciação floral The peach meadow orchards: III. Time of drastic pruning on floral differentiation

    Directory of Open Access Journals (Sweden)

    Wilson Barbosa

    1990-01-01

    Full Text Available Pesquisou-se, na região de Jundiaí, SP (23°8'S, a influência das épocas de poda drástica na diferenciação floral dos pessegueiros Tropical' e 'Aurora-2', conduzidos em alta densidade de plantio (1.667 plantas por hectare. Realizaram-se tais podas em 30 de setembro, 30 de outubro e 30 de novembro de 1986. Coletaram-se as gemas para análise mensalmente, a partir do 30° dia da poda: constatou-se, através de cortes histológicos das gemas, que a poda drástica precoce, de 30 de setembro, não prejudicou a diferenciação floral dos pessegueiros, que se iniciou em fevereiro, a cerca de cinco meses da decepa; em abril, a maioria das gemas de flancos encontrava-se com as sépalas, as pétalas, os estames e o pistilo completamente formados. As demais épocas de poda interferiram no processo de diferenciação floral, reduzindo o número de botões florais e, conseqüentemente, a densidade florífera das plantas. Nos pessegueiros conduzidos com poda normal, a organogênese floral, processada no início do verão (dezembro-janeiro, persistiu até o outono (abril.This paper reports the effect of three different dates of severe pruning on floral differentiation of peach trees of the cultivars Tropical and Aurora-2, conducted on a meadow orchards system. The peach trees were pruned in 1986, at the 30th day of September, October and November. The experimental plots were located at the Experiment Station of Jundiaí, (23º08'S, Instituto Agronômico de Campinas, State of São Paulo, Brazil. The lateral buds of the peach tree branches were first collected for analysis at the 30th day after pruning and on a monthly basis afterwards. Through histological studies made on longitudinal sections of the buds, it was observed that the severe pruning of September 30th, did not change the peach tree reproductive development The floral differentiation began in February, i. e., five months after pruning and produced sequentially: the petals, sepals, stamens and

  5. Aspectos de biologia floral de cajueiros anão precoce e comum Floral biology aspects of the early dwarf and common cashew

    Directory of Open Access Journals (Sweden)

    Larissa Barbosa de Sousa

    2007-06-01

    Full Text Available O conhecimento da biologia floral é de suma importância para o desenvolvimento da cultura do cajueiro (Anacardium occidentale L.. Com relação aos aspectos botânicos, as características morfológicas das flores contribuíram efetivamente para a determinação das espécies do gênero Anacarduim conhecidas. No presente trabalho, objetivou-se estudar a biologia floral dos cajueiros anão precoce e comum. A pesquisa foi desenvolvida na área experimental do Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal do Piauí, em Teresina, PI, avaliando-se nove clones de cajueiro anão ("CAP 14", "Embrapa 09", "Embrapa 50", "Embrapa 51", "Embrapa 76", "Embrapa 183", "Embrapa 189", "FAGA 01", "FAGA 11" e um clone de cajueiro comum ("CCA", utilizando-se quatro panículas por planta, cada uma com orientação norte, sul, leste e oeste. Os tipos varietais, cajueiro comum e anão precoce, apresentam pouca variação para a maioria dos caracteres avaliados. A proporção entre flores hermafroditas e o total de flores, em cajueiro comum, pode levá-lo a uma maior produção de frutos por panícula do que nos clones de cajueiro anão precoce analisados. O número de frutos desenvolvidos é bastante reduzido nos dois tipos varietais. As panículas situadas em diferentes orientações cardeais são semelhantes em todos os clones estudados quanto aos aspectos relacionados à biologia floral do cajueiro.The knowledge of the floral biology is very important for the development of the cashew's culture (Anacardium occidentale L.. In relation to botanical aspects, the morphological characteristics of flowers contributed effective to determination of the well-known species of Anacardium. It was aimed at studing the floral biology of the early dwarf and common cashew. The research was developed in the experimental area of the Department of Fitotecnia, Centro de Ciências Agrárias, Universidade Federal do Piauí, in Teresina, PI, and nine

  6. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    Directory of Open Access Journals (Sweden)

    Xinwei Guo

    2017-05-01

    Full Text Available Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs including microRNAs (miRNAs and small interfering RNAs (siRNAs are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene regulation, stress responses, and auxin and gibberellin (GA pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.

  7. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris.

    Science.gov (United States)

    Sagae, Masanori; Oyama-Okubo, Naomi; Ando, Toshio; Marchesi, Eduardo; Nakayama, Masayoshi

    2008-01-01

    The floral scent emission and endogenous level of its components in Petunia axillaris under different conditions (20, 25, 30, and 35 degrees C) were investigated under the hypothesis that floral scent emission would be regulated by both metabolic and vaporization processes. The total endogenous amount of scent components decreased as the temperature increased, the total emission showing a peak at 30 degrees C. This decrease in endogenous amount was compensated for by increased vaporization, resulting in an increase of floral scent emission from 20 degrees C to 30 degrees C. The ambient temperature differently and independently influenced the metabolism and vaporization of the scent compounds, and differences in vapor pressure among the scent compounds were reduced as the temperature increased. These characteristics suggest the operation of an unknown regulator to change the vaporization of floral scent.

  8. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis.

    Science.gov (United States)

    Fang, Chao; Bian, Ganlan; Ren, Pan; Xiang, Jie; Song, Jun; Yu, Caiyong; Zhang, Qian; Liu, Ling; Chen, Kun; Liu, Fangfang; Zhang, Kun; Wu, Chunfeng; Sun, Ruixia; Hu, Dan; Ju, Gong; Wang, Jian

    2018-02-08

    Spinster homolog 2 (SPNS2) is the membrane transporter of sphingosine-1-phosphate (S1P), and it participates in several physiologic processes by activating different S1P receptors (S1PRs). However, its functions in the nervous system remain largely unclear. We explored the important role of SPNS2 in the process of retinal morphogenesis using a spns2-deficient rat model. In the absence of the functional SPNS2 transporter, we observed progressively aggravating laminar disorganization of the epithelium at the postnatal stage of retinal development. Disrupted cell polarity, delayed cell-cycle exit of retinal progenitor cells, and insufficient migration of newborn neurons were proposed in this study as potential mechanisms accounting for this structural disorder. In addition, we analyzed the expression profiles of spns2 and s1prs, and proposed that SPNS2 regulated retinal morphogenesis by establishing the S1P level in the eye and activating S1PR3 signaling. These data indicate that SPNS2 is indispensable for normal retinal morphogenesis and provide new insights on the role of S1P in the developing retina using an established in vivo model.-Fang, C., Bian, G., Ren, P., Xiang, J., Song, J., Yu, C., Zhang, Q., Liu, L., Chen, K., Liu, F., Zhang, K., Wu, C., Sun, R., Hu, D., Ju, G., Wang, J. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis.

  9. Embryo mechanics: balancing force production with elastic resistance during morphogenesis.

    Science.gov (United States)

    Davidson, Lance A

    2011-01-01

    Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The biochemistry and genetics of floral scent production as part of the petunia pollination syndrome

    NARCIS (Netherlands)

    Shaipulah, N.F.M.

    2018-01-01

    Floral scent plays a major role in flower discrimination by pollinators in the Petunia genus. By providing specific signals to pollinators, floral scent can significantly contribute to the plant pollination efficiency and reproductive success. Fragrant petunias mostly emit volatile benzenoids and

  11. Visitantes florales diurnos del girasol (Helianthus annuus, Asterales: Asteraceae en la Argentina Diurnal floral visitors of sunflower (Helianthus annuus, Asterales: Asteraceae in Argentina

    Directory of Open Access Journals (Sweden)

    Juan P. Torretta

    2010-06-01

    Full Text Available El girasol (Helianthus annuus L. es un importante cultivo oleaginoso en la Argentina. Durante tres campañas agrícolas, se determinaron la diversidad y la abundancia del elenco de los visitantes florales diurnos de capítulos de girasol, en ocho sitios que cubren gran parte del área cultivada en Argentina. Setenta y seis morfo-especies de visitantes florales, pertenecientes a ocho órdenes, fueron capturados sobre capítulos de este cultivo. El principal orden fue Hymenoptera, con 37 especies o morfoespecies, de las cuales 32 fueron abejas (Apoidea. Las familias de abejas más representadas fueron Apidae (13, Megachilidae (11 y Halictidae (7. La abeja doméstica (Apis mellifera L. realizó el 93% de las visitas. La composición del elenco de visitantes no mostró un patrón de variación identificable a lo largo del día, ni con respecto a la distancia al borde del cultivo, pero varió entre sitios de muestreo. Se concluye que la abeja doméstica es el principal polinizador del girasol en la Argentina, aunque varias especies nativas de abejas (Melissodes tintinnans (Holmberg, M. rufithorax Brèthes, Melissoptila tandilensis Holmberg, y Megachile spp. podrían ser consideradas como potenciales polinizadores del cultivo.Sunflower (Helianthus annuus L. is an important oilseed crop in Argentina. During three agricultural years, the diversity and abundance of diurnal floral visitors of sunflower heads were determined in eight sites spanning much of this crop's cultivation area in Argentina. Seventysix morpho-species of floral visitors, belonging to eight orders, were captured on sunflower. The principal order was Hymenoptera, with 37 species or morpho-species, of which 32 were bees (Apoidea. The most represented bee families were Apidae (13, Megachilidae (11 and Halictidae (7. The domestic bee (Apis mellifera L. accounted for 93% of the visits. Floral visitor composition did not show an identifiable variation pattern either throughout the day or

  12. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis.

    Science.gov (United States)

    Roth, Ohad; Alvarez, John; Levy, Matan; Bowman, John L; Ori, Naomi; Shani, Eilon

    2018-05-09

    Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. Arabidopsis thaliana stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the APETALA1 (AP1) expression domain in the ap1-4 mutant background resulted in a leafy-flower phenotype, and an intermediate stm-2 allele enhanced the flower meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple floral fate genes, among them the F-Box protein-encoding gene UNUSUAL FLORAL ORGANS (UFO). In agreement with this notion, stm-2 enhanced the ufo-2 floral fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a genetic mechanism that underlies the activity of STM in the specification of flower meristem identity. © 2018 American Society of Plant Biologists. All rights reserved.

  13. A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.

    Science.gov (United States)

    Yu, Lifeng; Patibanda, Varun; Smith, Harley M S

    2009-02-01

    Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.

  14. Nectar Sugar Production across Floral Phases in the Gynodioecious Protandrous Plant Geranium sylvaticum

    Science.gov (United States)

    Varga, Sandra; Nuortila, Carolin; Kytöviita, Minna-Maarit

    2013-01-01

    Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species. PMID:23614053

  15. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus

    Science.gov (United States)

    Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.

    2009-01-01

    Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397

  16. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant

    Directory of Open Access Journals (Sweden)

    Amy Marie Iler

    2014-08-01

    Full Text Available Interactions between invasive and native plants for pollinators vary from competition to facilitation of pollination of native plants. Theory predicts that relative floral densities should account for some of this variation in outcomes, with facilitation at low floral densities and competition at high floral densities of the invader. We tested this prediction by quantifying pollination and female reproductive success of a native herb, Geranium maculatum, in three experimental arrays that varied in floral density of the invasive shrub Lonicera maackii: control (no L. maackii, low floral density of L. maackii, and high floral density of L. maackii. A low density of L. maackii flowers was associated with an increase in pollinator visitation rate to G. maculatum flowers and an increase in conspecific pollen deposition compared to controls and high density arrays. Increased visitation rates were not associated with an increase in the number of visitors to low density arrays, suggesting instead that a behavioural switch in visitation within the array accounted for increased pollen deposition. In contrast, the only evidence of competition in high density arrays was a shorter duration of visits to G. maculatum flowers relative to the other treatments. The number of seeds per flower did not vary among treatments, although trends in seeds per flower were consistent with patterns of pollinator foraging behaviour. Given increased pollinator visits and pollen deposition at a low density of the invader, our study indicates that complete eradication of invasives as a management or restoration technique may have unintended negative consequences for pollination of native plants.

  17. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration.

    Science.gov (United States)

    Pichaud, Franck

    2018-01-01

    The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb) are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM) and zonula adherens (ZA) , thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1) gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.

  18. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation.

    Science.gov (United States)

    Glenny, William R; Runyon, Justin B; Burkle, Laura A

    2018-03-25

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were measured from individuals of four forb species subjected to drought or normal water availability, and elevated or ambient concentrations of CO 2 in a factorial design. Pollinator visitation rates and community composition were observed in single-species and multi-species forb assemblages. Drought decreased floral visual traits and pollinator visitation rates but increased volatile organic compound (VOC) emissions, whereas elevated CO 2 positively affected floral visual traits, VOC emissions and pollinator visitation rates. There was little evidence of interactive effects of drought and CO 2 on floral traits and pollinator visitation. Interestingly, the effects of climate treatments on pollinator visitation depended on whether plants were in single- or multi-species assemblages. Components of climate change altered floral traits and pollinator visitation, but effects were modulated by plant community context. Investigating the response of floral traits, including VOCs, and context-dependency of pollinator attraction provides additional insights and may aid in understanding the overall effects of climate change on plant-pollinator interactions. © No claim to US Government works New Phytologist Trust © 2018 New Phytologist Trust.

  19. Anatomía floral comparativa del género Polianthes (Agavaceae Comparative floral anatomy of the genus Polianthes (Agavaceae

    Directory of Open Access Journals (Sweden)

    Héctor Serrano-Casas

    2011-03-01

    Full Text Available Se realizó un estudio anatómico de las flores de algunas especies en los subgéneros Polianthes y Bravoa del género Polianthes L. (Agavaceae, con el propósito de investigar si la actual clasificación subgenérica es adecuada. Los taxa analizados del subgénero Polianthes fueron P. densiflora, P. nelsonii y P. platyphylla, y del subgénero Bravoa, P. geminiflora var. geminiflora, P. howardii y P. multicolor. Las características anatómicas florales entre las especies son similares y comparten con otros miembros de la familia Agavaceae los nectarios septales y los óvulos anátropos, bitégmicos y crasinucelados. En los taxa del subgénero Bravoa, los filamentos se originan en la base del tubo floral, mientras que en el subgénero Polianthes se originan por debajo de los tépalos internos del perianto. Anteriormente, sin considerar la anatomía de las flores, se planteaba que los filamentos se originaban en ambos subgéneros desde la base del tubo del perianto y que éstos permanecían adnados al mismo, separándose a diferentes niveles. En el nivel interespecífico, P. howardii presenta nectarios de mayor longitud que los lóculos, en relación con los de las otras especies estudiadas.An anatomical floral study of some species of the genus Polianthes (Agavaceae, of both subgenus Polianthes and subgenus Bravoa (Agavaceae was carried out, with the aim of testing the adequacy of the present subgeneric classification. The taxa studied of subgenus Polianthes were P. densiflora, P. nelsonii and P. platyphylla; and P. geminiflora var. geminiflora, P. howardii and P. multicolor of subgenus Bravoa. The anatomical characters between these species are similar, sharing with other members of the Agavaceae family the septal nectaries and the anatropous, bitegmic, and crassinucellated ovules. In the taxa of subgenus Bravoa, the filaments originate from the floral tube base, while in subgenus Polianthes they originate near the base of the internal tepals

  20. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  1. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators

    Science.gov (United States)

    Queiroz, Joel A.; Quirino, Zelma G. M.; Machado, Isabel C.

    2015-01-01

    Floral attributes evolve in response to frequent and efficient pollinators, which are potentially important drivers of floral diversification and reproductive isolation. In this context, we asked, how do flowers evolve in a bat–hummingbird pollination system? Hence, we investigated the pollination ecology of two co-flowering Ipomoea taxa (I. marcellia and I. aff. marcellia) pollinated by bats and hummingbirds, and factors favouring reproductive isolation and pollinator sharing in these plants. To identify the most important drivers of reproductive isolation, we compared the flowers of the two Ipomoea taxa in terms of morphometry, anthesis and nectar production. Pollinator services were assessed using frequency of visits, fruit set and the number of seeds per fruit after visits. The studied Ipomoea taxa differed in corolla size and width, beginning and duration of anthesis, and nectar attributes. However, they shared the same diurnal and nocturnal visitors. The hummingbird Heliomaster squamosus was more frequent in I. marcellia (1.90 visits h−1) than in I. aff. marcellia (0.57 visits h−1), whereas glossophagine bats showed similar visit rates in both taxa (I. marcellia: 0.57 visits h−1 and I. aff. marcellia: 0.64 visits h−1). Bat pollination was more efficient in I. aff. marcellia, whereas pollination by hummingbirds was more efficient in I. marcellia. Differences in floral attributes between Ipomoea taxa, especially related to the anthesis period, length of floral parts and floral arrangement in the inflorescence, favour reproductive isolation from congeners through differential pollen placement on pollinators. This bat–hummingbird pollination system seems to be advantageous in the study area, where the availability of pollinators and floral resources changes considerably throughout the year, mainly as a result of rainfall seasonality. This interaction is beneficial for both sides, as it maximizes the number of potential pollen vectors for plants and

  2. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish

    Science.gov (United States)

    Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.

    2016-01-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  3. Collective cell migration in morphogenesis, regeneration and cancer.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Gilmour, D.

    2009-01-01

    The collective migration of cells as a cohesive group is a hallmark of the tissue remodelling events that underlie embryonic morphogenesis, wound repair and cancer invasion. In such migration, cells move as sheets, strands, clusters or ducts rather than individually, and use similar actin- and

  4. The co-optimization of floral display and nectar reward

    Indian Academy of Sciences (India)

    Prakash

    2009-12-10

    Dec 10, 2009 ... Flowers may lure pollinators by making large floral displays. (Ohashi and ... Pollination biology; plant–animal interaction; co-evolution; cheater; pollinator learning ..... cheater flowers optimized according to the local ecological.

  5. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  6. Isolation and characterization of a floral homeotic gene in Fraxinus nigra causing earlier flowering and homeotic alterations in transgenic Arabidopsis

    Science.gov (United States)

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...

  7. Historical nectar assessment reveals the fall and rise of floral resources in Britain.

    Science.gov (United States)

    Baude, Mathilde; Kunin, William E; Boatman, Nigel D; Conyers, Simon; Davies, Nancy; Gillespie, Mark A K; Morton, R Daniel; Smart, Simon M; Memmott, Jane

    2016-02-04

    There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.

  8. Historical nectar assessment reveals the fall and rise of floral resources in Britain

    Science.gov (United States)

    Baude, Mathilde; Kunin, William E.; Boatman, Nigel D.; Conyers, Simon; Davies, Nancy; Gillespie, Mark A. K.; Morton, R. Daniel; Smart, Simon M.; Memmott, Jane

    2016-02-01

    There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.

  9. Effects of floral scents and their dietary experiences on the feeding preference in the blowfly, Phormia regina

    Directory of Open Access Journals (Sweden)

    Toru eMaeda

    2015-12-01

    Full Text Available AbstractThe flowers of different plant species have diverse scents with varied chemical compositions. Hence, every floral scent does not uniformly affect insect feeding preferences. The blowfly, Phormia regina, is a nectar feeder, and when a fly feeds on flower nectar, its olfactory organs, antennae, and maxillary palps are exposed to the scent. Generally, feeding preference is influenced by food flavor, which relies on both taste and odor. Therefore, the flies perceive the sweet taste of nectar and the particular scent of the flower simultaneously, and this olfactory information affects their feeding preference. Here, we show that the floral scents of 50 plant species have various effects on their sucrose feeding motivation, which was evaluated using the proboscis extension reflex (PER. Those floral scents were first categorized into three groups, based on their effects on the PER threshold sucrose concentration, which indicates whether a fly innately dislikes, ignores, or likes the target scent. Moreover, memory of olfactory experience with those floral scents during sugar feeding influenced the PER threshold. After feeding on sucrose solutions flavored with floral scents for 5 days, the scents did not consistently show the previously observed effects. Considering such empirical effects of scents on the PER threshold, we categorized the effects of the 50 tested floral scents on feeding preference into 16 of all possible 27 theoretical types. We then conducted the same experiments with flies whose antennae or maxillary palps were ablated prior to PER test in a fly group naïve to floral scents and prior to the olfactory experience during sugar feeding in the other fly group in order to test how these organs were involved in the effect of the floral scent. The results suggested that olfactory inputs through these organs play different roles in forming or modifying feeding preferences. Thus, our study contributes to an understanding of underlying

  10. Effects of Floral Scents and Their Dietary Experiences on the Feeding Preference in the Blowfly, Phormia regina.

    Science.gov (United States)

    Maeda, Toru; Tamotsu, Miwako; Yamaoka, Ryohei; Ozaki, Mamiko

    2015-01-01

    The flowers of different plant species have diverse scents with varied chemical compositions. Hence, every floral scent does not uniformly affect insect feeding preferences. The blowfly, Phormia regina, is a nectar feeder, and when a fly feeds on flower nectar, its olfactory organs, antennae, and maxillary palps are exposed to the scent. Generally, feeding preference is influenced by food flavor, which relies on both taste and odor. Therefore, the flies perceive the sweet taste of nectar and the particular scent of the flower simultaneously, and this olfactory information affects their feeding preference. Here, we show that the floral scents of 50 plant species have various effects on their sucrose feeding motivation, which was evaluated using the proboscis extension reflex (PER). Those floral scents were first categorized into three groups, based on their effects on the PER threshold sucrose concentration, which indicates whether a fly innately dislikes, ignores, or likes the target scent. Moreover, memory of olfactory experience with those floral scents during sugar feeding influenced the PER threshold. After feeding on sucrose solutions flavored with floral scents for 5 days, the scents did not consistently show the previously observed effects. Considering such empirical effects of scents on the PER threshold, we categorized the effects of the 50 tested floral scents on feeding preference into 16 of all possible 27 theoretical types. We then conducted the same experiments with flies whose antennae or maxillary palps were ablated prior to PER test in a fly group naïve to floral scents and prior to the olfactory experience during sugar feeding in the other fly group in order to test how these organs were involved in the effect of the floral scent. The results suggested that olfactory inputs through these organs play different roles in forming or modifying feeding preferences. Thus, our study contributes to an understanding of underlying mechanisms associated with

  11. Biologia floral e polinização de Arrabidaea conjugata (Vell. Mart. (Bignoniaceae Floral and pollination biology of Arrabidaea conjugata (Vell. Mart. (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Maria Célia Rodrigues Correia

    2005-09-01

    Full Text Available O trabalho aborda a biologia floral, a atividade forrageira dos visitantes florais (polinizadores e pilhadores, os eventos fenológicos e o sistema de reprodução de Arrabidaea conjugata (Vell. Mart. (Bignoniaceae, em área de vegetação de restinga, município de Maricá, Rio de Janeiro, no período 1997 a 2000. A espécie estudada tem flores com antese diurna, lilases, tubulosas, hermafroditas, odoríferas e oferecem néctar como recurso floral. O néctar é secretado por um disco localizado na base do gineceu e é acumulado em câmara nectarífera. Os grãos de pólen são liberados gradativamente, prolongando-se a fase de doação de pólen. As abelhas Euglossa cordata Linnaeus, Centris analis Fabricius e C. tarsata Smith são os polinizadores da espécie. Destaca-se pilhagem primária de néctar, por abelhas, e secundária, por borboletas e beija-flor. A espécie é auto-incompatível, apresentando baixos índices de formação de frutos em condições naturais (Frutos/Flores = 12,2%. Foi registrado padrão de floração "cornucópia", entre os meses de dezembro a março (estação quente/chuvosa, com pico em janeiro. As sementes são anemocóricas e liberadas gradativamente na estação fria e seca.This work deals with the floral biology, the foraging activities of floral visitors (pollinators and robbers, phenology and reproductive system of Arrabidaea conjugata (Vell. Mart. (Bignoniaceae in the "restinga" of Maricá, Rio de Janeiro, Brazil, from 1997 to 2000. The flowers display daytime anthesis and last only one day. These attractive pink flowers are tubular, hermaphroditic, odoriferous and produce nectar as the floral reward. The nectar is secreted by a nectariferous disk concealed within a chamber. The pollen grains are gradually released throughout anthesis, extending the pollen presentation phase. The bees Euglossa cordata Linnaeus, Centris analis Fabricius and C. tarsata Smith are the pollinator species. Primary and secondary

  12. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    Science.gov (United States)

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  13. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time

    Directory of Open Access Journals (Sweden)

    Aalt D.J. van Dijk

    2017-04-01

    Full Text Available The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  14. Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis

    Science.gov (United States)

    Thibaut, Hendrik Jan; Thys, Bert; Canela, María-Dolores; Aguado, Leire; Wimmer, Eckard; Paul, Aniko; Pérez-Pérez, María-Jesús; van Kuppeveld, Frank J. M.; Neyts, Johan

    2014-01-01

    Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis. PMID:24722756

  15. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  16. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Science.gov (United States)

    Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto

    2018-02-22

    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.

  17. Binding of glutathione to enterovirus capsids is essential for virion morphogenesis.

    Directory of Open Access Journals (Sweden)

    Hendrik Jan Thibaut

    2014-04-01

    Full Text Available Enteroviruses (family of the Picornaviridae cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH, thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis.

  18. Estudios morfo-anatómicos en nectarios florales y extraflorales de Triumfetta rhomboidea (Malvaceae, Grewioideae Morpho-anatomical studies of the floral and extrafloral nectaries of Triumfetta rhomboidea (Malvaceae, Grewioideae

    Directory of Open Access Journals (Sweden)

    Elsa Lattar

    2009-07-01

    Full Text Available La morfo-anatomía de los nectarios florales y extraflorales tricomáticos de Triumfetta rhomboidea Jacq. se estudió con microscopio óptico y microscopio electrónico de barrido. Las cinco glándulas nectaríferas florales, están localizadas en el androginóforo, mientras que los nectarios extraflorales se hallan en los márgenes de la base de la lámina en la hoja y en los márgenes de la bráctea. Las diferencias observadas entre ellos están dadas por el tamaño y la forma de las células epidérmicas basales, el número de las células del pie y de la cabezuela de los tricomas glandulares, los idioblastos del parénquima secretor y el tejido vascular que inerva los nectarios. El análisis de la varianza mostró diferencias significativas entre los nectarios florales y extraflorales en las siguientes variables: longitud y diámetro de la cabezuela, longitud y ancho del pie, pared periclinal de la célula epidérmica basal. Estos resultados fueron congruentes con el análisis de componentes principales (ACP. La longitud de cabezuela y la pared periclinal de la célula basal permitieron reconocer los tres tipos de nectarios, mientras el diámetro de cabezuela y la longitud y ancho de pie sólo diferenciaron los nectarios florales de los extraflorales. Los resultados de este trabajo se discuten en relación a información previa sobre el género.The morpho-anatomy of the floral and extrafloral trichomatic nectaries of Triumfetta rhomboidea Jacq. was studied by light and scanning electron microscope. Five nectariferous glands are located on the androgynophore, whereas extrafloral nectaries are on the margins at the base of the leaf and on the margins of the bract. The differences observed between them are the size and shape of the epidermal basal cells, the number of the foot and the head cells of the glandular trichomes, the idioblasts of the secretor parenchyma and the vascular tissue which innervates the nectaries. The analysis of variance

  19. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Franck Pichaud

    2018-03-01

    Full Text Available The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM and zonula adherens (ZA, thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1 gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.

  20. Nectar sugar production across floral phases in the Gynodioecious Protandrous Plant Geranium sylvaticum [corrected].

    Science.gov (United States)

    Varga, Sandra; Nuortila, Carolin; Kytöviita, Minna-Maarit

    2013-01-01

    Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species.

  1. Floral flavonoids and ultraviolet patterns in Viguiera (Compositae)

    International Nuclear Information System (INIS)

    Rieseberg, L.H.; Schilling, E.E.

    1985-01-01

    Variation occurs among species of Viguiera series Viguiera for ultraviolet (UV) absorption/reflection patterns of ligules. Floral flavonoids that cause UV absorption occur in epidermal papillae. Flavonoids are further localized to the proximal portion of the ligule in the seven taxa that have only proximal UV absorption. Floral flavonoids involved in UV absorption consist of flavone, flavonol, and anthochlor (chalcone/aurone) glycosides. Quercetin 3-methyl ether glycosides characterize the ligules of 10 taxa occurring in Baja California, Mexico, and nearby areas, and these taxa appear to form one taxonomic group. The anthochlor pair, marein/maritimein, characterizes V. dentata, and the lack of ligule flavonoids distinguishes V. potosina from the remaining taxa. The presence of the anthochlor pair, marein/maritimein, only in V. dentata and the lack of ligule flavonoids in V. potosina concur with other data to indicate that these species are not correctly placed with each other or with the other species currently included in series Viguiera. (author)

  2. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2016-12-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

  3. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    Science.gov (United States)

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  4. Pollination systems and floral traits in cerrado woody species of the Upper Taquari region (central Brazil

    Directory of Open Access Journals (Sweden)

    F. Q. Martins

    Full Text Available Plant species present flowers with varied morphological and functional features, which may be associated to pollination systems, including species pollinated by wind, beetles, moths, bees, small insects, birds, or bats. We calculated the frequencies of the pollination systems among woody species in five cerrado fragments in central-western Brazil and tested whether the pollination systems were indeed related to floral traits. We sampled 2,280 individuals, belonging to 121 species, ninety-nine of which were described in relation to all floral traits. Most species had diurnal anthesis, pale colors, and open flowers. The most frequent groups were those composed by the species pollinated by bees, small insects, and moths. A Principal Component Analysis of the species and floral traits showed that there was a grouping among species with some pollination systems, such as those pollinated mainly by beetles, moths, birds, and bats, for which inferences based on the floral traits are recommended in cerrado sites. For the species pollinated mainly by bees or small insects, inferences based on the floral traits are not recommended, due to the large dispersion of the species scores and overlapping between these two groups, which probably occurred due to the specificity absence in plant-pollinator relationships.

  5. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    Science.gov (United States)

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  6. Pollinator responses to floral colour change, nectar, and scent promote reproductive fitness in Quisqualis indica (Combretaceae).

    Science.gov (United States)

    Yan, Juan; Wang, Gang; Sui, Yi; Wang, Menglin; Zhang, Ling

    2016-04-13

    Floral colour change is visual signals for pollinators to avoid old flowers and increase pollination efficiency. Quisqualis indica flowers change colour from white to pink to red may be associated with a shift from moth to butterfly pollination. To test this hypothesis, we investigated Q. indica populations in Southwest China. Flowers secreted nectar continuously from the evening of anthesis until the following morning, then decreased gradually with floral colour change. The scent compounds in the three floral colour stages were similar; however, the scent composition was different, and the scent emission rate decreased from the white to red stage. Dichogamy in Q. indica prevents self-pollination and interference of male and female functions. Controlled pollinations demonstrated that this species is self-incompatible and needs pollinators for seed production. Different pollinators were attracted in each floral colour stage; mainly moths at night and bees and butterflies during the day. Observations of open-pollinated inflorescences showed that white flowers had a higher fruit set than pink or red flowers, indicating the high contribution of moths to reproductive success. We concluded that the nectar and scent secretion are related to floral colour change in Q. indica, in order to attract different pollinators and promote reproductive fitness.

  7. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    Science.gov (United States)

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.

  8. Separable roles of UFO during floral development revealed by conditional restoration of gene function.

    Science.gov (United States)

    Laufs, Patrick; Coen, Enrico; Kronenberger, Jocelyne; Traas, Jan; Doonan, John

    2003-02-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia.

  9. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  10. Caffeine in floral nectar enhances a pollinator's memory of reward.

    Science.gov (United States)

    Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C

    2013-03-08

    Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.

  11. Regulation of Epithelial Morphogenesis by the G-Protein Coupled Receptor Mist and its Ligand Fog*

    Science.gov (United States)

    Manning, Alyssa J.; Peters, Kimberly A.; Peifer, Mark; Rogers, Stephen L.

    2014-01-01

    Epithelial morphogenesis is essential for shaping organs and tissues and for establishment of the three embryonic germ layers during gastrulation. Studies of gastrulation in Drosophila have provided insight into how epithelial morphogenesis is governed by developmental patterning mechanisms. We developed an assay to recapitulate morphogenetic shape changes in individual cultured cells, and used RNAi-based screening to identify Mist, a Drosophila G protein-coupled receptor (GPCR) that transduces signals from the secreted ligand Folded gastrulation (Fog) in cultured cells. Mist functioned in Fog-dependent embryonic morphogenesis, and the transcription factor Snail regulated expression of mist in zygotes. Our data revealed how a cell fate transcriptional program acts through a ligand-GPCR pair to stimulate epithelial morphogenetic shape changes. PMID:24222713

  12. Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web.

    Science.gov (United States)

    Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace

    2011-08-01

    Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.

  13. Pollen diversity, viability and floral structure of some Musa genotypes

    African Journals Online (AJOL)

    Prof. Ogunji

    Pollen diversity, viability and floral structure of some Musa genotypes ... at the Faculty of Agriculture & Natural Resources Management farm, Ebonyi State University,. Abakaliki. ..... Roots, tuber, plantains and bananas in human nutrition. Rome,.

  14. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  15. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2018-01-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803

  16. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum.

    Science.gov (United States)

    Sin, Suk-Fong; Chye, Mee-Len

    2004-10-01

    The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.

  17. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    Science.gov (United States)

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our

  18. 36 CFR 12.10 - Floral and commemorative tributes.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Floral and commemorative tributes. 12.10 Section 12.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... of fresh cut or artificial flowers in or on a metal or other non-breakable rod or container...

  19. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    Science.gov (United States)

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  20. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    Directory of Open Access Journals (Sweden)

    Chia-Hui Wang

    Full Text Available Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  1. Geographic variation in floral allometry suggests repeated transitions between selfing and outcrossing in a mixed mating plant.

    Science.gov (United States)

    Summers, Holly E; Hartwick, Sally M; Raguso, Robert A

    2015-05-01

    Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther-stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions. © 2015 Botanical Society of America, Inc.

  2. Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae).

    Science.gov (United States)

    Bello, M Angélica; Álvarez, Inés; Torices, Rubén; Fuertes-Aguilar, Javier

    2013-11-01

    Most of the diversity in the pseudanthia of Asteraceae is based on the differential symmetry and sexuality of its flowers. In Anacyclus, where there are (1) homogamous capitula, with bisexual, mainly actinomorphic and pentamerous flowers; and (2) heterogamous capitula, with peripheral zygomorphic, trimerous and long-/short-rayed female flowers, the floral ontogeny was investigated to infer their origin. Floral morphology and ontogeny were studied using scanning electron microscope and light microscope techniques. Disc flowers, subtended by paleae, initiate acropetally. Perianth and androecium initiation is unidirectional/simultaneous. Late zygomorphy occurs by enlargement of the adaxial perianth lobes. In contrast, ray flowers, subtended by involucral bracts, initiate after the proximal disc buds, breaking the inflorescence acropetal pattern. Early zygomorphy is manifested through the fusion of the lateral and abaxial perianth lobes and the arrest of the adaxials. We report atypical phenotypes with peripheral 'trumpet' flowers from natural populations. The peripheral 'trumpet' buds initiate after disc flowers, but maintain an actinomorphic perianth. All phenotypes are compared and interpreted in the context of alternative scenarios for the origin of the capitulum and the perianth identity. Homogamous inflorescences display a uniform floral morphology and development, whereas the peripheral buds in heterogamous capitula display remarkable plasticity. Disc and ray flowers follow different floral developmental pathways. Peripheral zygomorphic flowers initiate after the proximal actinomorphic disc flowers, behaving as lateral independent units of the pseudanthial disc from inception. The perianth and the androecium are the most variable whorls across the different types of flowers, but their changes are not correlated. Lack of homology between hypanthial appendages and a calyx, and the perianth double-sided structure are discussed for Anacyclus together with potential

  3. Geographic variation in floral traits and the capacity of autonomous selfing across allopatric and sympatric populations of two closely related Centaurium species.

    Science.gov (United States)

    Schouppe, Dorien; Brys, Rein; Vallejo-Marin, Mario; Jacquemyn, Hans

    2017-04-21

    Floral traits and the relative contribution of autonomous selfing to total seed set varies geographically and is often driven by the availability and abundance of suitable pollinators and/or the presence of co-flowering relatives. In the latter case, competition for pollinator services and costs of hybridization can select for floral traits that reduce interspecific gene flow and contribute to prezygotic isolation, potentially leading to geographic variation in floral divergence between allopatric and sympatric populations. In this study, we investigated variation in floral traits and its implications on the capacity of autonomous selfing in both allopatric and sympatric populations of two closely related Centaurium species(Gentianaceae) across two distinct geographic regions(UK and mainland Europe). Although the magnitude and direction of floral differentiation varied between regions, sympatric populations were always significantly more divergent in floral traits and the capacity to self autonomously than allopatric populations. These results indicate that mating systems can vary substantially within a species and that the joint occurrence of plant species can have a major impact on floral morphology and capacity of autonomous selfing, most likely as a way to reduce the probability of interspecific interference.

  4. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    Science.gov (United States)

    Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M

    1998-06-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.

  5. Covariance and decoupling of floral and vegetative traits in nine Neotropical plants: a re-evaluation of Berg's correlation-pleiades concept.

    Science.gov (United States)

    Armbruster, W S; Di Stilio, V S; Tuxill, J D; Flores, T C; Velásquez Runk, J L

    1999-01-01

    Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with

  6. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  7. Floral development and vascularization help to explain merism evolution in Paepalanthus (Eriocaulaceae, Poales

    Directory of Open Access Journals (Sweden)

    Arthur de Lima Silva

    2016-12-01

    Full Text Available Background Flowers in Eriocaulaceae, a monocot family that is highly diversified in Brazil, are generally trimerous, but dimerous flowers occur in Paepalanthus and a few other genera. The floral merism in an evolutionary context, however, is unclear. Paepalanthus encompasses significant morphological variation leading to a still unresolved infrageneric classification. Ontogenetic comparative studies of infrageneric groups in Paepalanthus and in Eriocaulaceae are lacking, albeit necessary to establish evolution of characters such as floral merism and their role as putative synapomorphies. Methods We studied the floral development and vascularization of eight species of Paepalanthus that belong to distinct clades in which dimery occurs, using light and scanning electron microscopies. Results Floral ontogeny in dimerous Paepalanthus shows lateral sepals emerging simultaneously and late-developing petals. The outer whorl of stamens is absent in all flowers examined here. The inner whorl of stamens becomes functional in staminate flowers and is reduced to staminodes in the pistillate ones. In pistillate flowers, vascular bundles reach the staminodes. Ovary vascularization shows ventral bundles in a commissural position reaching the synascidiate portion of the carpels. Three gynoecial patterns are described for the studied species: (1 gynoecium with a short style, two nectariferous branches and two long stigmatic branches, in most species; (2 gynoecium with a long style, two nectariferous branches and two short stigmatic branches, in P. echinoides; and (3 gynoecium with long style, absent nectariferous branches and two short stigmatic branches, in P. scleranthus. Discussion Floral development of the studied species corroborates the hypothesis that the sepals of dimerous flowers of Paepalanthus correspond to the lateral sepals of trimerous flowers. The position and vascularization of floral parts also show that, during dimery evolution in Paepalanthus

  8. Flavonoids patterns of French honeys with different floral origin

    NARCIS (Netherlands)

    Soler, C.; Gil, M.I.; Garcia-Viguera, C.; Tomás-Barberán, F.A.

    1995-01-01

    The flavonoid profiles of 12 different unifloral French honey samples were analysed by HPLC to evaluate if these substances could be used as markers of the floral origin of honey. In this analysis, the characteristic flavonoids from propolis and/or beeswax (chrysin, galangin, tectochrysin,

  9. [Floral syndrome and breeding system of Corydalis edulis].

    Science.gov (United States)

    Xia, Qing; Zhou, Shoubiao; Zhang, Dong; Chao, Tiancai

    2012-05-01

    A field investigation was conducted on the floral syndrome and breeding system of Corydalis edulis located in natural populations in campus of Anhui Normal University by out-crossing index, pollen-ovule ratio, artificial pollination and bagging experiment. The results showed that the plant was in bloom from March to May and flowering span among populations was 72 days. The flowering span for a raceme was 14-24 days. The life span of one single flower was approximately 5-10 days. Spatial positioning of stigma and anthers were spatially desperation on the day of anthesis. The filaments were shorter than the styles through pollen vitality and stigma receptivity experiments. A self-pollination breeding system was reflected by OCI 3, pollinators were required sometimes; A complex cross bred was indicated by P/O = 857.14, combined with the results of the bagging and artificial pollination experiment, the breeding system of C. edulis was mixed with self-pollination and outcrossing. The special floral structure and pests destroying may have a certain impact on seed-set rate.

  10. Floral Trait Variations Among Wild Tobacco Populations Influence the Foraging Behavior of Hawkmoth Pollinators

    Directory of Open Access Journals (Sweden)

    Alexander Haverkamp

    2018-02-01

    Full Text Available Most pollinators visit flowers in the search of nectar rewards. However, as the floral nectar can often not be directly detected by pollinators, many flower visitors use secondary metabolites such as odor- or taste-proxies to anticipate nectar quantity and quality. Plants might exploit these sensory inferences of the pollinator to increase their pollination rates without increasing their caloric investment into their floral rewards. Here we investigated the effects of natural variation in certain primary and secondary floral metabolites in three populations of the wild tobacco, Nicotiana attenuata, on the pollination behavior of the hawkmoth Manduca sexta. Although offering the same caloric value per flower, the plants of these populations differ in the compositions and concentrations of sugars within the nectar. Moreover, the flowers of these plants emitted highly contrasting levels of attractive floral volatiles (benzyl acetone, but did not differ in the amounts of defensive nectar metabolites (nicotine. In wind tunnel assays with M. sexta moths, plants from those populations that released the largest amount of benzyl acetone as well as those that had a higher ratio of nectar sucrose were more frequently visited and re-visited by the hawkmoth. High emissions of benzyl acetone additionally correlated with a higher time investment of the moths into individual flowers on each visit, leading to the largest foraging success of the moths on those flowers that were most strongly scented. We propose that it is the variation of flower metabolites and their detection by the pollinator rather than the actual caloric value of the nectar, which determines pollinator visitations to a certain flower population. Hence, plants could potentially create a specialist pollinator community by altering their floral signals, either by producing volatiles that pollinators prefer or by providing nectar sugars that pollinators are most sensitive to, while at the same

  11. Stochastic and non-stochastic effects - a conceptual analysis

    International Nuclear Information System (INIS)

    Karhausen, L.R.

    1980-01-01

    The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)

  12. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.

    Science.gov (United States)

    Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun

    2017-11-01

    Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.

    Science.gov (United States)

    Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor

    2014-01-01

    In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.

  14. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.

    Directory of Open Access Journals (Sweden)

    Stefan Dötterl

    Full Text Available In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues in dioecious sallow, Salix caprea, ii to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.

  15. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhengui Zheng

    Full Text Available Mediator is a conserved multi-protein complex that plays an important role in regulating transcription by mediating interactions between transcriptional activator proteins and RNA polymerase II. Much evidence exists that Mediator plays a constitutive role in the transcription of all genes transcribed by RNA polymerase II. However, evidence is mounting that specific Mediator subunits may control the developmental regulation of specific subsets of RNA polymerase II-dependent genes. Although the Mediator complex has been extensively studied in yeast and mammals, only a few reports on Mediator function in flowering time control of plants, little is known about Mediator function in floral organ identity. Here we show that in Arabidopsis thaliana, MEDIATOR SUBUNIT 18 (MED18 affects flowering time and floral organ formation through FLOWERING LOCUS C (FLC and AGAMOUS (AG. A MED18 loss-of-function mutant showed a remarkable syndrome of later flowering and altered floral organ number. We show that FLC and AG mRNA levels and AG expression patterns are altered in the mutant. Our results support parallels between the regulation of FLC and AG and demonstrate a developmental role for Mediator in plants.

  16. Polimorfismo floral em Valeriana scandens L. (Valerianaceae Floral polymorphism in Valeriana scandens L. (Valerianaceae

    Directory of Open Access Journals (Sweden)

    Erica Duarte-Silva

    2010-09-01

    Full Text Available Foram encontrados três morfos florais em Valeriana scandens L.: flor perfeita, flor pistilada 1 e flor pistilada 2. A perfeita possui corola maior que a dos demais morfos, com lobos reflexos na antese, giba proeminente e localizada na porção proximal do tubo floral; anteras maiores que as dos demais morfos, com pólen viável; estilete curto e estigma incluso, o menor ovário e saco embrionário estruturalmente normal, semelhante ao dos demais morfos. A pistilada 1 possui a giba menos proeminente, corola de tamanho intermediário em relação aos demais morfos, lobos radiais na antese; anteras pequenas, sem pólen e estilete longo e estigma exserto. A pistilada 2 possui lobos radiais na antese, anteras de comprimento semelhante às da perfeita, mas de menor largura, com pólen inviável; estilete mais curto, tal como o da flor perfeita, e estigma exserto, tal como o da flor pistilada 1. Nos três morfos, o nectário é formado por tricomas secretores unicelulares situados na epiderme da face interna da giba, e suas sementes são viáveis. As flores pistilada 2 e perfeita apresentam um septo que isola a giba do restante do tubo floral, formando uma câmara nectarífera. V. scandens L. é ginomonóica-ginodióica, expressão sexual inédita em Valerianaceae.Three floral morphs were found in Valeriana scandens L.: perfect, pistillate 1, and pistillate 2. In perfect flowers, the corolla is longer than in the other morphs, with reflexed lobes at anthesis and a prominent gibbus at the tube base; anthers are longer and contain viable pollen grains; the pistil has a short included style/stigma and the smallest ovary, but a structurally normal embryo sac similar to that of the other morphs. In pistillate 1 flowers, the corolla is intermediate in size, and has radially displayed lobes at anthesis, and a softly prominent gibbus; anthers are small and devoid of pollen; the pistil shows a long exerted style/stigma. In pistillate 2 flowers, the corolla

  17. Influencia del fotoperiodo en el desarrollo floral de plantas de Solidago chilensis, Aster ericoides ev. 'Monteeasino' y Solidago x luteus Influenee of photoperiod on floral development in plants of Solidago chilensis, Aster ericoides ev. 'Monteeasino' and Solidago x tuteus

    Directory of Open Access Journals (Sweden)

    Flórez Roncancio Victor J.

    1998-06-01

    Full Text Available Solidago x luteus es un híbrido interespecífico entre Solidago ptarmicoides y Solidago canadensis. Este híbrido, Solidago chilensis y Aster ericoides cv. 'Montecasino' son las especies objeto del presente estudio. Son plantas típicas de días largos, las cuales crecen como rosetas en días cortos y son explotadas para flor de corte. Se observaron características vegetativas y reproductivas de estas especies en condiciones fotoperiódicas de 8h y 20h y, en Solidago x luteus, por su mejor performance en cuanto a la inducción floral, se realizaron estudios de comportamiento fotoperiódico del desarrollo desde el botón floral hasta antesis. En forma general, en las tres especies estudiadas, los fotoperíodos largos promueven inducción floral y aumento en el número de ramificaciones laterales y de hojas. En días cortos, las
    plantas de Solidago chilensis permanecieron en roseta, en las de Solidago x luteus hubo inducción y antesis floral, en tanto que, en Aster ericoides, había plantas en roseta y plantas inducidas. La evidencia de que los días cortos aceleraban la antesis floral en plantas de Solidago x luteus, inducidas en
    días largos, se fortaleció con el experimento de diferente duración en días cortos (5; 10 y 15 días; lo cual se confirmó en experimentos subsecuentes, en donde se comprobó que la planta responde a los fotoperíodos cortos (8h; 10h y 12h, acelerando la antesis y a los fotoperíodos largos (16h y 20h, retardándola y los fotoperiódos entre 12h y 16h (14h  estarían en una situación de transición entre días cortos y días largos, caracterizando, así, una respuesta cuantitativa con el aumento del fotoperíodo.
    Solidago x luteus is a hybrid between Solidago ptarmicoides and Solidago canadensis. This hybrid, Solidago chilensis and Aster ericoides cv. 'Montecasino' are the subject of the present work. They are typically long-day plants which grow as rosettes in short days and are exploited as cut

  18. Floral ontogeny of two Jatropha species (Euphorbiaceae s.s) and its systematic implications

    International Nuclear Information System (INIS)

    Liu, H.; Liao, J.

    2015-01-01

    Floral ontogeny of Jatropha multifida L. and Jatropha integerrima Jacq. (Euphorbiaceae) was studied using scanning electron microscopy (SEM). These two species possess unisexual male flowers and bisexual (with unfunctional staminodes) female flowers. In both male and female flowers, five sepal primordia arise in a 2/5 sequence on the periphery of the floral apex and initiate anticlockwise or clockwise in different floral buds. Five petal primordia initiate simultaneously alternate to sepals. Dicyclic stamens (obdiplostemony) arise in both male and female flowers. In J. multifida, five outer stamen primordia arise first simultaneously and then three inner stamens initiate simultaneously. However, in J. integerrima, ten stamen primordia arranged in two whorls initiate simultaneously. While the ovary is absent in the male flowers, in the female flowers, three carpel primordia appear simultaneously. With further development of the ovary the stamens degenerate in the female flowers, whereas in the male flowers, the stamens grow normally. Ancestral state reconstruction using MacClade indicates that stamen simultaneous vs. non-simultaneous initiation supports the phylogenetic analysis based on nuclear ribosomal DNA ITS sequence. (author)

  19. Cytological behaviour of floral organs and in silico characterization ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH ... have defects in number, size, shape and function. ... associated with 'floral bud distortion' in soybean. J. Genet. 95, 787–799] ... with different names, namely no podding syndrome in India, .... three independent runs. ... eluted from the agaros gel with sharp surgical blade without.

  20. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture.

    Science.gov (United States)

    Li, P; Luo, Y; Bernhardt, P; Kou, Y; Perner, H

    2008-03-01

    The pollination of Cypripedium plectrochilum Franch. was studied in the Huanglong Nature Reserve, Sichuan, China. Although large bees (Bombus, Apis), small bees (Ceratina, Lasioglossum), ants (Formica sp.), true flies (Diptera) and a butterfly were all found to visit the flowers, only small bees, including three Lasioglossum spp. (L. viridiclaucum, L. sichuanense and L. sp.; Halictidae) and one Ceratina sp., carried the flower's pollen and contacted the receptive stigma. Measurements of floral architecture showed that interior floral dimensions best fit the exterior dimensions of Lasioglossum spp., leading to the consistent deposition and stigmatic reception of dorsally-placed, pollen smears. The floral fragrance was dominated by one ketone, 3-methyl-Decen-2-one. The conversion rate of flowers into capsules in open (insect) pollinated flowers at the site was more than 38%. We conclude that, while pigmentation patterns and floral fragrance attracted a wide variety of insect foragers, canalization of interior floral dimensions ultimately determined the spectrum of potential pollinators in this generalist, food-mimic flower. A review of the literature showed that the specialised mode of pollination-by-deceit in C. plectrochilum, limiting pollinators to a narrow and closely related guild of 'dupes' is typical for other members of this genus.

  1. How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant

    Directory of Open Access Journals (Sweden)

    Waelti Marc O

    2009-08-01

    Full Text Available Abstract Background Sexual selection theory predicts that males are limited in their reproductive success by access to mates, whereas females are more limited by resources. In animal-pollinated plants, attraction of pollinators and successful pollination is crucial for reproductive success. In dioecious plant species, males should thus be selected to increase their attractiveness to pollinators by investing more than females in floral traits that enhance pollinator visitation. We tested the prediction of higher attractiveness of male flowers in the dioecious, moth-pollinated herb Silene latifolia, by investigating floral signals (floral display and fragrance and conducting behavioral experiments with the pollinator-moth, Hadena bicruris. Results As found in previous studies, male plants produced more but smaller flowers. Male flowers, however, emitted significantly larger amounts of scent than female flowers, especially of the pollinator-attracting compounds. In behavioral tests we showed that naïve pollinator-moths preferred male over female flowers, but this preference was only significant for male moths. Conclusion Our data suggest the evolution of dimorphic floral signals is shaped by sexual selection and pollinator preferences, causing sexual conflict in both plants and pollinators.

  2. Dinâmica floral e abortamento de flores em híbridos de canola e mostarda castanha Floral dynamics and flower abortion in hybrids of canola and Indian mustard

    Directory of Open Access Journals (Sweden)

    Rafael Battisti

    2013-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a dinâmica floral e determinar o índice de abortamento de flores de híbridos de canola (Brassica napus e de mostarda castanha (Brassica juncea, bem como determinar suas relações com as condições meteorológicas do Sul do Brasil. Durante a floração, dez híbridos de canola e dois de mostarda foram avaliados a cada três dias quanto ao número de flores abertas, de síliquas e de flores abortadas. O número acumulado e relativo de flores foi usado para avaliação da dinâmica floral. A relação desses números com a soma térmica acumulada durante a floração foi determinada por meio de modelo logístico. A partir dos coeficientes desse modelo, identificaram-se grupos de genótipos com diferentes taxas de emissão de flores. O abortamento de flores entre híbridos variou de 10,53 a 45,96% e correlacionou-se com a temperatura e a demanda evaporativa da atmosfera. Genótipos com maiores tempos térmicos entre o período de máxima emissão de flores e o final da floração geralmente apresentam maiores percentagens de abortamento de flores. O ajuste dos dados de emissão de flores aos de soma térmica do período da floração, por meio de modelo logístico, permite simular a dinâmica floral de híbridos de canola e mostarda castanha.The objective of this work was to evaluate the floral dynamics and to determine the index of flower abortion in canola (Brassica napus and Indian mustard (Brassica juncea hybrids, as well as to determine their relation with meteorological conditions of southern Brazil. During flowering, ten hybrids of canola and two of Indian mustard were evaluated every three days as to the number of open flowers, pods, and aborted flowers. The cumulative and the relative number of flowers were used to evaluate floral dynamics. The relation of these numbers with the accumulated thermal sum during flowering was determined with a logistic model. Groups of genotypes with different

  3. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    Directory of Open Access Journals (Sweden)

    Liliana M Cano

    Full Text Available Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments and terpenoid biosynthesis (major floral volatile compounds were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  4. Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape

    Science.gov (United States)

    Matteson, K.C.; Grace, James B.; Minor, E.S.

    2013-01-01

    Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral

  5. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Science.gov (United States)

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  6. Caffeine in floral nectar enhances a pollinator’s memory of reward

    Science.gov (United States)

    Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C.

    2015-01-01

    Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. PMID:23471406

  7. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis

    OpenAIRE

    Papusheva, Ekaterina; Heisenberg, Carl-Philipp

    2010-01-01

    The Heisenberg laboratory reviews the spatial organization of signalling complexes at cell–matrix and cell–cell contact sites and its impact on cell integrity, cellular polarity and tissue morphogenesis.

  8. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    Science.gov (United States)

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in

  9. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    Science.gov (United States)

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  10. Research on floral timing by ambient temperature comes into blossom

    NARCIS (Netherlands)

    Verhage, D.S.L.; Angenent, G.C.; Immink, R.G.H.

    2014-01-01

    The floral transition is an essential process in the life cycle of flower-bearing plants, because their reproductive success depends on it. To determine the right moment of flowering, plants respond to many environmental signals, including day length, light quality, and temperature. Small changes in

  11. High floral bud abscission and lack of open flower abscission in Dendrobium cv. Miss Teen: rapid reduction of ethylene sensitivity in the abscission zone

    NARCIS (Netherlands)

    Bunya-atichart, K.; Ketsa, S.; Doorn, van W.G.

    2006-01-01

    We studied the abscission of floral buds and open flowers in cut Dendrobium inflorescences. Abscission of floral buds was high and sensitive to ethylene in all cultivars studied. Many open flowers abscised in most cultivars, but cv. Willie exhibited only small amount of floral fall and cv. Miss Teen

  12. Pollinarium morphology and floral rewards in Brazilian Maxillariinae (Orchidaceae).

    Science.gov (United States)

    Singer, Rodrigo B; Koehler, Samantha

    2004-01-01

    There is strong support for the monophyly of the orchid subtribe Maxillariinae s.l., yet generic boundaries within it are unsatisfactory and need re-evaluation. In an effort to assemble sets of morphological characters to distinguish major clades within this subtribe, the pollinarium morphology and floral rewards of representative Brazilian species of this subtribe were studied. The study was based on fresh material from 60 species and seven genera obtained from cultivated specimens. Variation of pollinarium structure and floral rewards was assessed using a stereomicroscope and by SEM analysis. Four morphological types of pollinaria are described. Type 1 appears to be the most widespread and is characterized by a well-developed tegula. Type 2 lacks a stipe and the pollinia are attached directly to the viscidium. Type 3 also lacks a stipe, and the viscidium is rigid and dark. In Type 4, the stipe consists of the whole median rostelar portion and, so far, is known only from Maxillaria uncata. Nectar, trichomes, wax-like and resin-like secretions are described as flower rewards for different groups of species within the genus Maxillaria. Data on the biomechanics and pollination biology are also discussed and illustrated. In Maxillariinae flowers with arcuate viscidia, the pollinaria are deposited on the scuttellum of their Hymenopteran pollinators. In contrast, some flowers with rounded to rectangular, pad-like viscidia fix their pollinaria on the face of their pollinators. Pollinarium morphology and floral features related to pollination in Brazilian Maxillariinae are more diverse than previously suggested. It is hoped that the data presented herein, together with other data sources such as vegetative traits and molecular tools, will be helpful in redefining and diagnosing clades within the subtribe Maxillariinae.

  13. Extending Graphic Statics for User-Controlled Structural Morphogenesis

    OpenAIRE

    Fivet, Corentin; Zastavni, Denis; Cap, Jean-François; Structural Morphology Group International Seminar 2011

    2011-01-01

    The first geometrical definitions of any structure are of primary importance when considering pertinence and efficiency in structural design processes. Engineering history has taught us how graphic statics can be a very powerful tool since it allows the designer to take shapes and forces into account simultaneously. However, current and past graphic statics methods are more suitable for analysis than structural morphogenesis. This contribution introduces new graphical methods that can supp...

  14. Noncausal stochastic calculus

    CERN Document Server

    Ogawa, Shigeyoshi

    2017-01-01

    This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...

  15. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    Science.gov (United States)

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  16. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    Science.gov (United States)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    Gravity alterations are widely recognized to influence living systems. They may cause temporary or permanent effects on physiology and development at different levels, from gene expression to morphogenesis. However, the molecular mechanisms underlying these effects are often unclear, and adequate model systems to study them are required. To address this problem we developed a new experimental model of how gravity affects morphogenesis during tail regeneration in the newt Pleurodeles waltl. The effects of increased gravity on newt tail morphogenesis were first documented in two joint Russian-US NASA spaceflight experiments in the Russian Foton-M2 (2005) and Foton-M3 (2007) missions. In these experiments the shape of newt tail regenerate was found to depend on the gravity level, being dorso-ventrally symmetrical in microgravity and in neutrally-buoyant aquarium controls, versus hook-like and bent downward in 1g controls. These 1g controls were conducted in spaceflight habitats using a water-saturated PVA sponge mat. These results were reproducible in multiple spaceflight, and ground laboratory studies, both in the US at NASA ARC and in Russia at IDB RAS, and were characterized in detail using morphometry and histology approaches. The role of hypergravity in shaping morphogenesis was confirmed at NASA ARC with an experiment in the ISS Testbed 8-foot diameter centrifuge operating at 2g. Animals that experienced two-week centrifugation (the period of time used in the Foton flights) developed the same hook-like regenerates as 1g controls, and morphometric analysis revealed no significant difference between 1g and 2g groups, however both were significantly different from aquarium controls. We hypothesize that exposure to 1g or 2g during tail morphogenesis constitutes excessive loading for newts that are adapted to microgravity-like conditions in their aquatic habitat. Because Heat Shock Proteins (HSPs) are stress-induced molecules that respond to a broad variety of

  18. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Science.gov (United States)

    Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G

    2018-06-01

    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.

  19. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops

    Directory of Open Access Journals (Sweden)

    LC Rodrigues

    Full Text Available Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  20. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops.

    Science.gov (United States)

    Rodrigues, L C; Rodrigues, M

    2015-01-01

    Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  1. Isomyosin expression patterns during rat heart morphogenesis: an immunohistochemical study

    NARCIS (Netherlands)

    de Groot, I. J.; Lamers, W. H.; Moorman, A. F.

    1989-01-01

    An immunohistochemical study of cardiac alpha and beta myosin heavy chain (MHC) expression during rat heart morphogenesis was performed. In tubular hearts (embryonic days, ED10-11) coexpression of both cardiac alpha and beta MHC was found throughout the heart, except for the left free wall of the

  2. Effect of floral display on reproductive success in terrestrial orchids

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Jersáková, Jana

    2006-01-01

    Roč. 41, - (2006), s. 47-60 ISSN 0015-5551 R&D Projects: GA AV ČR(CZ) KJB6141302; GA ČR(CZ) GA206/00/1124 Keywords : deceptivity * floral display * orchid * reproductive success * reward Subject RIV: EF - Botanics Impact factor: 1.033, year: 2005

  3. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  4. Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum.

    Directory of Open Access Journals (Sweden)

    Erin Jo Tiedeken

    Full Text Available Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering, yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H'2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure

  5. Dynamics of Spore Coat Morphogenesis in Bacillus subtilis

    Science.gov (United States)

    McKenney, Peter T.; Eichenberger, Patrick

    2011-01-01

    SUMMARY Spores of Bacillus subtilis are encased in a protective coat made up of at least 70 proteins. The structure of the spore coat has been examined using a variety of genetic, imaging and biochemical techniques, however, the majority of these studies have focused on mature spores. In this study we use a library of 41 spore coat proteins fused to the Green Fluorescent Protein (GFP) to examine spore coat morphogenesis over the time-course of sporulation. We found considerable diversity in the localization dynamics of coat proteins and were able to establish 6 classes based on localization kinetics. Localization dynamics correlate well with the known transcriptional regulators of coat gene expression. Previously, we described the existence of multiple layers in the mature spore coat. Here, we find that the spore coat initially assembles a scaffold that is organized into multiple layers on one pole of the spore. The coat then encases the spore in multiple coordinated waves. Encasement is driven, at least partially, by transcription of coat genes and deletion of sporulation transcription factors arrests encasement. We also identify the trans-compartment SpoIIIAH-SpoIIQ channel as necessary for encasement. This is the first demonstration of a forespore contribution to spore coat morphogenesis. PMID:22171814

  6. Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    K. Tiwari

    2018-04-01

    Full Text Available A new methodology based on cyclic voltammetry using a chemically modified electrode has been developed for the discrimination of the floral origin of honey. This method involves an electronic tongue with an electrochemical sensor made from a carbon paste (CPs electrode where zinc oxide (ZnO nanoparticles are used as an electroactive binder material. The bare CPs electrode is evaluated for comparison. The electrochemical response of the modified electrode in 50 samples of five different floral types of honey has been analysed by the cyclic voltammetric technique. The voltammograms of each floral variety of honey reflect the redox properties of the ZnO nanoparticles present inside the carbon paste matrix and are strongly influenced by the nectar source of honey. Thus, each type of honey provides a characteristic signal which is evaluated by using principal component analysis (PCA and an artificial neural network (ANN. The result of a PCA score plot of the transient responses obtained from the modified carbon paste electrode clearly shows discrimination among the different floral types of honey. The ANN model for floral classification of honey shows more than 90 % accuracy. These results indicate that the ZnO nanoparticles modified carbon paste (ZnO Nps modified CPs electrode can be a useful electrode for discrimination of honey samples from different floral origins.

  7. Morphogenesis of Pestiviruses: New Insights from Ultrastructural Studies of Strain Giraffe-1

    Science.gov (United States)

    Mast, Jan; Thiel, Heinz-Jürgen; König, Matthias

    2014-01-01

    Knowledge on the morphogenesis of pestiviruses is limited due to low virus production in infected cells. In order to localize virion morphogenesis and replication sites of pestiviruses and to examine intracellular virion transport, a cell culture model was established to facilitate ultrastructural studies. Based on results of virus growth kinetic analysis and quantification of viral RNA, pestivirus strain Giraffe-1 turned out to be a suitable candidate for studies on virion generation and export from culture cells. Using conventional transmission electron microscopy and single-tilt electron tomography, we found virions located predominately in the lumen of the endoplasmic reticulum (ER) in infected cells and were able to depict the budding process of virions at ER membranes. Colocalization of the viral core protein and the envelope glycoprotein E2 with the ER marker protein disulfide isomerase (PDI) was demonstrated by immunogold labeling of cryosections. Moreover, pestivirions could be shown in transport vesicles and the Golgi complex and during exocytosis. Interestingly, viral capsid protein and double-stranded RNA (dsRNA) were detected in multivesicular bodies (MVBs), which implies that the endosomal compartment plays a role in pestiviral replication. Significant cellular membrane alterations such as those described for members of the Flavivirus and Hepacivirus genera were not found. Based on the gained morphological data, we present a consistent model of pestivirus morphogenesis. PMID:24352462

  8. Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae along altitudinal gradients.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Zhao

    Full Text Available Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators.

  9. CARACTERIZACIÓN DE LA MORFOLOGÍA FLORAL DE DOS CULTIVARES DE BERENJENA (Solanum melongena L. (Solanaceae FLORAL MORPHOLOGY CHARACTERIZATION OF TWO CULTIVARS OF EGGPLANT (Solanum melongena L. (Solanaceae

    Directory of Open Access Journals (Sweden)

    Hermes Araméndiz Tatis

    2009-12-01

    Full Text Available La berenjena es una especie perteneciente al género Solanum, de gran importancia en la horticultura del Caribe colombiano. El estudio tuvo como objetivo describir la morfología floral de dos cultivares de berenjena “Long Purple” y “Criolla Lila”, que tienen origen geográfico diferente, utilizando para ello, una muestra aleatoria de 100 cojines florales por cultivar. Se estimaron la media, rango, varianza, desviación estándar, coeficiente de variación y se aplicó la prueba t, para determinar diferencias entre los dos cultivares. Los resultados indicaron que el cultivar “Long Purple”, presenta flores distílicas, en tanto que en el “Criollo Lila” se observó la presencia de tristilia. El potencial de producción de frutos, fue del 76,5% y 57,52%, para el “Criollo Lila” y “Long Purple”, respectivamente. Las flores brevistílicas en ambos cultivares, incrementan la aptitud masculina y por ende un desbalance entre las flores con funcionamiento masculino y hermafrodita.The eggplant is a specie of genus Solanum, of great importance in horticulture of colombian Caribbean region. The objective of study was to describe the floral morphology of two cultivars of eggplant “Long Purple” and “Lilac land race”, which have different geographic origin. We used a random sample of 100 floral cushions for cultivar. The mean, range, variance, standard deviation, variation coefficient were estimated. The t-test was applied to determine differences between two cultivars. The results indicated that genotype ‘Long Purple’, showed distylics flowers, while in the “Lilac land race” was observed the presence of tristylics flowers. The potential for production of fruit was 76.50% and 57.52% for the “Lilac land race” and “Long Purple”, respectively. Brevistylics flowers in the two cultivars, increased male fitness and thus produced a nonbalance on functioning between male and hermaphrodite flowers.

  10. Drought and leaf herbivory influence floral volatiles and pollinator attraction

    Science.gov (United States)

    Laura A. Burkle; Justin B. Runyon

    2016-01-01

    The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...

  11. Binding of glutathione to enterovirus capsids is essential for virion morphogenesis.

    NARCIS (Netherlands)

    Thibaut, H.J.; Linden, L. van der; Jiang, P.; Thys, B.; Canela, M.D.; Aguado, L.; Rombaut, B.; Wimmer, E.; Paul, A.; Perez-Perez, M.J.; Kuppeveld, F.J.M. van; Neyts, J.

    2014-01-01

    Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We

  12. Binding of glutathione to enterovirus capsids is essential for virion morphogenesis

    NARCIS (Netherlands)

    Thibaut, Hendrik Jan; van der Linden, Lonneke; Jiang, Ping; Thys, Bert; Canela, María-Dolores; Aguado, Leire; Rombaut, Bart; Wimmer, Eckard; Paul, Aniko; Pérez-Pérez, María-Jesús; van Kuppeveld, Frank J M; Neyts, Johan

    Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We

  13. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis.

    Science.gov (United States)

    Gansner, John M; Madsen, Erik C; Mecham, Robert P; Gitlin, Jonathan D

    2008-10-01

    Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  14. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading...... to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  15. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis

    Science.gov (United States)

    Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C

    2017-01-01

    The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways. DOI: http://dx.doi.org/10.7554/eLife.25453.001 PMID:28463112

  16. How to be sweet? Extra floral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions

    OpenAIRE

    Wäckers, F.L.; Bonifay, C.

    2004-01-01

    Plants employ nectar for two distinct functions. Floral nectar has traditionally been viewed in the context of pollination. Extrafloral nectar on the other hand, can act as an indirect defense, allowing the plant to recruit predators and parasitoids. Whereas this makes for a clear-cut categorization, in reality the functions may not be so discrete. Extrafloral nectar may serve a role in pollination, while floral nectar can be utilized by predators and parasitoids and thus can contribute to pl...

  17. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Directory of Open Access Journals (Sweden)

    Eddy Risseeuw

    Full Text Available Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  18. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Science.gov (United States)

    Risseeuw, Eddy; Venglat, Prakash; Xiang, Daoquan; Komendant, Kristina; Daskalchuk, Tim; Babic, Vivijan; Crosby, William; Datla, Raju

    2013-01-01

    Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  19. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; McKim, Sarah M; Murmu, Jhadeswar; Haughn, George W; Hepworth, Shelley R

    2010-09-01

    The transition to flowering is a tightly controlled developmental decision in plants. In Arabidopsis, LEAFY (LFY) and APETALA1 (AP1) are key regulators of this transition and expression of these genes in primordia produced by the inflorescence meristem confers floral fate. Here, we examine the role of architectural regulators BLADE-ON-PETIOLE1 (BOP1) and BOP2 in promotion of floral meristem identity. Loss-of-function bop1 bop2 mutants show subtle defects in inflorescence and floral architecture but in combination with lfy or ap1, synergistic defects in floral meristem fate and determinacy are revealed. The most dramatic changes occur in bop1 bop2 ap1-1 triple mutants where flowers are converted into highly branched inflorescence-like shoots. Our data show that BOP1/2 function distinctly from LFY to upregulate AP1 in floral primordia and that all three activities converge to down-regulate flowering-time regulators including AGAMOUS-LIKE24 in stage 2 floral meristems. Subsequently, BOP1/2 promote A-class floral-organ patterning in parallel with LFY and AP1. Genetic and biochemical evidence support the model that BOP1/2 are recruited to the promoter of AP1 through direct interactions with TGA bZIP transcription factors, including PERIANTHIA. These data reveal an important supporting role for BOP1/2 in remodeling shoot architecture during the floral transition. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  20. Giga-voxel computational morphogenesis for structural design

    DEFF Research Database (Denmark)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan Stefanov

    2017-01-01

    In the design of industrial products ranging from hearing aidsto automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer...... aeroplane wing designs, which translates into are duction in fuel consumption of about 40–200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems3, antennas4,nano-optics5 and micro-systems6,7...

  1. Hypoxia-inducible factor 1α regulates branching morphogenesis during kidney development.

    Science.gov (United States)

    Tsuji, Kenji; Kitamura, Shinji; Makino, Hirofumi

    2014-04-25

    The kidneys are exposed to hypoxic conditions during development. Hypoxia-inducible factor (HIF), an important mediator of the response to hypoxia, is believed to have an important role in development. However, the relationship between HIF and branching morphogenesis has not been elucidated clearly. In this study, we examined whether HIF regulates kidney development. We harvested kidneys from day 13 rat embryos (E13Ks) and cultured the organs under normoxic (20% O2/5% CO2) or hypoxic (5% O2/5% CO2) conditions. We evaluated the kidneys based on morphology and gene expression. E13Ks cultured under hypoxic conditions had significantly more ureteric bud (UB) branching than the E13Ks cultured under normoxic conditions. In addition, the mRNA levels of GDNF and GDNF receptor (GFR-α1), increased under hypoxic conditions in E13Ks. When we cultured E13Ks with the HIF-1α inhibitor digoxin or with siRNA targeting HIF-1α under hypoxic conditions, we did not observe increased UB branching. In addition, the expression of GDNF and GFR-α1 was inhibited under hypoxic conditions when the kidneys were treated with siRNA targeting HIF-1α. We also elucidated that hypoxia inhibited UB cell apoptosis and promoted the expression of FGF7 mRNA levels in metanephric mesenchymal (MM) cells in vitro. These findings suggest that hypoxic condition has important roles in inducing branching morphogenesis during kidney development. Hypoxia might mediate branching morphogenesis via not only GDNF/Ret but also FGF signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Evolution of floral symmetry Peter K Endress, Current Opinion in ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Evolution of floral symmetry Peter K Endress, Current Opinion in Plant Biology 2001, 4:86–91. Polysymmetric (more than one plane of symmetry) to monosymmetric in angiosperm (flowering plants) evolution; the other way in Antirrhinaceae. Left and right handed helicity. Bees ...

  3. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  4. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias).

    Science.gov (United States)

    La Rosa, Raffica J; Conner, Jeffrey K

    2017-01-01

    Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition. © 2017 Botanical Society of America.

  5. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Jenny Y. Y. Lau

    2017-06-01

    Full Text Available Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here. Non-trapping species with anthesis of standard duration (c. 48 h cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems.

  6. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; Herrera, Carlos M; de Vega, Clara

    2012-06-01

    Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. The ERM protein Moesin is essential for neuronal morphogenesis and long-term memory in Drosophila.

    Science.gov (United States)

    Freymuth, Patrick S; Fitzsimons, Helen L

    2017-08-29

    Moesin is a cytoskeletal adaptor protein that plays an important role in modification of the actin cytoskeleton. Rearrangement of the actin cytoskeleton drives both neuronal morphogenesis and the structural changes in neurons that are required for long-term memory formation. Moesin has been identified as a candidate memory gene in Drosophila, however, whether it is required for memory formation has not been evaluated. Here, we investigate the role of Moesin in neuronal morphogenesis and in short- and long-term memory formation in the courtship suppression assay, a model of associative memory. We found that both knockdown and overexpression of Moesin led to defects in axon growth and guidance as well as dendritic arborization. Moreover, reduction of Moesin expression or expression of a constitutively active phosphomimetic in the adult Drosophila brain had no effect on short term memory, but prevented long-term memory formation, an effect that was independent of its role in development. These results indicate a critical role for Moesin in both neuronal morphogenesis and long-term memory formation.

  8. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.

    Science.gov (United States)

    Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou

    2011-09-01

    Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  9. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  10. FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans

    Directory of Open Access Journals (Sweden)

    Dentler William L

    2008-05-01

    Full Text Available Abstract Background In the C. elegans germ line, syncytial germ line nuclei are arranged at the cortex of the germ line as they exit mitosis and enter meiosis, forming a nucleus-free core of germ line cytoplasm called the rachis. Molecular mechanisms of rachis formation and germ line organization are not well understood. Results Mutations in the fli-1 gene disrupt rachis organization without affecting meiotic differentiation, a phenotype in C. elegans referred to here as the germ line morphogenesis (Glm phenotype. In fli-1 mutants, chains of meiotic germ nuclei spanned the rachis and were partially enveloped by invaginations of germ line plasma membrane, similar to nuclei at the cortex. Extensions of the somatic sheath cells that surround the germ line protruded deep inside the rachis and were associated with displaced nuclei in fli-1 mutants. fli-1 encodes a molecule with leucine-rich repeats and gelsolin repeats similar to Drosophila flightless 1 and human Fliih, which have been shown to act as cytoplasmic actin regulators as well as nuclear transcriptional regulators. Mutations in let-60 Ras, previously implicated in germ line development, were found to cause the Glm phenotype. Constitutively-active LET-60 partially rescued the fli-1 Glm phenotype, suggesting that LET-60 Ras and FLI-1 might act together to control germ line morphogenesis. Conclusion FLI-1 controls germ line morphogenesis and rachis organization, a process about which little is known at the molecular level. The LET-60 Ras GTPase might act with FLI-1 to control germ line morphogenesis.

  11. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice.

    Directory of Open Access Journals (Sweden)

    Takuya Suzaki

    2009-10-01

    Full Text Available CLAVATA signaling restricts stem cell identity in the shoot apical meristem (SAM in Arabidopsis thaliana. In rice (Oryza sativa, FLORAL ORGAN NUMBER2 (FON2, closely related to CLV3, is involved as a signaling molecule in a similar pathway to negatively regulate stem cell proliferation in the floral meristem (FM. Here we show that the FON2 SPARE1 (FOS1 gene encoding a CLE protein functions along with FON2 in maintenance of the FM. In addition, FOS1 appears to be involved in maintenance of the SAM in the vegetative phase, because constitutive expression of FOS1 caused termination of the vegetative SAM. Genetic analysis revealed that FOS1 does not need FON1, the putative receptor of FON2, for its action, suggesting that FOS1 and FON2 may function in meristem maintenance as signaling molecules in independent pathways. Initially, we identified FOS1 as a suppressor that originates from O. sativa indica and suppresses the fon2 mutation in O. sativa japonica. FOS1 function in japonica appears to be compromised by a functional nucleotide polymorphism (FNP at the putative processing site of the signal peptide. Sequence comparison of FOS1 in about 150 domesticated rice and wild rice species indicates that this FNP is present only in japonica, suggesting that redundant regulation by FOS1 and FON2 is commonplace in species in the Oryza genus. Distribution of the FNP also suggests that this mutation may have occurred during the divergence of japonica from its wild ancestor. Stem cell maintenance may be regulated by at least three negative pathways in rice, and each pathway may contribute differently to this regulation depending on the type of the meristem. This situation contrasts with that in Arabidopsis, where CLV signaling is the major single pathway in all meristems.

  12. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease.

    Science.gov (United States)

    Sisto, Margherita; Lorusso, Loredana; Ingravallo, Giuseppe; Lisi, Sabrina

    2017-12-01

    Amphiregulin (AREG) is a well-characterized member of the epidermal growth factor (EGF) family and is one of the ligands of the EGF receptor (EGFR). AREG plays a key role in mammalian development and in the control of branching morphogenesis in various organs. Furthermore, AREG participates in a wide range of physiological and pathological processes activating the major intracellular signalling cascades governing cell survival, proliferation and motility. In this article, we review current advances in exocrine glands morphogenesis, focusing on the salivary gland, and discuss the essential aspects of AREG structure, function and regulation, and its differential role within the EGFR family of ligands. Finally, we identify emerging aspects in AREG research applied to mammary gland development and the salivary gland autoimmune disease, Sjögren's syndrome.

  13. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre)

    OpenAIRE

    Grajales-Conesa,Julieta; Meléndez Ramírez,Virginia; Cruz-López,Leopoldo; Sánchez Guillén,Daniel

    2012-01-01

    Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre). Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange) flowers and their effects on the foraging behavi...

  14. What shapes amino acid and sugar composition in Mediterranean floral nectars?

    NARCIS (Netherlands)

    Petanidou, T.; Van Laere, A.; Ellis, W.; Smets, E.

    2006-01-01

    We studied the amino acid (AA) composition of the floral nectars of 73 plant species occurring in a phryganic (East Mediterranean garrigue) community and investigated whether AA and sugar composition is shaped by evolutionary (plant phylogeny), ecological (flowering time as a direct effect of summer

  15. Notochord morphogenesis in mice: Current understanding & open questions.

    Science.gov (United States)

    Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina

    2016-05-01

    The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Effects of range-wide variation in climate and isolation on floral traits and reproductive output of Clarkia pulchella.

    Science.gov (United States)

    Bontrager, Megan; Angert, Amy L

    2016-01-01

    Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.

  17. Natural selection on floral morphology can be influenced by climate.

    Science.gov (United States)

    Campbell, Diane R; Powers, John M

    2015-06-07

    Climate has the potential to influence evolution, but how it influences the strength or direction of natural selection is largely unknown. We quantified the strength of selection on four floral traits of the subalpine herb Ipomopsis sp. in 10 years that differed in precipitation, causing extreme temporal variation in the date of snowmelt in the Colorado Rocky Mountains. The chosen floral traits were under selection by hummingbird and hawkmoth pollinators, with hawkmoth abundance highly variable across years. Selection for flower length showed environmental sensitivity, with stronger selection in years with later snowmelt, as higher water resources can allow translation of pollination success into fitness based on seed production. Selection on corolla width also varied across years, favouring narrower corolla tubes in two unusual years with hawkmoths, and wider corollas in another late snowmelt year. Our results illustrate how changes in climate could alter natural selection even when the primary selective agent is not directly influenced. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    International Nuclear Information System (INIS)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija; Alaluusua, Satu; Pohjanvirta, Raimo; Tuomisto, Jouko; Lukinmaa, Pirjo-Liisa

    2006-01-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposure impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling

  19. Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia1

    Science.gov (United States)

    Lay, Fung T.; Brugliera, Filippa; Anderson, Marilyn A.

    2003-01-01

    The flowers of the solanaceous plants ornamental tobacco (Nicotiana alata) and petunia (Petunia hybrida) produce high levels of defensins during the early stages of development. In contrast to the well-described seed defensins, these floral defensins are produced as precursors with C-terminal prodomains of 27 to 33 amino acids in addition to a typical secretion signal peptide and central defensin domain of 47 or 49 amino acids. Defensins isolated from N. alata and petunia flowers lack the C-terminal domain, suggesting that it is removed during or after transit through the secretory pathway. Immunogold electron microscopy has been used to demonstrate that the N. alata defensin is deposited in the vacuole. In addition to the eight canonical cysteine residues that define the plant defensin family, the two petunia defensins have an extra pair of cysteines that form a fifth disulfide bond and hence define a new subclass of this family of proteins. Expression of the N. alata defensin NaD1 is predominantly flower specific and is most active during the early stages of flower development. NaD1 transcripts accumulate in the outermost cell layers of petals, sepals, anthers, and styles, consistent with a role in protection of the reproductive organs against potential pathogens. The floral defensins inhibit the growth of Botrytis cinerea and Fusarium oxysporum in vitro, providing further support for a role in protection of floral tissues against pathogen invasion. PMID:12644678

  20. Attraction of Plecia nearctica (dipter:bibionidae) to floral lures containing phenylacetaldehyde

    Science.gov (United States)

    We observed that the floral odorant, phenylacetaldehyde (PAA), was attractive to both sexes of adult lovebugs (Plecia nearctica, Diptera: Bibionidae) in central and southern Florida. The addition of ß-myrcene and methyl salicylate to PAA did not improve the numbers of P. nearctica caught in delta tr...

  1. Transgenic Expression of Constitutively Active RAC1 Disrupts Mouse Rod Morphogenesis

    Science.gov (United States)

    Song, Hongman; Bush, Ronald A.; Vijayasarathy, Camasamudram; Fariss, Robert N.; Kjellstrom, Sten; Sieving, Paul A.

    2014-01-01

    Purpose. Dominant-active RAC1 rescues photoreceptor structure in Drosophila rhodopsin-null mutants, indicating an important role in morphogenesis. This report assesses the morphogenetic effect of activated RAC1 during mammalian rod photoreceptor development using transgenic mice that express constitutively active (CA) RAC1. Methods. Transgenic mice were generated by expressing CA RAC1 under control of the Rhodopsin promoter, and morphological features of the photoreceptors were evaluated by histology, immunohistochemistry, and transmission electron microscopy. Function was evaluated by electroretinography. Potential protein partners of CA RAC1 were identified by co-immunoprecipitation of retinal extracts. Results. Constitutively active RAC1 expression in differentiating rods disrupted outer retinal lamination as early as postnatal day (P)6, and many photoreceptor cell nuclei were displaced apically into the presumptive subretinal space. These photoreceptors did not develop normal inner and outer segments and had abnormal placement of synaptic elements. Some photoreceptor nuclei were also mislocalized into the inner nuclear layer. Extensive photoreceptor degeneration was subsequently observed in the adult animal. Constitutively active RAC1 formed a complex with the polarity protein PAR6 and with microtubule motor dynein in mouse retina. The normal localization of the PAR6 complex was disrupted in CA RAC1-expressing rod photoreceptors. Conclusions. Constitutively active RAC1 had a profound negative effect on mouse rod cell viability and development. Rod photoreceptors in the CA RAC1 retina exhibited a defect in polarity and migration. Constitutively active RAC1 disrupted rod morphogenesis and gave a phenotype resembling that found in the Crumbs mutant. PAR6 and dynein are two potential downstream effectors that may be involved in CA RAC1-mediated defective mouse photoreceptor morphogenesis. PMID:24651551

  2. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  3. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  4. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo.

    Science.gov (United States)

    Hoe, Y C; Gibernau, M; Maia, A C D; Wong, S Y

    2016-07-01

    In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co

  5. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands.

    Science.gov (United States)

    Mittelbach, Moritz; Yurkov, Andrey M; Nocentini, Daniele; Nepi, Massimo; Weigend, Maximilian; Begerow, Dominik

    2015-02-01

    Studies on the diversity of yeasts in floral nectar were first carried out in the late 19th century. A narrow group of fermenting, osmophilous ascomycetes were regarded as exclusive specialists able to populate this unique and species poor environment. More recently, it became apparent that microorganisms might play an important role in the process of plant pollination. Despite the importance of these nectar dwelling yeasts, knowledge of the factors that drive their diversity and species composition is scarce. In this study, we linked the frequencies of yeast species in floral nectars from various host plants on the Canary Islands to nectar traits and flower visitors. We estimated the structuring impact of pollination syndromes (nectar volume, sugar concentration and sugar composition) on yeast diversity.The observed total yeast diversity was consistent with former studies, however, the present survey yielded additional basidiomycetous yeasts in unexpectedly high numbers. Our results show these basidiomycetes are significantly associated with ornithophilous flowers. Specialized ascomycetes inhabit sucrose-dominant nectars, but are surprisingly rare in nectar dominated by monosaccharides. There are two conclusions from this study: (i) a shift of floral visitors towards ornithophily alters the likelihood of yeast inoculation in flowers, and (ii) low concentrated hexose-dominant nectar promotes colonization of flowers by basidiomycetes. In the studied floral system, basidiomycete yeasts are acknowledged as regular members of nectar. This challenges the current understanding that nectar is an ecological niche solely occupied by ascomycetous yeasts.

  6. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei.

    Science.gov (United States)

    Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2016-01-01

    Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.

  7. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis.

    Science.gov (United States)

    Domínguez-Cuevas, Patricia; Porcelli, Ida; Daniel, Richard A; Errington, Jeff

    2013-09-01

    Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility

    NARCIS (Netherlands)

    van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D.

    2009-01-01

    We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of

  9. Assessing risks and benefits of floral supplements in conservation biological control

    NARCIS (Netherlands)

    Winkler, K.; Wackers, F.L.; Termorshuizen, A.J.; Lenteren, van J.C.

    2010-01-01

    The use of flowering field margins is often proposed as a method to support biological control in agro-ecosystems. In addition to beneficial insects, many herbivores depend on floral food as well. The indiscriminate use of flowering species in field margins can therefore lead to higher pest numbers.

  10. Study of the chemical composition of essential oils and floral waters ...

    African Journals Online (AJOL)

    This work aimed to study the chemical composition of essential oils and floral waters of Cymbopogon citratus (DC.) Stapf (Poaceae) from Senegal. The plants were collected in two different localities, Dakar and. Kaolack. The extracts were obtained by steam distillation from both fresh and dried plants and analyses carried.

  11. Preferência Floral de Vespas (Hymenoptera, Vespidae no Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre Somavilla

    2012-03-01

    Abstract Wasps integrate the floral visitors’ community and they can constitute a representative portion of the pollinators. For this reason, it was aimed to know and to analyze the floral preference of the Vespidae species and to investigate the use of floral resources for these wasps. The collects were performed between 2001 and 2008 in different localities of Rio Grande do Sul state (Estrela Velha, Santa Cruz do Sul, São Francisco de Paula e Sinimbu between 08:00 at 17:00 hours, utilizing entomological nets to catch the flower-visiting wasps. The collected specimens were deposited at the Coleção Entomológica de Santa Cruz do Sul (CESC. 1.483 specimens were captured belonging to 73 wasp species, whose 78.9% were Polistinae (30 species and 21.1% Eumeninae (43 species, visiting the flowers of 33 plant species classified in 16 botanical families; the families with the larger number of plant species were Asteraceae (12, Fabaceae (4 and Apiaceae (3. The plant species with the largest number of wasps collected was Schinus terebinthifolius Raddi (616, followed by Eryngium pandanifolium L. (137 and Eryngium horridum Spreng (122. The analysis of the trophic niche overlap of 26 species with four or more visited plant species, showed an overlap equal or higher than 50% in six cases.

  12. The interpolation method of stochastic functions and the stochastic variational principle

    International Nuclear Information System (INIS)

    Liu Xianbin; Chen Qiu

    1993-01-01

    Uncertainties have been attaching more importance to increasingly in modern engineering structural design. Viewed on an appropriate scale, the inherent physical attributes (material properties) of many structural systems always exhibit some patterns of random variation in space and time, generally the random variation shows a small parameter fluctuation. For a linear mechanical system, the random variation is modeled as a random one of a linear partial differential operator and, in stochastic finite element method, a random variation of a stiffness matrix. Besides the stochasticity of the structural physical properties, the influences of random loads which always represent themselves as the random boundary conditions bring about much more complexities in structural analysis. Now the stochastic finite element method or the probabilistic finite element method is used to study the structural systems with random physical parameters, whether or not the loads are random. Differing from the general finite element theory, the main difficulty which the stochastic finite element method faces is the inverse operation of stochastic operators and stochastic matrices, since the inverse operators and the inverse matrices are statistically correlated to the random parameters and random loads. So far, many efforts have been made to obtain the reasonably approximate expressions of the inverse operators and inverse matrices, such as Perturbation Method, Neumann Expansion Method, Galerkin Method (in appropriate Hilbert Spaces defined for random functions), Orthogonal Expansion Method. Among these methods, Perturbation Method appear to be the most available. The advantage of these methods is that the fairly accurate response statistics can be obtained under the condition of the finite information of the input. However, the second-order statistics obtained by use of Perturbation Method and Neumann Expansion Method are not always the appropriate ones, because the relevant second

  13. Enhancing resource availability in agro-ecosystems for beneficial arthropods through floral provisioning

    Science.gov (United States)

    There has been a decline in beneficial arthropods (insects and spiders) including pollinators because of habitat destruction and intense management practices. Enhancing landscapes with additional floral and other non-crop habitats has the potential to attract pollinators, and predatory arthropods wh...

  14. Spermine modulates fungal morphogenesis and activates plasma membrane H+-ATPase during yeast to hyphae transition

    Directory of Open Access Journals (Sweden)

    Antônio Jesus Dorighetto Cogo

    2018-02-01

    Full Text Available Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants.

  15. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    Science.gov (United States)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  16. Geometric morphometrics of functionally distinct floral organs in Iris pumila: Analyzing patterns of symmetric and asymmetric shape variations

    Directory of Open Access Journals (Sweden)

    Radović Sanja

    2017-01-01

    Full Text Available The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards, one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects’ landing platforms and for the shape of standards (long-distance reward signals were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173007

  17. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  18. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  19. Mapping floral resources for honey bees in New Zealand at the catchment scale.

    Science.gov (United States)

    Ausseil, Anne-Gaelle E; Dymond, John R; Newstrom, Linda

    2018-03-12

    Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilizing estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection, and honey production. We demonstrate the methods in a

  20. Development of TGMS lines with improved floral traits through mutation breeding in rice

    International Nuclear Information System (INIS)

    Thiyagarajan, K.; Abirami, S.; Robin, S.; Manonmani, S.; Jambhulkar, S.J.

    2006-01-01

    Mutation breeding is now accepted as an useful means of adding valuable attributes to a variety. Plant breeders have used this tool for the improvement of some cultivated crop varieties. The current investigation is aimed to develop mutants with respect to temperature sensitivity and good floral traits for use in two line breeding. The putative Thermosensitive Genic Male Sterile lines viz,, TS 6 and CBTS 0282 were subjected to induce mutagenesis with gamma rays (300 and 350 Gy) and EMS (0.5 and 0.6%) for developing new TGMS lines with desirable floral traits. The seeds treated with gamma ray and EMS were raised in M1 generation and seeds collected from this population were raised in M2 generation as plant to progeny rows for screening the best TGMS lines with desirable floral traits. In the M2 generation a total of 469 progeny rows of CBTS 0282 and 854 progeny rows of TS 6 were raised. A population of 128, 975 plants in CBTS 0282 and 1,28,100 plants in TS 6 were raised. In M2 generation 361 sterile, uniform stable individual plants with good stigma exertion percentage and wide angle of glume opening were selected and stubble planted at HREC, Gudalur, a low temperature region. At HREC, again the same screening process was carried out and 13 stubbles with excellent stigma exertion percentage were selected and their progenies were raised in M3 generation along with control and check IR 58025 A. A total of 63 sterile and stable M3 plants with good stigma exertion percentage wider angle of glume opening excelling over the check and control were identified and raised in M4 generation along with control and check IR 58025 A. In the M4 generation a total of 16 progeny rows were found to be uniform and homozygous with good floral traits. These lines can be utilized for developing new two line hybrids

  1. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  2. Study of the chemical composition of essential oils and floral waters ...

    African Journals Online (AJOL)

    This work aimed to study the chemical composition of essential oils and floral waters of Cymbopogon citratus (DC.) Stapf (Poaceae) from Senegal. The plants were collected in two different localities, Dakar and Kaolack. The extracts were obtained by steam distillation from both fresh and dried plants and analyses carried ...

  3. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  4. Tissue Motion and Assembly During Early Cardiovascular Morphogenesis

    Science.gov (United States)

    Rongish, Brenda

    2010-03-01

    Conventional dogma in the field of cardiovascular developmental biology suggests that cardiac precursor cells migrate to the embryonic midline to form a tubular heart. These progenitors are believed to move relative to their extracellular matrix (ECM); responding to stimulatory and inhibitory cues in their environment. The tubular heart that is formed by 30 hours post fertilization is comprised of two concentric layers: the muscular myocardium and the endothelial-like endocardium, which are separated by a thick layer of ECM believed to be secreted predominantly by the myocardial cells. Here we describe the origin and motility of fluorescently tagged endocardial precursors in transgenic (Tie1-YFP) quail embryos (R. Lansford, Caltech) using epifluorescence time-lapse imaging. To visualize the environment of migrating endocardial progenitors, we labeled two ECM components, fibronectin and fibrillin-2, via in vivo microinjection of fluorochrome-conjugated monoclonal antibodies. Dynamic imaging was performed at stages encompassing tubular heart assembly and early looping. We established the motion of endocardial precursor cells and presumptive cardiac ECM fibrils using both object tracking and particle image velocimetry (image cross correlation). We determined the relative importance of directed cell autonomous motility versus passive tissue movements in endocardial morphogenesis. The data show presumptive endocardial cells and cardiac ECM fibrils are swept passively into the anterior and posterior poles of the elongating tubular heart. These quantitative data indicate the contribution of cell autonomous motility displayed by endocardial precursors is limited. Thus, tissue motion drives most of the cell displacements during endocardial morphogenesis.

  5. CRIM1 Complexes with ß-catenin and Cadherins, Stabilizes Cell-Cell Junctions and Is Critical for Neural Morphogenesis

    OpenAIRE

    Ponferrada, Virgilio G.; Fan, Jieqing; Vallance, Jefferson E.; Hu, Shengyong; Mamedova, Aygun; Rankin, Scott A.; Kofron, Matthew; Zorn, Aaron M.; Hegde, Rashmi S.; Lang, Richard A.

    2012-01-01

    In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using C...

  6. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    Science.gov (United States)

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  7. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  8. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  9. Floral Sources for Stingless Bees (Tetragonula iridipennis in Nellithurai Village, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Vijayakumar

    2016-10-01

    Full Text Available We documented 45 plant taxa belonging to 29 families and non-floral sources utilized by Tetragonula iridipennis for pollen, nectar and resin. The foragers of T. iridipennis were also found to collect non-floral resources like fruit juice, fruits kept in the market for sales and from falling and damaged mango and jasmine fruits. The mutualistic association between T. iridipennis colonies and Hemipterans was observed and documented. According to pollen analysis, all are appeared to be multifloral honeys. The families Arecaceae and Fabaceae had a significant importance amongst the samples represented by four pollen types. Coconut, Sunflower and Banana pollen types occurred most constantly among the samples. The present palynological analysis of honey samples can provide the accurate depiction of the bee flora in Nellithurai village. The present study to help the beekeepers to know the stingless bee flora and to identify the botanical origins of honey.

  10. Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications

    Science.gov (United States)

    Tóth, Peter; Undas, Anna K.; Verstappen, Francel; Bouwmeester, Harro

    2016-01-01

    The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae. PMID:27014329

  11. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  12. Giga-voxel computational morphogenesis for structural design

    Science.gov (United States)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  13. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2009-12-01

    Full Text Available Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  14. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    Science.gov (United States)

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  15. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.

    Science.gov (United States)

    Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato

    2015-08-04

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.

  16. The potential role of B-function gene involved in floral development ...

    African Journals Online (AJOL)

    Camellia changii Ye, a rare and endangered species, has a phenotype that sepals frequently transform into petals. We assumed that this change would cause single C. changii Ye turned double flowers and this was confirmed by the double flowers we found in grafted C. changii Ye. The microstructure of floral organs ...

  17. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  18. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    Science.gov (United States)

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  19. Estrogenic effect of soy isoflavones on mammary gland morphogenesis and gene expression profile

    DEFF Research Database (Denmark)

    Thomsen, Anni R.; Almstrup, Kristian; Nielsen, John E.

    2006-01-01

    We examined the effect of 17 beta-estradiol (E2) and soy isoflavones' exposure on morphogenesis and global gene expression in the murine mammary gland. Three exposure regimens were applied: isoflavones added to the diet throughout either the lactational period (via the dams) or the postweaning...... period and E2 administered orally during the lactational period. Whole mounts of mammary glands were evaluated both in juvenile and adult animals with respect to branching morphogenesis and terminal end bud (TEB) formation. At postnatal day (PND) 28, we observed a significant increase in branching...... isoflavone and E2 exposure was further substantiated by changes in gene expression, since the same groups of genes were up- and downregulated, particularly in the E2 and postweaning isoflavone regimen. All changes in gene expression correlated with changes in the cellular composition of the gland, i.e., more...

  20. Floral to green: mating switches moth olfactory coding and preference.

    Science.gov (United States)

    Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard

    2012-06-22

    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.

  1. Identification and cloning of class II and III chitinases from alkaline floral nectar of Rhododendron irroratum, Ericaceae.

    Science.gov (United States)

    Zha, Hong-Guang; Milne, Richard I; Zhou, Hong-Xia; Chen, Xiang-Yang; Sun, Hang

    2016-10-01

    Class II and III chitinases belonging to different glycoside hydrolase families were major nectarins in Rhododendron irroratum floral nectar which showed significant chitinolytic activity. Previous studies have demonstrated antimicrobial activity in plant floral nectar, but the molecular basis for the mechanism is still poorly understood. Two chitinases, class II (Rhchi2) and III (Rhchi3), were characterized from alkaline Rhododendron irroratum nectar by both SDS-PAGE and mass spectrometry. Rhchi2 (27 kDa) and Rhchi3 (29 kDa) are glycoside hydrolases (family 19 and 18) with theoretical pI of 8.19 and 7.04. The expression patterns of Rhchi2 and Rhchi3 were analyzed by semi-quantitative RT-PCR. Rhchi2 is expressed in flowers (corolla nectar pouches) and leaves while Rhchi3 is expressed in flowers. Chitinase in concentrated protein and fresh nectar samples was visualised by SDS-PAGE and chitinolytic activity in fresh nectar was determined spectrophotometrically via chitin-azure. Full length gene sequences were cloned with Tail-PCR and RACE. The amino acid sequence deduced from the coding region for these proteins showed high identity with known chitinases and predicted to be located in extracellular space. Fresh R. irroratum floral nectar showed significant chitinolytic activity. Our results demonstrate that class III chitinase (GH 18 family) also exists in floral nectar. The functional relationship between class II and III chitinases and the role of these pathogenesis-related proteins in antimicrobial activity in nectar is suggested.

  2. Evaluación de preservantes florales en la poscosecha de tres variedades de clavel estándar

    Directory of Open Access Journals (Sweden)

    López Paola

    2008-04-01

    Full Text Available

    En clavel es imprescindible el tratamiento poscosecha a base de tiosulfato de plata (STS, para garantizar una mayor longevidad floral; sin embargo, los tratamientos antietilénicos a base del ión plata implican contaminación ambiental. El objetivo de este estudio fue realizar la evaluación de diferentes compuestos en la poscosecha de clavel estándar variedades Nelson, Dream y Delphi, como posibles sustitutos del STS. Para este fin, se utilizaron tratamientos a base de STS, SR-AOA (ácido aminooxacético de liberación lenta y quitosan. En seguida a la cosecha de los tallos florales se realizó una simulación de viaje con una duración aproximada de 21 días; posteriormente, las flores fueron sometidas a evaluaciones de longevidad, velocidad de apertura, color y consumo de agua. En la evolución de la vida en florero, se observó la misma tendencia para las tres variedades: un primer grupo de mayor longevidad floral, conformado por los tratamientos a base de SR-AOA y STS, con un promedio de durabilidad de 14 a 20 días; y el segundo grupo, de menor longevidad floral, conformado por los tratamientos a base de quitosan, quitosan más ácido cítrico, quitosan más AOA y testigo absoluto, con una duración promedio de 6 a 8 días.

  3. SACE_0012, a TetR-family transcriptional regulator, affects the morphogenesis of Saccharopolyspora erythraea.

    Science.gov (United States)

    Yin, Xiaojuan; Xu, Xinqiang; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhang, Buchang

    2013-12-01

    Saccharopolyspora erythraea, a mycelium-forming actinomycete, produces a clinically important antibiotic erythromycin. Extensive investigations have provided insights into erythromycin biosynthesis in S. erythraea, but knowledge of its morphogenesis remains limited. By gene inactivation and complementation strategies, the TetR-family transcriptional regulator SACE_0012 was identified to be a negative regulator of mycelium formation of S. erythraea A226. Detected by quantitative real-time PCR, the relative transcription of SACE_7115, the amfC homolog for an aerial mycelium formation protein, was dramatically increased in SACE_0012 mutant, whereas erythromycin biosynthetic gene eryA, a pleiotropic regulatory gene bldD, and the genes SACE_2141, SACE_6464, SACE_6040, that are the homologs to the sporulation regulators WhiA, WhiB, WhiG, were not differentially expressed. SACE_0012 disruption could not restore its defect of aerial development in bldD mutant, and also did not further accelerate the mycelium formation in the mutant of SACE_7040 gene, that was previously identified to be a morphogenesis repressor. Furthermore, the transcriptional level of SACE_0012 had not markedly changed in bldD and SACE_7040 mutant over A226. Taken together, these results suggest that SACE_0012 is a negative regulator of S. erythraea morphogenesis by mainly increasing the transcription of amfC gene, independently of the BldD regulatory system.

  4. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  5. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  6. Effects of light quality on flowering and morphogenesis in Hyoscyamus niger L.

    NARCIS (Netherlands)

    Hattab, El A.H.

    1968-01-01

    The present paper is concerned with bolting and morphogenesis of Hyoscyamus niger L. as reactions upon radiation in the visible spectrum.

    Experiments are described in which Hyoscyamus plants were exposed to light of various well defined spectral regions. The light of these

  7. Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, Nikolai [Los Alamos National Laboratory

    2008-01-01

    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).

  8. Conjoined twins: morphogenesis of the heart and a review.

    Science.gov (United States)

    Gilbert-Barness, Enid; Debich-Spicer, Diane; Opitz, John M

    2003-08-01

    Five cases of conjoined twins have been studied. These included three thoracopagus twins, one monocephalus diprosopus (prosop = face), and one dicephalus dipus dibrachus. The thoracopagus twins were conjoined only from the upper thorax to the umbilicus with a normal foregut. These three cases shared a single complex multiventricular heart, one with a four chambered heart with one atrium and one ventricle belonging to each twin with complex venous and arterial connection; two had a seven chambered heart with four atria and three ventricles. The mono-cephalus diprosopus twins had a single heart with tetralogy of Fallot. The dicephalus twins had two separate axial skeletons to the sacrum, two separate hearts were connected between the right atria with a shared inferior vena cava. Thoracopagus twinning is associated with complex cardiac malformations. The cardiac anlagen in cephalopagus or diprosopus are diverted and divided along with the entire rostral end of the embryonic disc and result in two relatively normal shared hearts. However, in thoracopagus twins the single heart is multiventricular and suggests very early union with fusion of the cardiac anlagen before significant differentiation. Cardiac morphogenesis in conjoined twins therefore appears to depend on the site of the conjoined fusion and the temporal and spatial influence that determines morphogenesis as well as abnormally oriented embryonic axes. Copyright 2003 Wiley-Liss, Inc.

  9. Effect of floral bud reduction on flower longevity in Asiatic hybrids lilies.

    NARCIS (Netherlands)

    Meulen-Muisers, van der J.J.M.; Oeveren, van J.C.; Sandbrink, J.M.; Tuyl, van J.M.

    1995-01-01

    Floral bud abortion was found to be an undesirable source of non-genetic variation in breeding trials directed on the improvement of individual flower longevity in Asiatic hybrid lilies. It increased the longevity of the remaining flowers of the inflorescence. A similar response was found after

  10. Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension.

    Science.gov (United States)

    Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian

    2017-12-14

    The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.

  11. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.

    Science.gov (United States)

    Yockteng, Roxana; Almeida, Ana M R; Morioka, Kelsie; Alvarez-Buylla, Elena R; Specht, Chelsea D

    2013-11-01

    The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.

  12. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    Science.gov (United States)

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa.

    Science.gov (United States)

    Seymour, Roger S; Maass, Erika; Bolin, Jay F

    2009-10-01

    Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments. Long-term respirometry (CO(2) production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence. For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8.3 nmol CO(2) g(-1) s(-1) in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27.5 nmol g(-1) s(-1) in the osmophores) and a slight elevation of osmophore temperature (maximum 2.8 degrees C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3.8 degrees C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4.8 nmol g(-1) s(-1) in H. africana and 10.3 nmol g(-1) s(-1) in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release. The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct

  14. Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications

    Directory of Open Access Journals (Sweden)

    Peter eTóth

    2016-03-01

    Full Text Available The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae, are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs, consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

  15. Study on the Development of Yunnan Floral E-commerce

    OpenAIRE

    Kuang, Yulan; Li, Qifang; Ning, Wangyun

    2013-01-01

    Cut flower production in Yunnan accounts for 80% nationwide. In order to expand the Yunnan Flower sales channels, the promotion of the development of e-commerce is necessary. In 2012 China's online shopping users reached 247 million people, but e-commerce of fresh flowers lagged behind due to the constraints of preservation facilities and logistics cost. The analysis of the factors restricting the development of floral e-commerce and the proposition of solutions to this problem can promote fa...

  16. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    Science.gov (United States)

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.

  17. Teaching Flower Structure & Floral Formulae--A Mix of the Real & Virtual Worlds

    Science.gov (United States)

    Burrows, Geoff

    2010-01-01

    The study of flower structure is essential in plant identification and in understanding sexual reproduction in plants, pollination syndromes, plant breeding, and fruit structure. Thus, study of flower structure and construction of floral formulae are standard parts of first-year university botany and biology courses. These activities involve…

  18. A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae.

    Directory of Open Access Journals (Sweden)

    Yang Niu

    Full Text Available The floral traits of bisexual flowers may evolve in response to selection on both male and female functions, but the relative importance of selection associated with each of these two aspects is poorly resolved. Sexually dimorphic traits in plants with unisexual flowers may reflect gender-specific selection, providing opportunities for gaining an increased understanding of the evolution of specific floral traits. We examined sexually dimorphic patterns of floral traits in perfect and female flowers of the gynodioecious species Cyananthus delavayi. A special corolla appendage, the throat hair, was investigated experimentally to examine its influences on male and female function. We found that perfect flowers have larger corollas and much longer throat hairs than female flowers, while female ones have much exerted stigmas. The presence of throat hairs prolonged the duration of pollen presentation by restricting the amount of pollen removed by pollen-collecting bees during each visit. Floral longevity was negatively related to the rate of pollen removal. When pollen removal rate was limited in perfect flowers, the duration of the female phases diminished with the increased male phase duration. There was a weak negative correlation between throat hair length and seed number per fruit in female flowers, but this correlation was not significant in perfect flowers. These results suggest that throat hairs may enhance male function in terms of prolonged pollen presentation. However, throat hairs have no obvious effect on female function in terms of seed number per fruit. The marked sexual dimorphism of this corolla appendage in C. delavayi is likely to have evolved and been maintained by gender-specific selection.

  19. Rac1 modulates mammalian lung branching morphogenesis in part through canonical Wnt signaling.

    Science.gov (United States)

    Danopoulos, Soula; Krainock, Michael; Toubat, Omar; Thornton, Matthew; Grubbs, Brendan; Al Alam, Denise

    2016-12-01

    Lung branching morphogenesis relies on a number of factors, including proper epithelial cell proliferation and differentiation, cell polarity, and migration. Rac1, a small Rho GTPase, orchestrates a number of these cellular processes, including cell proliferation and differentiation, cellular alignment, and polarization. Furthermore, Rac1 modulates both noncanonical and canonical Wnt signaling, important pathways in lung branching morphogenesis. Culture of embryonic mouse lung explants in the presence of the Rac1 inhibitor (NSC23766) resulted in a dose-dependent decrease in branching. Increased cell death and BrdU uptake were notably seen in the mesenchyme, while no direct effect on the epithelium was observed. Moreover, vasculogenesis was impaired following Rac1 inhibition as shown by decreased Vegfa expression and impaired LacZ staining in Flk1-Lacz reporter mice. Rac1 inhibition decreased Fgf10 expression in conjunction with many of its associated factors. Moreover, using the reporter lines TOPGAL and Axin2-LacZ, there was an evident decrease in canonical Wnt signaling in the explants treated with the Rac1 inhibitor. Activation of canonical Wnt pathway using WNT3a or WNT7b only partially rescued the branching inhibition. Moreover, these results were validated on human explants, where Rac1 inhibition resulted in impaired branching and decreased AXIN2 and FGFR2b expression. We therefore conclude that Rac1 regulates lung branching morphogenesis, in part through canonical Wnt signaling. However, the exact mechanisms by which Rac1 interacts with canonical Wnt in human and mouse lung requires further investigation. Copyright © 2016 the American Physiological Society.

  20. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  1. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis

    NARCIS (Netherlands)

    Lamers, Wouter H.; Moorman, Antoon F. M.

    2002-01-01

    Heart morphogenesis comprises 2 major consecutive steps, viz. chamber formation followed by septation. Septation is the remodeling of the heart from a single-channel peristaltic pump to a dual-channel, synchronously contracting device with 1-way valves. In the human heart, septation occurs between 4

  2. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  3. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  4. Componentes do rendimento de mamona segundo a ordem floral e época de semeadura no Rio Grande do Sul Castor yield components according to floral order and sowing season in the Rio Grande do Sul State

    Directory of Open Access Journals (Sweden)

    Jacson Zuchi

    2010-09-01

    Full Text Available Diversos fatores, como a época de semeadura, afetam a produtividade e a qualidade das sementes. O objetivo deste trabalho foi avaliar quatro componentes do rendimento de mamona em função da época de semeadura e da ordem floral na Embrapa Clima Temperado em Pelotas, Rio Grande do Sul em solo tipo Argissolo Amarelo na latitude de 31º40'53,6" S, longitude de 52º26'23,5" W e altitude de 67,10 metros. O número de cachos emitidos, produtividade de sementes, percentagem de casca e peso de mil sementes foram avaliados para as cultivares Al Guarany 2002, IAC 80, IAC 226 e BRS 188 Paraguaçu. A maior emissão de cachos de mamona não implica, necessariamente, em maior produtividade de sementes, a qual variou entre época de semeadura e ordem floral.Several factors, including sowing time, can affect the productivity and the quality of seeds. The objective of this work was to evaluate four components of the castor oil plant production as function of the sowing time and of the floral order in the "Embrapa Clima Temperado" in Pelotas, Rio Grande do Sul, Brazil in yellow clay soil type at the latitude of 31º40'53.6" S, longitude of 52º26'23.5" W and altitude of 67.10 meters. The number of bunches emitted, productivity of seeds, peel percentage and weight of a thousand seeds were evaluated for the cultivars Al Guarany 2002, IAC 80, IAC 226 and BRS 188 Paraguaçu. The largest emission of bunches on castor oil plant does not lead, necessarily, to higher productivity of seeds, which varied between sowing time and floral order.

  5. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    Science.gov (United States)

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  6. Pollination ecology and floral function of Brown’s peony (Paeonia brownii in the Blue Mountains of northeastern Oregon

    Directory of Open Access Journals (Sweden)

    Nan Vance

    2013-03-01

    Full Text Available Brown’s peony, Paeonia brownii (Paeoniaceae, is one of only two peony species native to the Western Hemisphere, yet its pollination ecology and breeding system have never been documented. Using flowering individuals of an endemic colony in the Blue Mountains of Oregon, U.S., we investigated the peony’s pollination system and floral function. We also examined pollen/carpel interactions through experimental pollinations aided by fluorescence microscopy. Paeonia brownii appears to be self compatible and mostly protogynous with floral traits of a generalist pollination system. The flowers appear to attract insects by producing abundant floral nectar secreted from lobes of a perigynous disc throughout their 9-15-days of anthesis. The most common pollen vectors were wasp queens (Vespidae, the large flower fly Criorhina caudata (Syrphidae, and females of Lasioglossum spp. (Halictidae, all of which foraged exclusively for nectar. Whether collected from foraging wasps and flies, anthers, or stigmas, about half the pollen grains appeared fertile. The number of ovules per carpel was about 19. Seed set (seeds/ovule of naturally pollinated flowers was about 20% with about 4 viable seeds per follicle. The number of fertile pollen grains transferred to the stigma under natural conditions was highly variable but generally low, which may have contributed in part to the low rate of seed set. This study raises further questions about the role of pollen sterility, floral nectar and vespid wasps in shaping a pollinator system that is unusual in Paeonia.

  7. Quantification of local matrix deformations and mechanical properties during capillary morphogenesis in 3D.

    Science.gov (United States)

    Kniazeva, Ekaterina; Weidling, John W; Singh, Rahul; Botvinick, Elliot L; Digman, Michelle A; Gratton, Enrico; Putnam, Andrew J

    2012-04-01

    Reciprocal mechanical interactions between cells and the extracellular matrix (ECM) are thought to play important instructive roles in branching morphogenesis. However, most studies to date have failed to characterize these interactions on a length scale relevant to cells, especially in three-dimensional (3D) matrices. Here we utilized two complementary methods, spatio-temporal image correlation spectroscopy (STICS) and laser optical tweezers-based active microrheology (AMR), to quantify endothelial cell (EC)-mediated deformations of individual ECM elements and the local ECM mechanical properties, respectively, during the process of capillary morphogenesis in a 3D cell culture model. In experiments in which the ECM density was systematically varied, STICS revealed that the rate at which ECs deformed individual ECM fibers on the microscale positively correlated with capillary sprouting on the macroscale. ECs expressing constitutively active V14-RhoA displaced individual matrix fibers at significantly faster rates and displayed enhanced capillary sprouting relative to wild-type cells, while those expressing dominant-negative N19-RhoA behaved in an opposite fashion. In parallel, AMR revealed a local stiffening of the ECM proximal to the tips of sprouting ECs. By quantifying the dynamic physical properties of the cell-ECM interface in both space and time, we identified a correlation linking ECM deformation rates and local ECM stiffening at the microscale with capillary morphogenesis at the macroscale. This journal is © The Royal Society of Chemistry 2012

  8. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence.

    Directory of Open Access Journals (Sweden)

    Isabel Alvarez-Tabarés

    Full Text Available BACKGROUND: Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world. METHODOLOGY/PRINCIPAL FINDINGS: Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants. CONCLUSIONS/SIGNIFICANCE: Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.

  9. Floral evolution of Philodendron subgenus Meconostigma (Araceae.

    Directory of Open Access Journals (Sweden)

    Letícia Loss de Oliveira

    Full Text Available Elucidating the evolutionary patterns of flower and inflorescence structure is pivotal to understanding the phylogenetic relationships of Angiosperms as a whole. The inflorescence morphology and anatomy of Philodendron subgenus Meconostigma, belonging to the monocot family Araceae, has been widely studied but the evolutionary relationships of subgenus Meconostigma and the evolution of its flower characters have hitherto remained unclear. This study examines gynoecium evolution in subgenus Meconostigma in the context of an estimated molecular phylogeny for all extant species of subgenus Meconostigma and analysis of ancestral character reconstructions of some gynoecial structures. The phylogenetic reconstructions of all extant Meconostigma species were conducted under a maximum likelihood approach based on the sequences of two chloroplast (trnk and matK and two nuclear (ETS and 18S markers. This topology was used to reconstruct the ancestral states of seven floral characters and to elucidate their evolutionary pattern in the Meconostigma lineage. Our phylogeny shows that Meconostigma is composed of two major clades, one comprising two Amazonian species and the other all the species from the Atlantic Forest and Cerrado biomes with one Amazonian species. The common ancestor of the species of subgenus Meconostigma probably possessed short stylar lobes, long stylar canals, a stylar body, a vascular plexus in the gynoecium and druses in the stylar parenchyma but it is uncertain whether raphide inclusions were present in the parenchyma. The ancestral lineage also probably possessed up to 10 ovary locules. The evolution of these characters seems to have occurred independently in some lineages. We propose that the morphological and anatomical diversity observed in the gynoecial structures of subgenus Meconostigma is the result of an ongoing process of fusion of floral structures leading to a reduction of energy wastage and increase in stigmatic surface.

  10. Floral evolution of Philodendron subgenus Meconostigma (Araceae).

    Science.gov (United States)

    de Oliveira, Letícia Loss; Calazans, Luana Silva Braucks; de Morais, Érica Barroso; Mayo, Simon Joseph; Schrago, Carlos Guerra; Sakuragui, Cassia Mônica

    2014-01-01

    Elucidating the evolutionary patterns of flower and inflorescence structure is pivotal to understanding the phylogenetic relationships of Angiosperms as a whole. The inflorescence morphology and anatomy of Philodendron subgenus Meconostigma, belonging to the monocot family Araceae, has been widely studied but the evolutionary relationships of subgenus Meconostigma and the evolution of its flower characters have hitherto remained unclear. This study examines gynoecium evolution in subgenus Meconostigma in the context of an estimated molecular phylogeny for all extant species of subgenus Meconostigma and analysis of ancestral character reconstructions of some gynoecial structures. The phylogenetic reconstructions of all extant Meconostigma species were conducted under a maximum likelihood approach based on the sequences of two chloroplast (trnk and matK) and two nuclear (ETS and 18S) markers. This topology was used to reconstruct the ancestral states of seven floral characters and to elucidate their evolutionary pattern in the Meconostigma lineage. Our phylogeny shows that Meconostigma is composed of two major clades, one comprising two Amazonian species and the other all the species from the Atlantic Forest and Cerrado biomes with one Amazonian species. The common ancestor of the species of subgenus Meconostigma probably possessed short stylar lobes, long stylar canals, a stylar body, a vascular plexus in the gynoecium and druses in the stylar parenchyma but it is uncertain whether raphide inclusions were present in the parenchyma. The ancestral lineage also probably possessed up to 10 ovary locules. The evolution of these characters seems to have occurred independently in some lineages. We propose that the morphological and anatomical diversity observed in the gynoecial structures of subgenus Meconostigma is the result of an ongoing process of fusion of floral structures leading to a reduction of energy wastage and increase in stigmatic surface.

  11. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis.

    Directory of Open Access Journals (Sweden)

    Chelsi J Snow

    2008-10-01

    Full Text Available Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ. In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininbeta1 or laminingamma1 contrast with later dystrophic phenotypes in lamininalpha2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.

  12. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  13. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    Science.gov (United States)

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  14. Quantification of local matrix deformations and mechanical properties during capillary morphogenesis in 3D†‡

    Science.gov (United States)

    Kniazeva, Ekaterina; Weidling, John W.; Singh, Rahul; Botvinick, Elliot L.; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Reciprocal mechanical interactions between cells and the extracellular matrix (ECM) are thought to play important instructive roles in branching morphogenesis. However, most studies to date have failed to characterize these interactions on a length scale relevant to cells, especially in three-dimensional (3D) matrices. Here we utilized two complementary methods, spatio-temporal image correlation spectroscopy (STICS) and laser optical tweezers-based active microrheology (AMR), to quantify endothelial cell (EC)-mediated deformations of individual ECM elements and the local ECM mechanical properties, respectively, during the process of capillary morphogenesis in a 3D cell culture model. In experiments in which the ECM density was systematically varied, STICS revealed that the rate at which ECs deformed individual ECM fibers on the microscale positively correlated with capillary sprouting on the macroscale. ECs expressing constitutively active V14-RhoA displaced individual matrix fibers at significantly faster rates and displayed enhanced capillary sprouting relative to wild-type cells, while those expressing dominant-negative N19-RhoA behaved in an opposite fashion. In parallel, AMR revealed a local stiffening of the ECM proximal to the tips of sprouting ECs. By quantifying the dynamic physical properties of the cell-ECM interface in both space and time, we identified a correlation linking ECM deformation rates and local ECM stiffening at the microscale with capillary morphogenesis at the macroscale. PMID:22281872

  15. VALIDACIÓN DE MODELOS DE PREDICCIÓN DEL DESARROLLO FLORAL DEL AGUACATE 'HASS' DESARROLLADOS PARA NAYARIT, EN VARIOS CLIMAS DE MICHOACÁN

    Directory of Open Access Journals (Sweden)

    S. Salazar-García

    2009-01-01

    Full Text Available Utilizando registros de temperatura ambiental y desarrollo floral obtenidos de 1998 al 2006 de una zona con clima semicálido subhúmedo del estado de Nayarit, se desarrollaron cinco modelos de predicción del desarrollo floral para brotes de los flujos vegetativos de invierno y verano de aguacate "Hass". El objetivo de esta investigación fue evaluar los modelos de predicción generados en Nayarit, para estimar capacidad para predecir el desarrollo floral de brotes de los flujos vegetativos de invierno, primavera y verano de "Hass" en los principales climas de la región aguacatera del estado de Michoacán. El modelo de predicción veranoDFA¿19 desarrollado en Nayarit, mostró una elevada capacidad de predicción del desarrollo floral en brotes del flujo de verano (R2 = 0.94, para un conjunto de datos de los cuatro climas del estado de Michoacán en donde se concentra el 85 % de la superficie aguacatera: cálido subhúmedo Aw1(w, semicálido subhúmedo (AC(w0(w, semicálido subhúmedo (AC(w1(w + (AC(w2(w y templado subhúmedo C(w2(w. Los demás modelos de predicción probados en Michoacán no pronosticaron el desarrollo floral en brotes de los flujos vegetativos de invierno, primavera o verano en ninguno de los climas estudiados.

  16. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

    Science.gov (United States)

    Li, C; Lan, Y; Krumlauf, R; Jiang, R

    2017-10-01

    Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9 del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9 del/del ;Wise -/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored

  17. SEP-class genes in Prunus mume and their likely role in floral organ development.

    Science.gov (United States)

    Zhou, Yuzhen; Xu, Zongda; Yong, Xue; Ahmad, Sagheer; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2017-01-13

    Flower phylogenetics and genetically controlled development have been revolutionised during the last two decades. However, some of these evolutionary aspects are still debatable. MADS-box genes are known to play essential role in specifying the floral organogenesis and differentiation in numerous model plants like Petunia hybrida, Arabidopsis thaliana and Antirrhinum majus. SEPALLATA (SEP) genes, belonging to the MADS-box gene family, are members of the ABCDE and quartet models of floral organ development and play a vital role in flower development. However, few studies of the genes in Prunus mume have yet been conducted. In this study, we cloned four PmSEPs and investigated their phylogenetic relationship with other species. Expression pattern analyses and yeast two-hybrid assays of these four genes indicated their involvement in the floral organogenesis with PmSEP4 specifically related to specification of the prolificated flowers in P. mume. It was observed that the flower meristem was specified by PmSEP1 and PmSEP4, the sepal by PmSEP1 and PmSEP4, petals by PmSEP2 and PmSEP3, stamens by PmSEP2 and PmSEP3 and pistils by PmSEP2 and PmSEP3. With the above in mind, flower development in P. mume might be due to an expression of SEP genes. Our findings can provide a foundation for further investigations of the transcriptional factors governing flower development, their molecular mechanisms and genetic basis.

  18. Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Veraart, Almut

    Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on genera...

  19. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  20. Phenological cycle and floral development of Chloraea crispa (Orchidaceae)

    OpenAIRE

    Steinfort, Ursula; Cisternas, Mauricio A; García, Rolando; Vogel, Hermine; Verdugo, Gabriela

    2012-01-01

    Chloraea crispa Lindl. is a terrestrial orchid endemic to Chile that has potential to be a novel alternative for the cut flower industry. The objectives of this study were to describe the phenological cycle and floral bud development of C. crispa to determine the timing of initiation and differentiation of the spike. During the summer, plants are dormant. The renewal buds are located at the top of the rhizome, next to the buds from which the shoot of the previous season originated. From the e...

  1. Stochastic quantisation: theme and variation

    International Nuclear Information System (INIS)

    Klauder, J.R.; Kyoto Univ.

    1987-01-01

    The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)

  2. [Analysis of the components of floral scent in Glochidion puberum using gas chromatography-mass spectrometry with dynamic headspace adsorption].

    Science.gov (United States)

    Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen

    2015-03-01

    The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.

  3. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  4. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  5. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Thomas eWichard

    2015-03-01

    Full Text Available Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings.Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory.A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination and restores the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds is still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication.This review combines literature detailing evidence of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of

  6. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta)

    Science.gov (United States)

    Wichard, Thomas

    2015-01-01

    Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere

  7. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  8. Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips.

    Science.gov (United States)

    Jürgens, A; Webber, A C; Gottsberger, G

    2000-11-01

    Chemical analysis (GC-MS) yielded a total of 58 volatile compounds in the floral scents of six species of Annonaceae distributed in four genera (Xylopia, Anaxagorea, Duguetia, and Rollinia), Xylopia aromatica is pollinated principally by Thysanoptera and secondarily by small beetles (Nitidulidae and Staphylinidae), whereas the five other species were pollinated by Nitidulidae and Staphylinidae only. Although the six Annonaceae species attract a similar array of pollinator groups, the major constituents of their floral scents are of different biochemical origin. The fragrances of flowers of Anaxagorea brevipes and Anaxagorea dolichocarpa were dominated by esters of aliphatic acids (ethyl 2-methylbutanoate, ethyl 3-methylbutanoate), which were not detected in the other species. Monoterpenes (limonene, p-cymene, alpha-pinene) were the main scent compounds of Duguetia asterotricha, and naphthalene prevailed in the scent of Rollinia insignis flowers. The odors of X. aromatica and Xylopia benthamii flowers were dominated by high amounts of benzenoids (methylbenzoate, 2-phenylethyl alcohol).

  9. Stochastic flows, reaction-diffusion processes, and morphogenesis

    International Nuclear Information System (INIS)

    Kozak, J.J.; Hatlee, M.D.; Musho, M.K.; Politowicz, P.A.; Walsh, C.A.

    1983-01-01

    Recently, an exact procedure has been introduced [C. A. Walsh and J. J. Kozak, Phys. Rev. Lett.. 47: 1500 (1981)] for calculating the expected walk length for a walker undergoing random displacements on a finite or infinite (periodic) d-dimensional lattice with traps (reactive sites). The method (which is based on a classification of the symmetry of the sites surrounding the central deep trap and a coding of the fate of the random walker as it encounters a site of given symmetry) is applied here to several problems in lattice statistics for each of which exact results are presented. First, we assess the importance of lattice geometry in influencing the efficiency of reaction-diffusion processs in simple and multiple trap systems by reporting values of for square (cubic) versus hexagonal lattices in d = 2,3. We then show how the method may be applied to variable-step (distance-dependent) walks for a single walker on a given lattice and also demonstrate the calculation of the expected walk length for the case of multiple walkers. Finally, we make contact with recent discussions of ''mixing'' by showing that the degree of chaos associated with flows in certain lattice-systems can be calibrated by monitoring the lattice walks induced by the Poincare map of a certain parabolic function

  10. Floral and reproductive biology of Alcantarea nahoumii (Bromeliaceae, a vulnerable endemic species of the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Maria Josirene Souza Moreira Bastos

    Full Text Available ABSTRACT Alcantarea nahoumii occurs exclusively in the state of Bahia, Brazil, and is classified as vulnerable due to deforestation and frequent fires in the region. Knowledge of floral and reproductive biology is fundamental to understanding ecological interactions, as well as the reproductive success of plant species. The objective of this study was to evaluate the floral and reproductive biology of A. nahoumii in an Atlantic Forest fragment with regard to phenology, pollen viability, stigma receptivity, pollination ecology and reproductive systems, all of which are important parameters for of the development of conservation strategies for the species. Anthesis is diurnal and heterogeneous, starting at 6:30 a.m. and lasting until 8:00 a.m. Highest germination percentages and greatest pollen tube lengths were obtained in BK culture medium. Histochemical tests revealed high pollen viability (89.71 %. Stigma receptivity occurred during anthesis and lasted for up to 24 hours after floral opening. Alcantarea nahoumii exhibited preferential allogamy and self-compatibility, and required a pollinator to production of viable seeds. Sixteen species of pollinators were observed visiting A. nahoumii, among which were five hummingbird species. Even though its reproductive system is efficient, this bromeliad remains threatened mainly due to habitat fragmentation caused by deforestation, burning and predatory extractivism.

  11. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  12. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  13. RES: Regularized Stochastic BFGS Algorithm

    Science.gov (United States)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  14. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    Science.gov (United States)

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  15. Assessing pollinators’ use of floral resource subsidies in agri-environment schemes: An illustration using Phacelia tanacetifolia and honeybees

    Directory of Open Access Journals (Sweden)

    Rowan Sprague

    2016-11-01

    Full Text Available Background Honeybees (Apis mellifera L. are frequently used in agriculture for pollination services because of their abundance, generalist floral preferences, ease of management and hive transport. However, their populations are declining in many countries. Agri-Environment Schemes (AES are being implemented in agricultural systems to combat the decline in populations of pollinators and other insects. Despite AES being increasingly embedded in policy and budgets, scientific assessments of many of these schemes still are lacking, and only a few studies have examined the extent to which insect pollinators use the floral enhancements that are part of AES and on which floral components they feed (i.e., pollen and/or nectar. Methods In the present work, we used a combination of observations on honeybee foraging for nectar/pollen from the Californian annual plant Phacelia tanacetifolia in the field, collection of pollen pellets from hives, and pollen identification, to assess the value of adding phacelia to an agro-ecosystem to benefit honeybees. Results It was found that phacelia pollen was almost never taken by honeybees. The work here demonstrates that honeybees may not use the floral enhancements added to a landscape as expected and points to the need for more careful assessments of what resources are used by honeybees in AES and understanding the role, if any, which AES play in enhancing pollinator fitness. Discussion We recommend using the methodology in this paper to explore the efficacy of AES before particular flowering species are adopted more widely to give a more complete illustration of the actual efficacy of AES.

  16. Elitism and Stochastic Dominance

    OpenAIRE

    Bazen, Stephen; Moyes, Patrick

    2011-01-01

    Stochastic dominance has typically been used with a special emphasis on risk and inequality reduction something captured by the concavity of the utility function in the expected utility model. We claim that the applicability of the stochastic dominance approach goes far beyond risk and inequality measurement provided suitable adpations be made. We apply in the paper the stochastic dominance approach to the measurment of elitism which may be considered the opposite of egalitarianism. While the...

  17. Behavior and diversity of floral visitors to Campomanesia adamantium (Myrtaceae)

    OpenAIRE

    NUCCI, MATEUS; ALVES-JUNIOR, ALTER VIEIRA

    2017-01-01

    Abstract Considering the important roles of pollinators in ecosystem services, their identification and studies of their behavior would be extremely important to efforts directed towards their preservation and management. With the aim of examining the diversity and behavior of the floral visitors to Campomanesia adamantium (Cambessédes) O. Berg (“guavira”) and how they act in the pollination process, a total of 31 species belonging to the orders Hymenoptera (79.30 %), Coleoptera (11.34 %), Di...

  18. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects.

    Science.gov (United States)

    Wong, Darren C J; Pichersky, Eran; Peakall, Rod

    2017-01-01

    Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  19. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  20. On Stochastic Dependence

    Science.gov (United States)

    Meyer, Joerg M.

    2018-01-01

    The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.

  1. Stochastic massless fields I: Integer spin

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-04-01

    Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)

  2. COMPORTAMIENTO FISIOLÓGICO POSTCOSECHA DE TALLOS FLORALES DE ROSA (Rosa hybrida L. EN RESPUESTA AL FÓSFORO APLICADO EN PRECOSECHA

    Directory of Open Access Journals (Sweden)

    Colinas-León MT

    2011-01-01

    Full Text Available Durante el crecimiento y desarro- llo de las flores, la nutrición fosforada es un factor que puede influir en la vida en flore- ro. El objetivo de este trabajo fue evaluar el efecto de cinco niveles de fósforo (P: 0, 0.5, 1.0, 1.5 y 2.0 me·L-1 de P aplicados en precosecha, mediante un sistema hidropóni- co abierto, en el comportamiento fisiológico postcosecha de tallos florales de rosa (Rosa hybrida L. ‘Classy’ y ‘Vega’. Las variables evaluadas durante la vida de florero de los tallos florales fueron: transpiración foliar y floral, potencial de turgencia foliar y de pétalos. Además, se evaluó la concentración de antocianinas en pétalos al momento de la cosecha. Las aplicaciones de P en precose- cha tuvieron efecto significativo únicamente en la transpiración foliar; sin embargo, se demostró que la mayor vida en florero (15.8 días de ‘Classy’ en comparación con ‘Vega’ (11.7 días estuvo directamente asociada con mayores potenciales de turgencia foliar y de pétalos, mayor tasa transpiratoria floral y menor tasa transpiratoria foliar en ‘Classy’.

  3. Change of floral orientation within an inflorescence affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Vertical raceme or spike inflorescences that are bee-pollinated tend to present their flowers horizontally. Horizontal presentation of flowers is hypothesized to enhance pollinator recognition and pollination precision, and it may also ensure greater consistency of pollinator movement on inflorescences. We tested the hypotheses using bee-pollinated Corydalis sheareri which has erect inflorescences consisting of flowers with horizontal orientation. We altered the orientation of individual flowers and prepared three types of inflorescences: (i unmanipulated inflorescences with horizontal-facing flowers, (ii inflorescences with flowers turned upward, and (iii inflorescences with flowers turned downward. We compared number of inflorescences approached and visited, number of successive probes within an inflorescence, the direction percentage of vertical movement on inflorescences, efficiency of pollen removal and seed production per inflorescence. Deviation from horizontal orientation decreased both approaches and visits by leafcutter bees and bumble bees to inflorescences. Changes in floral orientation increased the proportion of downward movements by leafcutter bees and decreased the consistency of pollinator movement on inflorescences. In addition, pollen removal per visit and seed production per inflorescence also declined with changes of floral orientation. In conclusion, floral orientation seems more or less optimal as regards bee behavior and pollen transfer for Corydalis sheareri. A horizontal orientation may be under selection of pollinators and co-adapt with other aspects of the inflorescence and floral traits.

  4. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  5. Proliferation and apoptosis in early molar morphogenesis - voles as models in odontogenesis

    Czech Academy of Sciences Publication Activity Database

    Šetková, Jana; Lesot, H.; Matalová, Eva; Witter, K.; Matulová, Petra; Míšek, Ivan

    2006-01-01

    Roč. 50, 5 (2006), s. 481-489 ISSN 0214-6282 R&D Projects: GA ČR GA304/04/0101; GA MŠk OC B23.001 Grant - others:COST STSM B23-00981 Institutional research plan: CEZ:AV0Z50450515 Keywords : tooth development * morphogenesis * Microtus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.577, year: 2006

  6. Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

    KAUST Repository

    Jaleel, Hassan

    2018-04-08

    Stochastic stability is a popular solution concept for stochastic learning dynamics in games. However, a critical limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We address this limitation for the first time and develop a framework for the comparative analysis of stochastic learning dynamics with different update rules but same steady-state behavior. We present the framework in the context of two learning dynamics: Log-Linear Learning (LLL) and Metropolis Learning (ML). Although both of these dynamics have the same stochastically stable states, LLL and ML correspond to different behavioral models for decision making. Moreover, we demonstrate through an example setup of sensor coverage game that for each of these dynamics, the paths to stochastically stable states exhibit distinctive behaviors. Therefore, we propose multiple criteria to analyze and quantify the differences in the short and medium run behavior of stochastic learning dynamics. We derive and compare upper bounds on the expected hitting time to the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the comparative behavior of the two dynamics.

  7. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  8. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  9. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  10. Stochastic Analysis : A Series of Lectures

    CERN Document Server

    Dozzi, Marco; Flandoli, Franco; Russo, Francesco

    2015-01-01

    This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...

  11. Floral structure in the neotropical palm genus Chamaedorea (Arecoideae, Arecaceae

    Directory of Open Access Journals (Sweden)

    Stauffer, Fred W.

    2008-12-01

    Full Text Available Male and female floral structure has been studied in 28 species of Chamaedorea, the largest palm genus present in the Neotropics. The taxa investigated represent all subgenera according to the most recent taxonomic revision of the group. Morphological, histological and cytological features that are known to be of importance for interactions with visiting insects were studied and their putative role in protecting the flowering parts assessed. The taxonomic distribution of selected characters is in some cases congruent with relationships inferred by recently published molecular studies within the group.Se ha estudiado la estructura de las flores masculinas y femeninas en 28 especies de Chamaedorea, el género de palmas con mayor número de especies en la región neotropical. Los táxones investigados representan a todos los subgéneros contemplados en la más reciente revisión taxonómica del grupo. Se han estudiado los caracteres morfológicos, histológicos y citológicos de mayor importancia en cuanto a la visita de insectos y se ha examinado su rol dentro de la protección de los órganos florales. La distribución taxonómica de caracteres seleccionados ha demostrado, en algunos casos, ser congruente con las relaciones inferidas por los más recientes estudios moleculares que incluyen al grupo.

  12. Stochastic Analysis with Financial Applications

    CERN Document Server

    Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi

    2011-01-01

    Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li

  13. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yang, M; Solava, J; Ma, H

    1999-09-01

    Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo. Copyright 1999 Wiley-Liss, Inc.

  14. Floral contrivances and specialised pollination mechanism strongly influence mixed mating in Wrightia tomentosa (Apocynaceae).

    Science.gov (United States)

    Barman, C; Singh, V K; Das, S; Tandon, R

    2018-05-01

    Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal-pollinated plants have evolved a mixed-mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species. We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near-threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open-pollinated progeny were analysed using an AFLP markers. Although the trees are self-compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open-pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68). The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self- and cross-pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. An ultraviolet floral polymorphism associated with life history drives pollinator discrimination in Mimulus guttatus.

    Science.gov (United States)

    Peterson, Megan L; Miller, Timothy J; Kay, Kathleen M

    2015-03-01

    • Ultraviolet (UV) floral patterns are common in angiosperms and mediate pollinator attraction, efficiency, and constancy. UV patterns may vary within species, yet are cryptic to human observers. Thus, few studies have explicitly described the distribution or ecological significance of intraspecific variation in UV floral patterning. Here, we describe the geographic distribution and pattern of inheritance of a UV polymorphism in the model plant species Mimulus guttatus (Phrymaceae). We then test whether naturally occurring UV phenotypes influence pollinator interactions within M. guttatus.• We document UV patterns in 18 annual and 19 perennial populations and test whether UV pattern is associated with life history. To examine the pattern of inheritance, we conducted crosses within and between UV phenotypes. Finally, we tested whether bee pollinators discriminate among naturally occurring UV phenotypes in two settings: wild bee communities and captive Bombus impatiens.• Within M. guttatus, perennial populations exhibit a small bulls-eye pattern, whereas a bilaterally symmetric runway pattern occurs mainly in annual populations. Inheritance of UV patterning is consistent with a single-locus Mendelian model in which the runway phenotype is dominant. Bee pollinators discriminate against unfamiliar UV patterns in both natural and controlled settings.• We describe a widespread UV polymorphism associated with life history divergence within Mimulus guttatus. UV pattern influences pollinator visitation and should be considered when estimating reproductive barriers between life history ecotypes. This work develops a new system to investigate the ecology and evolution of UV floral patterning in a species with extensive genomic resources. © 2015 Botanical Society of America, Inc.

  16. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  17. Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes.

    Science.gov (United States)

    Lanuza, Jose B; Bartomeus, Ignasi; Godoy, Oscar

    2018-06-01

    Theory argues that both soil conditions and aboveground trophic interactions have equivalent potential to limit or promote plant diversity. However, it remains unexplored how they jointly modify the niche differences stabilising species coexistence and the average fitness differences driving competitive dominance. We conducted a field study in Mediterranean annual grasslands to parameterise population models of six competing plant species. Spatially explicit floral visitor assemblages and soil salinity variation were characterised for each species. Both floral visitors and soil salinity modified species population dynamics via direct changes in seed production and indirect changes in competitive responses. Although the magnitude and sign of these changes were species-specific, floral visitors promoted coexistence at neighbourhood scales, while soil salinity did so over larger scales by changing the superior competitors' identity. Our results show how below and aboveground interactions maintain diversity in heterogeneous landscapes through their opposing effects on the determinants of competitive outcomes. © 2018 John Wiley & Sons Ltd/CNRS.

  18. Homology with vesicle fusion mediator syntaxin-1a predicts determinants ofepimorphin/syntaxin-2 function in mammary epithelial morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Connie S.; Nelson, Celeste M.; Khauv, Davitte; Bennett, Simone; Radisky, Evette S.; Hirai, Yohei; Bissell, Mina J.; Radisky, Derek C.

    2009-06-03

    We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.

  19. The morphogenesis of feathers.

    Science.gov (United States)

    Yu, Mingke; Wu, Ping; Widelitz, Randall B; Chuong, Cheng-Ming

    2002-11-21

    Feathers are highly ordered, hierarchical branched structures that confer birds with the ability of flight. Discoveries of fossilized dinosaurs in China bearing 'feather-like' structures have prompted interest in the origin and evolution of feathers. However, there is uncertainty about whether the irregularly branched integumentary fibres on dinosaurs such as Sinornithosaurus are truly feathers, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather. Here, we use a developmental approach to analyse molecular mechanisms in feather-branching morphogenesis. We have used the replication-competent avian sarcoma retrovirus to deliver exogenous genes to regenerating flight feather follicles of chickens. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) has a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore, we show that sonic hedgehog (Shh) is essential for inducing apoptosis of the marginal plate epithelia, which results in spaces between barbs. Our analyses identify the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide insights on the possible developmental mechanisms in the evolution of feather forms.

  20. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  1. TRL1 gene expression in tomato (Solanum lycopersicum) floral organs after γ-irradiation

    International Nuclear Information System (INIS)

    Bondarenco, V.S.; Barbacar, N.I.

    2009-01-01

    The article describes the expression patterns of a novel RAD16-like TRL1 (tomato RAD16-like 1) gene in the floral organs of tomato during anther meiosis and mature flower stages. The data on the induction of the TRL1 expression as a result of γ-irradiation is discussed. (authors)

  2. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs.

    Science.gov (United States)

    Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June

    2012-03-01

    Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.

  3. Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-11-02

    The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.

  4. Stochastic Estimation via Polynomial Chaos

    Science.gov (United States)

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  5. 'O' Rose Thou Art Sick': Floral Symbolism in William Blake's Poetry

    Directory of Open Access Journals (Sweden)

    Noelia Malla

    2014-04-01

    Full Text Available The primary aim of this paper is to analyse the symbolic implications of floral imagery in William Blake’s poetry. More specifically, this study explores the process of floral (resignification of William Blake’s Songs of Innocence (1789 and Songs of Experience (1794 as case studies. Since “Without contraries [there] is no progression” (Marriage of Heaven and Hell, plate 3, it can be argued that the Songs represent contrary aspects of the human condition that far from contradicting each other, establish a static contrast of shifting tensions and revaluation of the flower-image not only as a perfect symbol of the “vegetable” life rooted to the Earth but also as a figure longing to be free. In some sense at some level, the poetic-prophetic voice asserts in the Songs of Experience the state of corruption where man has fallen into. Ultimately, this study will explore how the failure to overcome the contrast that is suggested in the Songs will be deepened by the tragedy of Thel, which is symbolized by all unborn forces of life, all sterile seeds as an ultimate means of metaphorical regeneration throughout Poetry which constitutes in itself the Poet Prophet’s own means of transcending through art.

  6. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  7. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  8. Stochastic parameterizing manifolds and non-Markovian reduced equations stochastic manifolds for nonlinear SPDEs II

    CERN Document Server

    Chekroun, Mickaël D; Wang, Shouhong

    2015-01-01

    In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

  9. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  10. Floral traits and pollination ecology of European Arum hybrids.

    Science.gov (United States)

    Chartier, Marion; Liagre, Suzanne; Weiss-Schneeweiss, Hanna; Kolano, Bozena; Bessière, Jean-Marie; Schönenberger, Jürg; Gibernau, Marc

    2016-02-01

    Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.

  11. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, John Joseph Absalom, E-mail: j.j.a.hosking@cma.uio.no [University of Oslo, Centre of Mathematics for Applications (CMA) (Norway)

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  12. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    International Nuclear Information System (INIS)

    Hosking, John Joseph Absalom

    2012-01-01

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966–979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197–216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  13. Preferência Floral de Vespas (Hymenoptera, Vespidae no Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre Somavilla

    2012-04-01

    Full Text Available As vespas integram a comunidade de visitantes florais e podem constituir uma parcela representativa dos polinizadores. Por este motivo, objetivou-se conhecer e analisar a preferência floral das espécies de Vespidae, bem como investigar o uso de recursos florais por estas vespas. Foram realizadas coletas entre o período de 2001 a 2008 em diferentes localidades do Estado do Rio Grande do Sul (Estrela Velha, Santa Cruz do Sul, São Francisco de Paula e Sinimbu, entre 08:00 a 17:00 horas, utilizando redes entomológicas para a captura dos vespídeos visitando flores. Os espécimes coletados foram depositados na Coleção Entomológica de Santa Cruz do Sul (CESC. Coletou-se 1.483 indivíduos alocados em 73 espécies de vespas, sendo que 78,9% são Polistinae (30 espécies e 21,1% Eumeninae (43 espécies, visitando as flores de 33 espécies de plantas classificadas em 16 famílias botânicas; as famílias com maior número de espécies vegetais foram Asteraceae (12, Fabaceae (4 e Apiaceae (3. A planta com o maior número de vespídeos coletados foi Schinus terebinthifolius Raddi (616, seguida por Eryngium pandanifolium L. (137 e Eryngium horridum Spreng (122. A análise da sobreposição de nicho trófico de 26 espécies que visitaram quatro ou mais floração, mostrou que a sobreposição foi igual ou maior que 50% em apenas seis casos.Floral Preferences of Wasps (Hymenoptera, Vespidae in the Rio Grande do Sul State, BrazilAbstract Wasps integrate the floral visitors’ community and they can constitute a representative portion of the pollinators. For this reason, it was aimed to know and to analyze the floral preference of the Vespidae species and to investigate the use of floral resources for these wasps. The collects were performed between 2001 and 2008 in different localities of Rio Grande do Sul state (Estrela Velha, Santa Cruz do Sul, São Francisco de Paula e Sinimbu between 08:00 at 17:00 hours, utilizing entomological nets to catch the

  14. Stochastic TDHF and the Boltzman-Langevin equation

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations

  15. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Darren C. J. Wong

    2017-11-01

    Full Text Available Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  16. Stochastic resonance in a stochastic bistable system with additive noises and square–wave signal

    International Nuclear Information System (INIS)

    Feng, Guo; Xiang-Dong, Luo; Shao-Fu, Li; Yu-Rong, Zhou

    2010-01-01

    This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated. (general)

  17. Stochastic quantization of Proca field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-03-01

    We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)

  18. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2005-01-01

    Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

  19. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Directory of Open Access Journals (Sweden)

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  20. Are eavesdroppers multimodal? Sensory exploitation of flo-ral signals by a non-native cockroach Blatta orientalis

    Directory of Open Access Journals (Sweden)

    Rodrigo C. VERGARA, Alejandra TORRES-ARANEDA, Diego A. VILLAGRA, Robert A. RAGUSO, Mary T. K. ARROYO, Cristian A. VILLAGRA

    2011-04-01

    Full Text Available The study of multi-modal communication has only recently been extended to innate and learned interactions between flowers and their animal visitors, and usually only to pollinators. Here we studied the relevance of floral scent and visual display of a night blooming, putatively hawkmoth-pollinated plant Oenothera acaulis (Onagraceae in the attraction of non-native cockroaches Blatta orientalis (Blattodea: Blattidae, which function as facultative floral larcenists in coastal habitats of central Chile. We experimentally decoupled visual (corolla and olfactory (fragrance stimuli by presenting paper corollas and green mesh bags, with or without a freshly-picked natural flower inside. We then contrasted the behavioral responses of roaches in these treatments with those to the natural combination of traits in actual flowers and their respective control treatments, measuring the roaches’ frequency of first visits, mean and total residence time spent in each treatment. The roaches primarily used olfactory cues when approaching O. acaulis flowers at two biologically relevant spatial scales. In addition, the presence of conspecific roaches had a strong influence on recruitment to the experimental arena, increasing the statistical differences among treatments. Our results suggest a primacy of floral fragrance over visual stimuli in the foraging responses of B. orientalis. Olfactory cues were necessary and sufficient to attract the roaches, and the visual cues presented in our manipulations only marginally increased their attraction within a 20 cm diameter of the stimulus. The full spectrum of floral visitation behavior was not elicited by the artificial flowers, suggesting the need for additional tactile or contact chemosensory stimuli not provided by paper. Although the nitrogenous scent compounds that we found in O. acaulis flowers are almost exclusively found in hawkmoth-pollinated flowers, the attractiveness of these compounds to a non

  1. The Floral Symbol in the Poetry of Heinrich Heine

    Directory of Open Access Journals (Sweden)

    Aleksandra Chepelyk

    2013-08-01

    Full Text Available The article is devoted the plant symbolics which became the inalienable constituent of the original creation of Heinrich Heine. The distinctive traits of the artist’s lyric poetry are floral images, which are able to reflect the psychology of the human soul in the correlation with the spiritual substance – the divine nature. The immersion of Heinrich Heine in the world of the plants was conducived to the activation of the special emotional and psychological loading with the purpose of the comprehension of the internal experience of the lyric subject, represented in the sensory perceptible figurative, sound and visual landscapes.

  2. Decision Support Methods for Supply Processes in the Floral Industry

    Directory of Open Access Journals (Sweden)

    Kutyba Agata

    2017-12-01

    Full Text Available The aim of this paper was to show the application of the ABC and AHP (multi-criteria method for hierarchical analysis of decision processes as an important part of decision making in supply processes which are realized in the floral industry. The ABC analysis was performed in order to classify the product mix from the perspective of the demand values. This in consequence enabled us to identify the most important products which were then used as a variant in the AHP method.

  3. Combination of Hypomorphic Mutations of the Drosophila Homologues of Aryl Hydrocarbon Receptor and Nucleosome Assembly Protein Family Genes Disrupts Morphogenesis, Memory and Detoxification

    OpenAIRE

    Kuzin, Boris A.; Nikitina, Ekaterina A.; Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response...

  4. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  5. Floral pipe: length in Petunia x hybrida heredability, number of genes and the interaction of the date with the character

    OpenAIRE

    Fatta, N.; Vazquez, M.; García, N.; Mascarini, A.; Grigioni, G.

    2007-01-01

    Petunia x hybrida, a floral summer of a economical importance in Buenos Aires, is nowadays produced with imported seed. The research presented is focused on the study of the feasibility to obtain locally competitive seed. The length of the floral pipe is a relevant character so the assay was designed in order to estimate the heredability, the number of genes intervener and the interactions with the date. The assay began with a F1 purchased from United States. In 2003, the F1 and F2 were sowed...

  6. Floral convergence in Oncidiinae (Cymbidieae; Orchidaceae): an expanded concept of Gomesa and a new genus Nohawilliamsia.

    Science.gov (United States)

    Chase, Mark W; Williams, Norris H; de Faria, Aparacida Donisete; Neubig, Kurt M; Amaral, Maria do Carmo E; Whitten, W Mark

    2009-08-01

    Floral morphology, particularly the angle of lip attachment to the column, has historically been the fundamental character used in establishing generic limits in subtribe Oncidiinae (Orchidaceae), but it has also been long recognized that reliance on this character alone has produced a highly artificial set of genera. In essence, lip/column relationships reflect syndromes associated with pollinator preferences; most genera of Oncidiinae as previously defined have consisted of a single floral type. Here, the degree to which this has influenced generic delimitation in Brazilian members of the largest genus of Oncidiinae, Oncidium, which previous molecular (DNA) studies have demonstrated to be polyphyletic, is evaluated. Phylogenetic analyses of the following multiple DNA regions were used: the plastid psbA-trnH intergenic spacer, matK exon and two regions of ycf1 exon and nuclear ribosomal DNA, comprised of the two internal transcribed spacers, ITS1 and ITS2, and the 5.8S gene. Results from all regions analysed separately indicated highly similar relationships, so a combined matrix was analysed. Nearly all species groups of Brazilian Oncidium are only distantly related to the type species of the genus, O. altissimum, from the Caribbean. There are two exceptions to this geographical rule: O. baueri is related to the type group and O. orthostates, an isolated species that lacks the defining tabula infrastigmata of Oncidium, is not exclusively related to any previously described genus in the subtribe. Several well-supported subclades can be observed in these results, but they do not correspond well to sections of Oncidium as previously circumscribed or to segregate genera as defined by several recent authors. In spite of their floral differences, these groups of Oncidium, formerly treated as O. sections Barbata, Concoloria pro parte, Crispa, Ranifera, Rhinocerotes, Rostrata (only O. venustum), Synsepala, Verrucituberculata pro parte and Waluewa, form a well

  7. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.

    Science.gov (United States)

    Chen, Qian; Zhu, Yong-Chuan; Yu, Jing; Miao, Sheng; Zheng, Jing; Xu, Li; Zhou, Yang; Li, Dan; Zhang, Chi; Tao, Jiong; Xiong, Zhi-Qi

    2010-09-22

    Mutations in cyclin-dependent kinase-like 5 (CDKL5), also known as serine/threonine kinase 9 (STK9), have been identified in patients with Rett syndrome (RTT) and X-linked infantile spasm. However, the function of CDKL5 in the brain remains unknown. Here, we report that CDKL5 is a critical regulator of neuronal morphogenesis. We identified a neuron-specific splicing variant of CDKL5 whose expression was markedly induced during postnatal development of the rat brain. Downregulating CDKL5 by RNA interference (RNAi) in cultured cortical neurons inhibited neurite growth and dendritic arborization, whereas overexpressing CDKL5 had opposite effects. Furthermore, knocking down CDKL5 in the rat brain by in utero electroporation resulted in delayed neuronal migration, and severely impaired dendritic arborization. In contrast to its proposed function in the nucleus, we found that CDKL5 regulated dendrite development through a cytoplasmic mechanism. In fibroblasts and in neurons, CDKL5 colocalized and formed a protein complex with Rac1, a critical regulator of actin remodeling and neuronal morphogenesis. Overexpression of Rac1 prevented the inhibition of dendrite growth caused by CDKL5 knockdown, and the growth-promoting effect of ectopically expressed CDKL5 on dendrites was abolished by coexpressing a dominant-negative form of Rac1. Moreover, CDKL5 was required for brain-derived neurotrophic factor (BDNF)-induced activation of Rac1. Together, these results demonstrate a critical role of CDKL5 in neuronal morphogenesis and identify a Rho GTPase signaling pathway which may contribute to CDKL5-related disorders.

  8. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  9. Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes?

    Science.gov (United States)

    Cardoso-Gustavson, P; Davis, A R

    2015-01-01

    Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations - which resemble Casparian strips - in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post-secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non-secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Floral nectar production and nectary structure of a bee-pollinated shrub from Neotropical savanna.

    Science.gov (United States)

    Guimarães, E; Nogueira, A; Machado, S R

    2016-01-01

    Biotic pollination is critical for tropical ecosystem functioning, and nectar plays an essential role as it represents the main trophic resource for pollinators. Nevertheless, little is known about the mechanisms that underlie its production, which is essential for understanding the basis of nectar-mediated interactions in ecological and evolutionary approaches. Therefore, this study explores the relationship between the nectar secretion pattern and nectary functional changes in Anemopaegma album, a bee-pollinated species. We analysed the pattern of nectar production under field conditions and investigated floral nectary structural changes in two different developmental stages using light, transmission and scanning electron microscopy. We measured 30.95 ± 23.02 μl (mean ± SD, n = 30) of nectar accumulated inside the nectar chamber (29.26 ± 3.48% sucrose equivalents) at the moment of flower opening. Nectar removal did not influence the pattern of floral nectar production in terms of volume or total sugar but reduced the concentration of the nectar produced during the first 24 h of anthesis. The nectary consisted of an epidermis, a nectary parenchyma and a subnectary parenchyma supplied only by phloem. Starch grains decreased in size and abundance from the subnectary parenchyma toward the epidermis. We observed the degradation of starch grains and incorporation of amyloplasts into vacuoles at the pre-anthesis stage as well as the transformation of amyloplasts into elaioplasts during anthesis. Nectar secretion was continuous during the A. album flower life span, which was related to the functional features of its floral nectary, especially the presence of starch stored in the parenchyma. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. The Influence of Garden Size and Floral Cover on Pollen Deposition in Urban Community Gardens

    Directory of Open Access Journals (Sweden)

    Kevin C. Matteson

    2009-01-01

    Full Text Available Many cucurbits, such as cucumbers, squashes and pumpkins, depend on pollinating bees in order to set fruit. However, fruit yield and progeny vigor in these plants generally decreases as heterospecific pollen deposition increases. We studied how the spatial area dedicated to cucumbers (Cucumis sativis, versus other flowering plants, influenced the deposition of conspecific and heterospecific pollen on cucumber plants in New York City community gardens. We also examined the effect of garden size on conspecific and heterospecific pollen deposition on cucumber plants. Female flowers were collected from potted cucumber plants that had been experimentally placed into the gardens, specifically for this study, or that were established in raised beds by members of the community garden. In the laboratory, pollen grains were isolated from the flower by acetolysis, and the number of heterospecific and conspecific cucumber pollen grains were quantified. Conspecific pollen deposition was positively and significantly associated with the size of a community garden, as well as with the area of each garden dedicated to non-cucumber, flowering plants (i.e. floral cover and the area of each garden dedicated to cucumber plants (i.e. cucumber cover. Although floral cover explained a greater proportion of the variance, cucumber cover had the strongest effect on conspecific pollen deposition. Heterospecific pollen deposition was positively and significantly related to garden area. However, no significant relationship was found between heterospecific pollen deposition and floral cover, or cucumber cover. Based upon these results, we hypothesize that floral cover positively impacts conspecific pollen deposition by attracting a greater number of pollinators into an urban garden, and that total cucumber area positively impacts conspecific pollen deposition when pollinators are locally foraging within a garden. We suggest that the arrangement of plants within a garden can

  12. Introduction to stochastic calculus

    CERN Document Server

    Karandikar, Rajeeva L

    2018-01-01

    This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...

  13. Predictability of bee community composition after floral removals differs by floral trait group.

    Science.gov (United States)

    Urban-Mead, Katherine R

    2017-11-01

    Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).

  14. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease.

    Science.gov (United States)

    Goody, Michelle F; Sher, Roger B; Henry, Clarissa A

    2015-05-01

    Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases. Copyright © 2015 Elsevier Inc. All rights

  15. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  16. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    International Nuclear Information System (INIS)

    Eyink, Gregory L.

    2009-01-01

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  17. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  18. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  19. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  20. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  1. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  2. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  3. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  4. Biología floral, sistema reproductivo y éxito reproductivo de Macroptilium fraternum (Fabaceae

    Directory of Open Access Journals (Sweden)

    Patricia S. Hoc

    2003-06-01

    Full Text Available Se realizaron observaciones de la biología floral y el sistema reproductivo de Macroptilium fraternum en dos poblaciones de la Argentina, con diferentes condiciones edáficas, localizadas en el extremo Sur del área de distribución de esta especie. En ambas poblaciones y en material de herbario de distintas procedencias se determinó la coexistencia en una misma planta de dos tipos florales: a flores cleistógamas preantesis y b flores pseudocleistógamas. Las flores cleistógamas preantesis con alas mayores de 5 mm, dispuestas en racimos pubescentes, erectos, expuestos sobre el nivel del follaje. La antesis duraba aproximadamente 5 horas en los días soleados y 9 horas en los días lluviosos, el ala derecha cubría al ala izquierda, adquiriendo la corola aspecto bilabiado, ofreciendo el ala izquierda como plataforma de aterrizaje; producían escasa cantidad de néctar (0.18 ± 0.13 µl y no recibieron visitas de polinizadores; aproximadamente cuatro horas después del inicio de la antesis en días soleados el ovario comenzaba a crecer; en el capullo, el estigma receptivo se encontraba cubierto con granos de polen de la misma unidad floral germinando. Las flores pseudocleistógamas con alas menores de 5 mm, dispuestas en racimos breves, hirsutos y postrados, no subterráneos como en otras especies de Macroptilium. El estandarte comenzaba a desplegarse exponiendo parcialmente las alas, el limbo del ala izquierda rodeaba la quilla y nunca se desplegaba; el ala derecha comenzaba a desplegarse y a los 2 segundos se replegaba y marchitaba, inmediatamente el ovario comenzaba a crecer; la flor no ofrecía ninguna superficie donde algún visitante pudiera posarse; en los capullos el estigma estaba receptivo y con los granos de polen de la misma unidad floral emitiendo sus tubos polínicos. El éxito reproductivo relativo fue bajo (polinización natural = 8%, autopolinización espontánea = 3%, debido probablemente a la baja viabilidad polínica, el

  5. Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis

    Directory of Open Access Journals (Sweden)

    Shouli Wang

    2017-12-01

    Full Text Available Gravity plays an important role in normal tissue maintenance. The ability of stem cells to repair tissue loss in space through regeneration and differentiation remains largely unknown. To investigate the impact of microgravity on blood vessel formation from pluripotent stem cells, we employed the embryoid body (EB model for vasculogenesis and simulated microgravity by clinorotation. We first differentiated mouse embryonic stem cells into cystic EBs containing two germ layers and then analyzed vessel formation under clinorotation. We observed that endothelial cell differentiation was slightly reduced under clinorotation, whereas vascular branch morphogenesis was markedly enhanced. EB-derived endothelial cells migrated faster, displayed multiple cellular processes, and had higher Cdc42 and Rac1 activity when subjected to clinorotation. Genetic analysis and rescue experiments demonstrated that Cdc42 but not Rac1 is required for microgravity-induced vascular branch morphogenesis. Furthermore, affinity pull-down assay and mass spectrometry identified Rap1GDS1 to be a Cdc42 guanine nucleotide exchange factor, which was upregulated by clinorotation. shRNA-mediated knockdown of Rap1GDS1 selectively suppressed Cdc42 activation and inhibited both baseline and microgravity-induced vasculogenesis. This was rescued by ectopic expression of constitutively active Cdc42. Taken together, these results support the notion that simulated microgravity activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis.

  6. CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis.

    Directory of Open Access Journals (Sweden)

    Virgilio G Ponferrada

    Full Text Available In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1 is a single-pass (type 1 transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.

  7. The smell of environmental change: Using floral scent to explain shifts in pollinator attraction

    Science.gov (United States)

    Laura A. Burkle; Justin B. Runyon

    2017-01-01

    As diverse environmental changes continue to influence the structure and function of plant-pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that...

  8. Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant.

    Science.gov (United States)

    de Vega, Clara; Herrera, Carlos M

    2013-04-01

    Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.

  9. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  10. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  11. Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction.

    Science.gov (United States)

    Du, Lisha; Qi, Siyan; Ma, Juanjuan; Xing, Libo; Fan, Sheng; Zhang, Songwen; Li, Youmei; Shen, Yawen; Zhang, Dong; Han, Mingyu

    2017-11-01

    Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing disaccharide that serves as a carbon source and stress protectant in apple trees. Trehalose-6-phosphate (T6P) is the biosynthetic precursor of trehalose. It functions as a crucial signaling molecule involved in the regulation of floral induction, and is closely related to sucrose. Trehalose-6-phosphate synthase (TPS) family members are pivotal components of the T6P biosynthetic pathway. The present study identified 13 apple TPS family members and characterized their expression patterns in different tissues and in response to exogenous application of sucrose during floral induction. 'Fuji' apple trees were sprayed with sucrose prior to the onset of floral induction. Bud growth, flowering rate, and endogenous sugar levels were then monitored. The expression of genes associated with sucrose metabolism and flowering were also characterized by RT-quantitative PCR. Results revealed that sucrose applications significantly improved flower production and increased bud size and fresh weight, as well as the sucrose content in buds and leaves. Furthermore, the expression of MdTPS1, 2, 4, 10, and 11 was rapidly and significantly up-regulated in response to the sucrose treatments. In addition, the expression levels of flowering-related genes (e.g., SPL genes, FT1, and AP1) also increased in response to the sucrose sprays. In summary, apple TPS family members were identified that may influence the regulation of floral induction and other responses to sucrose. The relationship between sucrose and T6P or TPS during the regulation of floral induction in apple trees is discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Stochastic Systems Uncertainty Quantification and Propagation

    CERN Document Server

    Grigoriu, Mircea

    2012-01-01

    Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: ·         A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis   ·          Probabilistic models for random variables an...

  13. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  14. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  15. Growth and morphogenesis of shoot initials of Douglas fir, Pseudotsuga menziesii (Mirb.) Franco, in vitro

    NARCIS (Netherlands)

    Evers, P.W.

    1984-01-01

    An optimalized method of micropropagation of Douglas fir is described. Seasonal changes were found in optima for nitrate and sucrose in the medium and in the optimum for the light intensity during the culture of shoot initials. Differences in morphogenesis were obtained from shoot initials that had

  16. TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation.

    Directory of Open Access Journals (Sweden)

    Aurélie Hayez

    Full Text Available TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype. The morphology of the epidermis assessed by histology and by labelling differentiation markers in immunofluorescence was not altered. Toluidine blue permeability assay showed that the epidermal barrier develops normally during embryonic development. We also showed that depletion of TMEM45A in human keratinocytes does not alter their potential to form in vitro 3D-reconstructed epidermis. Indeed, epidermis with normal morphogenesis were generated from TMEM45A-silenced keratinocytes. Their expression of differentiation markers quantified by RT-qPCR and evidenced by immunofluorescence labelling as well as their barrier function estimated by Lucifer yellow permeability were similar to the control epidermis. In summary, TMEM45A gene expression is dispensable for epidermal morphogenesis, keratinization and barrier formation. If this protein plays a role in the epidermis, its experimental depletion can possibly be compensated by other proteins in the two experimental models analyzed in this study.

  17. A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus Zeyheria (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Silvia Rodrigues Machado

    Full Text Available ABSTRACT The genus Zeyheria (Bignoniaceae comprises only two species, both of which have been described as possessing a reduced and non-functional nectary disk. Despite the importance of this evolutionary change in the floral nectary, these functional assumptions have been based on disk size and on the distribution, abundance and histochemistry of corolla-borne trichomes. By combining methods on light and electron microscopy, here we investigated the functionality of the reduced nectary disk and describe all of the tissues and structures of the nectar chamber in order to determine the sites of floral nectar secretion in both Zeyheria species. . Our data find the floral nectary traits of both species to be very similar, although differing in their cellular contents. Subcellular evidence in both species indicated that disk, stipe and petal axils were, predominantly, involved in hydrophilic secretion, while capitate glandular trichomes produced lipophilic secretion and papillae produced mixed secretion. Our study shows that in spite of its reduced size, the reduced disk functions in nectar secretion in both species of Zeyheria. This kind of nectary system is a novelty for Bignoniaceae, since it comprises several tissues and structures functioning in an integrated fashion.

  18. Effects of exogenous salicylic acid on physiological traits and CBF gene expression in peach floral organs under freezing stress

    Directory of Open Access Journals (Sweden)

    Zhang Binbin

    2017-01-01

    Full Text Available To elucidate the effects of exogenous salicylic acid (SA treatment on the cold resistance of peach flower, the floral organs of two peach cultivars were treated with 20 mg/L SA and stored at 0°C for observation and sample collection. Water application was the control. After a treatment period, the anther relative water content of the control and SA-treated flowers decreased. The extent of the reduction was greater in the control, suggesting that the SA treatment significantly helped to maintain the anther water content of peach. Analysis of the stigma relative electric conductivity revealed that the SA treatment prevented membrane injury during the low temperature treatment. Additionally, we measured CBF gene expression at low temperature in the petal, stigma and ovary. The expression was markedly upregulated in the cold-treated floral organs. CBF gene expression after SA treatment was higher than in the control when cold conditions continued. These results suggest that the effects of SA on ameliorating the freezing injury to peach floral organs and on enhancing cold tolerance may be associated with the induction of CBF gene.

  19. Evolution and Expression Patterns of CYC/TB1 Genes in Anacyclus: Phylogenetic Insights for Floral Symmetry Genes in Asteraceae

    Science.gov (United States)

    Bello, María A.; Cubas, Pilar; Álvarez, Inés; Sanjuanbenito, Guillermo; Fuertes-Aguilar, Javier

    2017-01-01

    Homologs of the CYC/TB1 gene family have been independently recruited many times across the eudicots to control aspects of floral symmetry The family Asteraceae exhibits the largest known diversification in this gene paralog family accompanied by a parallel morphological floral richness in its specialized head-like inflorescence. In Asteraceae, whether or not CYC/TB1 gene floral symmetry function is preserved along organismic and gene lineages is unknown. In this study, we used phylogenetic, structural and expression analyses focused on the highly derived genus Anacyclus (tribe Anthemidae) to address this question. Phylogenetic reconstruction recovered eight main gene lineages present in Asteraceae: two from CYC1, four from CYC2 and two from CYC3-like genes. The species phylogeny was recovered in most of the gene lineages, allowing the delimitation of orthologous sets of CYC/TB1 genes in Asteraceae. Quantitative real-time PCR analysis indicated that in Anacyclus three of the four isolated CYC2 genes are more highly expressed in ray flowers. The expression of the four AcCYC2 genes overlaps in several organs including the ligule of ray flowers, as well as in anthers and ovules throughout development. PMID:28487706

  20. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  1. Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions

    Directory of Open Access Journals (Sweden)

    Sabovljević Aneta

    2010-01-01

    Full Text Available The moss Bryum argenteum Hedw. was treated with gibberellins as well as some inhibitors of gibberellin biosynthesis in order to investigate their influence on B. argenteum morphogenesis. Generally, gibberellins have not been chemically identified in bryophytes, while other groups of classical phytohormones (auxins, cytokinins, abscisic acid and ethylene have been chemically identified in these plants. The in vitro culture of the moss Bryum argenteum was established from sterilized spores. The apical shoots of untreated gametophytes grown in vitro were used to investigate the influence of different substances on secondary protonema and on the growth and multiplication of the gametophytes. B. argenteum reacts differently to the growth regulators applied. Both gibberellins applied in vitro (GA3 and GA7 have a positive effect on B. argenteum morphogenesis. Shoot multiplication was negatively affected by three tested growth retardants (ancymidol, BX-112 and chlorocholine chloride, while these substances did not have such strong effects on the moss protonema development.

  2. Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea.

    Science.gov (United States)

    Gijbels, Pieter; Ceulemans, Tobias; Van den Ende, Wim; Honnay, Olivier

    2015-11-01

    Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.

  3. A novel cell binding site in the coiled‐coil domain of laminin involved in capillary morphogenesis

    DEFF Research Database (Denmark)

    Sanz, Laura; García-Bermejo, Laura; Blanco, Francisco J

    2003-01-01

    Recently, we reported the isolation and characterization of an anti‐laminin antibody that modulates the extracellular matrix‐dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction....

  4. Cell-based multi-parametric model of cleft progression during submandibular salivary gland branching morphogenesis.

    Directory of Open Access Journals (Sweden)

    Shayoni Ray

    Full Text Available Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft

  5. The genetic architecture of UV floral patterning in sunflower.

    Science.gov (United States)

    Moyers, Brook T; Owens, Gregory L; Baute, Gregory J; Rieseberg, Loren H

    2017-07-01

    The patterning of floral ultraviolet (UV) pigmentation varies both intra- and interspecifically in sunflowers and many other plant species, impacts pollinator attraction, and can be critical to reproductive success and crop yields. However, the genetic basis for variation in UV patterning is largely unknown. This study examines the genetic architecture for proportional and absolute size of the UV bullseye in Helianthus argophyllus , a close relative of the domesticated sunflower. A camera modified to capture UV light (320-380 nm) was used to phenotype floral UV patterning in an F 2 mapping population, then quantitative trait loci (QTL) were identified using genotyping-by-sequencing and linkage mapping. The ability of these QTL to predict the UV patterning of natural population individuals was also assessed. Proportional UV pigmentation is additively controlled by six moderate effect QTL that are predictive of this phenotype in natural populations. In contrast, UV bullseye size is controlled by a single large effect QTL that also controls flowerhead size and co-localizes with a major flowering time QTL in Helianthus . The co-localization of the UV bullseye size QTL, flowerhead size QTL and a previously known flowering time QTL may indicate a single highly pleiotropic locus or several closely linked loci, which could inhibit UV bullseye size from responding to selection without change in correlated characters. The genetic architecture of proportional UV pigmentation is relatively simple and different from that of UV bullseye size, and so should be able to respond to natural or artificial selection independently. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  7. Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.).

    Science.gov (United States)

    Krajncic, Bozidar; Nemec, Joze

    2003-02-01

    EDDHA added in an optimal concentration (20.5 mumol.L-1) to a modified Pirson-Seidel nutrient solution induces flowering in some clones of the species Lemna minor, Lemna gibba and Spirodela polyrrhiza, which in the absence of EDDHA in the same nutrient solution do not flower. By adding EDDHA (20.5 mumol.L-1), floral induction under LD conditions is optimally promoted in the long-day (LD) species Lemna minor. After adding EDDHA to the nutrient solution, before floral induction and during flowering, Zn, Mn and Cu content is significantly increased in plants. Zn-EDDHA (0.86 mumol.L-1), Mn-EDDHA (1.51 mumol.L-1) and Cu-EDDHA (0.12 mumol.L-1), when used individually, greatly promote flowering under LD conditions as compared to flowering in the same nutrient solution with an equivalent quantity of Zn, Mn or Cu in the nonchelate form. If, on the other hand, Zn-EDDHA and Mn-EDDHA are added to the nutrient solution together (instead of Zn and Mn in nonchelate form), their effect on the promotion of flowering is less than in the case of their individual use. This shows that there is antagonism between Zn-EDDHA and Mn-EDDHA that is eliminated by adding EDDHA to the nutrient solution. We obtained the highest percentage of flowering plants (i.e. 74%) if we added EDDHA (20.5 mumol.L-1) to the nutrient solution containing Mn, Zn and Cu in chelate form. 74% of flowering plants actually means that flowering was achieved in all physiologically mature plants. Our results show that EDDHA promotes floral induction in Lemna minor under LD conditions, especially through chelating Zn, Mn and Cu, and, in addition, through eliminating the antagonism between Mn and Zn chelates EDDHA. Zn-EDDHA (0.86 mumol.L-1) also promote floral differentiation, especially cell division of microspore mother cells into dyads and those into microspore tetrads, which can be seen in microphotographs. When investigating possible pathways through which Mn-EDDHA, Zn-EDDHA and Cu-EDDHA promote flowering, we studied

  8. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  9. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  10. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  11. Set-Valued Stochastic Lebesque Integral and Representation Theorems

    Directory of Open Access Journals (Sweden)

    Jungang Li

    2008-06-01

    Full Text Available In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect to the time t . Finally we shall prove the presentation theorem of set-valued stochastic integral and dis- cuss further properties that will be useful to study set-valued stochastic differential equations with their applications.

  12. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  13. A retrodictive stochastic simulation algorithm

    International Nuclear Information System (INIS)

    Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.

    2010-01-01

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  14. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  15. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...

  16. Stochastic quantization and topological theories

    International Nuclear Information System (INIS)

    Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.

    1992-01-01

    In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones

  17. Stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''

  18. Biología floral, sistema reproductivo y éxito reproductivo de Macroptilium fraternum (Fabaceae

    Directory of Open Access Journals (Sweden)

    Patricia S. Hoc

    2003-06-01

    Full Text Available Se realizaron observaciones de la biología floral y el sistema reproductivo de Macroptilium fraternum en dos poblaciones de la Argentina, con diferentes condiciones edáficas, localizadas en el extremo Sur del área de distribución de esta especie. En ambas poblaciones y en material de herbario de distintas procedencias se determinó la coexistencia en una misma planta de dos tipos florales: a flores cleistógamas preantesis y b flores pseudocleistógamas. Las flores cleistógamas preantesis con alas mayores de 5 mm, dispuestas en racimos pubescentes, erectos, expuestos sobre el nivel del follaje. La antesis duraba aproximadamente 5 horas en los días soleados y 9 horas en los días lluviosos, el ala derecha cubría al ala izquierda, adquiriendo la corola aspecto bilabiado, ofreciendo el ala izquierda como plataforma de aterrizaje; producían escasa cantidad de néctar (0.18 ± 0.13 µl y no recibieron visitas de polinizadores; aproximadamente cuatro horas después del inicio de la antesis en días soleados el ovario comenzaba a crecer; en el capullo, el estigma receptivo se encontraba cubierto con granos de polen de la misma unidad floral germinando. Las flores pseudocleistógamas con alas menores de 5 mm, dispuestas en racimos breves, hirsutos y postrados, no subterráneos como en otras especies de Macroptilium. El estandarte comenzaba a desplegarse exponiendo parcialmente las alas, el limbo del ala izquierda rodeaba la quilla y nunca se desplegaba; el ala derecha comenzaba a desplegarse y a los 2 segundos se replegaba y marchitaba, inmediatamente el ovario comenzaba a crecer; la flor no ofrecía ninguna superficie donde algún visitante pudiera posarse; en los capullos el estigma estaba receptivo y con los granos de polen de la misma unidad floral emitiendo sus tubos polínicos. El éxito reproductivo relativo fue bajo (polinización natural = 8%, autopolinización espontánea = 3%, debido probablemente a la baja viabilidad polínica, el

  19. Management of floral waste generated from temples of Jaipur city through vermicomposting

    Directory of Open Access Journals (Sweden)

    Priyanka Tiwari

    2016-02-01

    Full Text Available This paper aims at management of floral waste generated from temples of Jaipur city through vermicomposting. In this study, flower waste consisted of variety of flowers out of which marigold was chosen as it was found in maximum amount. The vermibeds were prepared by mixing the marigold with cow dung in different proportions viz., 50:50, 60:40, 70:30, 80:20 and 90:10 and they were filled in the earthen pots, individually. Simultaneously, a control (without worms for each of these concentrations was prepared and maintained. Eisenia foetida was introduced into each of these trays except the control. The bioconversion ratio i.e., waste into vermicompost was found to be high in 60:40 proportion than the others. Vermicompost obtained was analysed for various parameters like organic carbon, total nitrogen, phosphorus, potassium, calcium and magnesium. The amount of organic carbon, potassium and phosphorus was more in vermicompost samples for all the groups as compared to compost samples. It was concluded that floral waste with cow dung at 50:50, 60:40 and 70:30 ratios could be converted into a nutrient rich vermicompost. International Journal of Environment Vol. 5 (1 2016,  pp: 1-13

  20. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    International Nuclear Information System (INIS)

    Singh, Akanksha; Jain, Akansha; Sarma, Birinchi K.; Abhilash, P.C.; Singh, Harikesh B.

    2013-01-01

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC

  1. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akanksha, E-mail: bhuaks29@gmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Jain, Akansha, E-mail: akansha007@rediffmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Sarma, Birinchi K., E-mail: birinchi_ks@yahoo.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India); Abhilash, P.C., E-mail: pca.iesd@bhu.ac.in [Institute for Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005 (India); Singh, Harikesh B., E-mail: hbs1@rediffmail.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India)

    2013-05-15

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.

  2. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.

    Science.gov (United States)

    Thomson, Diane M

    2016-10-01

    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  3. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  4. Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs.

    Science.gov (United States)

    Jakobsson, Anna; Lázaro, Amparo; Totland, Orjan

    2009-07-01

    Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance

  5. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae, a plant species with extremely small populations (PSESP endemic to South Yunnan of China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-02-01

    Full Text Available Manglietia ventii is a highly endangered plant species endemic to Yunnan province in China, where there are only five known small populations. Despite abundant flowering there is very low fruit and seed set, and very few seedlings in natural populations, indicating problems with reproduction. The causes of low fecundity in M. ventii are not known, largely because of insufficient knowledge of the species pollination ecology and breeding system. We conducted observations and pollination experiments, and analyzed floral scents to understand the pollinator–plant interactions and the role of floral scent in this relationship, as well as the species breeding system. Like the majority of Magnoliaceae, M. ventii has protogynous and nocturnal flowers that emit a strong fragrance over two consecutive evenings. There is a closing period (the pre-staminate stage during the process of anthesis of a flower, and we characterize the key flowering process as an “open-close-reopen” flowering rhythm with five distinct floral stages observed throughout the floral period of this species: pre-pistillate, pistillate, pre-staminate, staminate, and post-staminate. Flowers are in the pistillate stage during the first night of anthesis and enter the staminate stage the next night. During anthesis, floral scent emission occurs in the pistillate and staminate stages. The effective pollinators were weevils (Sitophilus sp. and beetles (Anomala sp., while the role of Rove beetles (Aleochara sp. and thrips (Thrips sp. in pollination of M. ventii appears to be minor or absent. The major chemical compounds of the floral scents were Limonene, β-Pinene, α-Pinene, 1,8-Cineole, Methyl-2-methylbutyrate, p-Cymene, Methyl-3-methyl-2-butenoate and 2-Methoxy-2-methyl-3-buten, and the relative proportions of these compounds varied between the pistillate and staminate stages. Production of these chemicals coincided with flower visitation by weevils and beetles. The results of

  6. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  7. Differential Contribution of Jasmine Floral Volatiles to the Aroma of Scented Green Tea

    Directory of Open Access Journals (Sweden)

    Jian-Xia Shen

    2017-01-01

    Full Text Available Tea volatiles’ generation and retention over manufacturing processes are crucial for tea quality. In this study, floral volatile adsorption and retention in green tea scented with Jasminum sambac flowers were examined over the scenting process. Out of 34 enhanced volatiles in the scented tea, β-ionone, β-linalool, indole, and methyl anthranilate were the most potent odorants with 5.1–45.2-fold higher odor activity values than the corresponding controls in the nonscented tea. Scenting efficiencies for the floral volatiles retained in the scented tea (the percentage of volatile abundance over its corresponding amount in jasmine flowers ranged from 0.22% for α-farnesene to 75.5% for β-myrcene. Moreover, due to additional rounds of heat treatment for scented green tea manufacturing, some volatiles such as carotenoid-derived geraniol and β-ionone and lipid-derived (Z-jasmone were heat-enhanced and others such as nonanal were heat-desorbed in the scented green tea. Our study revealed that dynamic volatile absorption and desorption collectively determined tea volatile retention and tea aroma. Our findings may have a great potential for practical improvement of tea aroma.

  8. Substâncias voláteis em mel floral e mel de melato

    Directory of Open Access Journals (Sweden)

    CAMPOS Gisélia

    2000-01-01

    Full Text Available Embora pareça existir um "flavor" característico de mel, a grande variedade de flores disponíveis para a abelha, possibilita uma grande diversidade de flavor e aroma, indicando a presença de vários componentes voláteis. Alguns destes dependem da fisiologia da abelha, dos procedimentos após a colheita e no mel de melato há também a interferência de insetos sugadores e das formigas. Várias substâncias voláteis já foram identificadas, sendo algumas características de determinados méis uniflorais. Com o objetivo de encontrar uma substância volátil característica do mel de melato, seis amostras deste tipo de mel e seis amostras de mel floral foram analisadas usando extração por arraste de gás hidrogênio e cromatografia a gás acoplada a espectrometria de massas. Ácido acético foi encontrado em quatro amostras de mel de melato e em uma amostra de mel floral porém, com menor abundância.

  9. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness

    Science.gov (United States)

    Klocko, Amy L.; Borejsza-Wysocka, Ewa; Brunner, Amy M.; Shevchenko, Olga; Aldwinckle, Herb; Strauss, Steven H.

    2016-01-01

    We investigated the ability of RNA interference (RNAi) directed against two co-orthologs of AGAMOUS (AG) from Malus domestica (domestic apple, MdAG) to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These “double-flowers” had strongly reduced expression of both MdAG-like genes. Members of the two other clades within in the MdAG subfamily showed mild to moderate differences in gene expression, or were unchanged, with the level of suppression approximately proportional to the level of sequence identity between the gene analyzed and the RNAi fragment. The double-flowers also exhibited reduced male and female fertility, had few viable pollen grains, a decreased number of stigmas, and produced few viable seeds after cross-pollination. Despite these floral alterations, RNAi-AG trees with double-flowers set full-sized fruit. Suppression or mutation of apple AG-like genes appears to be a promising method for combining genetic containment with improved floral attractiveness. PMID:27500731

  10. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  11. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  12. BRST stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1990-01-01

    After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

  13. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  14. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  15. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  16. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    Science.gov (United States)

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  17. Stochastic theories of quantum mechanics

    International Nuclear Information System (INIS)

    De la Pena, L.; Cetto, A.M.

    1991-01-01

    The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)

  18. Mechanical growth and morphogenesis of seashells

    KAUST Repository

    Moulton, D.E.

    2012-10-01

    Seashells grow through the local deposition of mass along the aperture. Many mathematical descriptions of the shapes of shells have been provided over the years, and the basic logarithmic coiling seen in mollusks can be simulated with few parameters. However, the developmental mechanisms underlying shell coiling are largely not understood and the ubiquitous presence of ornamentation such as ribs, tubercles, or spines presents yet another level of difficulty. Here we develop a general model for shell growth based entirely on the local geometry and mechanics of the aperture and mantle. This local description enables us to efficiently describe both arbitrary growth velocities and the evolution of the shell aperture itself. We demonstrate how most shells can be simulated within this framework. We then turn to the mechanics underlying the shell morphogenesis, and develop models for the evolution of the aperture. We demonstrate that the elastic response of the mantle during shell deposition provides a natural mechanism for the formation of three-dimensional ornamentation in shells. © 2012 Elsevier Ltd.

  19. A heterogeneous stochastic FEM framework for elliptic PDEs

    International Nuclear Information System (INIS)

    Hou, Thomas Y.; Liu, Pengfei

    2015-01-01

    We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage

  20. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)